
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 2 June 2015; revised 12 November 2015; accepted 6 January 2016.
Date of Publication 13 January 2016; date of current version 8 June 2016.

Digital Object Identifier 10.1109/TETC.2016.2517930

Pricing and Repurchasing for Big Data
Processing in Multi-Clouds

HE LI1, MIANXIONG DONG1, KAORU OTA1, AND MINYI GUO2, (Senior Member, IEEE)
1Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan

2Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

CORRESPONDING AUTHOR: M. DONG (mx.dong@ieee.org)

This work was supported in part by the National Natural Science Foundation of China under Grant 61261160502 and Grant 61272099, in
part by the National Basic Research (973 Program) of China under Grant 2015CB352403, in part by the Japan Society for the Promotion of

Science (JSPS) within the Grants-in-Aid for Scientific Research under Grant 15K15976 and Grant 26730056, in part by the Scientific
Innovation Act of Science and Technology Commission of Shanghai Municipality under Grant 13511504200, in part by the JSPS through the

A3 Foresight Program, and in part by the Research Fund for Post-Doctoral Program of Muroran Institute of Technology.

ABSTRACT Processing streaming big data becomes critical as new diver Internet of Thing applications
begin to emerge. The existing cloud pricing strategy is unfriendly for processing streaming big data with
varying loads. Multiple cloud environments are a potential solution with an efficient pay-on-demand pricing
strategy for processing streaming big data. In this paper, we propose an intermediary framework with multiple
cloud environments to provide streaming big data computing servicewith lower cost per load, inwhich a cloud
service intermediary rents the cloud service frommultiple cloud providers and provides streaming processing
service to the users with multiple service interfaces. In this framework, we also propose a pricing strategy to
maximize the revenue of the multiple cloud intermediaries. With extensive simulations, our pricing strategy
brings higher revenue than other pricing methods.

INDEX TERMS Streaming big data, cloud computing, multiple cloud.

I. INTRODUCTION
Streaming big data processing is becoming a very important
part of Internet of Things (IoT) in recent years. Usually, for
lower maintenance cost, users often use cloud services for
processing big data [1]–[3]. With cloud services, it is no
need to maintain a large scale cluster and consider the details
of big data computing. Furthermore, some cloud providers
also provide computing services based on some popular dis-
tributed systems (e.g., Hadoop, etc.). With these services,
users conveniently put their data and processing programs on
the cloud platform then wait for the result [4].

Usually, cloud provides give users reasonable price for
their services, especially for some long-term users [5].
However, for most streaming big data computing scenar-
ios, their price, especially the rate per load, seems too
expensive [6]. To reduce the cost for streaming big data
computing, an optional method is choose some small cloud
providers with lower rate per load. However, small cloud
providers have not enough capacity to support large scale
work loads [7], [8]. Meanwhile, their services are short of
support for big data computing. Multiple cloud service mode

is a better solution that users can deploy their computing in
multiple cloud providers [9]. However, with multiple cloud
providers, users have to considerate about the difficulty of
management and the deployment of big data computing sys-
tems. Thus, it needs multiple cloud intermediaries to provide
flexible services for these users to conveniently deploy data
and processing programs.

Another problem is that the rate with long-term rent is
much lower than the rate of pay-as-use while users choose
long-term rent can get a lower rate. Usually, in many scenar-
ios of streaming computing, the scale of the workload will
vary in different periods drastically. If the users want to meet
the requirement from the peak load, they need to rent many
computing resources from cloud providers while most of
rented resources will be idle with off-peak workloads. In this
case, we consider a potential solution that intermediaries
repurchase this part of computing capacity to recover a part
of the user cost if possible.

Therefore, as shown in Fig. 1, we propose a multi-
ple cloud intermediary concept combining multiple cloud
providers and user subletting. This intermediary framework

266

2168-6750
 2016 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 1. Illustration of the multiple cloud intermediary scheme:
Cloud users rent cloud computing resources from the
intermediary.

has compatibility with different cloud services and provides
on-demand streaming processing services for users. Mean-
while, we present a well-designed pricing strategy names
Pricing-Repurchasing for this intermediary framework. First,
the intermediary can repurchase the sparse capacity with
dynamic rate per load which depends on the duration time
and the amount of sparse resources that the users hold.
Second, the intermediary can choose different prices to users
for different users according to the amount and time of
computing resources rented. For this framework, we want
to design the optimal pricing and subletting strategy for the
intermediary that maximizes its total revenue, considering
the necessary refunds to the users. Notice that changing the
price or changing the repurchase rate has different impacts
on renting decisions from users, hence on the intermediaries
revenue. Thus, this pricing model brings new challenges in
the design of the revenuemaximizing policy for intermediary.

We employ a game-theoretic analysis, and model the inter-
action between the intermediary and the users as a two-stage
leader-follower (Stackelberg) game. In the first stage, the
intermediary decides the long-term rate, pay-as-use rate and
the repurchase rate plan. Accordingly, in the second stage,
every user decides how many units of computing capacity
with long-term rate and how many units with pay-as-use rate.
We analyze the best decisions of both the users and interme-
diary, and find the game equilibrium. The game model with
equilibrium analysis uses a variety of system characteristics,
including the computing style and scale of users, and the
capacity of the intermediary. As a result, it is possible to
apply the derivation of the optimal decisions to other cloud
computing scenarios. The main contributions of our work are
summaries as follows.

We first introduce an multiple cloud intermediary frame-
work to provide streaming big data computing services.

Based on this framework, we propose a pricing strategy with
the Pricing-Repurchasing plan. To the best of our knowledge,
this is the first work that studies such a Pricing-Repurchasing
cloud service.

We then design the optimal Pricing-Repurchasing plan that
maximizes the intermediary’s revenue. It is a challenging
problem which needs to understand thoroughly the impact
of pricing and repurchasing strategies on the hosts renting
decisions.

We model the interaction of the intermediary and the users
as a two-stage Stackelberg game, and analyze the game equi-
librium [10]. The analysis is generic and use a variety of
system characteristics, and thus is applicable to various cloud
computing scenarios.

Last, we take the performance evaluation of the strategy
with extensive simulations, and discuss the revenue with
different settings. We also compare our pricing strategy with
some other pricingmethods and the results shows our strategy
performs better.

The rest of the paper is organized as follows. In section II,
we discuss the related work. In Section III, we discuss
the design concepts and brief the main structure in
the framework. In Section IV, we state the system model.
Then we analyze the optimal pricing and repurchasing poli-
cies in Section V. In Section 27, we present the simulations.
Last, we conclude our work in Section.

II. RELATED WORKS
In this section, we first try to introduce the state of art and
the tread of streaming big data computing. We also introduce
some works which focused on the cloud based streaming big
data processing. Finally, we discuss the some typical systems
and scheduling algorithms in multiple cloud environment.

A. STREAMING BIG DATA COMPUTING
In rent years, researchers and companies developed some
successful systems focus on streaming big data computing.

Earlier steaming processing systems are usually deployed
on single computer. Aurora [11] is a streaming management
system developed by the cooperation of Brown, Brandis, and
MIT University. It is a single infrastructure which can effi-
ciently and seamlessly support real-time monitoring applica-
tions, archival applications and spanning applications.

Borealis [12] is a distributed extension of Aurorawhich can
process streaming data through multiple processors and com-
puters. For support distributed architecture, Borealis presents
an efficient algorithm for the distribution of jobs between
nodes.

Cougar [13] is a streaming processing system that works
with small-scale sensors, actuators, and embedded systems.
Unlike general sensor networks use offline querying and
analysis, Cougar project distributes queries to nodes and as a
result only the desired data collected by the central processing
nodes.

To meet the demands from the big data computing,
large companies also developed some commercial streaming

VOLUME 4, NO. 2, JUNE 2016 267

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

processing system. For example, IBM InfoSphere [14]
Streams is an advanced analytic platform that allows users
develop applications for analyzing and correlating informa-
tion from thousands of real-time sources. InfoSphere is a
distributed runtime platform which can be scaled from a
single server to an unlimited number of nodes to process
millions of events per second.Microsoft StreamInsight [15] is
another platform for developing and deploying complex event
processing applications, which analyses and correlates data
incrementally without storing data with low latency.

B. STREAMING BIG DATA COMPUTING IN CLOUD
While distributed and scalable cloud environment is very
suitable for deploying streaming big data computing, existing
cloud provides offers many solutions.

Meanwhile, some existing stream processing frameworks
(e.g., Apache S4, Storm, IBM InfoSphere Streams, etc),
which are designed for distributed systems, can be easily
deployed to existing cloud environment [16].

Storm [17] is a clojure procject based on Pallet9, which
aims to simplify the development of Storm topologies on
cloud platforms including AWS EC2.

Apache Kafka [18] is a real-time publish-subscribe infras-
tructure aiming to address the requirements from streaming
big data processing, in which data streams are partitioned and
spread over a cluster of machines.

Meanwhile, since the cloud environment is different from
the general distributed environment, more and more works
focus on development of original cloud systems for process-
ing streaming big data. Samze [19] is a streaming big data
processing framework that blends Kafka and Hadoop YARN,
which provides a model that YARN completely handle the
execution where streams are the input and output ot jobs.

AWS Kinesis [20] is an cloud service provided from
Amazon, which process stream data with the capacity
to handl multiple sources. Kinesis is an efficient service
especially on handling and generating alerts and allows for
integration with other AWS services.

C. MULTIPLE CLOUD COMPUTING
Some existing works focus on integrate computing resources
from multiple cloud providers.

Apache CloudStack [21] is a software to integrate cloud
computing resources with resource management, user man-
agement, API and graphical user interface. Eucalyptus is
also a similar software which focuses on building Amazon
AWS-compatible private and hybrid clouds.

OpenNebula [22] is a multiple cloud software aiming at
providing an industry standard solution for creating and man-
aging virtual data centers across multiple cloud provides.

OpenStack [23] is the most famous cloud management
system which provides an API and a dashboard to manage
pools of computing, storage, and network resources from
single or multiple cloud environment.

VMware vCloud [24] is a multiple cloud infrastructure
that allowing to organize cloud computing at three levels

including infrastructure level, platform level and service
level.

FOG [25] is a Ruby API for providing access to computing
and storage resources across multiple cloud provides. It also
provides an in-memory cloud resource representation to help
developers to test and simulate their deployment.

jcloud [26] is also an API for delivering an abstraction
layer over the APIs from cloud providers, which facilitates
users using means of templates to describe generic virtual
machines and allows deploying and grouping of multiple
virtual machines.

Cloud4SOA [27] is a multi-cloud PaaS management
which enables software developers to create, deploy, exe-
cute, and mange business applications throughmultiple cloud
providers.

The multicloud based evacuation services architecture [28]
maintains basic monitoring and maintenance sercices during
of normal activity but quickly scales up service capacity
during an emergency.

Furthermore, besides multi-cloud frameworks and
systems, there are several research works focused on the
scheduling strategies between multiple cloud scenarios for
optimization cost or performance.

An optimal virtual machine placement algorithm is pro-
posed to minimize the total cost due to purchasing reserved
and on-demand resources frommultiple cloud providers [29].
In this research, an optimal strategy is explored to avoid
the resources over/under-provisioning problem to cope with
uncertainly demands. The goal of this algorithm is archived
by adjusting the trade-off between resources and pay for the
on-demand requirement of load peaks.

A management algorithm is presented to reallocate the
placement of virtual machines for better performance in mul-
tiple cloud environment and optimize the resource utiliza-
tion [30]. To archive this goal, the algorithm considers the
host load profile and the guest load trend behavior instead of
thresholds.

A modular broker architecture is proposed for
optimal deployment for virtual services across multiple
clouds with different scheduling strategies [31]. This opti-
mization of this research is based on different crite-
ria, different user constraints, and different environmental
conditions.

A hybrid decision support is proposed for automating the
migration of web application clusters to public clouds [32].
In this research, a selection algorithm based on analytic
hierarchy process is designed for the migration decision
over multiple clouds with several criteria. Further, a genetic
algorithm-based approach is developed to cope with compu-
tational complexities in a growing market.

III. FRAMEWORK DESIGN
In this section, we first discuss the design concepts of the
multiple cloud intermediary framework for streaming big
data computing. Then, we brief the framework structure and
introduce the main modules in the framework.

268 VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

A. DESIGN CONCEPTS
1) MULTIPLE CLOUD COMPATIBILITY
Multiple cloud compatibility means the intermediary can
rent computer resources from different cloud providers with
different services, which means there are two levels of
compatibility including platform compatibility and service
compatibility.

Platform compatibility is that the intermediary applies
the computer resources from multiple cloud platforms with
different interfaces. This is the first design concept of the
multiple cloud services that the users can deploy their appli-
cations to multiple cloud platforms transparently. The benefit
of this compatibility is that the intermediary can schedule
the resource requirement between multiple cloud providers
to increase the service capacity and decrease the cost of the
computer resources.

Service compatibility is that the intermediary applies the
computer resources at different service levels. Usually, there
are three levels of services from existing cloud providers,
which including the Infrastructure as a Service (IaaS) level,
MapReduce level and Streaming computing level. IaaS level
means the cloud providers encapsulate their services as com-
pute instances and the users use these instances as general
servers. MapReduce level means the computing resources
are provided as general MapReduce computing systems and
users deploy their tasks as MapReduce applications. Stream-
ing computing level is that the streaming computing appli-
cations can be executed in this cloud platform. Considering
the intermediary focuses on the streaming computing, it can
apply more flexible scheduling strategies due to the service
compatibility.

2) ON-DEMAND SERVICES
On-demand services mean the intermediary can provide
different service types to satisfy the user requirements.
As well as the multiple cloud compatibility, there are also two
levels of on-demand services including on-demand service
levels and on-demand interfaces.

On-demand service levels mean the intermediary frame-
work can provide the specific service level needed by users.
In the discussion of the service compatibility, there are three
service levels in general cloud providers. For the service lev-
els, different users will adopt different levels for their tasks.
For example, if users want to deploy their specific processing
systems in the cloud platforms, they will choose IaaS level
while if users want to execute their tasks on general streaming
processing system, they will choose the streaming computing
level. Thus, to satisfy the requirement of different users, the
intermediary framework needs to provide these three service
levels at least.

On-demand interfaces mean the intermediary framework
can provide the specific service interface needed by users.
Service interfaces are usually including the interfaces of
the computing systems (e.g., POSIX [33], etc.), MapReduce
systems (e.g., hadoop [34], etc.) and the streaming
processing systems (e.g., SPARK [35], etc.). Before using

the intermediary service, users usually have developed some
applications or systems to execute their streaming processing
tasks with specific interfaces. For example, if user devel-
oped their streaming processing applications on the Apache
SPARK, they will prefer the cloud service through the same
interfaces with the SPARK. Therefore, the intermediary
framework needs to integrate general interfaces into the
service levels.

3) SPECIFIC LONG-TERM RENTING
This design concept focuses on the revenue and the risk of the
intermediary framework. Specific Long-term renting means
the users subscribe the services from the intermediary frame-
work with long-term contracts with specific prices. Similarly,
there are also two levels in this concept including long-term
renting and specific pricing.

Long-term renting means each user needs to rent a fix
amount of computer resources with a long period. It is a little
unacceptable that most of the cloud providers use pay-as-use
mode which means users only need to pay the part of units
they used. However, since the computing resources in the
intermediary are also rented from the cloud providers, it is
hard to decrease the cost of the pay-as-use mode. Thus, the
intermediary need to rent the computer resources from mul-
tiple cloud providers with long-term contracts. Considering
it is hard to predict user behaviors, long-term renting mode
brings higher risk than pay-as-use mode that the revenue and
cost are determined.

Specific pricing means the intermediary provide different
price for users with their workloads or other factors of the
processing tasks. The benefit of specific pricing is the inter-
mediary can increase the revenue with better strategy and
promote the cloud service to those users with more workloads
or low cost processing mode.

We will discuss the first two concepts by introducing the
framework structure first. Then, we will state the problem of
the third concept and give a well-designed pricing strategy in
the rest of this paper.

B. FRAMEWORK STRUCTURE
As the structure shown in Figure 2, the multiple cloud
intermediary framework for streaming computing consists
of several modules to meet the design concepts. There are
seven main modules in the framework including the cloud
instance management, streaming node management,
MapReduce node management, streaming service,
MapReduce service, IaaS service and user management
modules.

Cloud instance management module manages all compute
instances at the IaaS service level. This module records all
status of the instances and assigns appropriate instances to
other modules.

Streaming node management module manages the com-
puting resources which are provided to users at streaming
computing service level. The streaming computing resources
are generated in three types of methods. First type is that

VOLUME 4, NO. 2, JUNE 2016 269

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

FIGURE 2. Multiple Cloud Intermediary Framework Structure.

the intermediary rents resources from the streaming process-
ing cloud services. Second type is that the module deploys
the streaming processing systems on the MapReduce nodes.
Third type is that the module deploys the streaming process-
ing systems in the compute instances directly.

MapReduce node management module manages the
computing resources provided at MapReduce service level.
Similarly with the streaming computing resources, the
MapReduce computing resources are generated from two
types: the resources rented from the cloud MapReduce ser-
vices, and the module deploys the MapReduce systems in the
compute instances.

Streaming service module provides streaming computing
services to the users. To provide the required service interface
from users, the streaming service module integrates general
streaming processing systems.

MapReduce service module provides MapReduce services
to the users. Similarly, the MapReduce service module inte-
grates general MapReduce implementations to provide the
compatible interfaces to support the streaming systems from
users.

IaaS service module provides IaaS services to the users.
Usually, users can get compute instances from this module
with the required version of the operating systems and some
necessary software.

User management module manages all users in the inter-
mediary framework including access control, usage history,
billing, etc.

IV. SYSTEM MODEL
The intermediary model is as shown in Figure 1. We consider
users purchase cloud computing resources from the interme-
diary with enough capacity and low cost than large cloud
providers. The intermediary get discount prices frommultiple

cloud provider with long-term contracts. The intermediary
usually combines these computing resources into different
big data computing systems as the service units for cloud
users. We use set N = {u1, u2, ..., u|N |} to denote the cloud
users who use computing resources from the intermediary.
Since in processing streaming big data, the scale of workloads
will vary with the time period, we assume a time-slotted
system, and study the system for one time period and use
T = {t1, t2, t3, ...t|T |} to denote the T time slots.

The intermediary pays the cloud providers (e.g., Amazone
EC2) a pay-as-use price p ≥ 0 per one computing unit.
Meanwhile, the intermediary charges the cloud users with
long-term renting. As the intermediary provide rates for users
according to the usage of cloud services, we use r li to denote
these different rates for user ui. If users want pay-as-use rate,
according to their usage and application style, they should
pay rpi to bought additional computer resource from the
market.

The intermediary repurchases the users computing
capacity when the rented computer resources are more than
the requirements. The repurchasing rate is not fixed, but
depends on the amount of the over-rented capacity from the
intermediary. We use ηi ∈ [0, 0.9] to denote the repurchasing
ratio to user ui. When the intermediary repurchases one
unit of computing capacity from user ui, user ui can get a
refund of ηi · r li from the intermediary. Similar with the rate
strategies, we consider the intermediary can provide different
repurchasing rates for users according to the computing scale
and style.

The strategy of the intermediary includes the long-term
renting price r li and the repurchasing ratio ηi. The objective
of the intermediary is to decide the best strategy to maximize
the revenue. As we

For user ui, we define a utility function Ui(·) to denote
the certain computing needs. The utility function is defined
to computes the utility of assignment resources to user i.
As we seek a elastic model of the pricing strategy and the
user utility function is compatible with multiple previous
models [36], [37].

We also use wij to denote the consumed computing
resources during slot tj, and wi = (wij tj ∈ T) as the
computing resource consumption vector over the entire time
period.

Each user ui can rent computing resources with two differ-
ent ways including long-term renting from the intermediary
and pay-as-use from other cloud providers. Since the long-
term renting price is much lower than pay-as-use price, each
user needs to make a contract with the intermediary to get the
long-term renting sale. As a result, in the entire time period,
the amount of rented computing resources is fixed to each
user ui. We use cli ≥ 0 to denote fixed part of computing
resources. Some users will choose pay-as-use mode to rent
computing resources from other cloud providers as supple-
mentary of long-term renting. We use cpij ≥ 0 to denote the
part that user ui choose pay-as-use mode to rent computing
resources in time slot tj. Considering the required amount of

270 VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

computing resources is different in each time slot tj, the part
with pay-as-use mode is also different. The total computing
resources of these two part are equal to the requirements of
the workloads in time slot tj as follows.

cpij =

{
wij − cl, wij ≥ cli
0, cli > wij

(1)

If the computing resources rented by user ui within
long-term renting mode exceed the requirement from the
workloads, the intermediary will repurchase this part of the
computing resources. Therefore, we use crij ≥ 0 to denote
the part of computing resources repurchased by the interme-
diary. That is, the repurchased computing resources during
slot t can be calculated as follows.

crij =

{
cli − wij, cli > wij
0, wij ≥ cli

(2)

We use ctij ≥ 0 to denote the total amount of the computing
resources rented from the intermediary by user ui in time
slot tj. With three parts of the computing resources, in time
slot tj, the total amount of the computing resources rented
from the intermediary by user ui should satisfy following
equation.

ctij =

{
clij + c

p
ij = wij, wij ≥ cli

clij − c
r
ij, cli > wij

(3)

We list all notations used in the pricing strategy of the
multiple cloud intermediary model in Table 1. The system
is assumed to be quasi-static, as some variables (i.e., those
marked with the subscript j) may change in different time
slot tj ∈ T , while others are fixed in the entire time period.

TABLE 1. Notations in the multiple cloud intermediary model.

We focus on the interaction of the intermediary and
the users, and formulate is as a two-stage leader-follower
(Stackelberg) game. A stacklberg game is leadership model
in economics in which the leader firm moves before the
follower. In the game terms, the game players are a leader
and a follower and they compete on quantity. Thus, in our
model, the game players are the intermediary and the cloud

user. In the first stage, the intermediary (leader) decides
the long-term renting price, the pay-as-use price and the
repurchasing ratio for maximizing its payoff. The object of
the intermediary is to maximize its payoff, which consist of
the revenue from the long-term renting, pay-as-use renting,
and the cost for repurchasing from the cloud users, and the
payment(negative) to the cloud providers. In the second stage,
under the decisions from the leader, the user ui decides the
long-term renting amount. The payoff of each user ui depends
on the utility Ui from the computing requirement, the
payment on the long-term renting, the payment on the pay-
as-use cost, and the refund from repurchasing of over rented
computing resources.

Specifically, given the strategy (r l, η) of the intermediary,
the payoff of user ui, when choosing a strategy (cl), is as
follows.

Ji(cli; r
l
i , ηi) = Ui(wi)− r li · c

l
i · |T |

−

|T |∑
j=1

rpi · c
p
ij +

|T |∑
j=1

ηi · r li · c
r
ij (4)

From equation (1) and (2), the payoff of user ui can be denoted
as follows.

Ji(cli; r
l
i , ηi) =


Ui(wi)− r li · c

l
i · |T |

−
∑|T |

j=1 r
p
i · (wij − c

l
i), wij ≥ cli,

Ui(wi)− r li · c
l
i · |T |

+
∑|T |

j=1 ηi · r
l
i · (c

l
i − wij), wij < cli

(5)

Formally, the intermediary’s payoff can be defined as
follows.

V (r l, η; (cli)ui∈U) =
|U |∑
i=1

|T |∑
j=1

r li · c
l
i − ηi · r

l
· crij − p · c

l
ij

(6)

Similar with the payoff of cloud users, the payoff of the
intermediary can be denoted as follows.

V (r l, η; (cli)ui∈U)

=


∑|U |

i=1 r
l
i · (c

l
i − p) · |T |, wij ≥ cli∑|U |

i=1 r
l
i · (c

l
i − p) · |T |

−
∑|U |

i=1
∑|T |

j=1 ηi · r
l
i · (c

l
i − wij), wij < cli

(7)

Considering users will choose cheaper price from the other
cloud service, we assume that the intermediary provide a
lower price than general cloud service. Meanwhile, we also
assume the long-term price is lower the pay-as-use price.
Therefore, we can get following constraints.

r li < rpi , i ∈ [1, |U |] (8)

V. OPTIMAL PRICING-REIMBURSING STRATEGY
In this section, we study the intermediary-user game under
complete information, where both the intermediary and the
users know all system parameters mentioned above.We solve
the game by backward induction. First, we solve the user’s

VOLUME 4, NO. 2, JUNE 2016 271

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

best renting strategy in the second stage. Then, we study the
intermediary’s best pricing strategy in the first stage.

A. BEST DECISION OF USERS IN THE SECOND STAGE
We assume that computing tasks of the user are elastic
that the analysis can be easily extended to other scenarios.
Specifically, give the intermediary’s pricing and repurchasing
strategy (cli, c

p
i , ηi), user ui can derive the optimal scheduling

strategy (cl∗i) by solving the following problem.

max
cli
Ji(cli; r

l
i , ηi)

s.t., cli ≥ 0, r li < rpi , 0 ≤ ηi ≤ 0.9, i ∈ [1, |U |] (9)

It is easy to check that (9) is a convex optimization.
Meanwhile, there is no constraint for the value of cli . Hence,
usually it admits an optimal solution that can be characterized
by the Fermat’s theorem. However, considering the function
Ji(cli; r

l
i , ηi) derived from a step function, we first study the

characters of the payoff function.
First, we sort the wi into numerical order and denote it

by w∗i in which w∗i1 ≤ w∗i2 ≤ ... ≤ w∗i|T |. To c
l
i ≤ w∗i1, the

function Ji(cli; r
l
i , ηi) can be written as follows.

Ji(cli; r
l
i , ηi) = Ui(w∗i)+ (rpi − r

l
i) · |T | · c

l
i

− rpi ·
T∑
1

w∗ij, 0 ≤ cli ≤ w
∗

i1 (10)

It is easy to see it is a continuous and monotonic function
where 0 ≤ cli ≤ w

∗

i1.
Then we study the function where cli ≥ w

∗

i|T | as follows.

Ji(cli; r
l
i , ηi) = Ui(w∗i)− (1− ηi) · r li · |T | · c

l
i

+ ηi · r li ·
|T |∑
j=1

w∗ij, cli ≥ w
∗

i|T | (11)

Obviously, the payoff function is continuous and monotonic
where cli ≥ w

∗

i|T |.
Then, given an interval (w∗ik ,w

∗

i(k+1)) where w
∗
ik < cli <

w∗i(k+1), the payoff function of user ui can be written as
follows.

Ji(cli; r
l
i , ηi) = Ui(w∗i)− [(r li − r

p
i) · |T |

− (ηi · r li − r
p
i) · k] · c

l
i

+ ηi · r li ·
k∑
j=1

w∗ij − r
p
i ·

|T |∑
j=k+1

w∗ij,

w∗ik < cli < w∗i(k+1) (12)

Therefore, the payoff function is continuous where
w∗ik < cli < w∗i(k+1). Then, to the interval (w∗ik ,w

∗

i(k+1)), we
denote the function J ′i (c

l
i; r

l
i , ηi) to denote the derivative of

the payoff function as follows.

J ′i (c
l
i; r

l
i , ηi) =

dJi(cli; r
l
i , ηi)

dcli
= (r li − r

p
i) · |T | − (ηi · r li − r

p
i) · k

w∗ik < cli < w∗i(k+1) (13)

We can get the value of k∗ after setting the J ′i (c
l
i; r

l
i , ηi) = 0

as follows.

k∗ =
(r li − r

p
i) · |T |

ηi · r li − r
p
i

(14)

As a result, to each interval (wik ,wi(k+1)) between wi1 and
wi|T |, the payoff function is continuous and monotonic except
when k = k∗.
Lemma 1: The function Ji(cli; r

l
i , ηi) is a continuous

function where cli ≥ 0.
Proof: As discussed above, the function Ji(cli; r

l
i , ηi) is

continuous except clt = wik for each tk ∈ T . Therefore, for a
give k ∈ (0, |T |), the value Ji(wik +1c; r li , ηi) is as follows.

Ji(wik +1c; r li , ηi)

= Ji(wik ; r li , ηi)+ [(r li − r
p
i) · |T | − (ηi · −r

p
i) · k] ·1c

(15)

For a given k ∈ (0, |T |), the value Ji(wik − 1c; r li , ηi) is as
follows.

Ji(wik +1c; r li , ηi)

= Ji(wik ; r li , ηi)− [(r li − r
p
i) · |T | − (ηi · −r

p
i)

· (k − 1)] ·1c (16)

When 1c ← 0, since lim
1c→0

Ji(wik + 1c; r li , ηi) =

Ji(wik ; r li , ηi) and lim
1c→0

Ji(wik −1c; r li , ηi) = Ji(wik ; r li , ηi),

the function is continuous where clt = wik , k ∈ (0, |T |).
Similarly, we can prove the function Ji(wik ; r li , ηi) is contin-
uous where clt = wi1 and clt = wi|K |. Thus, we conclude that
this function is continuous where cli ≥ 0. �
Lemma 2: The optimal solution of function Ji(cli; r

l
i , ηi) is

cli = widk∗e, where |T | ≥ k∗ > 0
Proof: For the value where clp < widk∗e, we set

k = dk∗e − δ < k∗, the value of the function Ji(cli; r
l
i , ηi)

is as follows.

Ji(cli; r
l
i , ηi) = Ui(w∗i)

− [(r li − r
p
i) · |T | + (ηi · r li − r

p
i) · δ] · c

l
i

+ ηi · r li ·
k∑
j=1

w∗ij − r
p
i ·

|T |∑
j=k+1

w∗ij,

w∗ik < cli < w∗i(k+1) (17)

Obviously, since −[(r li − rpi) · |T | + (ηi · r li − rpi) · δ] < 0
where k∗ > 0, the function is monotonically decreasing.
Similarly, when cli > wi(dk∗e+1), the function is monotoni-
cally increasing.

272 VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Considering k is an integer, we study two conditions of k∗

that k∗ is an integer or not. First, when k∗ is an integer, we can
get a interval [wik∗ ,wi(k∗+1)] in which the value of the payoff
function is a constant. Therefore, when cli ∈ [wik∗ ,wi(k∗+1)],
the value of function Ji(cli; r

l
i , ηi) is minimum.When k∗ is not

an integer, we can get a interval [widk∗e,wi(dk∗e+1)] in while
the payoff function ismonotonically increasing. That is, when
cli = widk∗e, the value of function Ji(cli; r

l
i , ηi) is minimum.

Finally, we can conduct that The optimal solution of function
Ji(cli; r

l
i , ηi) is c

l
i = widk∗e where |T | ≥ k∗ > 0. �

B. BEST DECISION OF THE INTERMEDIARY IN
THE FIRST STAGE
Based on the users’ best strategy in the second stage, the
intermediary determines the best pricing and repurchasing
strategy (r l∗, η∗) that maximum the payoff defined in (7).
Specifically, the intermediary’s optimization problem is as
follows.

max
r l ,η V (r

l, η; (cl∗i)ui∈U)

s.t., cl∗i is solved in (9), cli ≥ 0,

r li < rpi , 0 ≤ ηi ≤ 1 ∀i ∈ [0, |U |] (18)

Since (cl∗i) is the user ui’s best strategy under r
l
i , r

p
i and ηi,

and cl∗i is functions of r li , r
p
i and ηi. That is, we can rewrite

the intermediary’s payoff as follows.

V (r l, η; (cl∗i)) =
|U |∑
i=1

Vi(r li , ηi; (c
l∗
i)) (19)

With equation (14), the payoff function Vi(r li , ηi; (c
l∗
i)) can

be written as follows.

Vi(r li , ηi; (c
l∗
i)) = [(r li − p) · |T | − ηi · r

l
i · dk

∗
e] · w∗idk∗e

+ ηi · r li ·
dk∗e∑
j=1

w∗ij (20)

From the value of k∗ in (14), we can get the payoff function
as follows.

Vi(r li , k
∗
; (w∗ik∗)) = [(r li − p) · |T | −

dk∗e · (r li − r
p
i) · |T |

k∗

− rpi · dk
∗
e] · w∗idk∗e

+ [
(r li − r

p
i) · |T |

k∗
+ rpi] ·

dk∗e∑
j=1

w∗ij (21)

To simplify this problem, we choose an approximation
that k∗ = dk∗e which means k∗ is an integer. With this
approximation, the problem can be simplified as follows.

Vi(r li , k
∗
; (w∗ik∗)) = [rpi · (|T | − k

∗)− p · |T |] · w∗ik∗

+ [
(r li − r

p
i) · |T |

k∗
+ rpi] ·

k∗∑
j=1

w∗ij,

k∗ ∈ [1, |T |] (22)

Considering k∗ in an integer which is no more than T , we
first maintain k∗ is constant and study the optimal solution of
r li with a given k

∗. That is, we can get the solution as follows.

V ′i (r
l
i , k
∗
; (w∗ik∗)) =

dVi(r li , k
∗
; (w∗ik∗))

dr li

=
|T |

∑k∗
j=1 w

∗
ij

k∗
(23)

Since the derivative of the payoff function is always nega-
tive, this function ismonotonically increasingwith a given k∗.
Therefore, the optimal solution is using a long-term renting
price as max as possible. With a give k∗, we can get r li as
follows.

r li =
rpi · (|T | − k

∗)

|T | − k∗ · ηi
(24)

It is easily find the maximum value of r l∗i is
rpi ·(|T |−k

∗)
|T |−0.9k∗

where η∗i = 0.9. Therefore, with a given k∗, we can get the
maximum value of V ∗i (k∗; (w

∗
ik∗)) as follows.

Vi(k∗, 0.9; (w∗ik∗)) = [(r l∗i − p) · |T | − 0.9 · r l∗i · k
∗] · w∗ik∗

+ 0.9 · r l∗i ·
k∗∑
j=1

w∗ij (25)

After that, we study the optimal solution of k∗ with a
give cli . Now we study the value of the payoff function with
different given k∗. The incremental value that Vi(k∗ + 1;
(w∗i(k∗+1)))− Vi(k

∗
; (w∗ik∗)) is as follows.

1Vi = Vi(k∗ + 1; (w∗i(k∗+1)))− Vi(r
l
i , k
∗
; (w∗ik∗))

= [rpi · (|T | − k
∗)− p · |T |] · (w∗i(k∗+1) − w

∗
ik∗)

− rpi · w
∗

i(k∗+1) + 0.91(r l∗ ·
k∗∑
j=1

w∗ij) (26)

Unfortunately, since the varying value 1Vi is related to
the workload in each slot of user ui, it is hard to describe
the payoff function without detail workload. To illustrate the
value of the payoff function, we calculate some distribution
functions of the workload as shown in Figure 3.

In this example, we set the cpi = 30, |T | = 720 and p = 2
then use four distribution functions of the workload including
normal distribution, Poisson distribution, Binomial distribu-
tion and random (average) distribution. The parameters of
those distribution functions are dimensioned in the figure.
From the value of these four distribution, the maximum value
of the payoff function is related to the workload distribution.
For example, with the random(average) distribution, we can
get themaximum value of the payoff function when k∗ = 314
while with the Poisson distribution, the maximum value can
be get when k∗ = 14.
Therefore, it needs to enumeration all values of the payoff

function with k∗ ∈ [1, |T |] and find the maximum value
of (25) with related k ′ as follows.

k ′ = argmax
k∗∈[1,|T |](Vi(k

∗
; (w∗ik∗)) (27)

VOLUME 4, NO. 2, JUNE 2016 273

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

FIGURE 3. Value of the payoff function with different distribution
function of the workload.

The time complexity of this enumeration is O(|T |) which
is an acceptable overhead to calculate the optimal solution.

With the result of k ′, we can get the optimal pricing r li
of the long-term renting to the user ui is

rpi ·(|T |−k
′)

|T |−k ′·0.9 with a
repurchasing ratio of ηi = 0.9.

VI. PERFORMANCE EVALUATION
In this section, we execute extensive simulations to eval-
uate the pricing strategy. We first describe the setting of
the simulations then discuss the result of the performance
evaluation.

We use a workstation computer as the simulation platform
which equips a CoreTM i7 4770 (8M Cache, up to 3.90GHz)
CPU, 16GByte RAM and 2TByte HDD.We use Python 2.7.3
as the script tools with networkx and numpy library. We test
each simulation 20 times and record the average result.

In all simulations, we use 40 to 200 users as the N in the
simulations and the time period T has 240 to 720 time slots.
For comparison, we use two simple pricing strategies include
pay-as-use mode and long-term renting mode as following.
(1) The pay-as-use mode pricing strategy uses a discount

price of general pay-as-use mode price rpi per each
user ui from cloud providers. In the simulations, we
use different discount ratio with 80%, 70% and 60%.
Considering additional risks, the cost of this mode
is 1.5 times of the cost of the long-term mode.

(2) The long-term mode pricing strategy uses a increased
price on the cost for the intermediary renting computer
resources from cloud providers. The incremental prices
are set 5 cents and 10 cents per unit. To simplify the
simulation, we assume users will rent average workload
with the long-term mode.

We first take two simulations to study the general per-
formance of our pricing strategy. We study the revenue
of the proposed pricing strategy under different scales of
users. We increase the number of users from 40 and 200

and in each step, the number of users increases 40. The
cost p per units for renting computer resources from cloud
providers is set 15 cents per unit. We set the workload amount
wij per time slot tj of each user ui uniformly distributed
in range [10, 1000]. The price cpi for each user ui is uni-
formly distribute in range [35, 112] which is accepted price
range according to existing cloud providers. As shown in
Figure 4(a), the revenue of all pricing strategy increases with
the user number scales up. When the number of users is 40,
the revenue of the pricing-repurchase is near the pay-as-use
mode of 80% while the number of users increases to 200, the
difference between modes becomes larger.

We also study the revenue of the proposed pricing strategy
under different service periods. We increase the number of
time slots from 240 to 720 and in each step, the number of
time slots increases 120. The number of user is set to 100
and other settings remain the same with previous. As shown
in Figure 4(b), the revenue of the pricing-purchasing strategy
is near to other modes when the number of time slot is set
to 240. With longer service period, obviously, the revenue of
our method performs better than other solutions. When the
number of time slots increases to 720, the revenue of our
strategy is near to 1 million dollars while pay-as-use 60% is
near to the 500000.

After testing the overall performance, we study the revenue
under different settings of the parameters of the pricing prob-
lem. We study the revenue of the proposed pricing strategy
under different cost p per unit for renting computer resources
from the cloud providers. The cost p per units increases
from 5 cents per unit to 30 cents and in each step, the cost
increases 5 cents. The number of users is set to 100. As shown
in Figure 4(c), compared to other modes, the revenue of the
Pricing-Repurchasing mode perform better with the increas-
ing cost. The revenue of the long-term renting mode remains
the same with the increasing cost. When the cost increases
to 30 cents per unit, 60% discount price with the pay-as-use
mode has less revenue than the p + 10 cents price with the
long-term renting mode.

Then, we try to adjust the price cpi of the additional usage
for each user. The price cpi for each user ui increases from
40 cents to 120 cents and in each step, the price rpi , increases
20 cents. We still set the workload amount wij per time slot tj
of each user ui uniformly distributed in range [10, 1000]. The
cost p per unit for renting computer resources from cloud
providers is set to 15 cents per unit. As shown in Figure 4(d),
with the price in the cloud market increases, the revenue
with the Pricing-Repurchasing and the pay-as-use mode is
increased while the revenue of the long-term renting mode
still remains the same. When the price rpi , is less than
60 cents, the p + 10 cents price with the long-term renting
mode has more revenue than the 80% discount price with
pay-as-use mode and the p + 5 cents price with long-term
renting mode has more revenue than the 60% discount price
with pay-as-use mode.

Third, we study the revenue of each pricing strategies
with different workload of each user ui. We set the

274 VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 4. Revenue results with different user scales, service periods, and different settings. (a) Revenue with different number of
users. (b) Revenue with different number of time slots. (c) Revenue with different price p from cloud providers. (d) Revenue with
different price rpi of the additional usage. (e) Revenue with different average workload w̄ij . (f) Revenue with different maximum
repurchasing ratio ηi .

average workload amountwij per time slot of user ui increases
from 100 to 500 and the average workload amount increases
100 in each step. We set the cost p per units to 15 and
the price rpi for each user ui uniformly distributed in range
[35, 112]. As shown in Figure 4(e), the revenue with the
Pricing-Repurchasing is still more than other pricing strategy.
The rate of increasing revenue with the increasing work-
load with the Pricing-Repurchasing is higher than other
pricing strategies. Differently from the previous simulations,
the revenue of the long-term renting mode increases with
the increasing workload event it is lowest in the all pricing
strategies.

Since the repurchasing is very important to our pricing
strategy, we test the revenue of different maximum repurchas-
ing ratio ηi for studying the influence from repurchasing strat-
egy. We set the workload amount wij uniformly distributed in
range [10, 1000], the cost p per units to 15, and the price rpi ,
for each user ui is uniformly distributed in range [35, 112].
As shown in Figure 4(f), obviously, the revenue of
the Pricing-Repurchasing strategy increases with the
increasing repurchasing ratio. With a repurchasing ratio
of 0.9, the revenue increases 33% than the revenue
of 0.5.

Finally, from the results of performance evaluation, we
can conclude that the Pricing-Repurchasing strategy brings
more revenue to the intermediary framework than other

pricing strategy especially with more workloads, higher
cost of the cloud resources and lower spreads between
the cost and the price in the market. Further, That is,
the Pricing-Repurchasing strategy can adapt the competitive
cloud service market.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a multiple cloud intermediary
framework for streaming big data computing to provide
streaming big data processing cloud services to the users. The
intermediary rents computer resources from different cloud
services and provides different service interfaces to users.
We also design a Pricing-Repurchasing strategy to maximum
the revenue of the intermediary and decrease the risks by
long-term renting contracts with users. We formulate the
Pricing-Repurchasing problem as a two-stage leader-follower
(Stackelberg) game, and analyze the game equilibrium.
We also evaluate our pricing strategy with extensive
simulations and compare the revenue with other pricing
strategies. From the result of performance evaluation, the
Pricing-Repurchasing strategy brings more revenue to the
intermediary than other methods.

In the future, we will plan to implement a complete
multiple cloud intermediary solution with modified
OpenStack to support streaming big data processing man-
agement. Meanwhile, it is signification to find scheduling

VOLUME 4, NO. 2, JUNE 2016 275

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

method to optimize the streaming computing performance
in the multiple cloud environment. A deeper experiment
with the real word testbed is also needed to evaluate
the efficiency of the new multiple cloud intermediary
solution.

REFERENCES

[1] L. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and D. Chen, ‘‘A parallel
file system with application-aware data layout policies for massive remote
sensing image processing in digital earth,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 6, pp. 1497–1508, Jun. 2015.

[2] Z. Deng et al., ‘‘Parallel processing of dynamic continuous queries over
streaming data flows,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 3,
pp. 834–846, Mar. 2015.

[3] W. Xue et al., ‘‘Ultra-scalable CPU-MIC acceleration of mesoscale atmo-
spheric modeling on Tianhe-2,’’ IEEE Trans. Comput., vol. 64, no. 8,
pp. 2382–2393, Aug. 2015.

[4] M. Armbrust et al., ‘‘A view of cloud computing,’’Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[5] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya, ‘‘Resource
provisioning policies to increase IaaS provider’s profit in a federated
cloud environment,’’ in Proc. IEEE 13th Int. Conf. High Perform. Comput.
Commun. (HPCC), Sep. 2011, pp. 279–287.

[6] Y.-J. Hong, J. Xue, and M. Thottethodi, ‘‘Dynamic server provision-
ing to minimize cost in an IaaS cloud,’’ in Proc. ACM SIGMETRICS
Joint Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), 2011,
pp. 147–148.

[7] M.Dong, H. Li, K. Ota, andH. Zhu, ‘‘HVSTO: Efficient privacy preserving
hybrid storage in cloud data center,’’ in Proc. IEEE INFOCOM WKSHPS,
Apr./May 2014, pp. 529–534.

[8] H. Li, M. Dong, X. Liao, and H. Jin, ‘‘Deduplication-based energy effi-
cient storage system in cloud environment,’’ Comput. J., vol. 58, no. 6,
pp. 1373–1383, Jun. 2014.

[9] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau,
‘‘Resilin: Elastic MapReduce over multiple clouds,’’ in Proc. 13th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGrid), May 2013,
pp. 261–268.

[10] S. van Hoesel, ‘‘An overview of Stackelberg pricing in networks,’’
Eur. J. Oper. Res., vol. 189, no. 3, pp. 1393–1402, 2008.

[11] D. J. Abadi et al., ‘‘Aurora: A new model and architecture for data stream
management,’’ VLDB J., vol. 12, no. 2, pp. 120–139, Aug. 2003.

[12] D. J. Abadi et al., ‘‘The design of the borealis stream processing engine,’’
in Proc. CIDR, 2005, pp. 277–289.

[13] J. Gehrke and S. Madden, ‘‘Query processing in sensor networks,’’ IEEE
Pervasive Comput., vol. 3, no. 1, pp. 46–55, Jan. 2004.

[14] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. New York, NY, USA:
McGraw-Hill, 2011.

[15] M. Ali, B. Chandramouli, B. Sethu, and R. Katibah, ‘‘Spatio-temporal
stream processing in microsoft StreamInsight,’’ IEEE Comput. Soc. Data
Eng. Bull., vol. 33, no. 2, pp. 69–74, Jun. 2010.

[16] G. De Francisci Morales, ‘‘SAMOA: A platform for mining big data
streams,’’ in Proc. 22nd Int. Conf. World Wide Web Companion, 2013,
pp. 777–778.

[17] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started With Storm.
Sebastopol, CA, USA: O’Reilly Media, Inc., 2012.

[18] N. Garg, Apache Kafka. Birmingham, U.K.: Packt Publishing, 2013.
[19] Apache Samza. [Online]. Available: http://samza.apache.org/, accessed

Jun. 1, 2015.
[20] R. Ranjan, ‘‘Streaming big data processing in datacenter clouds,’’ IEEE

Cloud Comput., vol. 1, no. 1, pp. 78–83, May 2014.
[21] Apache Cloudstack. [Online]. Available: https://cloudstack.apache.org/,

accessed Jun. 1, 2015.
[22] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, ‘‘Capacity

leasing in cloud systems using theOpenNebula engine,’’ inProc.Workshop
Cloud Comput. Appl., 2008, pp. 1–5.

[23] K. Pepple, Deploying OpenStack. Sebastopol, CA, USA: O’Reilly Media,
Inc., 2011.

[24] O. Krieger, P. McGachey, and A. Kanevsky, ‘‘Enabling a marketplace of
clouds: VMware’s vCloud director,’’ SIGOPS Oper. Syst. Rev., vol. 44,
no. 4, pp. 103–114, Dec. 2010.

[25] FOG—The Ruby Cloud Services Library. [Online]. Available:
http://fog.io/, accessed Jun. 1, 2015.

[26] M. Alrokayan and R. Buyya, ‘‘A Web portal for management of aneka-
based multicloud environments,’’ in Proc. 11th Austral. Symp. Parallel
Distrib. Comput. (AusPDC), vol. 140. 2013, pp. 49–56.

[27] F. D’Andria, S. Bocconi, J. G. Cruz, J. Ahtes, and D. Zeginis,
‘‘Cloud4SOA: Multi-cloud application management across paas offer-
ings,’’ in Proc. 14th Int. Symp. Symbolic Numer. Algorithms Sci.
Comput. (SYNASC), Sep. 2012, pp. 407–414.

[28] M. Dong, H. Li, K. Ota, L. T. Yang, and H. Zhu, ‘‘Multicloud-based
evacuation services for emergency management,’’ IEEE Cloud Comput.,
vol. 1, no. 4, pp. 50–59, Nov. 2014.

[29] S. Chaisiri, B.-S. Lee, and D. Niyato, ‘‘Optimal virtual machine placement
across multiple cloud providers,’’ in Proc. IEEE Asia-Pacific Services
Comput. Conf. (APSCC), Dec. 2009, pp. 103–110.

[30] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, ‘‘Dynamic
load management of virtual machines in cloud architectures,’’ in Cloud
Computing (Lecture Notes of the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), vol. 34, D. Avresky,
M. Diaz, A. Bode, B. Ciciani, and E. Dekel, Eds. Berlin, Germany:
Springer, 2010, pp. 201–214.

[31] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and
I. M. Llorente, ‘‘Scheduling strategies for optimal service deployment
across multiple clouds,’’ Future Generat. Comput. Syst., vol. 29, no. 6,
pp. 1431–1441, 2013.

[32] M. Menzel, R. Ranjan, L. Wang, S. U. Khan, and J. Chen, ‘‘CloudGenius:
A hybrid decision support method for automating the migration of Web
application clusters to public clouds,’’ IEEE Trans. Comput., vol. 64, no. 5,
pp. 1336–1348, May 2015.

[33] D. R. Butenhof, Programming With POSIX Threads. Reading, MA, USA:
Addison-Wesley, 1997.

[34] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2012.

[35] M. Zaharia et al., ‘‘Fast and interactive analytics over Hadoop data with
spark,’’ USENIX Login, vol. 37, no. 4, pp. 45–51, 2012.

[36] J. O. Kephart and R. Das, ‘‘Achieving self-management via utility func-
tions,’’ IEEE Internet Comput., vol. 11, no. 1, pp. 40–48, Jan./Feb. 2007.

[37] N. W. Paton, M. A. T. de Aragão, K. Lee, A. A. A. Fernandes, and
R. Sakellariou, ‘‘Optimizing utility in cloud computing through autonomic
workload execution,’’ Bull. Tech. Committee Data Eng., vol. 32, no. 1,
pp. 51–58, 2009.

HE LI received the B.S. and M.S. degrees in
computer science and engineering from the
Huazhong University of Science and Technology,
in 2007 and 2009, respectively, and the Ph.D. degree
in computer science and engineering from The
University of Aizu, in 2015. He is currently a
Post-Doctoral Fellow with the Department of
Information and Electronic Engineering, Muroran
Institute of Technology, Japan. His research inter-
ests include cloud computing and software defined

networking. He serves as a Guest Associate Editor of IEICE Transactions on
Information and Systems.

276 VOLUME 4, NO. 2, JUNE 2016

Li et al.: Pricing and Repurchasing for Big Data Processing in Multi-Clouds

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

MIANXIONG DONG received the B.S., M.S.,
and Ph.D. degrees in computer science and
engineering from The University of Aizu, Japan.
He was a Researcher with the National Institute
of Information and Communications Technology,
Japan. He was a Japan Society for the Promo-
tion of Sciences (JSPS) Research Fellow with the
School of Computer Science and Engineering, The
University of Aizu, and a Visiting Scholar with
the BBCRGroup, University ofWaterloo, Canada,

supported by the JSPS Excellent Young Researcher Overseas Visit Program
from 2010 to 2011. He is currently an Assistant Professor with the
Department of Information and Electronic Engineering, Muroran Institute
of Technology, Japan. He was selected as a Foreigner Research Fellow
(a total of three recipients all over Japan) by the NEC C&C Foundation
in 2011. His research interests include wireless networks, cloud comput-
ing, and cyber-physical systems. His research results have been published
in 120 research papers in international journals, conferences, and books.
He received best paper awards from the IEEE HPCC 2008, the IEEE
ICESS 2008, ICA3PP 2014, GPC 2015, and the IEEE DASC 2015. He is
currently a Research Scientist with the A3 Foresight Program (2011-2016)
funded by the JSPS, the NSFC of China, and the NRF of Korea. He serves
as an Associate Editor of the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS,
the IEEE NETWORK, the IEEE ACCESS, and Cyber-Physical Systems (Taylor &
Francis), and a Leading Guest Editor of ACM Transactions on Multimedia
Computing, Communications and Applications, the IEEE TRANSACTIONS ON

EMERGING TOPICS IN COMPUTING, the IEEE TRANSACTIONS ON COMPUTATIONAL

SOCIAL SYSTEMS, Peer-to-Peer Networking and Applications (Springer), and
Sensors, and a Guest Editor of IEICE Transactions on Information and Sys-
tems, Mobile Information Systems, and International Journal of Distributed
Sensor Networks. He served as the Program Chair of the IEEE SmartCity
2015 and the Symposium Chair of the IEEE GLOBECOM 2016.

KAORU OTA received the B.S. degree in
computer science and engineering from The
University of Aizu, in 2006, the M.S. degree
in computer science from Oklahoma State
University, USA, in 2008, and the Ph.D. degree
in computer science and engineering from The
University of Aizu, in 2012. She is currently
an Assistant Professor with the Department of
Information and Electronic Engineering, Muroran
Institute of Technology, Japan. From 2010 to 2011,

she was a Visiting Scholar with the University of Waterloo, Canada. She was
a Japan Society of the Promotion of Science Research Fellow with the
Kato-Nishiyama Laboratory, Graduate School of Information Sciences,
Tohoku University, Japan, from 2012 to 2013. Her research interests include
wireless sensor networks, vehicular ad hoc networks, and ubiquitous com-
puting. She serves as an Editor of Peer-to-Peer Networking and Applica-
tions (Springer), Ad Hoc & Sensor Wireless Networks, the International
Journal of Embedded Systems (Inderscience), and the Journal of Cyber-
Physical Systems, and a Guest Editor of the IEEE Wireless Communications
and IEICE Transactions on Information and Systems. She is a Research
Scientist with the A3 Foresight Program (2011-2016) funded by the Japan
Society for the Promotion of Sciences, the NSFC of China, and the NRF of
Korea.

MINYI GUO (SM’07) received the B.Sc. and
M.E. degrees in computer science from Nanjing
University, China, and the Ph.D. degree in com-
puter science from the University of Tsukuba,
Japan. He had been a Professor with the School
of Computer Science and Engineering, The Uni-
versity of Aizu, Japan. He is currently a Zhiyuan
Chair Professor and Chair of the Department of
Computer Science and Engineering with Shanghai
Jiao Tong University, China. His current research

interests include parallel/distributed computing, compiler optimizations,
embedded systems, pervasive computing, cloud computing, and big data.
He has authored over 250 publications in major journals and international
conferences in these areas. He is a member of ACM, IEICE, IPSJ, and
CCF. He received the national science fund for distinguished young scholars
from NSFC in 2007. He received five best paper awards from international
conferences. He served as an Associate Editor of the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS and the IEEE TRANSACTIONS ON

COMPUTERS.

VOLUME 4, NO. 2, JUNE 2016 277

