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Abstract In recent years, numerous sensing devices and
wireless networks are immersed into our living environ-
ments, creating the Internet of Things (IoT) integrating the
cyber and physical objects. Searching for objects in IoT
is a challenging problem because the context relationships
among IoT objects are various and complex. The tradi-
tional web search approaches cannot work well in the IoT
search domain because they miss the critical characteristics
of the context relationships. In addition, a user’s dynamic and
changing context affects the user’s information needs, and an
IoT search system should exploit context relationship in IoT
for retrieving relevant information suitable for the user’s cur-
rent context. In this paper, we present a context-aware search
system for IoT, which aims to search objects and related
information with more suitable results. We construct a hier-
archical contextmodel based on ontology to represent the IoT
objects and their contextual relationships. Then, searches are
executed with consideration of users’ context that is recog-
nized by a context-aware hiddenMarkov model. Experimen-
tal results confirmed that users could obtain more suitable
and reasonable search results than with a typical web or map
search system.
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1 Introduction

The Internet of Things (IoT) will be formed with the rapid
development and applications of low-cost embedded sensing
devices that people use in daily life (such as mobile phones,
cars, wallets and key-chains, etc) will have the ability of sens-
ing and communication in the near future. Zhang et al. [1]
predicted that IoT eventually will link the majority of objects
into the virtual space and allow objects to interact in the same
place. Currently, search is moving from the traditional con-
cept of finding documents, pictures or music to all aspects of
life and work. Searching information in IoT is becoming an
indispensable application.

Unfortunately, the algorithmsdesigned for Internet search-
ing are not suitable for the IoT search because of the fol-
lowing two reasons. Firstly, the relationships among the IoT
objects are diverse and complex (such as geographical link,
behavior link and social network link, etc.), thus the rela-
tionship cannot be represented by simple universal resource
locator (URL) approach. Secondly, the information of phys-
ical objects is different from the web pages in terms of the
meta-data and information dynamics. New searching algo-
rithms are needed for gathering, extracting and organizing
the information in IoT.

To extend the capability of searching information in IoT,
researches have worked on alternatives to traditional Internet
searchmethods for the IoTenvironment. Earlywork explored
locating daily objects using a variety of sensing technolo-
gies [2–7] (e.g., RFID tracking, radio frequency, Bluetooth
or ultrasound) to collect the location information of objects
into a server and retrieve location information from the server.
Some other studies have extended searching capability from
location to other information in a small-scale environment
[8–11]. However, all these previous systems do not consider
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the context information of the IoT objects, which plays a
significant role in IoT search [8].

Context is an inaccurate and broad concept. Dey and co-
workers [12] define context as “Any information that can be
used to characterize the situation of an entity. An entity is
a user, a place, or a physical or computational object that is
considered relevant to the interaction between a user and an
application, including the user and application themselves.”
Context information such as the current time or user’s loca-
tion among the IoT objects has been utilized in some recent
studies [13–16]. However, the context information in these
studies is limited and does not capture various and complex
relationship among IoT objects. Therefore, this kind of sys-
tem has limited utility in practice.

Moreover, all of the above studies have failed to con-
sider the user’s context. Recognition of users’ context can
assist search system for context reasoning and improving the
effectiveness and relevance of search results. For instance,
mobile users’ searches frequently change in their contexts.
The users’ context includes actions (such as walking, run-
ning or sitting) and activities (such as eating, attending class
at morning or going to airport). The user’s context can affect
their information needs. When a user needs to reach airport
as soon as possible due to the tight boarding schedule and
he searches the possible transport routes to airport, time is
more important than cost and other factors in the context.
In this scenario, the search results should return the fastest
route.

In this paper, we present the design and implementation
of a context-aware search system for IoT based on hierar-
chical context model. Firstly, a hierarchical context model
based on ontology was built to describe the IoT objects and
their contextual relationships. Specifically, the model uses
WebOntology Language (OWL) to represent various objects
and object contextual relationship. Secondly, effective con-
text reasoning by considering the users’ context is used to aid
effective information searches. The user’s context is derived
from activity and other supplementary information (such as
location and time, etc.), where activities are recognized by
a context-aware hidden Markov model (HMM). Finally, the
system will retrieve return information in context database
based on OWL description logic query.

Our experiments confirmed that participants can get more
suitable search results than commercial search systems and
can answer some new types of searches that current com-
mercial search system cannot do. Experimental results also
demonstrate that the activity recognition method in the paper
has better performance than pure statistical methods.

The remainder of this paper is organized as follows: Sect. 2
describes related works. Section 3 presents the design and
implementation of our system. Section 4 discusses our exper-
imental results. Finally, Sect. 5 draws a conclusion for this
paper.

2 Related work

In this section, we survey some previous studies that address
searching information in IoT and discuss how these studies
differ from our work. In general, these existing search sys-
tems for the IoT objects can be divided into two categories:

(1) Search system for IOT without consideration of con-
text. This kind of systems only provide some simple
location search by embedded devices that contain pre-
defined description of objects, without modeling differ-
ent IoT objects and considering their contextual relation-
ships. For example, SensorWeb [3] aimed to resource
sharing and integration of ubiquitous devices and data;
Max [6] provided a three-tier centralized hierarchy search
engine for object searching. The hierarchical architecture
consists of tags, sub-stations and base-stations. Tags can
be marked as either public or private with private tags
searchable only by the owner. Substations can sense the
objects nearby by RFID embedded, they are responsible
for building an inverted index of their nearby objects;
TinyDB [11] used wireless sensor network for query-
ing the physical object values and address the issue of
how to get the pre-defined, homogeneous information
from a small scale static environment. The base station
stores the inverted index of substations. Snoogle [13]
supported multiple-keyword search and top-k query by
adding information retrieval techniques to index informa-
tion and process user queries, and bloom filters to reduce
communication overhead. Microsearch [14] extended
Snoogle for more details about the design and implemen-
tation of the top-k search and presents a memory efficient
algorithm and a theoretical model of the search.
(2) Search system for IOT with consideration of context.
This kind of systems only consider limited contexts such
as location or time by embedding objects with ubiquitous
sensors, without considering a user’s context. Context-
aware is a fundamental feature of IoT, context relation-
ship should be considered for these search systemswhose
target aremore than just location andfindphysical objects
in IoT.Heil et al. [17] proposed a location-based approach
for federating services and devices. Comparing to exist-
ing approaches of location-based and geo-centric ser-
vices, this system connects the functionality of devices
corresponding to their physical distance without consid-
ering their ownerships. Ostermaier et al. [18] proposed
a real-time search engine for the web of things, which
extended the search function to support rapidly changing
state information generated by sensors. Perera et al. [8]
proposed a context-aware sensor searchmodel for the IoT
middleware to address the research challenges of select-
ing sensors when large numbers of sensors with overlap-
ping and sometimes redundant functionality are avail-
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able. This system searches and selects sensors based on
user priorities by using both semantic querying and quan-
titative reasoning techniques. Shen et al. [19] proposed
a social-aware distributed cyber-physical human-centric
search engine for IoT to address the difficulty of widely
deploying RFID devices and the centralized search. This
system also locates objects held by users based on the
routine user movement pattern and using a social-aware
Bayesian network to predict the users’ locations when
exceptional events.

Recently, building context model for objects of IoT is
under active research. Ejigu et al. [15] proposed an ontology-
based generic context management model for modeling and
reasoning contexts. Hung et al. [16] proposed a context-
aware middleware for pervasive elderly home-care with a
P2P-based context query processing and reasoning. Hervás
et al. [20] proposed a context model based on ontologi-
cal languages. All previous models are based on ontology
with the advantages of interoperability and heterogeneity,
but ontology-based models are time-consuming to reason-
ing [21]. For search based on user’s context, Maekawa et al.
[22] proposed a context-aware web search method which
can automatically retrieves a webpage related to a user’s
daily activity, which is detected with object-attached sensors.
However, these systems consider limited contexts by embed-
ding objects with ubiquitous sensors, without considering a
user’s context when he/she search. In contrast, we focus on
searching in IoT with considering users’ search context.

3 Design

The section first gives an overview of our proposed sys-
tem, and then presents the details of our hierarchical context
model.

Figure 1 shows the high-level overview of our system.
Context database represents instances of context that may
exist in the form of profiled data stored on a disk file or
in the form of context instances obtained from the sensors.
Semantic rules database represents instances of reasoning
rules that are used by context reasoning to reason out and
derive decisions. The rules include implicit rules derived by
ontology and explicit rules by humans.

The system consists of two basic components: seman-
tic interpreter and context reasoning. Semantic interpreter
processes search input and the user’s current context obtained
from the user’s context recognition component to provide
search key words and information for context reasoning.
Specifically, a user’s context is recognized based on activ-
ity recognition and other useful information (e.g., the cur-
rent time, the user’s location, the user’s search history, the
user’s schedule or profile). The context reasoning compo-

Activity
recognition

Users context
recognition

Other useful
information

Context
database

Context
Reasoning

Semantic
interpreter

Semantic rules
database

Input search content

Search responce

Fig. 1 High-level overview of the system

nent implements the proposed hierarchical context model to
make context reasoning based on context database and rea-
soning rules obtained from semantic rules database. Finally,
the systemwill return search response information to the user
from context database based on context reasoning.

3.1 User’s context recognition based on a context-aware
hidden Markov model

In our system, we recognize users’ context in two processes:
(1) to recognize users’ activity based on a context-aware hid-
denMarkovmodel; (2) to combine other context information
to infer users’ context.

3.1.1 HMM for activity recognition

Roughly speaking, activity recognition methods can be clas-
sified into two categories: (1) recognition methods based
on supervised learning algorithms, such as [23–25]. Those
methods need to be trained with a sufficient set of labeled
samples in order to perform well, while labeled samples are
very hard to acquire due to many factors (such as cost, time
and user privacy, etc.). Therefore, methods based on super-
vised learning algorithms are prone to serious scalability
issues when more activities are considered. Even if enough
train samples exist, it is worth to note that most models
adopted by supervised learning algorithms implicitly assume
independence between each pair of instances to be classified.
However, when considering activity instances, the assump-
tion does not hold. In fact, persons do not continuously switch
among different activities; instead, they tend to perform the
same activity for a certain lapse of time before changing. (2)
Recognition methods based on self-unsupervised learning
algorithms, such as [26–29], large train data is unnecessary
for this kind of methods.
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Human activity recognition has the following two char-
acteristics: (1) the collected sensor data for human activ-
ity is time series data (such as accelerometer and gyro-
scope), which is using for extracting feature for activity
recognition; (2) the probability from one activity transfer to
another is relatively stable in given context. For instance,
the students of upper floors who go out of the classroom
have a high probability to walk down stairs while not walk
up stairs after class. In view of the above two characteris-
tics, our system chooses HMM to recognize human activity.
Let Q = {q1, q2, . . . , qN } is the set of all possible states,
V = {v1, v2, . . . , vM } is the set of all possible observations,
then a HMM can be definition as a 3-triple, as Eq. (1) shows:

λ = (A, B, π), (1)

where A = [ai j ]N×N , represent the state transition probabil-
ities, and ai j is the probability from state i transfer to state
j ; B = {bi (k)} represent for the observation probability dis-
tribution, and b j (k) = P(ot = vk |it = q j ) is the probability
of generation observation vk in the state of q j and at time t .;
π = {πi } represent the initial state distribution.

In this article, we proposed an activity recognition model
based on HMM, the structure shows in Fig. 2.

In our approach, the HMM for activity recognition is dis-
crete rather than continuous for reducing additional compu-
tation, using K-means for quantization. Figure 2 shows the
HMM structure for activity recognition. Firstly, build HMM
based on train data with the form of λi = (Ai , Bi , πi ).
Then for a given observation activity sequence: O =
(O1, O2, . . . , OT ), using Baum–Welch algorithm [30] to
find λi that make P(O|λi ) maximum as the inferred activity.

Fig. 2 Activity recognition based on HMM

Although recognition methods based on HMM consider
the dependency relationship between each pair of instances,
HMM assume the probability from one activity transfer to
another is fixed, when considering activity affects by lots
of contextual information the assumption does not hold. For
instance, the transfer probability between two activities is
obvious variable in different time and location. One of the
main limitations of the HMM method is that it did not con-
sider contextual information (e.g., location, time and sur-
rounding objects) that could be usefully exploited to derive
the user’s activity [31]. As a consequence, our system was
aimed at devising activity recognition by taking into account
the user’s context.

3.1.2 Context-aware HMM combination with users’ context

Assume there have N kinds of activities need to be recog-
nized in total, for an input activity instance i , the HMM
model will predict P(s j |i), which means the probability that
the input activity instance i recognized as activity s j . Define
�vi = P(s1|i)P(s2|i) · · · P(sN |i), then the HMM model will
achieve a N-length probability vector �vi , for a single activ-
ity instance i , in which the j th element �v( j)

i corresponds to
activity s j and its value corresponds to the probability of the
recognition model regarding the association of instance i to

activity s j , obviously 0 ≤ �v( j)
i ≤ 1 and

N∑

j=1
�v( j)

i = 1.

For instance, suppose that the considered activities are
those shown in Table 1, there have four activities in total
(walking up stairs, walking down stairs, sitting and stand-
ing). Assume a student is walk up stairs in teaching building
for attending class at 7:30. In this case, the maximum proba-
bility value (0.45) corresponds to walk down stairs, followed
by walk up stairs (0.41), sitting (0.14) and standing (0.0).
Hence, according to the criterion that select the maximum
probability, the HMM would erroneously infers that the stu-
dent’s activity is walk down stairs. The reason is recognition
model based on HMM alone will draw erroneous conclu-
sion with little difference among the inferred probabilities of
some activities.

In contrast, people perform well when encountering this
situation by combination other useful context information
[32,33]. Consider the instance mentioned previously, people
can automatically infer that walk up stairs should be more
reasonable activity based on the context that the student is

Table 1 HMM probability for one instance

Activity Walking
up
stairs

Walking
down
stairs

Sitting Standing

HMM probability 0.41 0.45 0.14 0.0
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Table 2 Part of probability
table for activities in specific
location and time

Context Activity
Walking up stairs Walking down stairs Sitting Standing

Breakfast time (6:00–8:00)

Teaching building 0.53 0.21 0.26 0.0

Laboratory 0.31 0.35 0.26 0.08

Canteen 0.23 0.13 0.43 0.21

Playground 0.15 0.13 0.55 0.17

Class time (8:00–12:00)

Teaching building 0.16 0.11 0.73 0.01

Laboratory 0.04 0.13 0.78 0.05

Canteen 0.16 0.12 0.57 0.14

Playground 0.16 0.11 0.54 0.19

going to class in the teaching building according to time.
Additionally, location and time are critical context informa-
tion that can help to infer reasonable activity. Considering the
example, we can construct a probability table that an activity
may be performed in specific time and location according to
the train data, as show in Table 2.

Considering the two kinds of probability: (1) from prob-
ability table of activities in specific location and time; (2)
from the inferred probability vector �vi of HMM, and both
are assigned to the same probability weight 0.5. For instance,
assume the inferred result of a user activity in teaching build-
ing at breakfast timebase onHMMmodel is shown inTable 1,
then according to Table 2, the final recognition results are as
follows: themaximumvalue (0.47 = 0.41×0.5+ 0.53×0.5)
corresponds to walk up stairs, followed by walk down stairs
(0.33 = 0.45 × 0.5 + 0.21 × 0.5), sitting (0.13 = 0.14 ×
0.5+ 0.26× 0.5) and laying (0.0 = 0.0× 0.5+ 0.0× 0.5).
Hence, we can infer the current activity is walking up stairs.

Figure 3 shows the algorithm for building probability tree
for activities in specific time and location, which is executing
by the offline. The algorithm takes four variables as input,
T Dset represent for all the train instances set, S represent
for all the activities label set, T represent for all the time peri-
ods set, L represent for all the locations set. The algorithm
will calculate the probability for each activity in specific
location and time and build a probability tree. For instance,
the BP-tree algorithm will build a probability tree shown in
Fig. 4.

In Fig. 4, a probability tree with three layers (1st layer is
time, 2nd layers is location and 3rd layer the activity proba-
bility) was built by BP-tree algorithm. Note that time period
partition and select locations are based on the specific situa-
tion, in our experiment the specific situation is school.

Combining HMM and BP-tree, our proposed context-
aware recognition method for users’ situation is shown in
Fig. 5. Note that we recognize user’s activity with a weighted
sumapproach based on online output prediction ofHMMand

offline value of BP-tree. We choose different values of α to
achieve the best performance in experiment.

3.2 Context model based on ontology for IoT

Our proposed system uses context model based on ontology
to represent the objects and their context relationships in IoT.

3.2.1 A hierarchical context model based on ontology

Obviously, construct an exhaustive and detailed context
model that represent all context information and relation-
ship of objects in IoT is in-surmountable and unnecessary.
Because some context (e.g. location, time, device, service,
person, event, etc.) are fundamental and essential, we pro-
pose a hierarchical structure context model, where the upper
context are these fundamental contexts, while the lower con-
text is subclass of upper context sharing the same set of prop-
erties of upper context. Note that this hierarchical model can
be easily adapted to other domains by inheriting the suitable
upper context.

Figure 6 shows the partial inheritance structure of our con-
text model. The first layer of our context model only has one
root class named Things. The second layer of our context
model is several subclasses that extend Things have been
identified: Person, Activity, Device, Service, Location and
Time, these abstract classes describing a physical or concep-
tual object. Each class is associated with its properties (rep-
resented in DataProperty) and relations with other classes
(represented in ObjectProperty). The property subClassOf
provides extension to new class. Figure 7 shows the partial
ObjectProperties structure of our context model. The third
layer of our context model is specific description of each
class in the second layer, and the details will be given in the
following.
Person our proposed context model is person-centered and
hence the class “Person” is the central class in the model.
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Fig. 3 Algorithm for building
probability tree

Fig. 4 A probability tree builds
by BP-tree algorithm

The “Person” class has several subclasses, such as “Student”
and “Teacher”, etc. Moreover, the “Person” class offers var-

ious DataProperties and ObjectProperties (e.g. “ownedBy”
is the ObjectProperty between person and device.) for incor-
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Fig. 5 User’s context recognition based on a context-aware HMM

porating the user’s related context. Table 3 shows the partial
structure of person class.
Activity In order to include all information relevant to the
person’s activity, The “Activity” class offersDataProperties
such as “Activity Profile” to describe the related information
of activity itself andObjectProperties such as “beDefined” to
describe the goal of activity. Table 4 shows the partial struc-
ture of activity class. Moreover, the “Activity” class also has
several subclasses, such as “Eating”, “Meeting” and “Shop-
ping”, etc.
Device the device (such as sensors or software device) is
essential to collect context information and recognize the
person’s context as we pointed out previously. The “Device”
class has several subclasses, such as “Soft_Device” and
“Hard_Device”, etc. The “device” class also offers various
DataProperties and ObjectProperties, such as the DataProp-

erty “dProfile” to hold various data type properties represent-
ing configuration features. Table 5 shows the partial structure
of device class.
Service the “Service” class captures information relevant to
the activity and device (e.g. using theDataProperties “beDe-
fined” to describe the schedule of a service and using the
ObjectProperties “beProvidedBy” to illustrate the service
can be provided by specific device.). The “Service” class
has some subclasses, such as “Self-study” and “Dinner”, etc.
Table 6 shows the partial structure of service class.
Location the location class represents the abstraction of a
physical place with providing a set of DataProperties that
associate a physical location with its symbolic or geographic
location.Our proposedmodel regards location as an indepen-
dent based on the point that location is fundamental context
information for other classes. The “Location” class has some
subclasses, such as “Classroom”, “Library” and “Canteen”,
etc. Table 7 shows the partial structure of location class.
Time time is crucial context information just as location. The
time context comprises all information related to the current
time and serves as a timestamp for all context information
thatmay change over time. Table 8 shows the partial structure
of time class.

In general, the proposed context model is built upon the
fact that a class, which corresponds to a physical object or
conceptual object in IoT. The proposed context model is not
tied to a specific domain. Instead, it attempts to describe
generic concepts and their relationships.

3.3 Context reasoning

Auto-reason is the most important feature of ontology and
context that can be implemented with logical reasoning

Fig. 6 The hierarchical structure of context model
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Fig. 7 The partial ObjectProperties structure of our context model

Table 3 The partial structure of person class

Properties
name

pProfile pSituation pSchedule Other properties

Properties
relationship

has isIn has Other relationship

Table 4 The partial structure of activity class

Properties
name

aProfile aGoal aPlan Other properties

Properties
relationship

has beDefined has Other relationship

Table 5 The partial structure of device class

Properties
name

dProfile dStatus dSchedule Other properties

Properties
relationship

has has beDefined Other relationship

Table 6 The partial structure of service class

Properties
name

sProfile sSchedule Other properties

Properties
relationship

has beDefined Other relationship

mechanisms by taking rules. Our system used Protege1 to
build context model based on ontology and FaCT + +2 as
the reason engine.

Rules are essential in the process of context reasoning. In
our system, two forms of rules are used to context reason:
implicit rules derived from the ontology and explicit rules
provided by user in the specific application. Table 9 shows
part reasoning rules of ontology.

Table 7 The partial structure of location class

Properties
name

LProfile Area LSchedule Other properties

Properties
relationship

has has beDefined Other relationship

Table 8 The partial structure of time class

Properties
name

currentTime endTime DuringTime Other properties

Properties
relationship

has has has Other relationship

4 Experiment evaluation

4.1 Situation recognition based on context-aware hidden
Markov model

In order to evaluate our solution for activity recognition, we
performed an experimental evaluation comparing our tech-
niquewith three statisticalmethods (Bayesian network,KNN
and SVM). Note that the context information time and loca-
tion are used as features. For the context-aware HMM tech-
nique, time and location are not used as features but are used
to build BP-tree. For our approach, the number of states for
HMM is set to be four, and α is set to 0.3, unless specified
otherwise.

4.1.1 Data collection

The smart-phone called HTC Sensation based on Android
OS 4.0.3 was used as a platform for data collection. Partici-
pants were three PhD students between 25 and 30 years old.
As shown in Table 10, each student performed six activi-
ties (walk, walk up stairs, walk down stairs, sit, stand and
run) at four different locations (teaching building, labora-
tory, canteen and playground) in school. Using the embedded
accelerometer and gyroscope of smart-phone, we captured 3-
axial linear acceleration and 3-axial angular velocity. These
sensor signals were pre-processed by applying noise filters.

The dataset is composed of 10,040 activity instances and
the number of each category of activity in the same location
is equal. The dataset is divided into two parts: training set
(66%) and test set (34%), as shown in Table 11. For each
activity instance, sensor data were merged to build a feature
vector composed of 376 features, includingmeans, variances,
entropy, kurtosis, skew-ness and other statistical measures.
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Table 9 Part reasoning rules

Category Rule

Implicit (derived by Ontology) Transitive Property:

(?A property ? B) ∩ (?B property ? C) ⇒ (?A property ? C)

Symmetric Property:

(?A property ? B) ⇒ (?B property ?A)

Inverse Property:

(?A propertyOne ? B) ⇒ (?B propertyT wo ? A)

Explicit (pre-defined by user) Meeting:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(?teacher schedule inf o : has Meeting)

(?teacher location in : meetingRoom)

(?class time inf o : startT ime <

currentT ime ∩ endT ime > currenttime)
(? printer device inf o : statusOpen)

⇒ (? teacher : participant in? meeting)

Silent Mode:
⎧
⎪⎪⎨

⎪⎪⎩

(?student schedule inf o : hasClass)
(?student locationin : class Room)

(?class time inf o : startT ime <

currentT ime ∩ endT ime > currenttime)

⇒ (? smartphone : changeMode ?silent)

Table 10 Experimental datasets for activity recognition

Activity loca-
tion

Walk Walk up
stairs

Walk down
stairs

Sit Stand Run

Teaching
building

416 343 375 465 435 476

Laboratory 416 343 375 465 435 476

Canteen 416 343 375 465 435 476

Library 416 343 375 465 435 476

Table 11 Train and test dataset for activity recognition

Activity Walk Walk up
stairs

Walk
down
stairs

Sit Stand Run

Total 1664 1372 1500 1860 1740 1904

Train_Set 1072 908 980 1210 1167 1289

Test_Set 592 464 520 650 573 615

4.1.2 Evaluation of activity recognition based on
context-aware HMM

In this experiment, we performed tenfold cross validation on
train dataset to construct activity recognition model and used
test dataset to evaluate performance. Ideally, an out-of-the-
box activity recognition system should be able to recognize
one person’s activities without the need of being trained on
that person. Hence, in order to avoid the use of activity data
of the same user for both training and testing we ensured that
activity instances regarding a given student did not appear in
more than one sub sample.

Since there is no simple theoretically correctwayof choos-
ing the number of states for HMM, we determine the best

number of states with experiments and used the Forward
algorithms to compute the various likelihood functions. The
best classification result of 87.8% is obtained when the num-
ber of states is four, as shown in Fig. 8. This reveals that in
HMM classifier, the higher number of states does not neces-
sarily imply better performance.

Figure 9 shows the result of HMM comparison with three
statistical methods (Bayesian network, KNN and SVM).
Recognition for ’run’ activity show good performance except
for ’sit’, ’stand’, ’walk’, ’walk up stairs’, ’walk down stairs’
action and we will discuss the reason in the later section.
The average precision for the six kinds of activities is shown
in Table 12, the HMM method shows better average perfor-
mance than the other three methods.

Note that we use try-and-error method to determine the
value of α, where α = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0], the recognition performancewith different val-
ues of α can be seen in Fig. 10. Figure 11 shows the result
of HMM comparison with context-aware HMM (accord-
ing to Fig. 10, the precision is highest when α = 0.7).
The context-aware HMMmethod shows better performance
than purely HMM method with precision 92.9 and 87.8%,
respectively. The confusion matrix of HMM method and
context-aware HMM method are shown in Tables 13 and
14, respectively. It can be found from Table 13 that clas-
sification between ’stand’ and ’sit’ are confusing, so does
among ’walk’, ’walk up stairs’ and ’walk down stairs’. It
meant that classification these activities are very difficult by
using built-in sensors on a smart-phone. It can seen from
Table 13 that our proposed model can effective classifying
these activities by considering activity’s context (location and
time).
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Fig. 8 HMM recognition
precision at different number of
states

Fig. 9 A comparison of precision for Bayesian network, SVM, KNN, HMM approaches

Table 12 The average precision of activity recognition

Bayesian network SVM KNN HMM Context-aware HMM

79.8% 85.1% 83.4% 87.8% 92.9%

4.2 Context-aware search system

In order to verify and evaluate whether the search system we
proposed is effective, we built a prototype implementation
system for our school. As explained before, the system first
recognized user’s current context based on his/her current
activity and other useful information. Note that the activ-
ity is recognized by context-aware HMM model based on
accelerometer sensor and gyroscope sensor equipped with
smart phone. The system retrieves suitable results by context
reasoning based on the search content and user’s context. We
illustrate our technique by means of an example.

Example 1 Suppose that student Aaron wants to search an
available classroom for self-study in the next three hours.
The detail retrieve process can be seen as follow:

(1) User’s context Recognition based on context-aware
HMM.

(2) Context reasoning considers search content and user con-
text, shown in Fig. 12.

(3) Retrieve results from context database based on context
reasoning.

4.2.1 Experimental setting

We recruited eight participants for our user study and all the
participants were PhD students with age between 25 and 30.
They performed ten search tasks by using three different sys-
tems: our system, a web search system (Google search), and
a map search system (AutoNavi map3). In this experiment,
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Fig. 10 The precision of
context-aware HMM with
different values of α

Fig. 11 A comparison of
precision between HMM and
context-aware HMM

Table 13 Confusion matrix of
HMM Classified as Sit Stand Run Walk Walk up stairs Walk down stairs

Sit 553 94 3 0 0 0

Stand 123 438 11 0 0 0

Run 0 0 615 0 0 0

Walk 0 0 0 544 22 26

Walk up stairs 0 0 0 23 396 45

Walk down stairs 0 0 0 10 20 489

Table 14 Confusion matrix of
context-aware HMM Classified as Sit Stand Run Walk Walk up stairs Walk down stairs

Sit 556 93 0 0 0 1

Stand 78 493 2 0 0 0

Run 0 5 610 0 0 0

Walk 0 0 0 584 3 5

Walk up stairs 0 0 0 11 430 23

Walk down stairs 0 0 0 14 9 497
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Fig. 12 Rule-based context
reasoning

Table 15 Q1 was the system
available to find information you
wanted?

Score −3 (%) −2 (%) −1 (%) 0 (%) 1 (%) 2 (%) 3 (%)

Our system 0 2 7 13 27 30 21

Google search 0 4 13 16 35 19 13

AutoNavi map search 12 11 9 19 30 14 5

Table 16 Q2 was the search
result suitable for your
situation?

Score −3 (%) −2 (%) −1 (%) 0 (%) 1 (%) 2 (%) 3 (%)

Our system 2 0 9 18 32 26 13

Google search 8 13 11 17 27 24 0

AutoNavi map search 0 18 25 31 20 6 0

the participants freely searched for objects in our school in
three different situations: morning at laboratory, lunch time
at canteen, and walking down stairs at lecture hall. There
are nine search tasks in total (i.e., 3 systems×3 situations =
9 search tasks).We recorded logs of the operations performed
in each system and administered a survey to the participants
after they had finishing all tasks. Tables 8 and 9 list the ques-
tions in the survey, to which the participants responded with
a score from −3 to 3 for each question.

4.2.2 Survey results

In this section, we discuss the results of user studies that
we conducted to examine whether our proposed system is
effective. As we mentioned previously, we build a context
model for our school and we focus on searching content in
our school.

Table 15 shows the result of the survey question: Was the
system available to find information you wanted? From this
result, 78 and 67% of the participants felt that our system
and the Web search system, respectively, were convenient
for finding information of interest (selected 1, 2 or 3), 49%
felt that the map search system was convenient. With a web
search system, users can search for all kinds of content on
the web. With our system, users can also search for a vari-
ety of content, such as location, directions, addresses, but our
search system is unable to search information that did not pre-
defined in context database compare to web search system.
With adding more detailed and new information to context
model, our system will perform better. On the other hand,

with a map search system, the kinds of content presented
on a map are insufficient for users because they just retrieve
information from somepredefined and static data.Hence user
cannot get current context based information about search.

Table 16 shows the result of the survey question: Was the
search result suitable for your situation? From this result, 84
and 63% of the participants felt that the search information
was suitable for their context (selected 1, 2 or 3) based on our
system and Google search, respectively. Only 44% of the
participants felt that the search information was suitable for
their context based on AutoNavi map search. Four partici-
pants said that our system can get reasonable information to
their current context. From this result, while we could con-
firm to some extent that our system can present useful infor-
mation considering user’s current context, its effectiveness
differs among individuals. Therefore, we should consider
more situation of user to retrieve more related information.

Figure 13 shows the score of search results based on the
three search systems. The score is calculated as follows: for a
specific search tasks, each user has a correct answer in his or
her mind. For each of the nine search tasks, the user gives the
score according to thematch extent between the return results
and the correct answer provided by users. Table 17 shows
the average score for nine search tasks, where a higher score
indicates better search results. We can observe that for many
participants the searching results of our system were better
than the compared systems. In particular, some of the partic-
ipants indicated that our system significantly outperformed
the compared systemswhen the search task is associatedwith
user’s context.
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Fig. 13 Score of search results

Table 17 Average score of
three search systems

Bold represents better search
results

S1 S2 S3 S4 S5 S6 S7 S8 S9

Our system 68 76 87 79 89 93 86 73 66

Google Search 57 81 78 70 78 88 89 80 72

AutoNavi map search 56 78 65 78 67 73 74 79 82

Fig. 14 The running time comparison of the three systems

Moreover, we varied the number of search sessions from 1
to 2000 to record the corresponding running time for compar-
ing the performance of our system and the other two systems.
The experiment results are shown in Fig. 14. Obviously, the
running time of all three systems increases with the increase
of search sessions. It can be seen that the running time of our
system is less than the other systemswhen the search sessions
are less than 100, but our system increases sharply when the
search sessions are more than 100. The reason for this sit-
uation is that our system needs to perform time-consuming
context reasoning.

5 Conclusion

In the near future, numerous sensing devices with process-
ing and communication capabilities will be deployed in IoT.
Searching information in IoT will become an indispensable
application like Internet search. In the paper, we have pre-
sented the design and implementation of a context-aware
search system for IoT based on hierarchical context model.
We use an ontology-based hierarchical context model to rep-
resent the IoT objects and their contextual relationships. In
our approach, the user’s context is recognized based on a
context-aware HMM. Our evaluation shows the superiority
of our context recognition model over pure statistical meth-
ods. We also conducted user studies to examine the effec-
tiveness of the proposed search system, and confirmed that
users could obtain better results than with commercial search
systems.
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