
On Traffic-Aware Partition and Aggregation
in MapReduce for Big Data Applications

Huan Ke, Student Member, IEEE, Peng Li,Member, IEEE,

Song Guo, Senior Member, IEEE, and Minyi Guo, Senior Member, IEEE

Abstract—The MapReduce programming model simplifies large-scale data processing on commodity cluster by exploiting parallel

map tasks and reduce tasks. Although many efforts have been made to improve the performance of MapReduce jobs, they ignore the

network traffic generated in the shuffle phase, which plays a critical role in performance enhancement. Traditionally, a hash function is

used to partition intermediate data among reduce tasks, which, however, is not traffic-efficient because network topology and data size

associated with each key are not taken into consideration. In this paper, we study to reduce network traffic cost for a MapReduce job by

designing a novel intermediate data partition scheme. Furthermore, we jointly consider the aggregator placement problem, where each

aggregator can reduce merged traffic from multiple map tasks. A decomposition-based distributed algorithm is proposed to deal with

the large-scale optimization problem for big data application and an online algorithm is also designed to adjust data partition and

aggregation in a dynamic manner. Finally, extensive simulation results demonstrate that our proposals can significantly reduce network

traffic cost under both offline and online cases.

Index Terms—MapReduce, partition, aggregation, big data, lagrangian decomposition

Ç

1 INTRODUCTION

MAPREDUCE [1], [2], [3] has emerged as themost popular
computing framework for big data processing due to

its simple programming model and automatic management
of parallel execution. MapReduce and its open source imple-
mentation Hadoop [4], [5] have been adopted by leading
companies, such as Yahoo!, Google and Facebook, for vari-
ous big data applications, such as machine learning [6], [7],
[8], bioinformatics [9], [10], [11], and cyber-security [12], [13].

MapReduce divides a computation into two main phases,
namely map and reduce, which in turn are carried out by
several map tasks and reduce tasks, respectively. In the map
phase, map tasks are launched in parallel to convert the orig-
inal input splits into intermediate data in a form of key/
value pairs. These key/value pairs are stored on local
machine and organized intomultiple data partitions, one per
reduce task. In the reduce phase, each reduce task fetches its
own share of data partitions from all map tasks to generate
the final result. There is a shuffle step between map and
reduce phase. In this step, the data produced by the map
phase are ordered, partitioned and transferred to the appro-
priate machines executing the reduce phase. The resulting
network traffic pattern from all map tasks to all reduce tasks
can cause a great volume of network traffic, imposing a seri-
ous constraint on the efficiency of data analytic applications.

For example, with tens of thousands of machines, data shuf-
fling accounts for 58.6 percent of the cross-pod traffic and
amounts to over 200 petabytes in total in the analysis of
SCOPE jobs [14]. For shuffle-heavy MapReduce tasks, the
high traffic could incur considerable performance overhead
up to 30-40 percent as shown in [15].

By default, intermediate data are shuffled according to a
hash function [16] in Hadoop, which would lead to large net-
work traffic because it ignores network topology and data
size associatedwith each key. As shown in Fig. 1, we consider
a toy example with two map tasks and two reduce tasks,
where intermediate data of three keys K1, K2, and K3 are
denoted by rectangle bars under each machine. If the hash
function assigns data of K1 and K3 to reducer 1, and K2 to
reducer 2, a large amount of traffic will go through the top
switch. To tackle this problem incurred by the traffic-
oblivious partition scheme, we take into account of both task
locations and data size associatedwith each key in this paper.
By assigning keys with larger data size to reduce tasks closer
to map tasks, network traffic can be significantly reduced. In
the same example above, if we assignK1 andK3 to reducer 2,
andK2 to reducer 1, as shown in Fig. 1b, the data transferred
through the top switchwill be significantly reduced.

To further reduce network traffic within a MapReduce
job, we consider to aggregate data with the same keys
before sending them to remote reduce tasks. Although a
similar function, called combiner [17], has been already
adopted by Hadoop, it operates immediately after a map
task solely for its generated data, failing to exploit the data
aggregation opportunities among multiple tasks on differ-
ent machines. As an example shown in Fig. 2a, in the tradi-
tional scheme, two map tasks individually send data of key
K1 to the reduce task. If we aggregate the data of the same
keys before sending them over the top switch, as shown in
Fig. 2b, the network traffic will be reduced.

� H. Ke, P. Li, and S. Guo are with the School of Computer Science and
Engineering, the University of Aizu, Aizu 8580, Japan.
E-mail: {m5172105, pengli, sguo}@u-aizu.ac.jp.

� M. Guo is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: guo-my@cs.sjtu.edu.cn.

Manuscript received 28 Nov. 2014; revised 27 Mar. 2015; accepted 27 Mar.
2015. Date of publication 2 Apr. 2015; date of current version 12 Feb. 2016.
Recommended for acceptance by S. Yu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2419671

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



In this paper, we jointly consider data partition and
aggregation for a MapReduce job with an objective that is
to minimize the total network traffic. In particular, we pro-
pose a distributed algorithm for big data applications by
decomposing the original large-scale problem into several
subproblems that can be solved in parallel. Moreover, an
online algorithm is designed to deal with the data partition
and aggregation in a dynamic manner. Finally, extensive
simulation results demonstrate that our proposals can sig-
nificantly reduce network traffic cost in both offline and
online cases.

The rest of the paper is organized as follows. In Section 2,
we review recent related work. Section 3 presents a system
model. Section 4 develops a mixed-integer linear program-
ming (MILP) model for the network traffic minimization
problem. Sections 5 and 6 propose the distributed and
online algorithms, respectively, for this problem. The exper-
iment results are discussed in Section 7. Finally, Section 8
concludes the paper.

2 RELATED WORK

Most existing work focuses on MapReduce performance
improvement by optimizing its data transmission. Narayan
et al. [18] have explored the use of OpenFlow to provide bet-
ter link bandwidth for shuffle traffic. Palanisamy et al. [19]
have presented Purlieus, a MapReduce resource allocation
system, to enhance the performance of MapReduce jobs in
the cloud by locating intermediate data to the local
machines or close-by physical machines. This locality-
awareness reduces network traffic in the shuffle phase gen-
erated in the cloud data center. However, little work has
studied to optimize network performance of the shuffle
process that generates large amounts of data traffic in

MapReduce jobs. A critical factor to the network perfor-
mance in the shuffle phase is the intermediate data parti-
tion. The default scheme adopted by Hadoop is hash-based
partition that would yield unbalanced loads among reduce
tasks due to its unawareness of the data size associated with
each key. To overcome this shortcoming, Ibrahim et al. [20]
have developed a fairness-aware key partition approach
that keeps track of the distribution of intermediate keys’
frequencies, and guarantees a fair distribution among
reduce tasks. Meanwhile, Yan et al. [21] have introduced a
sketch-based data structure for capturing MapReduce key
group size statistics and presented an optimal packing
algorithm which assigns the key groups to the reducers in
a load balancing manner. Hsueh et al. [22] have proposed
and evaluated two effective load balancing approaches to
data skew handling for MapReduce-based entity resolu-
tion. Unfortunately, all above work focuses on load balance
at reduce tasks, ignoring the network traffic during the
shuffle phase.

In addition to data partition, many efforts have been
made on local aggregation, in-mapper combining and in-
network aggregation to reduce network traffic within Map-
Reduce jobs. Condie et al. [23] have introduced a combiner
function that reduces the amount of data to be shuffled and
merged to reduce tasks. Lin and Dyer [24] have proposed
an in-mapper combining scheme by exploiting the fact that
mappers can preserve state across the processing of multi-
ple input key/value pairs and defer emission of intermedi-
ate data until all input records have been processed. Both
proposals are constrained to a single map task, ignoring the
data aggregation opportunities from multiple map tasks.
Costa et al. [25] have proposed a MapReduce-like system to
decrease the traffic by pushing aggregation from the edge

Fig. 1. Two MapReduce partition schemes.
Fig. 2. Two schemes of intermediate data transmission in the shuffle
phase.

KE ET AL.: ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS 819



into the network. However, it can be only applied to the net-
work topology with servers directly linked to other servers,
which is of limited practical use.

Different from existing work, we investigate network
traffic reduction within MapReduce jobs by jointly exploit-
ing traffic-aware intermediate data partition and data aggre-
gation among multiple map tasks.

3 SYSTEM MODEL

MapReduce is a programming model based on two primi-
tives: map function and reduce function. The former
processes key/value pairs hk; vi and produces a set of inter-
mediate key/value pairs hk0; v0i. Intermediate key/value
pairs are merged and sorted based on the intermediate key
k0 and provided as input to the reduce function. A MapRe-
duce job is executed over a distributed system composed of
a master and a set of workers. The input is divided into
chunks that are assigned to map tasks. The master sched-
ules map tasks in the workers by taking into account of data
locality. The output of the map tasks is divided into as
many partitions as the number of reducers for the job.
Entries with the same intermediate key should be assigned
to the same partition to guarantee the correctness of the

execution. All the intermediate key/value pairs of a given
partition are sorted and sent to the worker with the corre-
sponding reduce task to be executed. Default scheduling of
reduce tasks does not take any data locality constraint into
consideration. As a result, the amount of data that has to be
transferred through the network in the shuffle process may
be significant.

In this paper, we consider a typical MapReduce job on a
large cluster consisting of a set N of machines. We let dxy
denote the distance between two machines x and y, which
represents the cost of delivering a unit data. When the job is
executed, two types of tasks, i.e., map and reduce, are cre-
ated. The sets of map and reduce tasks are denoted by M
and R, respectively, which are already placed on machines.
The input data are divided into independent chunks that
are processed by map tasks in parallel. The generated inter-
mediate results in forms of key/value pairs may be shuffled
and sorted by the framework, and then are fetched by
reduce tasks to produce final results. We let P denote the

set of keys contained in the intermediate results, and mp
i

denote the data volume of key/value pairs with key p 2 P
generated by mapper i 2 M.

A set of d aggregators are available to the intermediate
results before they are sent to reducers. These aggregators
can be placed on any machine, and one is enough for data
aggregation on each machine if adopted. The data reduction
ratio of an aggregator is denoted by a, which can be
obtained via profiling before job execution.

The cost of delivering a certain amount of traffic over a
network link is evaluated by the product of data size and
link distance. Our objective in this paper is to minimize the
total network traffic cost of a MapReduce job by jointly
considering aggregator placement and intermediate data
partition. All symbols and variables used in this paper are
summarized in Table 1.

4 PROBLEM FORMULATION

In this section, we formulate the network traffic minimiza-
tion problem. To facilitate our analysis, we construct an aux-
iliary graph with a three-layer structure as shown in Fig. 3.
The given placement of mappers and reducers applies in

TABLE 1
Notions and Variables

Notations Description

N a set of physical machines
dxy distance between two machines x and y
M a set of map tasks in map layer
R a set of reduce tasks in reduce layer
A a set of nodes in aggregation layer
P a set of intermediate keys
Ai a set of neighbors of mapper i 2 M
d maximum number of aggregators
mp

i data volume of key p 2 P generated by mapper
i 2 M

fðuÞ the machine containing node u
xp
ij binary variable denoting whether mapper i 2 M

sends data of key p 2 P to node j 2 A
fp
ij traffic for key p 2 P from mapper i 2 M

to node j 2 A
Ipj input data of key p 2 P on node j 2 A

Mj a set of neighboring nodes of j 2 A
Op

j output data of key p 2 P on node j 2 A

a data reduction ratio of an aggregator
aj data reduction ratio of node j 2 A
zj binary variable indicating if an aggregator is

placed on machine j 2 N
ypk binary variable denoting whether

data of key p 2 P is processed by reducer k 2 R
gpjk the network traffic regarding key p 2 P from

node j 2 A to reducer k 2 R
zpj an auxiliary variable

npj Lagrangian multiplier

mp
j ðtÞ output ofmp

j at time slot t

ajðtÞ aj at time slot t
Cjj0 migration cost for aggregator from machine

j to j0
Fkk0 ð�Þ cost of migrating intermediate data from

reducer k to k0
CMðtÞ total migration cost at time slot t

Fig. 3. Three-layer model for the network traffic minimization problem.

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016



the map layer and the reduce layer, respectively. In the
aggregation layer, we create a potential aggregator at each
machine, which can aggregate data from all mappers. Since a
single potential aggregator is sufficient at each machine, we
also use N to denote all potential aggregators. In addition,
we create a shadow node for each mapper on its residential
machine. In contrast with potential aggregators, each
shadow node can receive data only from its corresponding
mapper in the same machine. It mimics the process that the
generated intermediate results will be delivered to a reduce
directly without going through any aggregator. All nodes in
the aggregation layers are maintained in set A. Finally, the
output data of aggregation layer are sent to the reduce layer.
Each edge ðu; vÞ in the auxiliary graph is associated with a
weight dfðuÞfðvÞ, where fðuÞ denotes the machine containing

node u in the auxiliary graph.
To formulate the traffic minimization problem, we first

consider the data forwarding between the map layer and
the aggregation layer. We define a binary variable xpij as fol-
lows:

xp
ij ¼

1; if mapper i 2 M sends data of key p 2 P

to node j 2 A;

0; otherwise: :

8><
>:

Since all data generated in the map layer should be sent
to nodes in the aggregation layer, we have the following
constraint for xp

ij:

X
j2Ai

xp
ij ¼ 1; 8i 2 M; p 2 P; (1)

where Ai denotes the set of neighbors of mapper i in the
aggregation layer.

We let fpij denote the traffic from mapper i 2 M to node
j 2 A, which can be calculated by:

fp
ij ¼ xp

ijm
p
i ; 8i 2 M; j 2 Ai; p 2 P: (2)

The input data of node j 2 A can be calculated by sum-
ming up all incoming traffic, i.e.,

Ipj ¼
X
i2Mj

fpij; 8j 2 A; p 2 P; (3)

where Mj denotes the set of j’s neighbors in the map layer.
The corresponding output data of node j 2 A is:

Op
j ¼ ajI

p
j ; 8j 2 A; p 2 P; (4)

where aj ¼ a if node j is a potential aggregator. Otherwise,
i.e., node j is a shadow node, we have aj ¼ 1.

We further define a binary variable zj for aggregator
placement, i.e.,

zj ¼
1; if a potential aggregator j 2 N is activated

for data aggregation,

0; otherwise: :

8><
>:

Since the total number of aggregators is constrained by d,
we have: X

j2N
zj � d: (5)

The relationship among xp
ij and zj can be represented by:

xp
ij � zj; 8j 2 N; i 2 Mj; p 2 P: (6)

In other words, if a potential aggregator j 2 N is not acti-
vated for data aggregation, i.e., zj ¼ 0, no data should be

forwarded to it, i.e., xp
ij ¼ 0.

Finally, we define a binary variable ypk to describe inter-
mediate data partition at reducers, i.e.,

ypk ¼
1; if data of key p 2 P are processed by

reducer k 2 R,

0; otherwise: :

8><
>:

Since the intermediate data with the same key will be
processed by a single reducer, we have the constraint:

X
k2R

ypk ¼ 1; 8p 2 P: (7)

The network traffic from node j 2 A to reducer k 2 R can
be calculated by:

gpjk ¼ Ojy
p
k; 8j 2 A; k 2 R; p 2 P: (8)

With the objective to minimize the total cost of network
traffic within the MapReduce job, the problem can be for-
mulated as:

min
X
p2P

X
i2M

X
j2Ai

fpijdij þ
X
j2A

X
k2R

gpjkdjk

 !

subject to: ð1Þ-ð8Þ:

Note that the formulation above is a mixed-integer non-
linear programming (MINLP) problem. By applying lineari-
zation technique, we transfer it to a MILP that can be solved
by existing mathematical tools. Specifically, we replace the
nonlinear constraint (8) with the following linear ones:

0 � gpjk � Op
j ; 8j 2 A; k 2 R; p 2 P; (9)

Op
j �

�
1� ypk

�
�Op
j � gpjk � �Op

j ; 8j 2 A; k 2 R; p 2 P; (10)

where constant �Op
j ¼ aj

P
i2Mj

mp
i is the upper bound of Op

j .
The MILP formulation after linearization is:

min
X
p2P

X
i2M

X
j2Ai

fp
ijdij þ

X
j2A

X
k2R

gpjkdjk

 !

subject to: ð1Þ-ð7Þ; ð9Þ; and ð10Þ:

Theorem 1. Traffic-aware Partition and Aggregation problem is
NP-hard.

Proof. To prove NP-hardness of our network traffic optimi-
zation problem, we prove the NP-completeness of its
decision version by reducing the set cover problem to it
in polynomial time.

The set cover problem: given a set U ¼ fx1; x2; . . . ;
xng, a collection of m subsets S ¼ fS1; S2; . . . ; Smg,
Sj � U , 1 � j � m and an integer K. The set cover

KE ET AL.: ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS 821



problem seeks for a collection C such that jCj � K andS
i2CSi ¼ U .

For each xi 2 U , we create a mapper Mi that generates
only one key/value pair. All key/value pairs will be sent
to a single reducer whose distance with each mapper is
more than 2. For each subset Sj, we create a potential
aggregaor Aj with distance 1 to the reducer. If xi 2 Sj,
we set the distance between Mi to Aj to 1. Otherwise,
their distance is greater than 1. The aggregation ratio is
defined to be 1. The constructed instance of our problem
can be illustrated using Fig. 4. Given K aggregators, we
look for a placement such that the total traffic cost is no
greater than 2n. It is easy to see that a solution of the set
cover problem generates a solution of our problem with
cost 2n. When we have a solution of our problem with
cost 2n, each mapper should send its result to an aggre-
gator with distance 1 away, which forms a solution of the
corresponding set cover problem. tu

5 DISTRIBUTED ALGORITHM DESIGN

The problem above can be solved by highly efficient
approximation algorithms, e.g., branch-and-bound, and fast
off-the-shelf solvers, e.g., CPLEX, for moderate-sized input.
An additional challenge arises in dealing with the
MapReduce job for big data. In such a job, there are hun-
dreds or even thousands of keys, each of which is associated
with a set of variables (e.g., xp

ij and ypk) and constraints (e.g.,
(1) and (7)) in our formulation, leading to a large-scale opti-
mization problem that is hardly handled by existing algo-
rithms and solvers in practice.

In this section, we develop a distributed algorithm to
solve the problem on multiple machines in a parallel man-
ner. Our basic idea is to decompose the original large-scale
problem into several distributively solvable subproblems
that are coordinated by a high-level master problem. To
achieve this objective, we first introduce an auxiliary vari-
able zpj such that our problem can be equivalently formu-
lated as:

min
X
p2P

X
i2M

X
j2Ai

fpijdij þ
X
j2A

X
k2R

gpjkdjk

 !

subject to: xp
ij � zpj ; 8j 2 N; i 2 Mj; p 2 P;

(11)

zpj ¼ zj; 8j 2 N; p 2 P;

ð1Þ-ð5Þ; ð7Þ; ð9Þ; andð10Þ: (12)

The corresponding Lagrangian is as follows:

LðnnÞ ¼
X
p2P

Cp þ
X
j2N

X
p2P

npj ðzj � zpj Þ

¼
X
p2P

Cp þ
X
j2N

X
p2P

npj zj �
X
j2N

X
p2P

npj z
p
j

¼
X
p2P

Cp �
X
j2N

npj z
p
j

 !
þ
X
j2N

X
p2P

npj zj;

(13)

where npj are Lagrangian multipliers and Cp is given as

Cp ¼
X
i2M

X
j2Ai

fpijdij þ
X
j2A

X
k2R

gpjkdjk:

Given npj , the dual decomposition results in two sets of sub-
problems: intermediate data partition and aggregator place-
ment. The subproblem of data partition for each key p 2 P
is as follows:

SUB DP: min Cp �
X
j2N

npj z
p
j

 !

subject to:ð1Þ-ð4Þ; ð7Þ; ð9Þ; ð10Þ; and ð11Þ:
These problems regardingdifferent keys can be distributed

solved on multiple machines in a parallel manner. The sub-
problem of aggregator placement can be simplywritten as:

SUB AP: min
X
j2N

X
p2P

npj zj

 !
subject to: ð5Þ:

The values of npj are updated in the following master
problem:

min LðnnÞ ¼
X
p2P

Ĉp þ
X
j2N

X
p2P

n
p
j ẑj �

X
j2N

X
p2P

n
p
j ẑ

p
j

subject to: npj � 0; 8j 2 A; p 2 P;

(14)

where Ĉp, ẑpj and ẑj are optimal solutions returned by sub-
problems. Since the objective function of the master prob-
lem is differentiable, it can be solved by the following
gradient method:

npj ðtþ 1Þ ¼
h
npj þ �

�
ẑjðnpj ðtÞÞ � ẑpj ðnpj ðtÞÞ

�iþ
; (15)

where t is the iteration index, � is a positive step size, and ‘+’
denotes the projection onto the nonnegative orthants.

In summary, we have the following distributed algo-
rithm to solve our problem.

5.1 Network Traffic Traces

In this section, we verify that our distributed algorithm can
be applied in practice using real trace in a cluster consisting
of five virtual machines with 1 GB memory and 2 GHz
CPU. Our network topology is based on three-tier architec-
tures: an access tier, an aggregation tier and a core tier
(Fig. 6). The access tier is made up of cost-effective Ethernet
switches connecting rack VMs. The access switches are con-
nected via Ethernet to a set of aggregation switches which

Fig. 4. A graph instance.

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016



in turn are connected to a layer of core switches. An inter-
rack link is the most contentious resource as all the VMs
hosted on a rack transfer data across the link to the VMs on
other racks. Our VMs are distributed in three different
racks, and the map-reduce tasks are scheduled as in Fig. 6.
For example, rack 1 consists of node 1 and 2; mapper 1 and
2 are scheduled on node 1 and reducer 1 is scheduled on
node 2. The intermediate data forwarding between mappers
and reducers should be transferred across the network. The
hop distances between mappers and reducers are shown in
Fig. 6, e.g., mapper 1 and reducer 2 has a hop distance 6.

Algorithm 1. Distributed Algorithm

1: set t ¼ 1, and npj ðj 2 A; p 2 P Þ to arbitrary nonnegative values;
2: for t < T do
3: distributively solve the subproblem SUB_DP and SUB_AP

on multiple machines in a parallel manner;
4: update the values of npj with the gradient method (15), and

send the results to all subproblems;
5: set t ¼ tþ 1;
6: end for

We tested the real network traffic cost in Hadoop
using the real data source from latest dumps files in wiki-
media (http://dumps.wikimedia.org/enwiki/latest/). In
the meantime, we executed our distributed algorithm
using the same data source for comparison. Since our dis-
tributed algorithm is based on a known aggregation ratio
a, we have done some experiments to evaluate it in
Hadoop environment. Fig. 5 shows the parameter a in
terms of different input scale. It turns out to be stable
with the increase of input size, and thus we exploit the
average aggregation ratio 0:35 for our trace.

To evaluate the experiment performance, we choose the
wordcount application in Hadoop. First of all, we tested
inputs of 213:44, 213:40, 213:44, 213:41 and 213:42M for five
map tasks to generate corresponding outputs, which turn
out to be 174:51, 177:92, 176:21, 177:17 and 176:19M, respec-
tively. Based on these outputs, the optimal solution is to
place an aggregator on node 1 and to assign intermediate
data according to the traffic-aware partition scheme. Since
mappers 1 and 2 are scheduled on node 1, their outputs can
be aggregated before forwarding to reducers. We list the
size of outputs after aggregation and the final intermediate
data distribution between reducers in Table 2. For example,
the aggregated data size on node 1 is 139:66M, in which
81:17M data is for reducer 1 and 58:49M for reducer 2.

The data size and hop distance for all intermediate data
transfer obtained in the optimal solution are shown in Fig. 6
andTable 2. Finally,we get the network traffic cost as follows:

81:17� 2þ 58:49� 6þ 96:17� 4þ 80:04� 6þ 98:23� 6

þ 78:94� 2þ 94:17� 6þ 82:02� 0 ¼ 2690:48:

Since our aggregator is placed on node 1, the outputs of
mapper 1 and mapper 2 are merged into 139:66M. The inter-
mediate data from all mappers is transferred according to the
traffic-aware partition scheme. We can get the total network
cost 2690:48 in the real Hadoop environment while the ideal
network cost is 2673:49 obtained from the optimal solution.
They turn out to be very close to each other, which indicates
that our distributed algorithm can be applied in practice.

6 ONLINE ALGORITHM

Until now, we take the data size mp
i and data aggregation

ratio aj as input of our algorithms. In order to get their

Fig. 5. Data reduction ratio.

TABLE 2
Real Cost versus Ideal Cost

data size and cost Node 1 Node 2 Node 3 Node 4 Node 5

mapper 1 mapper 2 — mapper 3 mapper 4 mapper 5

before aggregation 174.51 M 177.92 M — 176.21 M 177.17 M 176.19 M
after aggregation 139.66 M — 176.21 M 177.17 M 176.19 M

reducer 1 81.17 M — 96.17 M 98.23 M 94.17 M
reducer 2 58.49 M — 80.04 M 78.94 M 82.02 M
real cost 2,690.48
ideal cost 2,673.49

Fig. 6. A small example.

KE ET AL.: ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS 823



values, we need to wait all mappers to finish before starting
reduce tasks, or conduct estimation via profiling on a small
set of data. In practice, map and reduce tasks may partially
overlap in execution to increase system throughput, and it
is difficult to estimate system parameters at a high accuracy
for big data applications. These motivate us to design an
online algorithm to dynamically adjust data partition and
aggregation during the execution of map and reduce tasks.

In this section, we divide the execution of a MapReduce
job into several time slots with a length of several minutes or
an hour. We let mp

j ðtÞ and ajðtÞ denote the parameters col-
lected at time slot twith no assumption about their distribu-
tions. As the job is running, an existing data partition and
aggregation schememay not be optimal anymore under cur-
rent mp

j ðtÞ and ajðtÞ. To reduce traffic cost, we may need to

migrate an aggregator from machine j to j0 with a migration
cost Cjj0 . Meanwhile, the key assignment among reducers is

adjusted. When we let reducer k0 process the data with key p
instead of reducer k that is currently in charge of this key, we

use function Fkk0 ð
Pt

t¼1

P
j2A
P

k2R gpjkðtÞÞ to denote the cost

migrating all intermediate data received by reducers so far.
The total migration cost can be calculated by

CMðtÞ ¼
X
k;k02R

X
p2P

ypkðt� 1Þyp
k0 ðtÞFkk0 �

Xt
t¼1

X
j2A

X
k2R

gpjkðtÞ
 !

þ
X
j;j02N

zjðt� 1Þzj0 ðtÞCjj0 :
(16)

Our objective is to minimize the overall cost of traffic and
migration over a time interval ½1; T 	, i.e.,

min
XT
t¼1

�
CMðtÞ þ

X
p2P

CpðtÞ
�
; subject to :

ð1Þ-ð7Þ; ð9Þ; ð10Þ; and ð16Þ; 8t ¼ 1; . . . ;T:

An intuitive method to solve the problem above is to
divide it into T one-shot optimization problems:

OPT ONE SHOT: min CMðtÞ þ
X
p2P

CpðtÞ

subject to: ð1Þ-ð7Þ; ð9Þ; ð10Þ; and ð16Þ; for time slot t:

Unfortunately, the algorithm of solving above one-shot
optimization in each time slot based on the information col-
lected in the previous time slot will be far from optimal
because it may lead to frequent migration events. Moreover,
the coupled objective function due to CMðtÞ introduces
additional challenges in distributed algorithm design.

In this section, we design an online algorithm whose
basic idea is to postpone the migration operation until the
cumulative traffic cost exceeds a threshold. As shown in
Algorithm 2, we let t̂ denote the time of last migration oper-
ation, and obtain an initial solution by solving the
OPT_ONE_SHOT problem. In each of the following time
slot, we check whether the accumulative traffic cost, i.e.,Pt

t¼t̂

P
p2P Cp

t ðtÞ, is greater than g times of CMðt̂Þ. If it is, we

solve an optimization problem with the objective of mini-
mizing traffic cost as shown in line 5. We conduct migration

operation according to the optimization results and update

CMðt̂Þ accordingly as shown in lines 6 to 10. Note that the
optimization problem in line 5 can be solved using the dis-
tributed algorithm developed in last section.

Algorithm 2. Online Algorithm

1: t ¼ 1 and t̂ ¼ 1;
2: solve the OPT_ONE_SHOT problem for t ¼ 1;
3: while t � T do
4: if

Pt
t¼t̂

P
p2P Cp

t ðtÞ > gCMðt̂Þ then
5: solve the following optimization problem:

min
X
p2P

CpðtÞ

subject to:ð1Þ-ð7Þ; ð9Þ; and ð10Þ; for time slot t:

6: if the solution indicates a migration event then
7: conduct migration according to the new solution;
8: t̂ ¼ t;
9: update CMðt̂Þ;
10: end if
11: end if
12: t ¼ tþ 1;
13: end while

7 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performance of our proposed distributed algorithm DA
by comparing it to the following two schemes.

� HNA: Hash-based partitionwithNoAggregation. As
the default method in Hadoop, it makes the tradi-
tional hash partitioning for the intermediate data,
which are transferred to reducers without going
through aggregators.

� HRA: Hash-based partition with Random Aggrega-
tion. It adopts a random aggregator placement algo-
rithm over the traditional Hadoop. Through
randomly placing aggregators in the shuffle phase, it
aims to reducing the network traffic cost compared
to the traditional method in Hadoop.

To our best knowledge, we are the first to propose the
scheme that exploits both aggregator placement and traffic-
aware partitioning. All simulation results are averaged over
30 random instances.

7.1 Simulation Results of Offline Cases

Wefirst evaluate the performance gap between our proposed
distributed algorithm and the optimal solution obtained by
solving theMILP formulation. Due to the high computational
complexity of the MILP formulation, we consider small-scale
problem instances with 10 keys in this set of simulations.
Each key associated with random data size within [1-50].
There are 20 mappers, and two reducers on a cluster of 20
machines. The parameter a is set to 0.5. The distance between
any twomachines is randomly chosenwithin [1-60].

As shown in Fig. 7, the performance of our distributed
algorithm is very close to the optimal solution. Although
network traffic cost increases as the number of keys grows
for all algorithms, the performance enhancement of our

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016



proposed algorithms to the other two schemes becomes
larger. When the number of keys is set to 10, the default
algorithm HNA has a cost of 5:0� 104 while optimal solu-

tion is only 2:7� 104, with 46 percent traffic reduction.
We then consider large-scale problem instances, and

compare the performance of our distributed algorithm with
the other two schemes. We first describe a default simula-
tion setting with a number of parameters, and then study
the performance by changing one parameter while fixing
others. We consider a MapReduce job with 100 keys and
other parameters are the same above.

As shown in Fig. 8, the network traffic cost shows as an
increasing function of number of keys from 1 to 100 under all
algorithms. In particular, when the number of keys is set to
100, the network traffic of the HNA algorithm is about

3:4� 105, while the traffic cost of our algorithm is only

1:7� 105, with a reduction of 50 percent. In contrast to HRA
and HNA, the curve of DA increases slowly because most
map outputs are aggregated and traffic-aware partition choo-
ses closer reduce tasks for each key/value pair, which are ben-
eficial to network traffic reduction in the shuffle phase.

We then study the performance of three algorithms under
different values of a in Fig. 9 by changing its value from 0.2
to 1.0. A small value of a indicates a lower aggregation
efficiency for the intermediate data. We observe that network
traffic increases as the growth of a under both DA and HRA.
In particular, when a is 0.2, DA achieves the lowest traffic

cost of 1:1� 105. On the other hand, network traffic of HNA
keeps stable because it does not conduct data aggregation.

The affect of available aggregator number on network traf-
fic is investigated in Fig. 10. We change aggregator number
from 0 to 6, and observe that DA always outperforms other
two algorithms, and network traffics decrease under both
HRA and DA. Especially, when the number of aggregator is
6, network traffic of the HRA algorithm is 2:2� 105, while of

DA’s cost is only 1:5� 105, with 26:7 percent improvement.
That is because aggregators are beneficial to intermediate
data reduction in the shuffle process. Similar with Fig. 9, the
performance of HNA shows as a horizontal line because it is
not affected by available aggregator number.

We study the influence of different number of map tasks
by increasing the mapper number from 0 to 60. As shown in
Fig. 11, we observe that DA always achieves the lowest traf-
fic cost as we expected because it jointly optimizes data par-
tition and aggregation. Moreover, as the mapper number
increases, network traffic of all algorithms increases.

We shows the network traffic cost under different num-
ber of reduce tasks in Fig. 12. The number of reducers is
changed from 1 to 6. We observe that the highest network
traffic is achieved when there is only one reduce task under
all algorithms. That is because all key/value pairs may be
delivered to the only reducer that locates far away, leading
to a large amount of network traffic due to the many-to-one
communication pattern. As the number of reduce tasks
increases, the network traffic decreases because more
reduce tasks share the load of intermediate data. Especially,
DA assigns key/value pairs to the closest reduce task, lead-
ing to least network traffic. When the number of reduce
tasks is larger than 3, network traffic decreasing becomes

Fig. 7. Network traffic cost versus number of keys from 1 to 10.

Fig. 8. Network traffic cost versus different number of keys from 1 to 100.

Fig. 9. Network traffic cost versus data reduction ratio a.

Fig. 10. Network traffic cost versus number of aggregators.

KE ET AL.: ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS 825



slow because the capability of intermediate data sharing
among reducers has been fully exploited.

The affect of different number of machines is investi-
gated in Fig. 13 by changing the number of physical nodes
from 10 to 60. We observe that network traffic of all the algo-
rithms increases when the number of nodes grows. Further-
more, HRA algorithm performs much worse than other two
algorithms under all settings.

7.2 Simulation Results of Online Cases

We then evaluate the performance of proposed algorithm
under online cases by comparing it with other two schemes:
OHRA and OHNA, which are online extension of HRA and
HNA, respectively. The default number of mappers is 20
and the number of reducers is 5. The maximum number of

aggregators is set to 4 and we also vary it to examine its
impact. The key/value pairs with random data size within
[1-100] are generated randomly in different slots. The total
number of physical machines is set to 10 and the distance
between any two machines is randomly choose within [1-
60]. Meanwhile, the default parameter a is set to 0.5. The
migration cost Fkk0 and Cjj0 are defined as constants 5 and

6. The initial migration cost CMð0̂Þ is defined as 300 and g is
set to 1000. All simulation results are averaged over 30 ran-
dom instances.

We first study the performance of all algorithm under
default network setting in Fig. 14. We observe that net-
work traffic increases at the beginning and then tends to
be stable under our proposed online algorithm. Network
traffics of OHRA and OHNA always keep stable because
OHNA obeys the same hash partition scheme and no
global aggregation for any time slot. OHRA introduces
slightly migration cost due to Cjj0 is just 6 . Our pro-
posed online algorithm always updates migration cost

CMðt̂Þ and executes the distributed algorithm under dif-
ferent time slots, which will incur some migration cost in
this process.

The influence of key numbers on network traffic is stud-
ied in Fig. 15. We observe that our online algorithm per-
forms much better than other two algorithms. In particular,
when the number of keys is 50, the network traffic for online
algorithm is about 2� 105 and the traffic for OHNA is

almost 3:1� 105, with an increasing of 35 percent.
In Fig. 16, we compare the performance of three algo-

rithms under different values of a. The larger a, the lower

Fig. 13. Network traffic cost versus number of machines.

Fig. 12. Network traffic cost versus number of reduce tasks.

Fig. 11. Network traffic cost versus number of map tasks. Fig. 14. Network traffic cost versus size of time interval T .

Fig. 15. Network traffic cost versus number of keys.

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016



aggregation efficiency the intermediate data has. We
observe that network traffics increase under our online algo-
rithm and OHRA. However, OHNA is not affected by
parameter a because no data aggregation is conducted.
When a is 1, all algorithms has similar performance because
a ¼ 1 means no data aggregation. On the other hand, our
online algorithm outperforms OHRA and OHNA under
other settings due to the jointly optimization of traffic-aware
partition and global aggregation.

We investigate the performance of three algorithms under
different number of aggregators in Fig. 17. We observe the
online algorithm outperforms other two schemes. When
the number of aggregator is 6, the network traffic of the
OHNA algorithm is 2:8� 105 and our online algorithm has a

network traffic of 1:7� 105 , with an improvement of
39 percent. As the increase of aggregator numbers, it is more
beneficial to aggregate intermediate data, reducing the
amount of data in the shuffle process. However, when the
number of aggregators is set to 0, which means no global
aggregation, OHRA has the same network traffic with
OHNA and our online algorithm always achieves the lowest
cost.

8 CONCLUSION

In this paper, we study the joint optimization of intermedi-
ate data partition and aggregation in MapReduce to mini-
mize network traffic cost for big data applications. We
propose a three-layer model for this problem and formu-
late it as a mixed-integer nonlinear problem, which is then
transferred into a linear form that can be solved by mathe-
matical tools. To deal with the large-scale formulation due
to big data, we design a distributed algorithm to solve the
problem on multiple machines. Furthermore, we extend
our algorithm to handle the MapReduce job in an online
manner when some system parameters are not given.
Finally, we conduct extensive simulations to evaluate our
proposed algorithm under both offline cases and online
cases. The simulation results demonstrate that our pro-
posals can effectively reduce network traffic cost under
various network settings.

ACKNOWLEDGMENTS

This work was partially sponsored by the Japan(JST)-US
(NSF) Strategic International Collaborative Research Pro-
gram (SICORP) on Big Data and Disaster Research (BDD),

the National Natural Science Foundation of China (NSFC)
(No. 61261160502, No. 61272099), the Program for Chang-
jiang Scholars and Innovative Research Team in University
(IRT1158, PCSIRT), and the Shanghai Innovative Action
Plan (No. 13511504200). S. Guo is the corresponding author.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task sched-
uling in mapreduce with data locality: Throughput and heavy-
traffic optimality,” in Proc. IEEE INFOCOM, 2013, pp. 1609–1617.

[3] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of
processing and shuffle phases in mapreduce systems,” in Proc.
IEEE INFOCOM, 2012, pp. 1143–1151.

[4] Y. Wang, W. Wang, C. Ma, and D. Meng, “Zput: A speedy data
uploading approach for the hadoop distributed file system,” in
Proc. IEEE Int. Conf. Cluster Comput., 2013, pp. 1–5.

[5] T. White, Hadoop: The Definitive Guide: The Definitive Guide.
Sebastopol, CA, USA: O’Reilly Media, Inc, 2009.

[6] S. Chen and S. W. Schlosser, “Map-reduce meets wider varie-
ties of applications,” Intel Res., Pittsburgh, PA, USA, Tech.
Rep. IRP-TR-08-05, 2008.

[7] H. Lv and H. Tang, “Machine learning methods and their applica-
tion research,” IEEE Int. Symp. Intel. Info. Process. Trusted Comput.
(IPTC), pp. 108–110, Oct. 2011.

[8] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S.
Schreiber, “Presto: Distributed machine learning and graph proc-
essing with sparse matrices,” in Proc. 8th ACM Eur. Conf. Comput.
Syst., 2013, pp. 197–210.

[9] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for bio-
informatics applications,” in Proc. IEEE 4th Int. Conf. eScience,
2008, pp. 222–229.

[10] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, and V. Markl,
“Comparison of distributed data-parallelization patterns for big
data analysis: A bioinformatics case study,” in Proc. 4th Int. Work-
shop Data Intensive Comput. Clouds, 2013, pp. 1–5.

[11] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “Cloudnmf: A mapreduce
implementation of nonnegative matrix factorization for large-
scale biological datasets,” Genomics, Proteomics Bioinformat.,
vol. 12, no. 1, pp. 48–51, 2014.

[12] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, and J. Wang,
“Introducing map-reduce to high end computing,” in Proc. 3rd
Petascale Data Storage Workshop, 2008, pp. 1–6.

[13] W. Yu, G. Xu, Z. Chen, and P. Moulema, “A cloud computing
based architecture for cyber security situation awareness,” in
Proc. IEEE Conf. Commun. Netw. Security, 2013, pp. 488–492.

[14] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li,
W. Lin, J. Zhou, and L. Zhou, “Optimizing data shuffling in
data-parallel computation by understanding user-defined
functions,” in Proc. 9th USENIX Conf. Netw. Syst. Des.
Implemen. (NSDI ’12), Berkeley, CA, USA: USENIX Associa-
tion, 2012, pp. 295–308.

Fig. 17. Network traffic cost versus number of aggregators.Fig. 16. Network traffic cost versus data reduction ratio a.

KE ET AL.: ON TRAFFIC-AWARE PARTITION AND AGGREGATION IN MAPREDUCE FOR BIG DATA APPLICATIONS 827



[15] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar,
“Mapreduce with communication overlap,” J. Parallel Distrib.
Comput., vol. 73, pp. 608–620, 2013.

[16] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-
reduce-merge: Simplified relational data processing on large
clusters,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007,
pp. 1029–1040.

[17] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J.
Talbot, K. Elmeleegy, and R. Sears, “Online aggregation and
continuous query support in mapreduce,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2010, pp. 1115–1118.

[18] S. Narayan, S. Bailey, and A. Daga, “Hadoop acceleration in an
openflow-based cluster,” IEEE SC Companion: High Performance
Comput., Netw., Storage Analysis (SCC), pp. 535–538, Nov. 2012.

[19] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-
aware resource allocation for mapreduce in a cloud,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2011, p. 58.

[20] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:
Locality/fairness-aware key partitioning for mapreduce in the
cloud,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci.,
2010, pp. 17–24.

[21] W. Yan, Y. Xue, and B. Malin, “Scalable and robust key group size
estimation for reducer load balancing in MapReduce,” IEEE Int.
Conf. Big Data, pp. 156–162, Oct. 2013.

[22] S.-C. Hsueh, M.-Y. Lin, and Y.-C. Chiu, “A load-balanced mapre-
duce algorithm for blocking-based entity-resolution with multiple
keys,” in Proc. 12th Australasian Symp. Parallel Distrib. Comput.,
2014, pp. 3–9.

[23] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “Mapreduce online,” in Proc. 7th USENIX Conf.
Netw. Syst. Design Implementation, 2010, vol. 10, no. 4, p. 20.

[24] J. Lin and C. Dyer, “Data-intensive text processing with
mapreduce,” Synthesis Lectures Human Language Technol., vol. 3,
no. 1, pp. 1–177, 2010.

[25] P. Costa, A. Donnelly, A. I. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in
Proc. 7th USENIX Conf. Netw. Syst. Design Implementation, 2012,
vol. 12, p. 3.

Huan Ke received the bachelor’s degree from the
Huazhong University of Science and Technology.
She is a graduate student in the Department
of Computer Science, University of Aizu. Her
research interests include cloud computing, big
data, network, and RFID system. He is a student
member of the IEEE.

Peng Li received the BS degree from the
Huazhong University of Science and Technology,
China, in 2007, the MS and PhD degrees from the
University of Aizu, Japan, in 2009 and 2012,
respectively. He is currently an associate profes-
sor in the University of Aizu, Japan. His research
interests include networking modeling, cross-layer
optimization, network coding, cooperative commu-
nications, cloud computing, smart grid, perfor-
mance evaluation of wireless and mobile networks
for reliable, energy-efficient, and cost-effective
communications. He is amember of the IEEE.

Song Guo (M’02-SM’11) received the PhD
degree in computer science from the University
of Ottawa, Canada in 2005. He is currently a full
professor at the School of Computer Science and
Engineering, the University of Aizu, Japan. His
research interests are mainly in the areas of
wireless communication and mobile computing,
cyber-physical systems, data center networks,
cloud computing and networking, big data, and
green computing. He has published more than
250 papers in refereed journals and conferences

in these areas and received three IEEE/ACM best paper awards. He cur-
rently serves as an associate editor of IEEE Transactions on Parallel
and Distributed Systems, associate editor of IEEE Transactions on
Emerging Topics in Computing for the track of Computational Networks,
and on editorial boards of many others. He has also been in organizing
and technical committees of numerous international conferences. He is
a senior member of the IEEE and the ACM.

Minyi Guo received the BSc and ME degrees in
computer science from Nanjing University, China,
and the PhD degree in computer science from the
University of Tsukuba, Japan. He is currently
Zhiyuan chair professor and head of the Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University (SJTU), China.
Before joined SJTU, he had been a professor
and department chair of the School of Computer
Science and Engineering, University of Aizu,
Japan. He received the national science fund for

distinguished young scholars from NSFC in 2007, and was supported by
“1000 recruitment program of China” in 2010. His present research inter-
ests include parallel/distributed computing, compiler optimizations,
embedded systems, pervasive computing, and cloud computing. He has
more than 250 publications in major journals and international conferen-
ces in these areas, including the IEEE Transactions on Parallel and Dis-
tributed Systems, the IEEE Transactions on Nanobioscience, the IEEE
Transactions on Computers, the ACM Transactions on Autonomous and
Adaptive Systems, INFOCOM, IPDPS, ICS, ISCA, HPCA, SC, WWW,
etc. He received five best paper awards from international conferences.
He was on the editorial board of IEEE Transactions on Parallel and Dis-
tributed Systems and IEEE Transactions on Computers. He is a senior
member of the IEEE, member of the ACM and the CCF.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


