
42	 IT Pro  September/October 2017	 P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 	 1520-9202/17/$33.00 © 2017 IEEE

SMART CITIES

Smart Infrastructure 
Design for Smart 
Cities

Kaoru Ota, Teerawat Kumrai, Mianxiong Dong, and  
Jay Kishigami, Muroran Institute of Technology, Japan

Minyi Guo, Shanghai Jiao Tong University, China

In intelligent transportation systems, roadside unit (RSU) deployment 
should be well designed because RSUs act as service providers and 
gateways to the Internet. The authors’ RSU deployment strategy 
maximizes the communication coverage and reduces the energy 
consumption of RSUs.

I
CT makes cities “smart,” capable of manag-
ing infrastructures more effectively and effi-
ciently. In the smart grid, for instance, ICT is 
applied to a traditional electric grid to more 

efficiently use electricity. Intelligent transporta-
tion systems (ITS) are a more familiar example 
because most of us have benefited from ITS tech-
nologies, including car navigation and electronic 
toll collection.

With advances in automotive and wire-
less technologies, vehicular ad hoc networks 
(VANETs) have emerged to help ITS provision 

a wide spectrum of safety and information ap-
plications to drivers and passengers. VANETs 
can also collect large amounts of data from  
distributed vehicles to meet several objectives, 
such as traffic control, safety assistance, and 
environmental monitoring.1 Generally, commu-
nication in VANETs can be classified into two 
types: vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I), as Figure 1 shows. In V2V 
communication, vehicles equipped with on-board 
units communicate with each other through 
wireless channels. V2V communication testing 
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has already begun with industry 
and worldwide automakers—for 
example, Toyota,2 Honda,3 Vol-
vo,4 and BMW5 have all developed 
their own testbed systems. In aca-
demia, cooperative downloading 
and message dissemination using 
V2V communication have been 
studied to improve delivery ef-
ficiency.6 Some research efforts 
have been made to solve secu-
rity and privacy problems because 
data transmission through V2V 
communication can expose vehic-
ular users’ personal information 
to malicious actors.7

Meanwhile, in V2I commu-
nication, vehicles connect to 
the Internet through one of two 
ways: cellular networks or—more 
typically, due to their much lower 
communication costs—roadside 
units (RSUs). In Japan, more than 
1,000 RSUs have been deployed, 
mainly around highways. RSUs 
provide information services, cur-
rently focused on safety-related information, for 
on-road vehicles using the 5.9-GHz dedicated 
short range communications (DSRC) spectrum. 
However, more options are likely to be offered in 
the near future—for example, for entertainment 
purposes. The US has allocated a large budget 
for next-generation ITS. For instance, New York 
City will receive 42 million dollars to upgrade 
ITS such as traffic signals with V2I technology.8

Intuitively, the more RSUs there are deployed 
anywhere in smart cities, the more people’s qual-
ity of life (QoL) improves. However, RSU deploy-
ment can fail not only because initial setup costs 
are too expensive, but also because less frequent-
ly used RSUs can waste energy. Energy efficiency 
cannot be neglected—it is a primary mission of 
smart cities.9,10 On the other hand, if the num-
ber of RSUs is decreased to save on setup costs 
and energy consumption, service availability and 
connectivity could get worse because of limited 
RSU communication coverage. Thus, a tradeoff 
exists between energy consumption and com-
munication coverage.

Here, we investigate this RSU deployment 
problem and formulate it as an optimization 

problem with multiple objectives. We then find 
a solution using an evolutionary algorithm and 
show through extensive simulations that our 
solution maintains high energy efficiency while 
guaranteeing communication coverage.

Advantages of VANETs
With the recent penetration of Long-Term Evolu-
tion, Wimax, and 3G networks, users can enjoy 
online shopping, check email, and watch videos 
even while driving a vehicle. However, VANETs 
remain necessary to assist with Internet access in 
motion for the following reasons. First, cellular 
network capacity can reach near-limits because of 
heavy traffic coming from cellular networks.11 It 
is thus costly for most people worldwide to access 
the Internet via cellular networks—an average of 
US$60 per 7 Gbytes in Japan (www.nttdocomo 
.co.jp) and US$10 per 1 Gbyte in Canada (www 
.fido.ca). Second, using a monitor embedded in 
a vehicle is safer and more convenient than us-
ing a small mobile phone screen when users in 
motion access the Internet, especially for enter-
tainment purposes. Lastly, mobile phones are 
battery powered; frequently accessing the Inter-
net via mobile phone uses its energy up quickly, 

Figure 1. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communication. In the former, vehicles equipped with on-board units 
communicate with each other wirelessly. In the latter, vehicles connect 
to the Internet through cellular networks or roadside units (RSUs).
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as does video streaming. In addition, it is known 
that bandwidth fluctuation has a significant im-
pact on a mobile phone’s energy consumption.12 
In other words, bad connectivity due to weather, 
buildings, or other factors consumes much more 
energy than good connectivity. Although mobile 
phones can be charged in vehicles, a vehicle’s 
equipped device is obviously easier to use.

RSU Deployment Problem
RSU deployment needs to be well planned for the 
following reasons. First, the cost for deployment 
and operation or management is high—for ex-
ample, US$13,000–$15,000 per unit and $2,400 
per unit per year for deployment and operation 
or management, respectively.13 Because of each 
RSU’s limited communication range, densely de-
ploying RSUs provides pervasive service through-
out a city; however, service providers might have 
to set expensive access fees for RSUs that could 
discourage people from using them. Also, once 
an RSU is deployed, it is not easy to uninstall or 
move to other places. Thus, it is important to bal-
ance communication coverage and the number 
of RSUs. In our previous work, we maximized 
communication coverage with a given number of 
RSUs.14 It is useful for service providers to plan 
RSU deployment on a limited budget.

The next issue is then the energy efficiency 
of RSUs. Although RSUs are outlet-plugged, 
energy waste cannot be ignored given our 
increasing awareness of environmental issues. 
Huge amounts of energy can be wasted because 
vehicle traffic density varies temporally as well as 
spatially. For example, numerous vehicles pass 
through an RSU deployed in the center of an 
urban city during daylight; however, almost no 
vehicles pass through the RSU at midnight. This 
energy waste can be avoided by turning RSUs 
on or off as the situation demands. This should 
be well studied; otherwise, network connectiv-
ity can seriously degrade. Thus, we study how 
to minimize an RSU’s total energy consumption 
while maximizing overall network connectivity.

The RSU deployment problem has been stud-
ied elsewhere.15–17 One study aims at minimizing 
the costs of RSU deployment with the constraint 
that all service areas should be covered.15 The 
solution is a branch and bound method, which 
shows that the probability of uncovered areas in-
creases as the average number of required RSUs 

decreases. In another study, the authors propose 
a new mathematical linear programming formu-
lation to solve the RSU deployment problem.16 
Total network cost and the connectivity main-
tenance between sensors and RSUs are consid-
ered in the deployment. The proposed method is 
effective for solving medium-sized problems. In 
another work, a genetic algorithm is proposed for 
solving the maximum coverage with time thresh-
old problem (MCTTP).17 However, none of these 
works deal with the energy consumption and 
communication connectivity of VANETs.

On the other hand, several researchers con-
sider RSU energy efficiency.18,19 One analytic 
model with linear time complexity was devel-
oped for the optimal number of active RSUs un-
der a connectivity constraint.18 In another study, 
the authors aimed at finding the optimal sleep 
schedule of an RSU in a given time period to 
minimize its overall energy consumption while 
maintaining network connectivity. However, 
these studies do not consider communication 
coverage in VANETs. We summarize these  
related works in Table 1.

In this article, we consider the RSU deploy-
ment problem as a multiobjective optimization 
problem in which communication coverage is 
considered a constraint, and minimizing RSUs’ 
total energy consumption and maintaining com-
munication connectivity are considered two ob-
jectives. We use an evolutionary algorithm (EA) 
to find a solution for this multiobjective optimi-
zation problem, which is more efficient than tra-
ditional approaches.

RSU Deployment Optimization
Figure 2 shows a model of optimal RSU deploy-
ment: (xi, yi) denotes the 2D position of RSU i, 
and binary variable si denotes whether RSU i is 
in active mode or sleep mode. We assume that 
vehicles are randomly distributed in a target area, 
and each vehicle communicates with an RSU 
when it moves into that RSU’s communication 
coverage. On a road with many vehicles, RSUs 
always need to be activated for communication 
with these vehicles to ensure communication 
connectivity. When the vehicle traffic density de-
creases, some RSUs can be turned to sleep mode 
to lower energy consumption, which could re-
sult in them losing communication connectivity. 
Thus, we consider the communication coverage 
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as a constraint and minimizing total energy con-
sumption and maximizing communication con-
nectivity as two objectives:

•	 Communication coverage. We assume that the 
city is divided into X 3 Y grids. When a grid is 
within the communication coverage of at least 
one RSU, it is regarded as a communication area. 
The total communication area is the sum of 
these grids. Service providers usually require 
that a VANET cover certain areas—this is a 
communication coverage requirement.

•	 Total energy consumption. The total energy con-
sumption is the energy consumed by all RSUs 
deployed in the city. The energy consumption 
of each RSU depends on its status: active or 
asleep. Here, we consider only these two sta-
tuses; an active RSU consumes much more en-
ergy than one that is asleep.

•	 Communication connectivity. We compute com-
munication connectivity from VANETs’ 
throughput performance. This communica-
tion connectivity can be measured as PRi  / P

v, 
where PRi is the number of data packages that 
RSU i successfully received from each vehicle;  
i 5 1, ..., NR; and Pv is the total number of pack-
ages generated by all vehicles in the city. For 
simplicity, we assume that data transmission 
succeeds whenever a vehicle is within the com-
munication coverage of an active RSU.

To satisfy the communication coverage re-
quirements, we seek an optimal RSU deploy-
ment to minimize the total energy consumption 
of RSUs and maximize communication connec-
tivity. Finding optimal RSU deployment—that is, 
a combination of RSU positioning and status—is 
an NP-complete problem. In addition, the more 
RSUs there are in a big city, the greater the search 
space. For example, consider 150 RSUs deployed 
in a city. Each RSU’s communication coverage is 
set as 250 m. These 150 RSUs will be placed in a 
5 3 5 km2 area in the city. Assume that the tar-
get area is divided into 50 3 50 grids, and more 
than one RSU can be placed on a grid. Thus, the 
number of search combinations is 2 3 150 3  
(50 3 50)150 5 300 3 2,500150.

Thus, we use the EA to find solutions for the 
RSU deployment problem; Figure 3 shows how 
the EA works. In this algorithm, we define the 
population, which consists of M individuals. 

Each individual i in the population is repre-
sented by multiple segments, which are a set 
of RSU properties. These properties consist 
of RSU status si and RSU locations xi and yi. 
The number of multiple segments in an indi-
vidual indicates the number of RSUs n in the  
target area.

First, the initial population will be generated 
by random RSU properties. Then, individuals 
are evaluated using a fitness value that indicates 
whether the individual is better than others in 
the population.

Then, the EA selects a pair of individuals who 
have the highest fitness values as parents. Se-
lected parents reproduce two offspring using 
a crossover operator with a certain crossover 
rate. The offspring can mutate with a muta-
tion rate—that is, a probability that random 
elements of an individual will be flipped into 
another value; for example, flipped from 0 to 1 
or vice versa.

The EA repeats these operators (selection, 
crossover, and mutation) until the number of off-
spring achieves size N. Then, this set of offspring 
is combined with the set of the population.  
Finally, the EA selects the best M individuals 
from M 1 N individuals via the selection opera-
tor to be the new population for the next genera-
tion. The selection operator is driven based on 
individuals’ fitness values.

This process repeats until the number of gen-
erations reaches the maximum decided by ser-
vice providers. For more details, such as how to 

Table 1. Related work in roadside unit deployment.

Proposed approach Communication 
coverage

Energy  
efficiency

Po-Chiang Lin15 X

Maher Rebai and 
colleagues16

X

Evellyn S. Cavalcante and 
colleagues17

X

Teerawat Kumrai and 
colleagues14

X

Sok-Ian Sou18 X

Feng Zou and colleagues19 X

Ours X X
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calculate fitness values, readers can refer to our 
previous work.14

Performance Evaluation
In this section, we evaluate the performance of 
our proposed algorithm for RSU deployment op-
timization via simulation experiments.

Simulation Setup
We implement a VANET simulator to evaluate 
our proposed algorithm and simulate a 5 km 3 
5 km-sized city with a road length of 53 km. We 
divide this city into 50 3 50 grids with widths of 
100 m, which is a common width for some wide 
urban roads. We assume that, at most, 75 RSUs 
are deployed in the city, and RSU communica-
tion coverage is set to 250 m. The grids covered 
by RSUs include both full and partially covered 
ones. The VANET simulator uses broadcasting 
routing protocols. Vehicles generate sensing data 
at one packet per second.

Each RSU’s energy consumption is derived 
from the VANET simulator based on the traf-
fic density of roads and corresponding RSU 
status. We execute the VANET simulator over 
a period of time and thus calculate the total 

energy consumption of an RSU in this time pe-
riod. Each RSU can change its status each sec-
ond according to the communication coverage 
requirement.

To execute the EA in these simulations, we 
use jMetal, a simulator for multiobjective opti-
mization problems with meta heuristics.20 It is 
an object-oriented JAVA-based framework. The 
simulation configurations are set as 100 popula-
tions, 2,000 max generations, a 1/n mutation rate, 
and a 0.9 crossover rate.

In the simulations, we evaluate our proposed 
algorithm’s performance in the following two 
scenarios:

•	 Scenario 1. RSU status is variable (each RSU is 
either active or sleep).

•	 Scenario 2. RSU status is fixed (all RSUs are  
active at all times).

Simulation Results
In the simulations, we use the C-metric21 as the 
performance metric to represent how individuals 
obtained from one algorithm are better than in-
dividuals from another. C(A, B) represents the C-
metric for algorithm A and B, which is calculated 

Figure 2. A model of optimal roadside unit (RSU) deployment. Here, (xi, yi) denotes the 2D position of RSU i, 
and binary variable si denotes whether RSU i is in active or sleep mode.
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Communication coverage of RSUs
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by |{b ∈ B|a ∈ A : a . b}|/|B|, where the . opera-
tor denotes dominance (for example, a . b means 
that individual a dominates individual b). If the 
C-metric 5 0, no individual in A dominates indi-
viduals in B. On the other hand, if the C-metric 5 
1, at least one individual in A dominates all indi-
viduals in B.

Figure 4 shows the results of solutions gained 
by scenario 1 and scenario 2 in two objectives (en-
ergy consumption and data transmission success 
rate). The results show that the RSUs in scenario 
1 consume less energy than those in scenario 2. 
The average energy consumption decreases by 
about 7 percent. Moreover, we show the C-metric  
at generation 2,000. C(scenario 1, scenario 2) is 
equal to 0.78. On the other hand, C(scenario 2, sce-
nario 1) is equal to 0.00. This result demonstrates 
that scenario 1 is a better nondominated frontier 
than scenario 2.

Figures 5a and 5b show the performance of 
the proposed algorithm in two scenarios: com-
munication coverage with communication con-
nectivity and communication coverage with 
energy consumption. The RSUs in scenario 1 
cover fewer target areas while maintaining a 
higher data transmission rate. Because we con-
sider some RSUs to be sleeping in scenario 1, 
the communication coverage decreases by about 
2 percent. This indicates that communication 

connectivity is maintained with properly selected 
RSUs activated.

O ur proposed strategy turns inactive RSUs 
to sleep mode to save energy while achiev-
ing stable access for vehicles from active 

RSUs. Our strategy’s performance is verified 

Figure 3. Process of the evolutionary algorithm. The population consists of M individuals, 
represented by multiple segments.
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Figure 4. Performance of the proposed algorithm in 
energy consumption and success rate. The RSUs in 
scenario 1 consume less energy than those in scenario 2.
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through extensive simulations, and experimen-
tal results demonstrate that our strategy outper-
forms a traditional algorithm in terms of both 
energy efficiency and VANET connectivity. The 
proposed strategy is helpful in improving people’s 
QoL such that online service is always accessible 
with a reasonable access fee as they are driving. 
It also enhances the energy efficiency of smart 
transportation systems, which might incur addi-
tional energy expenditures through VANETs.

In future work, we will further conduct experi-
ments under large-scale and realistic simulation 
setup environments, such as using real traffic 
measurements, using a real city map, and varying 
the communication range of each RSU.�
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