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Abstract Given a road network G = (V,E), where V (E) denotes the set of vertices(edges) in G, a set of points of interest

P and a query point q residing in G, the reverse furthest neighbors (RfnR) query in road networks fetches a set of points

p ∈ P that take q as their furthest neighbor compared with all points in P ∪{q}. This is the monochromatic RfnR (MrfnR)

query. Another interesting version of RfnR query is the bichromatic reverse furthest neighbor (BrfnR) query. Given two

sets of points P and Q, and a query point q ∈ Q, a BrfnR query fetches a set of points p ∈ P that take q as their furthest

neighbor compared with all points in Q. This paper presents efficient algorithms for both MrfnR and BrfnR queries, which

utilize landmarks and partitioning-based techniques. Experiments on real datasets confirm the efficiency and scalability of

proposed algorithms.

Keywords reverse furthest neighbor, road network, landmark, hierarchical partition

1 Introduction

Spatial database has been extensively studied in

database community as it supports many applications

from people’s daily life to scientific research[1-10]. For

instance, people use online map services to plan their

trips. The query processing for sensor networks[11]

needs the design of location-aware algorithms. In this

work, we study a query type in road networks that finds

wide applications. Given a road network G = (V,E),

where V (E) denotes the set of vertices(edges) in G, a

set of points of interest P and a query point q residing

in G, we are interested in retrieving the set of points in

P that take q as their furthest neighbors (in terms of

the shortest path distance) compared with all points in

P , i.e., collecting q’s reverse furthest neighbors (RfnR).

This problem is referred to as the monochromatic re-

verse furthest neighbor (MrfnR) query. It naturally

has a bichromatic version as well (BrfnR). Specifically,

the query contains a set of query points Q residing in

G and one point q ∈ Q. The goal in this case is to find

a set of points p ∈ P so that they all take q as their

furthest neighbors compared with all points in Q.

The examples of RfnR are provided in Fig.1. In



156 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

Fig.1(a), the dashed line shows that p1 is p7’s furthest

neighbor, and p7 is one of p1’s RfnR. In Fig.1(b), since

the distance from p2 to q3 is further than the distance

from p2 to q1 and q2, p2 should be one of q3’s RfnR

w.r.t. {q1, q2, q3}.
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Fig.1. RfnR query examples. (a) MrfnR query example. (b)
BrfnR query example.

The motivation to study the RfnR queries is largely

inspired by an important query type that has been

extensively studied recently, namely, the reverse near-

est neighbor (Rnn) queries[12-14]. Intuitively, an Rnn

query finds a set of points taking the query point

as their nearest neighbors and it exists in both the

monochromatic and bichromatic versions. Both of

these two versions of Rnn query have been extended to

the road networks. Many applications that are behind

the studies of the Rnn queries naturally have the cor-

responding “furthest” versions, including Rnn queries

on the road networks. Consider the next two examples

for the MrfnR and BrfnR queries.

Example 1. Suppose a large group of friends want

to find one of their houses to have a party, and some

one (say Alice) would like to learn the set of friends

who take her as their furthest neighbors compared with

other friends. This has an implication that these friends

are highly unlikely to visit Alice. Hence, Alice should

put more efforts in persuading these friends.

Example 2. For a large collection of points of inter-

est in a region, every point would like to learn the set

of sites that take itself as their furthest neighbor com-

pared with other points of interest. This has an implica-

tion that visitors to these sites (i.e., its reverse furthest

neighbors) are highly unlikely to visit this point. Ide-

ally, it should put more efforts in advertising itself to

these sites.

In the above two examples, people are more con-

cerned about road distance rather than Euclidean dis-

tance. Thus the reverse furthest neighbor query on the

road network is more applicable to this issue than the

reverse furthest neighbor query in the Euclidean space.

To the best of our knowledge, there are few dis-

cussions about RfnR problems in large-scale road net-

works. The brute-force search algorithms for these

problems are obviously too expensive to be of any prac-

tical use. Hence, large-scale road networks are calling

for practical, efficient algorithms for these problems.

More importantly, by taking the furthest neighbors,

The RfnR problems are different from the Rnn prob-

lems in the geometric nature. Hence, we need to design

new algorithms to process the RfnR queries more ef-

ficiently by taking the new geometric perspectives into

account.

Contributions. This work presents efficient algo-

rithms for MrfnR and BrfnR problems. Specifically,

we 1) propose two novel algorithms (the LM algorithm

and the HP algorithm) for the MrfnR query, 2) pro-

pose two novel algorithms (the PFC-BrfnR algorithm

and the FVCPar algorithm) for the BrfnR query, 3)

propose two algorithms to improve the performance of

finding the furthest neighbor, which is the fundamen-

tal function of the query algorithms for both MrfnR

and BrfnR problems, and 4) conduct comprehensive

experiments on real datasets to evaluate the efficiency

and scalability of all proposed algorithms.

The paper is organized as follows. Section 2 formu-

lates the problem of the reverse furthest neighbors and

Section 3 surveys related work. Section 4 provides novel

methods based on landmarks and hierarchical partition-

ing to answer MrfnR efficiently. Section 5 presents a

progressive method combined with hierarchical parti-

tioning to answer BrfnR queries. Section 6 reports a

comprehensive experimental study with real datasets

and Section 7 concludes the paper.

2 Problem Formulation

Let P denote the points of interest (POIs) in a road

network. The shortest path distance between any two

points p and q is denoted by ||p− q||, and the furthest

neighbor of any point p w.r.t. P in road networks is

simply defined as follows.

Definition 1. The furthest neighbor of p to a

dataset P is defined as fn(p, P ) = p∗ s.t. p∗ ∈ P , for
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∀p′ ∈ P and p′ 6= p∗, ||p∗ − p|| > ||p′ − p||. Ties are

broken arbitrarily.

The monochromaticRfnR query is formally defined

as follows.

Definition 2. The MRFNR of q w.r.t. the dataset

P is a set of points from P that take q as their fur-

thest neighbors compared with all points in P , i.e.,

MRFNR(q, P ) = {p|p ∈ P, fn(p, P
⋃
{q}) = q}.

The bichromatic RfnR query takes additionally a

set of query points Q as input, and is formally defined

as follows.

Definition 3. The BRFNR of q ∈ Q w.r.t. the

dataset P and the query set Q is a set of points from

P that take q as their furthest neighbors compared with

all other points in Q, i.e., BRFNR(q,Q, P ) = {p|p ∈

P, fn(p,Q) = q}.

3 Background and Related Work

An interesting query type that has close relation-

ship with RfnR was defined in [15], in which the goal

is to find the set of points from P that take the query

point q as their nearest neighbors among all points in

the dataset P . This is the monochromatic reverse near-

est neighbor query (monochromatic Rnn). Due to its

wide applications, Rnn queries have received consider-

able attention since its appearance[12,15-21].

The bichromatic Rnn also finds many applicati-

ons[13,15,17,20,22-23]. In this case, the query takes a set

of query points Q and a query point q ∈ Q. The set

of points returned from P all take q as their nearest

neighbors w.r.t. other points in Q. The basic idea here

is to use the Voronoi diagram and find the region that

corresponds to the query point.

The Rnn problem can be extended to graphs and

road networks[23]. Generalization to any metric space

appeared in [22]. Continuous Rnn was explored by [13,

24]. The Rnn for moving objects was studied in [25].

Reverse kNN search was examined by [12, 16]. Finally,

the Rnn for ad-hoc subspaces was solved by [14].

The Rfn problem was firstly studied by Yao et

al.[26] in Euclidean space. They studied both the Mrfn

and the Brfn versions, which take advantage of the R-

tree, furthest Voronoi diagrams and the convex hulls of

either the dataset P (in the Mrfn case) or the query

set Q (in the Brfn case). However, the proposed so-

lutions do not apply for our situation since it is hard

for the R-tree and the convex hull to define in the road

networks. Hence, we need to design new indexes and

query algorithms to efficiently answer the RfnR query.

To the best of our knowledge, the BrfnR query has

not been studied in the literature. The MrfnR query

was firstly studied by Tran et al.[27]. For a particular

MrfnR query, each possible solution is checked by find-

ing the partition it locates in, expanding the adjunct

Voronoi partitions of the candidate partition until we

find some point that is further than the candidate or

we have browsed through all partitions. However, their

method is only applicable when the density of points is

low and would retreat to the brute-force method when

the number of points is large. To solve the problem,

we propose several novel approaches to index the road

networks and filter the candidates, which are also useful

for the BrfnR query.

4 Monochromatic Reverse Furthest Neighbors

in Road Networks

The basic algorithm for MrfnR (denoted as BFS)

was proposed by Tran et al.[27], which can be summa-

rized as follows. For each p ∈ P , we check whether q is

p’s furthest neighbor, which is referred to as isFN(p, q).

Specifically, isFN(p, q) expands from p using Dijkstra’s

algorithm until it meets the query node q. If q is the

last node met in P
⋃
{q}, then q is p’s furthest neighbor.

The BFS method takes O(|V |2 log |V |) time, which

does not scale well for large datasets. In the follow-

ing, we propose two efficient algorithms for the MrfnR

query. One is based on the landmarks technique[28] (de-

noted as LM in Subsection 4.1). The other one is based

on the graph partitioning technique (denoted as HP in

Subsection 4.2). Besides, we discuss the efficient im-

plementation of isFN(p, q) based on the partitioning

technique in Subsection 4.3.

4.1 LM Algorithm

The BFS solution will call isFN(p, q) for each p ∈

P . isFN(p, q) may visit lots of nodes in P if q is far

away from p. Hence, we focus on reducing the num-

ber of nodes visited by isFN(p, q). Specifically, we

utilize the landmarks to prune some points, which are

not too far away from p. By using landmarks tech-

nique, we need to carefully choose a small (constant)

number of landmarks, and then compute and store the

shortest path distances between all vertices and each of

these landmarks. Lower-bound distances between any

two vertices in road networks are computed in constant

time using these distances in combination with the tri-

angle inequality. We denote this algorithm as the LM
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algorithm. This solution consists of two parts: the pre-

processing and the query processing.

4.1.1 Pre-Processing

In this step, a set L of points in the road network

are selected as the landmarks[28]. Then, the distances

between landmarks and all other points in the road net-

work are computed by using Dijkstra’s algorithm. All

these distances will be stored for the query processing.

The strategies of selecting the landmarks can be

critical to the performance of the LM algorithm. In

[28], Goldberg and Harrelson examined several methods

for selecting landmarks to facilitate the lower-bound

distance estimation between two points. However, our

method needs to estimate the upper-bound distances.

According to our observation, a set of landmarks se-

lected with uniform distribution work the best among

those methods proposed in [28] in our situation.

4.1.2 Query Processing

The LM algorithm is shown in Fig.2. For each node

u in P , we check if its distance to q is farther than the

distance ||q − f || by using the triangle inequality. By

doing this, if we still cannot prune u, we call isFN(p, q)

to determine whether it is a final result.
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SG3 are the first layer partitions. The others are the

second layer partitions. Fig.3(b) shows the tree struc-

ture of the partitions on this road network. Once we

have the HP tree, we also need some auxiliary infor-

mation enabling the query algorithm. Within one par-

tition, the distances between all boundary nodes of its

subpartitions are pre-computed. The furthest neigh-

bors of the boundary nodes within and out of the par-

tition should also be pre-computed.
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Fig.3. HP tree. (a) Partitioning example. (b) Corresponding
tree structure.

By Definition 5, ubpSGi
is the upper bound of the

distances from node p to any nodes in a partition SGi.

When p ∈ bdSGi
, we compute ubpSGi

by finding p’s fur-

thest neighbor in SGi. When p ∈ VSGi
∧ p /∈ bdSGi

,

ubpSGi
= ΦSGi

. When p /∈ SGi, since any path from

p to SGi must go through some boundary nodes of

SGi, we can use the upper bounds between p and SGi’s

boundary nodes to estimate ubpSGi
as follows:

ubpSGi
= max

b∈bdSGi

(ubbp + ubbSGi
).

To compute flbSGi
, we need to estimate the mini-

mum of the distances between the nodes in SGi and

their furthest neighbors. We introduce the following

lemma.

Lemma 2. For ∀p ∈ VSGi
, ∀b ∈ bdSGi

, ∀f ∈ V ,

||b− f || − ubbSGi
6 ||p− fn(p)||.

Proof. By triangle inequality, we have ||b−f ||−||p−

b|| 6 ||p− f ||. Also, by Definition 5, ubbSGi
> ||p− b|| if

b ∈ VSGi
, hence we have:

g(b, f) = ||b− f || − ubbSGi
6 ||b− f || − ||p− b||

6 ||p− f || 6 ||p− fn(p)||. �

The inequality above shows flbSGi
can be obtained

by selecting a set of boundary nodes of SGi and any

nodes in G and calculating the maximum value of

g(b, f). Note that flbSGi
s can be pre-computed dur-

ing the construction of the HP tree.

4.2.2 Query Algorithm

The HP algorithm is described in Fig.4. The algo-

rithm traverses the HP tree in the breadth-first style.

For each visited SGi, we check if it can be pruned by

Lemma 1. If SGi cannot be pruned, we keep adding

its subpartitions into L. For a leaf partition, we call

the LM algorithm. Take the points in Fig.3(a) as an

example. Suppose p3 is the query point. In the first

round, we only need to push SG2 and SG3 into the

queue according to Lemma 1. This is because p1, p2,

and p4 in SG1 cannot take p3 as their furtherest neigh-

bor considering the points in SG3.
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Proof. It is indicated by Definition 5. �

With the help of Lemma 3, we design the novel algo-

rithm for isFN(p, q) (Fig.5). In a nutshell, we traverse

the partitions of G in a descending order of ubqSGi
s. If

we reach a partition in the leaf level of the HP tree,

we calculate the exact distances from q to the nodes in

the partition. Whenever an exact distance from a node

to q supersedes the ubqSGi
s of all remaining partitions,

we terminate the algorithm and return the node as the

answer.
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5.2 FVCPar Algorithm

The bottleneck of the PFC-BrfnR algorithm is

mainly in the splitting procedure. A method is pro-

posed in this subsection to accelerate the splitting

progress with the pruning power of the HP tree.

5.2.1 Bound Property

To ease the discussion, we denote a permutation of

the query set Q as Qk = (q1, q2, ..., qk). Hence, the

PFC-BrfnR algorithm can be viewed as computing

fvc(q,Qk) from fvc(q,Qk−1) progressively.

Lemma 4.Given a query q, a query set Q and a

partition SGi, we have:

1) if lbqSGi
> ubqkSGi

, VSGi
∩ fvc(q,Qk−1) ⊂

fvc(q,Qk);

2) if ubqSGi
< lbqkSGi

, VSGi
6⊂ fvc(q,Qk).

Proof. It is indicated by the definition of ub, lb and

fvc(q,Q). �

We could still adopt the partitioning strategy men-

tioned in Subsection 4.3 to calculate these bounds.

5.2.2 Algorithm

To compute fvc(q,Qk), we need to split

fvc(q,Qk−1) to two parts. To accomplish this, we

do a preorder traversal of the HP tree.

In Fig.7, we maintain a queue L and push the root

partition of the HP tree into L. When an entry e in

L is popped, we first check if it contains some nodes

from fvc(q,Qk−1) and discard those irrelevant subpar-

titions. For those subpartitions containing nodes from

fvc(q,Qk−1), we try to decide whether it is part of

fvc(q,Qk) by Lemma 4. If these subpartitions pass the

filtering of Lemma 4, we insert them into L.

If e does not have subpartitions, we need to split

the points in e based on the distance between q, qk and

these points. Generally, this procedure is done by con-

structing a shortcut graph G′ based on the HP tree and

running Erwig and Hagen’s algorithm on this shortcut

graph.

Specifically, we construct G′ by adding e and the

partitions containing q and qk. Additionally, in order

to maintain the connectivity of G′, we need to add into

G′ the paths between the boundary nodes. Recall that

we have pre-computed all the shortcut distances be-

tween any two (intra or inter) boundary nodes. In G′,

we only need to store the shortcut distances that are

involved in e and the partitions containing q and qk.

It is easy to see that the splitting result on G′ is the

same with that on the original graph G, but with the

less node access.
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In both LM and HP algorithms, 64 landmarks were

chosen through the network uniformly if not explicitly

noted. For the HP tree, we took 2 levels and 20 sub-

partitions for each partition (441 partitions totally) as

the default setup.

Overall Performance. We demonstrated the effec-

tiveness of the MrfnR algorithms in this paragraph.

Fig.8(a) shows the execution time of the two proposed

algorithms against the BFS approach. It is clear that

both LM and HP are much more efficient than the BFS

algorithm. The HP algorithm is the fastest algorithm,

only taking less than 0.2% running time of the BFS

algorithm.
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Fig.8. Performance comparison of MrfnR algorithms and BFS.
(a) Execution time. (b) Average number of visited nodes.

Besides, Fig.8(b) presents the averaged proportion

of nodes checked by each algorithm after pruning. Both

LM and HP only visit less than 3% nodes, demonstrat-

ing the effectiveness of our pruning procedures. An-

other observation is that not only does the partition-

ing technique accelerate the pruning, but it also ex-

cludes more false positives compared with LM because

of the additional pruning information provided by the

HP tree.

Size of the Landmark Set. In this paragraph we

would examine how the amount of the landmarks (de-

noted as |L|) affects the performance of the LM algo-

rithm. We discuss the situations that the solution exists

(denoted as S = ∅) or does not exist (denoted as S 6= ∅)

separately because they perform differently when |L| in-

creases. Fig.9 indicates that when the solution exists,

|L| has little influence on neither the number of visited

nodes nor the execution time of the LM algorithm. It

is mainly because in this situation most false positives

can be excluded with only a small set of landmarks and

adding extra landmarks provides little improvement.
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In the situation that the solution does not exist, in-

creasing |L| paid off. More landmarks exclude more

false positives, and less nodes are visited. However, the

cost of pre-processing and computation increases lin-

early with |L|, and therefore we can expect that there

is a best choice for |L|. This result can be observed in

Fig.9(b): with the increase of |L|, the execution time
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decreases first, but increases again when |L| passes the

nadir.

Choice of the HP Tree. Two parameters can affect

the performance of the HP algorithm: the amount of

total partitions (denoted as |HP |) and the depth of the

partition tree. In Fig.10 we provide a comprehensive

view about the performance of the HP algorithm in

different configurations.
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Intuitively, more partitions provide more accurate

bounds and thus bring better performance. This can

be observed in Fig.10. For CA, the query when |HP | is

420 only takes about one tenth of the time spent when

|HP | is 40. However, with a large |HP |, adding more

partitions seems to be less effective due to extra pruning

cost.

When |HP | is small, HP trees with less layers out-

perform. This is because at the leaf level, it has smaller

partitions and thus provides more accurate bounds.

But with a larger |HP |, higher HP trees can cut more

partitions at once and thus perform better. This can be

observed in Fig.10. One-layer HP trees almost always

outperform when |HP | is small, but the two-layer and

the three-layer HP trees scale better with the increase

of |HP |.
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Accelerating isFN(p, q) with Partitioning. In

Fig.11, the performance of our novel method to com-

pute isFN(p, q) is examined against the brute-force so-

lution. It can be seen that our method improves the effi-

ciency of isFN(p, q) by an order of magnitude. We also

consider the performance of different configurations of

the HP tree in Fig.11(b), which indicates similar results

with MrfnR query: larger |HP | provides better per-

formance; when |HP | is small, lower depth is better;

higher depth scales better with the increase of |HP |.

6.2 Evaluation of the BrfnR Algorithms

Experimental Setup. In this subsection, the same

datasets were used to examine the performance of our



164 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

BrfnR algorithms and the effect of parameters. The

query set was chosen randomly in P . The query set size

|Q| was set to 1 280 if not explicitly denoted.

Overall Performance and Scalability. In Fig.12 we

examine the overall performance of the algorithms with

|Q| scaling from 80 to 1 280. The first observation is

that both the PFC-BrfnR algorithm and the FVCPar

algorithm outperform the BFS method significantly.

When |Q| is 1 280, the FVCPar algorithm spends less

than 1% of the time of the BFS algorithm to answer a

query.
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Fig.12. BrfnR: overall performance and scalability.

The second observation is that the BFS algorithm

has almost constant computation cost with different |Q|

since it visits every possible solution no matter what

the query set is. On the other side, the execution time

of both the PFC-BrfnR and the FVCPar algorithms

increases linearly with |Q|, and the increase of the FVC-

Par is slower.

Choice of the HP Tree. In Fig.13 we examine the

performance of the FVCPar algorithm under different

HP tree configurations.

In the case that the solution does not exist, it seems

that the pruning power of adding partitions does not

benefit the performance much. When the solution ex-

ists, the situation is similar to the HP algorithm in

MrfnR case: adding partitions can significantly im-

prove the performance, but the effect of adding parti-

tions decreases when |HP | becomes larger.
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Fig.13. BrfnR: choice of the HP tree. (a) CA. (b) SF.

7 Conclusions

This paper studied the reverse furthest neighbor

queries that have many real-life applications. Our work

solved the RfnR queries in both monochromatic and

bichromatic versions. We proposed novel methods com-

bining the pruning power of the landmarks technique,

the HP tree and the furthest Voronoi cell. Our future

work includes generalizing our algorithms to deal with

moving points and continuous queries, and extending

the method to answer reverse k-furthest neighbors.

There also exist several interesting studies on path

planning[37-42], spatial and social information process-

ing and understanding[43-52], and network information

processing[53-60], which may be considered in our future

studies.
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