
Xu XJ, Bao JS, Yao B et al. Reverse furthest neighbors query in road networks. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 32(1): 155–167 Jan. 2017. DOI 10.1007/s11390-017-1711-5

Reverse Furthest Neighbors Query in Road Networks

Xiao-Jun Xu1,2, Jin-Song Bao3,∗, Bin Yao4,5,∗, Member, CCF, ACM, IEEE, Jing-Yu Zhou4,5

Fei-Long Tang4,5, Member, CCF, ACM, IEEE, Min-Yi Guo4,5, Senior Member, IEEE, Member, CCF, ACM

and Jian-Qiu Xu6

1School of Software, Beijing Institute of Technology, Beijing 100081, China

2First Research Institute of Ministry of Public Security, Beijing 100048, China

3College of Mechanical Engineering, Donghua University, Shanghai 200051, China

4Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China

5Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

6College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

E-mail: 18611288159@163.com; bao@dhu.edu.cn; {yaobin, zhou-jy, tang-fl, guo-my}@cs.sjtu.edu.cn
E-mail: jianqiu@nuaa.edu.cn

Received February 26, 2016; revised August 12, 2016.

Abstract Given a road network G = (V,E), where V (E) denotes the set of vertices(edges) in G, a set of points of interest

P and a query point q residing in G, the reverse furthest neighbors (RfnR) query in road networks fetches a set of points

p ∈ P that take q as their furthest neighbor compared with all points in P ∪{q}. This is the monochromatic RfnR (MrfnR)

query. Another interesting version of RfnR query is the bichromatic reverse furthest neighbor (BrfnR) query. Given two

sets of points P and Q, and a query point q ∈ Q, a BrfnR query fetches a set of points p ∈ P that take q as their furthest

neighbor compared with all points in Q. This paper presents efficient algorithms for both MrfnR and BrfnR queries, which

utilize landmarks and partitioning-based techniques. Experiments on real datasets confirm the efficiency and scalability of

proposed algorithms.

Keywords reverse furthest neighbor, road network, landmark, hierarchical partition

1 Introduction

Spatial database has been extensively studied in

database community as it supports many applications

from people’s daily life to scientific research[1-10]. For

instance, people use online map services to plan their

trips. The query processing for sensor networks[11]

needs the design of location-aware algorithms. In this

work, we study a query type in road networks that finds

wide applications. Given a road network G = (V,E),

where V (E) denotes the set of vertices(edges) in G, a

set of points of interest P and a query point q residing

in G, we are interested in retrieving the set of points in

P that take q as their furthest neighbors (in terms of

the shortest path distance) compared with all points in

P , i.e., collecting q’s reverse furthest neighbors (RfnR).

This problem is referred to as the monochromatic re-

verse furthest neighbor (MrfnR) query. It naturally

has a bichromatic version as well (BrfnR). Specifically,

the query contains a set of query points Q residing in

G and one point q ∈ Q. The goal in this case is to find

a set of points p ∈ P so that they all take q as their

furthest neighbors compared with all points in Q.

The examples of RfnR are provided in Fig.1. In

156 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

Fig.1(a), the dashed line shows that p1 is p7’s furthest

neighbor, and p7 is one of p1’s RfnR. In Fig.1(b), since

the distance from p2 to q3 is further than the distance

from p2 to q1 and q2, p2 should be one of q3’s RfnR

w.r.t. {q1, q2, q3}.

p

p

p

p

p

p

q

q

q

p

p

p

p

p

p

p

p

p

p

P/ıp֒ ⊲⊲⊲֒ p℘֒ q/p

P/ıp֒ ⊲⊲⊲֒ p℘֒ Q/ıq֒ q֒ q℘

(a)

(b)

Fig.1. RfnR query examples. (a) MrfnR query example. (b)
BrfnR query example.

The motivation to study the RfnR queries is largely

inspired by an important query type that has been

extensively studied recently, namely, the reverse near-

est neighbor (Rnn) queries[12-14]. Intuitively, an Rnn

query finds a set of points taking the query point

as their nearest neighbors and it exists in both the

monochromatic and bichromatic versions. Both of

these two versions of Rnn query have been extended to

the road networks. Many applications that are behind

the studies of the Rnn queries naturally have the cor-

responding “furthest” versions, including Rnn queries

on the road networks. Consider the next two examples

for the MrfnR and BrfnR queries.

Example 1. Suppose a large group of friends want

to find one of their houses to have a party, and some

one (say Alice) would like to learn the set of friends

who take her as their furthest neighbors compared with

other friends. This has an implication that these friends

are highly unlikely to visit Alice. Hence, Alice should

put more efforts in persuading these friends.

Example 2. For a large collection of points of inter-

est in a region, every point would like to learn the set

of sites that take itself as their furthest neighbor com-

pared with other points of interest. This has an implica-

tion that visitors to these sites (i.e., its reverse furthest

neighbors) are highly unlikely to visit this point. Ide-

ally, it should put more efforts in advertising itself to

these sites.

In the above two examples, people are more con-

cerned about road distance rather than Euclidean dis-

tance. Thus the reverse furthest neighbor query on the

road network is more applicable to this issue than the

reverse furthest neighbor query in the Euclidean space.

To the best of our knowledge, there are few dis-

cussions about RfnR problems in large-scale road net-

works. The brute-force search algorithms for these

problems are obviously too expensive to be of any prac-

tical use. Hence, large-scale road networks are calling

for practical, efficient algorithms for these problems.

More importantly, by taking the furthest neighbors,

The RfnR problems are different from the Rnn prob-

lems in the geometric nature. Hence, we need to design

new algorithms to process the RfnR queries more ef-

ficiently by taking the new geometric perspectives into

account.

Contributions. This work presents efficient algo-

rithms for MrfnR and BrfnR problems. Specifically,

we 1) propose two novel algorithms (the LM algorithm

and the HP algorithm) for the MrfnR query, 2) pro-

pose two novel algorithms (the PFC-BrfnR algorithm

and the FVCPar algorithm) for the BrfnR query, 3)

propose two algorithms to improve the performance of

finding the furthest neighbor, which is the fundamen-

tal function of the query algorithms for both MrfnR

and BrfnR problems, and 4) conduct comprehensive

experiments on real datasets to evaluate the efficiency

and scalability of all proposed algorithms.

The paper is organized as follows. Section 2 formu-

lates the problem of the reverse furthest neighbors and

Section 3 surveys related work. Section 4 provides novel

methods based on landmarks and hierarchical partition-

ing to answer MrfnR efficiently. Section 5 presents a

progressive method combined with hierarchical parti-

tioning to answer BrfnR queries. Section 6 reports a

comprehensive experimental study with real datasets

and Section 7 concludes the paper.

2 Problem Formulation

Let P denote the points of interest (POIs) in a road

network. The shortest path distance between any two

points p and q is denoted by ||p− q||, and the furthest

neighbor of any point p w.r.t. P in road networks is

simply defined as follows.

Definition 1. The furthest neighbor of p to a

dataset P is defined as fn(p, P) = p∗ s.t. p∗ ∈ P , for

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 157

∀p′ ∈ P and p′ 6= p∗, ||p∗ − p|| > ||p′ − p||. Ties are

broken arbitrarily.

The monochromaticRfnR query is formally defined

as follows.

Definition 2. The MRFNR of q w.r.t. the dataset

P is a set of points from P that take q as their fur-

thest neighbors compared with all points in P , i.e.,

MRFNR(q, P) = {p|p ∈ P, fn(p, P
⋃
{q}) = q}.

The bichromatic RfnR query takes additionally a

set of query points Q as input, and is formally defined

as follows.

Definition 3. The BRFNR of q ∈ Q w.r.t. the

dataset P and the query set Q is a set of points from

P that take q as their furthest neighbors compared with

all other points in Q, i.e., BRFNR(q,Q, P) = {p|p ∈

P, fn(p,Q) = q}.

3 Background and Related Work

An interesting query type that has close relation-

ship with RfnR was defined in [15], in which the goal

is to find the set of points from P that take the query

point q as their nearest neighbors among all points in

the dataset P . This is the monochromatic reverse near-

est neighbor query (monochromatic Rnn). Due to its

wide applications, Rnn queries have received consider-

able attention since its appearance[12,15-21].

The bichromatic Rnn also finds many applicati-

ons[13,15,17,20,22-23]. In this case, the query takes a set

of query points Q and a query point q ∈ Q. The set

of points returned from P all take q as their nearest

neighbors w.r.t. other points in Q. The basic idea here

is to use the Voronoi diagram and find the region that

corresponds to the query point.

The Rnn problem can be extended to graphs and

road networks[23]. Generalization to any metric space

appeared in [22]. Continuous Rnn was explored by [13,

24]. The Rnn for moving objects was studied in [25].

Reverse kNN search was examined by [12, 16]. Finally,

the Rnn for ad-hoc subspaces was solved by [14].

The Rfn problem was firstly studied by Yao et

al.[26] in Euclidean space. They studied both the Mrfn

and the Brfn versions, which take advantage of the R-

tree, furthest Voronoi diagrams and the convex hulls of

either the dataset P (in the Mrfn case) or the query

set Q (in the Brfn case). However, the proposed so-

lutions do not apply for our situation since it is hard

for the R-tree and the convex hull to define in the road

networks. Hence, we need to design new indexes and

query algorithms to efficiently answer the RfnR query.

To the best of our knowledge, the BrfnR query has

not been studied in the literature. The MrfnR query

was firstly studied by Tran et al.[27]. For a particular

MrfnR query, each possible solution is checked by find-

ing the partition it locates in, expanding the adjunct

Voronoi partitions of the candidate partition until we

find some point that is further than the candidate or

we have browsed through all partitions. However, their

method is only applicable when the density of points is

low and would retreat to the brute-force method when

the number of points is large. To solve the problem,

we propose several novel approaches to index the road

networks and filter the candidates, which are also useful

for the BrfnR query.

4 Monochromatic Reverse Furthest Neighbors

in Road Networks

The basic algorithm for MrfnR (denoted as BFS)

was proposed by Tran et al.[27], which can be summa-

rized as follows. For each p ∈ P , we check whether q is

p’s furthest neighbor, which is referred to as isFN(p, q).

Specifically, isFN(p, q) expands from p using Dijkstra’s

algorithm until it meets the query node q. If q is the

last node met in P
⋃
{q}, then q is p’s furthest neighbor.

The BFS method takes O(|V |2 log |V |) time, which

does not scale well for large datasets. In the follow-

ing, we propose two efficient algorithms for the MrfnR

query. One is based on the landmarks technique[28] (de-

noted as LM in Subsection 4.1). The other one is based

on the graph partitioning technique (denoted as HP in

Subsection 4.2). Besides, we discuss the efficient im-

plementation of isFN(p, q) based on the partitioning

technique in Subsection 4.3.

4.1 LM Algorithm

The BFS solution will call isFN(p, q) for each p ∈

P . isFN(p, q) may visit lots of nodes in P if q is far

away from p. Hence, we focus on reducing the num-

ber of nodes visited by isFN(p, q). Specifically, we

utilize the landmarks to prune some points, which are

not too far away from p. By using landmarks tech-

nique, we need to carefully choose a small (constant)

number of landmarks, and then compute and store the

shortest path distances between all vertices and each of

these landmarks. Lower-bound distances between any

two vertices in road networks are computed in constant

time using these distances in combination with the tri-

angle inequality. We denote this algorithm as the LM

158 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

algorithm. This solution consists of two parts: the pre-

processing and the query processing.

4.1.1 Pre-Processing

In this step, a set L of points in the road network

are selected as the landmarks[28]. Then, the distances

between landmarks and all other points in the road net-

work are computed by using Dijkstra’s algorithm. All

these distances will be stored for the query processing.

The strategies of selecting the landmarks can be

critical to the performance of the LM algorithm. In

[28], Goldberg and Harrelson examined several methods

for selecting landmarks to facilitate the lower-bound

distance estimation between two points. However, our

method needs to estimate the upper-bound distances.

According to our observation, a set of landmarks se-

lected with uniform distribution work the best among

those methods proposed in [28] in our situation.

4.1.2 Query Processing

The LM algorithm is shown in Fig.2. For each node

u in P , we check if its distance to q is farther than the

distance ||q − f || by using the triangle inequality. By

doing this, if we still cannot prune u, we call isFN(p, q)

to determine whether it is a final result.

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 159

SG3 are the first layer partitions. The others are the

second layer partitions. Fig.3(b) shows the tree struc-

ture of the partitions on this road network. Once we

have the HP tree, we also need some auxiliary infor-

mation enabling the query algorithm. Within one par-

tition, the distances between all boundary nodes of its

subpartitions are pre-computed. The furthest neigh-

bors of the boundary nodes within and out of the par-

tition should also be pre-computed.

SG

p

p p

p

p p

p

p

p

p

SG

SG SG

SG SG

SG SG SG SG SG

SG

SG

SG

SG

SG

R

(a)

(b)

Fig.3. HP tree. (a) Partitioning example. (b) Corresponding
tree structure.

By Definition 5, ubpSGi
is the upper bound of the

distances from node p to any nodes in a partition SGi.

When p ∈ bdSGi
, we compute ubpSGi

by finding p’s fur-

thest neighbor in SGi. When p ∈ VSGi
∧ p /∈ bdSGi

,

ubpSGi
= ΦSGi

. When p /∈ SGi, since any path from

p to SGi must go through some boundary nodes of

SGi, we can use the upper bounds between p and SGi’s

boundary nodes to estimate ubpSGi
as follows:

ubpSGi
= max

b∈bdSGi

(ubbp + ubbSGi
).

To compute flbSGi
, we need to estimate the mini-

mum of the distances between the nodes in SGi and

their furthest neighbors. We introduce the following

lemma.

Lemma 2. For ∀p ∈ VSGi
, ∀b ∈ bdSGi

, ∀f ∈ V ,

||b− f || − ubbSGi
6 ||p− fn(p)||.

Proof. By triangle inequality, we have ||b−f ||−||p−

b|| 6 ||p− f ||. Also, by Definition 5, ubbSGi
> ||p− b|| if

b ∈ VSGi
, hence we have:

g(b, f) = ||b− f || − ubbSGi
6 ||b− f || − ||p− b||

6 ||p− f || 6 ||p− fn(p)||. �

The inequality above shows flbSGi
can be obtained

by selecting a set of boundary nodes of SGi and any

nodes in G and calculating the maximum value of

g(b, f). Note that flbSGi
s can be pre-computed dur-

ing the construction of the HP tree.

4.2.2 Query Algorithm

The HP algorithm is described in Fig.4. The algo-

rithm traverses the HP tree in the breadth-first style.

For each visited SGi, we check if it can be pruned by

Lemma 1. If SGi cannot be pruned, we keep adding

its subpartitions into L. For a leaf partition, we call

the LM algorithm. Take the points in Fig.3(a) as an

example. Suppose p3 is the query point. In the first

round, we only need to push SG2 and SG3 into the

queue according to Lemma 1. This is because p1, p2,

and p4 in SG1 cannot take p3 as their furtherest neigh-

bor considering the points in SG3.

160 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

Proof. It is indicated by Definition 5. �

With the help of Lemma 3, we design the novel algo-

rithm for isFN(p, q) (Fig.5). In a nutshell, we traverse

the partitions of G in a descending order of ubqSGi
s. If

we reach a partition in the leaf level of the HP tree,

we calculate the exact distances from q to the nodes in

the partition. Whenever an exact distance from a node

to q supersedes the ubqSGi
s of all remaining partitions,

we terminate the algorithm and return the node as the

answer.

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 161

5.2 FVCPar Algorithm

The bottleneck of the PFC-BrfnR algorithm is

mainly in the splitting procedure. A method is pro-

posed in this subsection to accelerate the splitting

progress with the pruning power of the HP tree.

5.2.1 Bound Property

To ease the discussion, we denote a permutation of

the query set Q as Qk = (q1, q2, ..., qk). Hence, the

PFC-BrfnR algorithm can be viewed as computing

fvc(q,Qk) from fvc(q,Qk−1) progressively.

Lemma 4.Given a query q, a query set Q and a

partition SGi, we have:

1) if lbqSGi
> ubqkSGi

, VSGi
∩ fvc(q,Qk−1) ⊂

fvc(q,Qk);

2) if ubqSGi
< lbqkSGi

, VSGi
6⊂ fvc(q,Qk).

Proof. It is indicated by the definition of ub, lb and

fvc(q,Q). �

We could still adopt the partitioning strategy men-

tioned in Subsection 4.3 to calculate these bounds.

5.2.2 Algorithm

To compute fvc(q,Qk), we need to split

fvc(q,Qk−1) to two parts. To accomplish this, we

do a preorder traversal of the HP tree.

In Fig.7, we maintain a queue L and push the root

partition of the HP tree into L. When an entry e in

L is popped, we first check if it contains some nodes

from fvc(q,Qk−1) and discard those irrelevant subpar-

titions. For those subpartitions containing nodes from

fvc(q,Qk−1), we try to decide whether it is part of

fvc(q,Qk) by Lemma 4. If these subpartitions pass the

filtering of Lemma 4, we insert them into L.

If e does not have subpartitions, we need to split

the points in e based on the distance between q, qk and

these points. Generally, this procedure is done by con-

structing a shortcut graph G′ based on the HP tree and

running Erwig and Hagen’s algorithm on this shortcut

graph.

Specifically, we construct G′ by adding e and the

partitions containing q and qk. Additionally, in order

to maintain the connectivity of G′, we need to add into

G′ the paths between the boundary nodes. Recall that

we have pre-computed all the shortcut distances be-

tween any two (intra or inter) boundary nodes. In G′,

we only need to store the shortcut distances that are

involved in e and the partitions containing q and qk.

It is easy to see that the splitting result on G′ is the

same with that on the original graph G, but with the

less node access.

162 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

In both LM and HP algorithms, 64 landmarks were

chosen through the network uniformly if not explicitly

noted. For the HP tree, we took 2 levels and 20 sub-

partitions for each partition (441 partitions totally) as

the default setup.

Overall Performance. We demonstrated the effec-

tiveness of the MrfnR algorithms in this paragraph.

Fig.8(a) shows the execution time of the two proposed

algorithms against the BFS approach. It is clear that

both LM and HP are much more efficient than the BFS

algorithm. The HP algorithm is the fastest algorithm,

only taking less than 0.2% running time of the BFS

algorithm.

(a)

CA

LM

HP

BFS

LM

HP

BFS

SF

CA SF

(b)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
A

v
e
ra

g
e
d

P
ro

p
o
rt

io
n
 o

f
N

o
d
e
s

 V
is

it
e
d
 (

%
)

104

102

0

102

101

0

Fig.8. Performance comparison of MrfnR algorithms and BFS.
(a) Execution time. (b) Average number of visited nodes.

Besides, Fig.8(b) presents the averaged proportion

of nodes checked by each algorithm after pruning. Both

LM and HP only visit less than 3% nodes, demonstrat-

ing the effectiveness of our pruning procedures. An-

other observation is that not only does the partition-

ing technique accelerate the pruning, but it also ex-

cludes more false positives compared with LM because

of the additional pruning information provided by the

HP tree.

Size of the Landmark Set. In this paragraph we

would examine how the amount of the landmarks (de-

noted as |L|) affects the performance of the LM algo-

rithm. We discuss the situations that the solution exists

(denoted as S = ∅) or does not exist (denoted as S 6= ∅)

separately because they perform differently when |L| in-

creases. Fig.9 indicates that when the solution exists,

|L| has little influence on neither the number of visited

nodes nor the execution time of the LM algorithm. It

is mainly because in this situation most false positives

can be excluded with only a small set of landmarks and

adding extra landmarks provides little improvement.

0 32 64

0.15

128 192 256 320 350

L

(a)

CA

SF

A
v
e
ra

g
e
d

P
ro

p
o
rt

io
n
 o

f
N

o
d
e
s

 V
is

it
e
d
 (

%
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

0 32 64 128 192 256 320 350

L

(a)

100

101

102

104

103

102

101

S/

S/

CA

SF

S/

S/

Fig.9. Effect of number of landmarks on LM algorithm’s perfor-
mance. (a) Averaged proportion of nodes visited. (b) Execution
time.

In the situation that the solution does not exist, in-

creasing |L| paid off. More landmarks exclude more

false positives, and less nodes are visited. However, the

cost of pre-processing and computation increases lin-

early with |L|, and therefore we can expect that there

is a best choice for |L|. This result can be observed in

Fig.9(b): with the increase of |L|, the execution time

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 163

decreases first, but increases again when |L| passes the

nadir.

Choice of the HP Tree. Two parameters can affect

the performance of the HP algorithm: the amount of

total partitions (denoted as |HP |) and the depth of the

partition tree. In Fig.10 we provide a comprehensive

view about the performance of the HP algorithm in

different configurations.

0 100 200

(a)

|HP|

300 400

1-Layer

2-Layer

3-Layer

1-Layer

2-Layer

3-Layer

0 100 200

(b)

|HP|

300 400

103

102

101

105

104

103

102

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

S/

S/

S/

S/

Fig.10. Effect of |HP | and depth of partition tree on the per-
formance of the HP algorithm. (a) CA. (b) SF.

Intuitively, more partitions provide more accurate

bounds and thus bring better performance. This can

be observed in Fig.10. For CA, the query when |HP | is

420 only takes about one tenth of the time spent when

|HP | is 40. However, with a large |HP |, adding more

partitions seems to be less effective due to extra pruning

cost.

When |HP | is small, HP trees with less layers out-

perform. This is because at the leaf level, it has smaller

partitions and thus provides more accurate bounds.

But with a larger |HP |, higher HP trees can cut more

partitions at once and thus perform better. This can be

observed in Fig.10. One-layer HP trees almost always

outperform when |HP | is small, but the two-layer and

the three-layer HP trees scale better with the increase

of |HP |.

(a)

CA

HP

BFS

SF

102

101

100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

0 100 200

(b)

|HP|

300 400

103

102

101E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

1-Layer

2-Layer

3-Layer

CA

SF

Fig.11. Effect of HP algorithm and depth of partition tree on
the performance isFN(p, q). (a) Overall performance. (b) Par-
tition choice.

Accelerating isFN(p, q) with Partitioning. In

Fig.11, the performance of our novel method to com-

pute isFN(p, q) is examined against the brute-force so-

lution. It can be seen that our method improves the effi-

ciency of isFN(p, q) by an order of magnitude. We also

consider the performance of different configurations of

the HP tree in Fig.11(b), which indicates similar results

with MrfnR query: larger |HP | provides better per-

formance; when |HP | is small, lower depth is better;

higher depth scales better with the increase of |HP |.

6.2 Evaluation of the BrfnR Algorithms

Experimental Setup. In this subsection, the same

datasets were used to examine the performance of our

164 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

BrfnR algorithms and the effect of parameters. The

query set was chosen randomly in P . The query set size

|Q| was set to 1 280 if not explicitly denoted.

Overall Performance and Scalability. In Fig.12 we

examine the overall performance of the algorithms with

|Q| scaling from 80 to 1 280. The first observation is

that both the PFC-BrfnR algorithm and the FVCPar

algorithm outperform the BFS method significantly.

When |Q| is 1 280, the FVCPar algorithm spends less

than 1% of the time of the BFS algorithm to answer a

query.

Q

80 160 320 640 1 280

10
6

10
4

10
2

10
0

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

CA

SF

BFS

PFC

FVCPar

Fig.12. BrfnR: overall performance and scalability.

The second observation is that the BFS algorithm

has almost constant computation cost with different |Q|

since it visits every possible solution no matter what

the query set is. On the other side, the execution time

of both the PFC-BrfnR and the FVCPar algorithms

increases linearly with |Q|, and the increase of the FVC-

Par is slower.

Choice of the HP Tree. In Fig.13 we examine the

performance of the FVCPar algorithm under different

HP tree configurations.

In the case that the solution does not exist, it seems

that the pruning power of adding partitions does not

benefit the performance much. When the solution ex-

ists, the situation is similar to the HP algorithm in

MrfnR case: adding partitions can significantly im-

prove the performance, but the effect of adding parti-

tions decreases when |HP | becomes larger.

0 100 200

(a)

|HP|

300 400

0 100 200

(b)

|HP|

300 400

102

101

100

103

102

101

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

1-Layer

2-Layer

3-Layer

S/
S/

1-Layer

2-Layer

3-Layer

S/
S/

Fig.13. BrfnR: choice of the HP tree. (a) CA. (b) SF.

7 Conclusions

This paper studied the reverse furthest neighbor

queries that have many real-life applications. Our work

solved the RfnR queries in both monochromatic and

bichromatic versions. We proposed novel methods com-

bining the pruning power of the landmarks technique,

the HP tree and the furthest Voronoi cell. Our future

work includes generalizing our algorithms to deal with

moving points and continuous queries, and extending

the method to answer reverse k-furthest neighbors.

There also exist several interesting studies on path

planning[37-42], spatial and social information process-

ing and understanding[43-52], and network information

processing[53-60], which may be considered in our future

studies.

References

[1] Lin X H, Kwok Y K, Wang H, Xie N. A game theoretic ap-

proach to balancing energy consumption in heterogeneous

wireless sensor networks. Wireless Communications and

Mobile Computing, 2015, 15(1): 170-191.

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 165

[2] Hao J Y, Leung H F, Ming Z. Multiagent reinforcement so-

cial learning toward coordination in cooperative multiagent

systems. ACM Transactions on Autonomous and Adaptive

Systems, 2015, 9(4): Article No.20.

[3] Tan L J, Lin F Y, Wang H. Adaptive comprehensive learn-

ing bacterial foraging optimization and its application on

vehicle routing problem with time windows. Neurocomput-

ing, 2015, 151: 1208-1215.

[4] Xu L, Hu Q H, Hung E, Chen B W, Tan X, Liao C R.

Large margin clustering on uncertain data by considering

probability distribution similarity. Neurocomputing, 2015,

158: 81-89.

[5] Chen H, Ni D, Qin J, Li S L, Yang X, Wang T F, Heng P A.

Standard plane localization in fetal ultrasound via domain

transferred deep neural networks. IEEE Journal of Biomed-

ical and Health Informatics, 2015, 19(5): 1627-1636.

[6] Luo J P, Li X, Chen M R, Liu H W. A novel hybrid shuf-

fled frog leaping algorithm for vehicle routing problem with

time windows. Information Sciences, 2015, 316: 266-292.

[7] Li H C, Wu K S, Zhang Q, Ni L M. CUTS: Improving chan-

nel utilization in both time and spatial domain in WLANs.

IEEE Transactions on Parallel and Distributed Systems,

2014, 25(6): 1413-1423.

[8] Cao W M, Liu N, Kong Q C, Feng H. Content-based im-

age retrieval using high-dimensional information geometry.

Science China Information Sciences, 2014, 57(7): 1-11.

[9] Lai Z H, Xu Y, Chen Q C, Yang J, Zhang D. Multilinear

sparse principal component analysis. IEEE Transactions

on Neural Networks and Learning Systems, 2014, 25(10):

1942-1950.

[10] Chen W S, Wang W, Yang J W, Tang Y Y. Supervised reg-

ularization locality-preserving projection method for face

recognition. International Journal of Wavelets, Multireso-

lution and Information Processing, 2012, 10(6): 1250053.

[11] Fekete S P, Kröller A. Geometry-based reasoning for a large

sensor network. In Proc. the 22nd ACM Symposium on

Computational Geometry, June 2006, pp.475-476.

[12] Tao Y F, Papadias D, Lian X, Xiao X K. Multidimensional

reverse kNN search. The VLDB Journal, 2007, 16(3): 293-

316.

[13] Kang J M, Mokbel M F, Shekhar S, Xia T, Zhang D H.

Continuous evaluation of monochromatic and bichromatic

reverse nearest neighbors. In Proc. the 23rd International

Conference on Data Engineering, April 2007, pp.806-815.

[14] Yiu M L, Mamoulis N. Reverse nearest neighbors search in

ad hoc subspaces. IEEE Transactions on Knowledge and

Data Engineering, 2007, 19(3): 412-426.

[15] Korn F, Muthukrishnan S. Influence sets based on reverse

nearest neighbor queries. In Proc. the ACM SIGMOD In-

ternational Conference on Management of Data, May 2000,

pp.201-212.

[16] Tao Y F, Papadias D, Lian X. Reverse kNN search in arbi-

trary dimensionality. In Proc. the 30th International Con-

ference on Very Large Data Bases, August 2004, pp.744-

755.

[17] Singh A, Ferhatosmanoglu H, Tosun A. High dimensional

reverse nearest neighbor queries. In Proc. the 12th Interna-

tional Conference on Information and Knowledge Manage-

ment, November 2003, pp.91-98.

[18] Korn F, Muthukrishnan S, Srivastava D. Reverse nearest

neighbor aggregates over data streams. In Proc. the 28th

International Conference on Very Large Data Bases, Au-

gust 2002, pp.814-825.

[19] Yang C Y, Lin K I. An index structure for efficient reverse

nearest neighbor queries. In Proc. the 17th International

Conference on Data Engineering, April 2001, pp.485-492.

[20] Stanoi I, Riedewald M, Agrawal D, Abbadi A E. Discov-

ery of influence sets in frequently updated databases. In

Proc. the 27th International Conference on Very Large

Data Bases, September 2001, pp.99-108.

[21] Cheema M A, Lin X M, Zhang W J, Zhang Y. Influence

zone: Efficiently processing reverse k nearest neighbors

queries. In Proc. the 27th International Conference on Data

Engineering, April 2011, pp.577-588.

[22] Achtert E, Böhm C, Kröger P, Kunath P, Pryakhin A, Renz

M. Efficient reverse k-nearest neighbor search in arbitrary

metric spaces. In Proc. ACM SIGMOD International Con-

ference on Management of Data, June 2006, pp.515-526.

[23] Yiu M L, Papadias D, Mamoulis N, Tao Y F. Reverse near-

est neighbors in large graphs. IEEE Transactions on Know-

ledge and Data Engineering, 2006, 18(4): 540-553.

[24] Xia T, Zhang D H. Continuous reverse nearest neighbor

monitoring. In Proc. the 22nd International Conference on

Data Engineering, April 2006, p.77.

[25] Benetis R, Jensen C S, Karciauskas G, Saltenis S. Nearest

and reverse nearest neighbor queries for moving objects.

The VLDB Journal, 2006, 15(3): 229-249.

[26] Yao B, Li F F, Kumar P. Reverse furthest neighbors in spa-

tial databases. In Proc. the 25th International Conference

on Data Engineering, March 2009, pp.664-675.

[27] Tran Q T, Taniar D, Safar M. Reverse k nearest neighbor

and reverse farthest neighbor search on spatial networks.

In Transactions on Large-Scale Data-and Knowledge-

Centered Systems I, Hameurlain A, Küng J, Wagner R

(eds.), Springer-Verlag, 2009, pp.353-372.

[28] Goldberg A V, Harrelson C. Computing the shortest path:

A search meets graph theory. In Proc. the 16th Annual

ACM-SIAM Symposium on Discrete Algorithms, January

2005, pp.156-165.

[29] Hendrickson B, Leland R. A multilevel algorithm for parti-

tioning graphs. In Proc. the IEEE/ACM SC95 Conference

on Supercomputing, December 1995, p.28.

[30] Karypis G, Kumar V. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAMJournal on

Scientific Computing, 1998, 20(1): 359-392.

[31] Kernighan BW, Lin S. An efficient heuristic procedure for

partitioning graphs. The Bell System Technical Journal,

1970, 49(2): 291-307.

[32] Pellegrini F, Roman J. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and

architecture graphs. In Proc. International Conference on

High-Performance Computing and Networking, April 1996,

pp.493-498.

[33] Jing N, Huang Y W, Rundensteiner E A. Hierarchical en-

coded path views for path query processing: An optimal

model and its performance evaluation. IEEE Transactions

on Knowledge and Data Engineering, 1998, 10(3): 409-432.

[34] Erwig M. The graph Voronoi diagram with applications.

Networks, 2000, 36(3): 156-163.

166 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

[35] Aurenhammer F. Voronoi diagrams — A survey of a funda-

mental geometric data structure. ACM Computing Surveys,

1991, 23(3): 345-405.

[36] Shekhar S, Liu D R. CCAM: A connectivity-clustered ac-

cess method for networks and network computations. IEEE

Transactions on Knowledge and Data Engineering, 1997,

9(1): 102-119.

[37] Shang S, Chen L S, Wei Z W, Jensen C S, Wen J R, Kal-

nis P. Collective travel planning in spatial networks. IEEE

Transactions on Knowledge and Data Engineering, 2016,

28(5): 1132-1146.

[38] Shang S, Liu J J, Zheng K, Lu H, Pedersen T B, Wen J R.

Planning unobstructed paths in traffic-aware spatial net-

works. GeoInformatica, 2015, 19(4): 723-746.

[39] Shang S, Ding R G, Zheng K, Jensen C S, Kalnis P, Zhou

X F. Personalized trajectory matching in spatial networks.

The VLDB Journal, 2014, 23(3): 449-468.

[40] Shang S, Ding R G, Yuan B, Xie K X, Zheng K, Kalnis

P. User oriented trajectory search for trip recommendation.

In Proc. the 15th International Conference on Extending

Database Technology, March 2012, pp.156-167.

[41] Zhu Z X, Xiao J, Li J Q, Wang F X, Zhang Q F. Global path

planning of wheeled robots using multi-objective memetic

algorithms. Integrated Computer-Aided Engineering, 2015,

22(4): 387-404.

[42] Guo X N, Zhang D, Wu K S, Ni L M. MODLoc: Localiz-

ing multiple objects in dynamic indoor environment. IEEE

Transactions on Parallel and Distributed Systems, 2014,

25(11): 2969-2980.

[43] Li R H, Yu J X, Huang X, Cheng H, Shang Z C. Measur-

ing the impact of MVC attack in large complex networks.

Information Sciences, 2014, 278: 685-702.

[44] Shi Y F, Long P X, Xu K, Huang H, Xiong Y S. Data-driven

contextual modeling for 3D scene understanding. Compu-

ters & Graphics, 2016, 55: 55-67.

[45] Li B C, Li R H, King I, Lyu M R, Yu J X. A topic-biased

user reputation model in rating systems. Knowledge and

Information Systems, 2015, 44(3): 581-607.

[46] Li B, Tan S Q, Wang M, Huang J W. Investigation on cost

assignment in spatial image steganography. IEEE Transac-

tions on Information Forensics and Security, 2014, 9(8):

1264-1277.

[47] Li B, Wang M, Li X L, Tan S Q, Huang J W. A strat-

egy of clustering modification directions in spatial image

steganography. IEEE Transactions on Information Foren-

sics and Security, 2015, 10(9): 1905-1917.

[48] Yang X, Pei J H, Sun W. Elastic image registration using

hierarchical spatially based mean shift. Computers in Biol-

ogy and Medicine, 2013, 43(9): 1086-1097.

[49] Zhou F, Jiao J X, Lei B Y. A linear threshold-hurdle model

for product adoption prediction incorporating social net-

work effects. Information Sciences, 2015, 307: 95-109.

[50] Wang J G, Huang J Z, Guo J F, Lan Y Y. Recommending

high-utility search engine queries via a query-recommending

model. Neurocomputing, 2015, 167: 195-208.

[51] Lin J C, Gan W S, Fournier-Viger P, Hong T P, Tseng V

S. Efficient algorithms for mining high-utility itemsets in

uncertain databases. Knowledge-Based Systems, 2016, 96:

171-187.

[52] Du S Y, Guo Y R, Sanroma G, Ni D, Wu G R, Shen D

G. Building dynamic population graph for accurate corre-

spondence detection. Medical Image Analysis, 2015, 26(1):

256-267.

[53] Luo X, Ming Z, You Z H, Li S, Xia Y N, Leung H. Improv-

ing network topology-based protein interactome mapping

via collaborative filtering. Knowledge-Based Systems, 2015,

90: 23-32.

[54] Li R H, Yu J X. Triangle minimization in large networks.

Knowledge and Information Systems, 2015, 45(3): 617-643.

[55] Dai M J, Sung C W. Achieving high diversity and multi-

plexing gains in the asynchronous parallel relay network.

Transactions on Emerging Telecommunications Technolo-

gies, 2013, 24(2): 232-243.

[56] Zhang D, Lu K Z, Mao R. A precise RFID indoor localiza-

tion system with sensor network assistance. China Commu-

nications, 2015, 12(4): 13-22.

[57] Huang X, Cheng H, Li R H, Qin L, Yu J X. Top-K struc-

tural diversity search in large networks. The VLDB Journal,

2015, 24(3): 319-343.

[58] Wu R B, Li C, Lu D. Power minimization with derivative

constraints for high dynamic GPS interference suppression.

Science China-Information Sciences, 2012, 55(4): 857-866.

[59] Zhao Q L, Liew S C, Zhang S L, Yu Y. Distance-based loca-

tion management utilizing initial position for mobile com-

munication networks. IEEE Transactions on Mobile Com-

puting, 2016, 15(1): 107-120.

[60] Wang J Y, Feng J W, Xu C, Zhao Y, Feng J Q. Pinning syn-

chronization of nonlinearly coupled complex networks with

time-varying delays using M-matrix strategies. Neurocom-

puting, 2016, 177: 89-97.

Xiao-Jun Xu is currently a Ph.D.

candidate in the School of Software,

Beijing Institute of Technology, Bei-

jing, and the associate director of

the Information Technology Security

Evaluation Center of the Ministry

of Public Security, Beijing. His

major interests include network and

information security, cloud computing and big data mining.

Jin-Song Bao received his Ph.D.

degree in mechanical engineering from

Shanghai Jiao Tong University (SJTU),

Shanghai, in 2002. He is a professor at

the College of Mechanical Engineering,

Donghua University, Shanghai, and the

director of Computer Integrated Man-

ufacturing Institute Lab of SJTU and

CAD/CAE/Collaborative Simulation/VR Lab of SJTU

(C3VR Lab), Shanghai. His current research focuses on

intelligent manufacturing and dominant innovation tools

for shipbuilding, aerospace product in whole lifecycle, and

smart predictive technologies using big data.

Xiao-Jun Xu et al.: Reverse Furthest Neighbors Query in Road Networks 167

Bin Yao received his B.S. degree

and M.S. degree in computer science

from the South China University of

Technology, Guangzhou, in 2003 and

2007 respectively, and his Ph.D. degree

in computer science from the Florida

State University, Florida, in 2011. He

has been an associate professor in the

Department of Computer Science and

Engineering, Shanghai Jiao Tong University, Shanghai,

since 2014. His research interests are management and

indexing of large databases, and scalable data analytics.

Jing-Yu Zhou received his B.S.

degree in computer science from Zhe-

jiang University, Hangzhou, in 1999.

He received his M.S. and Ph.D. degrees

in computer science from University

of California, Santa Barbara, in 2003

and 2006 respectively. He is currently

an associate professor at Shanghai Jiao

Tong University, Shanghai. He is generally interested in

distributed systems, information retrieval, and security. He

has published more than 30 papers at various conferences

and journals, including WWW, INFOCOM, ICS, TPDS,

DSN, FSE, CIKM, and IPDPS. He has served as PC

member for more than 20 international conferences.

Fei-Long Tang received his Ph.D.

degree in computer science from Shang-

hai Jiao Tong University (SJTU),

Shanghai, in 2005. Now, he is a full

professor in the Department of Com-

puter Science and Engineering at SJTU,

Shanghai. In past years, he was the

JSPS (Japan Society for the Promotion

of Science) Research Fellow in Japan, and received the

Distinguished Pu-Jiang Scholars Award from Shanghai

Municipality. His research interests focus on mobile cog-

nitive network, big data analysis and clouding computing.

He has received two Best Paper Awards from international

conferences. He served as the program co-chair for eight

international conferences and is a member of CCF, ACM,

IEEE.

Min-Yi Guo received his Ph.D.

degree in computer science from the

University of Tsukuba, Tsukuba, in

1998. He is currently a chair professor

and the head of the Department of

Computer Science and Engineering,

Shanghai Jiao Tong University, Shang-

hai. His research interests include, but

are not limited to parallel and distributed computing,

compiler optimizations. He is on the editorial board of

journals such as IEEE Transactions on Parallel and Dis-

tributed Systems and IEEE Transactions on Computers.

He is a senior member of IEEE.

Jian-Qiu Xu got his Ph.D. degree in

computer science from FernUniversität

in Hagen, Hagen, in 2012. He is now an

associate professor in Nanjing Univer-

sity of Aeronautics and Astronautics,

Nanjing, and a member of ACM

SIGSPATIAL. He focuses on moving

objects with multiple transportation

modes. His research interests include

moving objects databases and spatial databases. He has

published papers in Geoinformatica and IEEE MDM.

