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Abstract With the enormous and increasing user demand, I/O performance is one of the primary considerations to

build a data center. Several new technologies in data centers, such as tiered storage, prompt the widespread usage of

multilevel cache techniques. In these storage systems, the upper level storage typically serves as a cache for the lower level,

which forms a distributed multilevel cache system. However, although many excellent multilevel cache algorithms have been

proposed to improve the I/O performance, they still have potential to be enhanced by investigating the history information

of hints. To address this challenge, in this paper, we propose a novel hint frequency based approach (HFA), to improve the

overall multilevel cache performance of storage systems. The main idea of HFA is using hint frequencies (the total number

of demotions/promotions by employing demote/promote hints) to efficiently explore the valuable history information of

data blocks among multiple levels. HFA can be applied with several popular multilevel cache algorithms, such as Demote,

Promote and Hint-K. Simulation results show that, compared with original multilevel cache algorithms such as Demote,

Promote and Hint-K, HFA can improve the I/O performance by up to 20% under different I/O workloads.

Keywords storage system, multilevel cache, hint, I/O performance

1 Introduction

In big data era, I/O performance is still the bottle-

neck of data processing in many fields[1-10]. In large

data centers, heterogeneous storage devices cooperate

together to accelerate the I/O processing. Typically,

the storage devices in the upper level serve as caches

for the lower level, which forms a distributed multilevel

cache system. In recent years, multilevel caches have

received more attention due to the following reasons.

• High I/O Performance. By aggregating het-

erogeneous storage devices together, multilevel caches

achieve higher I/O performance compared with using

single level caches separately[11-13].

• Low Monetary Cost. Typically, multilevel cache

policies can provide global management on all cache lev-

els without any manual operations[14]. It can sharply

decease the monetary cost.

• High Flexibility. Multilevel caches are widely used

in many scenarios, such as in traditional client-sever

model 1○[15-16], networked storage 2○[12-13] and hybrid

storage 3○[17].

In the past two decades, many classic multilevel

cache solutions were proposed to improve the I/O per-
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formance of storage systems. One of the most effective

approaches is making the cache exclusively among diffe-

rent hierarchies, where hints are well utilized to identify

hot data blocks. These hints can provide a global view

of a storage system, which can be optimized via gen-

eral/specific replacement strategies.

According to the roles in different scenarios, hints

can be divided into three categories, demote hints, pro-

mote hints and application hints. A demote hint[12] is a

flag to mark a demotion operation, which occurs when

a data block is evicted from an upper level to a lower

level. Similarly, a promote hint[13] is used to identify

a promotion, which is an opposite operation of demo-

tion. Except for demote and promote hints, an applica-

tion hint[18-19] is computed by well-defined formula(s)

and is evaluated by the access patterns of I/O work-

loads. A hybrid hint is a flag containing information of

a data block from multiple aspects such as demotion,

promotion or application access patterns. In many pre-

vious literatures[20-22], hybrid hints are demonstrated

to be an efficient way to enhance the performance sig-

nificantly.

However, existing multilevel cache algorithms still

have potential to be improved. Most multilevel cache

algorithms[12-13,19] use hints to store the concentrated

information of data blocks. The demote and promote

hints based approaches only record the latest hint ope-

rations, thereby valuable history hint information is ig-

nored. And the application hints are usually dependent

on a specified application, which is not general to all

scenarios. Some algorithms[22-23] keep the latest multi-

ple steps hint information, but they are insufficient to

describe the status of data blocks. The detailed illus-

tration is given in Subsection 2.3.

To address the above problems, in this paper, we

propose a novel hint frequency based approach, HFA,

which is an efficient multilevel cache scheme to enhance

the I/O performance. The main idea of HFA is using

rich history hint information (e.g., hint frequencies) to

efficiently identify hot data blocks.

Our contributions include the following aspects.

• We propose a novel hint frequency based ap-

proach, HFA, using history hint information of data

blocks, which efficiently enhances the I/O performance

of storage systems.

• HFA can cooperate with several famous multilevel

algorithms, such as Demote, Promote and Hint-K.

• We implement HFA by combining with Demote,

Promote and Hint-K algorithms. Simulation results

demonstrate that HFA can enhance the cache perfor-

mance under various I/O workloads.

The rest of this paper continues as follows. Sec-

tion 2 briefly overviews related work and our motiva-

tion. In Section 3, we illustrate the design, model and

replacement policies of HFA. Section 4 illustrates how

HFA collaborates with other popular algorithms. In

Section 5, we analyze the simulation results by using

various multilevel cache approaches. Finally Section 6

concludes the paper.

2 Related Work and Our Motivation

Many classic cache schemes have been proposed to

improve the I/O performance over the past several

decades, which can be classified into two main cate-

gories: single level caches and multilevel caches. In this

section, we briefly introduce the state-of-the-art algo-

rithms and our motivation of this work.

2.1 Single Level Cache Algorithms

LRU[24] is widely used in buffer cache manage-

ment. Since the 1990s, many LRU variants aim

to improve the performance of single level caches.

Due to page limit, here we only list some famous

LRU-based algorithms: FBR[25], 2Q[26], LRU-K[27-28],

UBM[29], LRFU[30], LIRS[31], ARC[32], CAR[33],

SPCC[34], SARC[35], AMP[36], DULO[37], CLOCK-

Pro[38], WOW[39], RACE[40], STOW[41].

2.2 Multilevel Cache Algorithms

Quite a few multilevel cache algorithms emerge to

improve the aggregate I/O performance of distributed

systems as summarized in Table 1. As introduced in

Section 1, hints are widely used for cooperative cache

for heterogeneous storage devices. Based on the usage

of hints, we divide these cache algorithms into the fol-

lowing five classifications: multilevel algorithms with-

out hints, those with demote hints, those with promote

hints, those with application hints, and those with hy-

brid hints.

Without Hints. MQ[15] concentrates three proper-

ties for a good second-level buffer cache: minimal life-

time, frequency based priority, and temporal frequency

to efficiently manage the second-level buffer cache.

With Demote Hints. The demote algorithm[12] first

uses demote hints to describe evicted data information

from the upper cache level, which makes caches exclu-

sive. Through demote hints, the dynamic behavior of
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evicted caching data is well captured, which increases

the cache hit rate and decreases the average latency

in different applications. From then on, demote hints

have been extensively used in multilevel cache solutions.

X-RAY[42] is another sample which uses demote hints

in disk arrays. It gives the array cache the data in-

formation on the content through file-node operations

and writes log updates. Other cache policies combine

with demote hints and the analysis of access patterns

to enhance the cache performance, such as EV[43], GL-

MQ[16], uCache[44].

Table 1. Different Policies in Cache Algorithm Design
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Fig.1. Relationship among hint frequency, access frequency,
and hint reuse distance. Nine traces are tested on a three-level
cache. The cache space ratio of each level is 1 : 2 : 4. The demote
and promote algorithms[12-13] are used in each cache level for
comparison. (a) Access frequency of different traces. (b) Hint
reuse distance.

The temporal locality of buffer cache accesses de-

scribes the characteristics of traces, which is then

used to design replace algorithms to manage buffer

caches[52]. Similarly, we need to analyze the access pat-

terns of demotions/promotions, and design a replace-

ment algorithm based on those patterns. We use hint

reuse distance to observe the temporal locality of the

traces. Hint reuse distance is the number of distinct

accesses between a demote operation and a read miss

(or a promote) operation to the same block. For ex-

ample, in a cache level Li, if five distinct blocks are

visited during the period between a demotion and later

a promotion of a block x, then the hint reuse distance

of block x is 5.

Fig.1(b) compares the temporal locality of nine

traces on a cache that uses the same configuration with

that in Fig.1(a). It shows the average hint reuse dis-

tance for the blocks grouped by the hint frequency from

1 to 10. The highest value of hint reuse distance for each

trace is normalized to 100%. Obviously, for all nine

traces, the blocks with higher hint frequency usually

have a smaller hint reuse distance, despite that traces

vary in terms of hint frequency sensitivity.

These two observations drive us to develop a practi-

cal approach to freeze or promote the blocks with higher

hint frequencies in a certain cache level in order to im-

prove the overall cache hit ratio.

3 Hint Frequency Based Approach (HFA)

In this section, we present the design and replace-

ment policies of our hint frequency based approach,

HFA. To facilitate the discussion, we summarize the

symbols used in this paper in Table 2.

Table 2. Notations
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vice level. In this model, Di delegates a demotion from

Li−1 to Li, and Pi stands for a promotion from Li+1

to Li. Di(x) and Pi(x) are used to represent the corre-

sponding demotes/promotes for a data block x. In this

model, hot blocks are encouraged to be promoted to

the upper level, and cold blocks are evicted via demote

operations.
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hint frequency as we showed in the motivation to im-

prove the cache performance, it calls a sophisticated

design of the replacement policy.

As shown in Fig.3, there are two queues in HFA in

each level. One is a queue (Q1), which stores the data

blocks with a high hotness value and sorts blocks by

the hotness values. According to the observation from

Fig.1(b), the blocks with a higher hint frequency value

tend to be reused in a near future. Therefore, we set

the other queue (Q2), which saves the blocks with a

low hotness value, but sorts the blocks by their hint

frequencies. Q1 has a higher priority than Q2, that is,

the evicted block from Q1 will be inserted to Q2, in-

stead of erasing or demoting it to a lower level. As a

result, blocks in Q1 can resist in the cache longer.
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Fig.3. HFA dual-queue structure.

Meanwhile, there are two types of blocks in Q2

which can be promoted to Q1. One is the blocks which

are frequently visited. The other is the blocks whose

hint frequency is higher than a threshold, because the

increment on the value of hint frequency needs the

movements of the block between cache levels. But the

promoting process from Q2 to Q1 introduces the la-

tency to the blocks with potential intensive accesses in

the near future. To reduce the latency, the blocks in

Q2 will also be promoted to Q1 after a hit.

The cache management of Q2 can apply any pro-

posed multilevel cache policy for single queue, such as

Demote[12], Promote[13] and Hint-K[22]. Therefore, the

management policy of Q2 is not mentioned in the fol-

lowing paragraphs.

According to (2), hint frequencies are dynamic. To

sort blocks by hint frequencies, in each level, HFA main-

tains a Tout table to record the hint frequency of the re-

cent demoted/promoted blocks from a level (only cross

cache level operations are considered; data blocks mov-

ing between Q1 and Q2 in a same cache level are not

recorded in Tout). The detail usage of Tout is introduced

in Subsection 3.2.3. The size of table Tout is fixed, which

is set to 0.1% of the corresponding cache size in each

level by default.

The table Tout organizes records in format

(x, Fi(x), k). It denotes that the hint frequency of block

x in period from kT to (k+1)T is Fi(x). Tout retrieves

entries to compute hotness value only when a block is

inserted into a cache level. Simultaneously, it inserts

or updates records only when a block is leaving a cache

level. For example, block x1 is evicted from a cache level

at time t and k1T < t < (k1 + 1)T . Then a new record

(x1, Fi(x1), k1) is inserted into Tout. If there has already

existed a record (x1, F
′(x1), k1) in Tout, the record will

be replaced by (x1, F (x1), k1). The old records (resided

longer than kT ) in Tout are marked as invalid. When

Tout is full, a cleanup process is called to remove all the

invalid records. If Tout still has no space for the new

record insertion after the cleanup process, a record with

the lowest hint frequency in those oldest time intervals

is evicted.

The HFA management policy is shown in Algo-

rithm 1. Before kickoff, HFA sets a constant time inter-

val T , a degradation ratio δ and creates two queues Q1

and Q2 on each cache level (line 1). For cache misses,
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HFA firstly checks whether corresponding records of a

missing block x can be found in Tout. If so, it reads

Tout entries to calculate the hint frequency Fi(x) and

decides which queue the block x should reside (lines 2

and 3). If Fi(x) is larger than Fmin, HFA calls a func-

tion InsertQ1 to insert x in Q1. Otherwise, x is put in

Q2. Fmin denotes a threshold value which is the mini-

mal hint frequency that blocks need to meet to stay in

Q1 (lines 4∼8). In our implementation Fmin = 1 and

k = 6. If x has no records in Tout, HFA sends x to the

head of Q2 (line 10).

The function InsertQ1 takes a data block and its hint

frequency value as inputs. If Q1 is full, it evicts block

x′ with the minimal hotness from the queue, and then

inserts x into Q1 (lines 16∼19). The block x′ is either

demoted to a lower level or inserted intoQ2, by compar-

ing hits(x′) with the lowest cache hits in Q2, which is

denoted by hitsmin. If hits(x
′) is larger, then x′ is sent

to Q2, otherwise, it calls function Demote to demote x′

to a lower level (lines 20∼24). The demote policy will

be introduced in Subsection 3.3. It is worth noting that

HFA is an exclusive multilevel cache algorithm, and it

never discards data blocks. The evicted block from one

queue is either demoted or moved to another queue.

3.2.3 Lazy Update and Bubble Sort

The hint frequency of a block is a dynamic value,

which is degrading along with time. Therefore, sorting

blocks by their hotness values in Q1 requires a real-

time update which is costly and impractical for cache

management. Therefore, we propose a lazy update and

bubble sort to solve this problem.

Firstly, regarding the lazy update, we set a hot-

ness expire duration (T ) and a last update time for all

blocks. We say the hotness of a block is expired if the

duration from the last update time is longer than T .

And we check Tout to update Hi(x) when it is expired

and x is called to use.

The demote and the promote processes of HFA work

on the blocks with the minimal and the maximal hot-

ness values, respectively. However, selecting those data

blocks needs a sorting through all the blocks in a queue.

To avoid this scenario, we introduce a bubble sort mech-

anism. The bubble sort increases hits(x) by 1 if there

is a cache hit on block x, and then it compares H(x)

with the blocks ahead sequentially until it finds block

x′ which satisfies H(x′) > H(x). Then, block x is al-

located behind x′ (lines 12∼14 in Algorithm 1). In-

stead of searching the block with the maximal and the

minimal hotness values, the bubble sort only needs to

retrieve the head and the tail blocks in a queue. There-

fore, the bubble sort improves the sorting performance

without correctness garranteed.

3.3 Demotion/Promotion Policies Among

Multiple Levels

According to the cache policies in each level and

history hint information, we adjust the original de-

motion/promotion policies for demote/promote-based

cache algorithms, such as Demote[12], Promote[13], and

Hint-K[22-23]. HFA uses hint frequency value as a hint.

The hint is bundled with the corresponding data block

and demoted or promoted to the other cache levels.

The demotions and promotions can happen on ei-

ther Q1 or Q2. Since Q2 is managed separately by a

proposed multilevel cache policy, we only demonstrate

the demotion and promotion process for Q1. As shown

in Algorithm 2, the demotion policy is implemented by

function Demote, which takes a block x with the min-

imal hotness in Q1 as an input. Before the demotion

of x from cache level i − 1, HFA updates Tout with

(x, Fi(x), k), and takes Fi(x) as a hint. Then, Fi(x)

and block x are sent to level i. When cache level i re-

ceives x, HFA takes the hint and history records in Tout

to calculate an initial hotness value Hi(x) for the de-

moted block x by using (3). Then, Hi(x) decides into

which queue the block x should be inserted.
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Fig.1), HFA promotes hot blocks in Q1 from a lower

cache level i to a higher level i−1 to improve the cache

response time on the hot blocks. The promotion pro-

cess is awakened in a cache level i when Q1 receives a

demoted block x from i−1. Assuming that x′ is a block

with the maximal hotness in Q1 of level i. HFA com-

pares Hi(x
′) with Hi(x), and promotes x′ to level i− 1

if Hi(x
′) is larger. After promotion, F (x′) is recorded

in Tout and x′ is evicted from Q1.

3.4 Dynamic Partition

Dual-queue design in HFA prolongs the life of blocks

with higher hint frequency in a cache level by managing

the hot blocks in Q1. The hot blocks in Q1 are more

likely to be visited again in a near future. However,

an improper configuration on queue size impacts the

cache performance negatively. A larger Q1 could result

in wasting the cache space for keeping cold blocks in

Q1, but replacing blocks in Q2 more frequently. On the

contrary, a smaller Q1 losses the benefits gained from

the hint frequency properties.

HFA uses a dynamic partition strategy in runtime

to adjust the size ratio between Q1 and Q2. The basic

idea of the dynamic partition is to enlarge Q1 (shrink

Q2) if it contains a number of cold blocks (Hi(x) = 0

is considered as cold blocks in our configuration), but

to shrink Q1 (enlarge Q2) if Q2 contains too many hot

blocks. The exchanged queue space between Q1 and

Q2 is estimated by equation S = NC −NH, where NC

and NH are the number of cold and hot blocks in Q1

and Q2 respectively.

In our implementation (see Algorithm 3), HFA

repartitions the two queues over every T time in each

cache level. Initially, the whole cache space is allocated

to Q1 and Q2 evenly. Next, in run-time, HFA records

the resident duration of cold blocks tC(x) in Q1 and

hot blocks tH(x) in Q2 for every period T . And then it

calculates S by using the average number of cold and

hot blocks in Q1 and Q2 respectively.

S =
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to the latency issue of HFA, HFA uses demote policy

to manage Q1 and sort blocks in Q2 by hotness sepa-

rately as shown in Algorithm 4. As a result, the MRU

data blocks are marked as a hot block without waiting

for any Demote/Promote operations. Thereby, Demote

can reduce the latency for the recency-dominated ap-

plications.



Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 321

mediately. On the contrary, Hint-K resists x due to its

high KHV, which reduces the cache hit ratio. This issue

can get worse when those cold blocks are accumulated.

Different from Hint-K, HFA considers this issue by de-

grading hint over time. A block can get cold and be

demoted to a lower level when it receives no operation

in a period. 2) Hint-K made an observation that hot

blocks are usually active. In another word, a block is

identified to be hot only after a number of inter-cache

level movements of the block. Hence, there are always

a latency and extra network traffic (typically, they are

called warm-up cost of a data block[53]) to capture hot

blocks in Hint-K. Instead, HFA reduces the warm-up

response to hot blocks. We define a hot block by both

hit and movement frequencies, which guarantees a quick

detection on hot blocks and holds it in a higher priority

queue.

5 Simulation Methodology and Analysis

To demonstrate the effectiveness of the HFA algo-

rithm, we use a trace-driven simulation to evaluate HFA

and other popular multilevel cache approaches under

different I/O workloads.

5.1 Simulation Methodology

We use fscachesim as the simulator to evaluate var-

ious multilevel cache solutions, which appears in sev-

eral previous literatures[12,22-23]. Nowadays most mul-

tilevel cache algorithms are based on demote and pro-

mote hints[12,16,22,42-44], thereby we select Demote[12],

Promote[13] and Hint-K[22-23] algorithms in our com-

parison. HFA approach is collaborated with these algo-

rithms, and we use D-HFA, P-HFA, H-HFA to delegate

HFA combined with demote hints, promote hints and

hybrid hints (both demote and promote hints), respec-

tively. We select an ideal case on the knowledge of

future hint information called Oracle HFA (Oracle for

short), which is included in our comparison as well.

We use six I/O traces in our simulation as below.

Statistics of the six traces are summarized in Table 3.

1) WebSearch: this I/O trace is collected from a

popular search engine.

2) FIU IODedup Homes (FIU): the block traces are

the collected downstream of an active page cache for

three weeks from an NFS server that serves the home

directories of SNIA research group.

3) MSN Storage File System (MSN-SFS): the traces

are collected for MSN storage file server for a duration

of 6 hours, which consists of 36 10-minute trace files;

they trace the primarily disk I/O events at block level

as well as file I/O events.

4) Microsoft Exchange: the Microsoft Exchange

traces are collected from an Exchange 2007 SP1 server,

which is a mail server for 5 000 corporate users.

5) TPC-E: the traces are collected at Microsoft run-

ning TPC-C benchmark.

6) TPC-C: the traces are collected at a server run-

ning TPC-C benchmark.

Table 3. Summary of Traces
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Fig.4. Aggregate hit ratio under various traces with different aggregate cache sizes. FIU-HOMES uses a two-level cache hierarchy
which has a fixed cache size ratio of 1 : 2. MSN-SFS, Microsoft Exchange and TPC-E use a two-level cache hierarchy with a fixed cache
size ratio of 1 : 4. TPC-C uses a three-level cache hierarchy with a fixed cache size ratio of 1 : 2 : 4. (a) WebSearch. (b) FIU-HOMES.
(c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E. (f) TPC-C.

and Hint-K, HFA achieves performance gains by up to

19.1%, 7.1% and 6.5%, respectively. In most cases, it

is easy to see that the gains from HFA are proportional

to the cache size. This is because large cache size is

suitable for HFA to allocate blocks to right queues.

Further, increasing cache size beyond a value (such

as 48 MB of WebSearch and 40 906 MB of MSN-SFS)

does not seem to help hit ratio significantly. More-

over, compared with Hint-K, HFA presents a little im-

provement on Hint-K for various workloads, as shown

in Figs.4(a)∼4(d). The reason is that those workloads

show strong temporal locality. Then, in runtime, the

size of Q1 is much larger than the size of Q2. As a

result, the behaviour of H-HFA approaches to that of

Hint-K.

The simulation results on response time under diffe-

rent workloads are shown in Fig.5. Compared with

original Demote, Promote and Hint-K algorithms, HFA

sharply decreases the average response time. For exam-

ple, D-HFA reduces the average response time by up to

26% compared with Demote in Fig.5(c). P-HFA and

H-HFA decrease the I/O latencies by up to 20.7% and

10.1%, respectively. Clearly, the latency improvement

of HFA over Hint-K is comparatively smaller than that

of D-HFA and P-HFA. It is because that both HFA and

Hint-K are history hint based approaches. In Fig.5(b),

we also notice a special case on cache size 96 MB that

Promote responses faster than HFA. The reason is that,

for trace FIU-HOMES, a large number of promoted

blocks managed by HFA in the upper level are degraded
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Fig.5. Average response time under different traces with different aggregate cache sizes. The TPC-C trace runs at a three-level cache
architecture, and the cache size ratio is 1 : 2 : 4. (a) WebSearch. (b) FIU-HOMES. (c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E.
(f) TPC-C.

as cold blocks and demoted quickly before the next vis-

iting.

We summarize the previous results as shown in Ta-

ble 4.

Table 4. Improvement of HFA Approach over Other Typical

Multilevel Cache Algorithms in Terms of Aggregate Hit Ratio

and Average Response Time
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Fig.6. Hint frequencies of all data blocks under different I/O workloads (the hint frequencies in Oracle HFA are normalized to 100%).
(a) WebSearch. (b) FIU-HOMES. (c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E. (f) TPC-C.

in each level. Q1 uses extra space (a few megabytes in

typical) to record the history hint information of hot

data blocks.

The space overhead is shown in Fig.7. It is clear

that the space overhead of HFA is very low (less than

2.6%).
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Fig.7. Space cost of HFA approach under different traces.

5.2.3 Stability

The stability of a cache system shows the changes

on the system response speed in run time and how quick

the system can reach a stable hit ratio in the first cache

level after start-up. In this part we analyze the stabil-

ity of HFA by choosing TPC-C as the benchmark, and

implementing D-HFA, P-HFA and H-HFA on a three-

level cache with the aggregate cache space of 114 GB.

The cache space ratio of the three levels are 1 : 2 : 4.

In Fig.8, the x-axis is the time that benchmarks run

for 512 periods from the time when all the cache levels

are warmed up. The y-axis of Fig.8(a) and Fig.8(b) is

the cache hit ratio and the space proportion ofQ1 : Q2,

respectively. It is noted that the proportion in the first

time period (T = 1) is 1 : 1 for all three approaches.

Fig.8(a) shows the first level cache hit ratio for the

three approaches along with the time. It is clear that



Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 325

the hit ratio reaches a stable level at around 54, 39 and

62 after 8, 6 and 4 periods for D-HFA, P-HFA and H-

HFA, respectively. The fluctuation of H-HFA (8.9% on

average) is larger than the fluctuation of D-HFA (4.6%)

and P-HFA (4.8%).
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Fig.8. Influence of dynamic partition on stability over time. (a)
Comparison of cache hit ratio on the first level under different
approaches. (b) Comparison of queue proportion under different
approaches.

Fig.8(b) illustrates the results from the dynamic

partition of changing of proportion between Q1 and Q2

along with the time. For D-HFA and P-HFA, Q1 takes

13% and 9% of the whole cache space of the top level,

respectively. On the contrary, Q1 takes over 70% of

the cache space in H-HFA. This is because that Hint-

K assists to identify hot blocks from lower levels and

aggregates them to the top level. Then the refresh

frequency of blocks in the first cache level increases.

Consequently, Q1 requests more space to keep the hot

blocks. Meanwhile, this is also the reason why the fluc-

tuation of H-HFA is larger than that of the other ap-

proaches.

5.2.4 Impact of Size Ratio of Two Queues

Fig.9 examines the impact of size ratio of Q1 and

Q2 on the cache aggravate hit ratio. We use TPC-C as

the benchmark in this evaluation. The aggregate cache

size is 114 GB. The cache space ratio of the three levels

is 1 : 2 : 4. Instead of dynamic partition, the space

proportion of Q1 : Q2 is increased manually from 0%

to 100% with an interval of 10%. From the figure, we

notice that the aggregate hit ratio of D-HFA, P-HFA

and H-HFA reaches a peak value of 46%, 35% and 55%

at a space ratio of 2 : 8, 1 : 9, and 8 : 2, respectively,

which is about 11% lower than the value that uses dy-

namic partition. It can be seen that P-HFA uses the

smallest Q1 space than the rest to reach the maximal

aggregate hit ratio, because TPC-C has a weak tem-

poral locality. Most of the blocks promoted from the

lower level are stored in Q2 and usually missed. This is

another reason why D-HFA performs better on TPC-C.

Moreover, it can be seen that Q1 of H-HFA consumes

over 80% of the whole cache space to meet the best

hit ratio. As illustrated in Subsection 5.2.3, Hint-K in-

creases the refresh frequency of blocks, which increases

the hotness value of the block as well. As a result, it

allocates more cache space to Q1 to keep the hot blocks.

0 0.1 0.2

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10

20

30

40

50

60

Space Ratio of Q1 to Q2

 D-HFA P-HFA H-HFA

Fig.9. Aggregate hit ratio of D-HFA, P-HFA and H-HFA when
varying the proportion between Q1 and Q2 on a three-level cache
over trace TPC-C.

5.2.5 Examination of Parameter k of HFA

We now study the impact of parameter k. The trace

and the cache configuration are the same with the pre-

vious evaluation. In Fig.10, we plot the parameter k

versus the aggregate cache hit ratio. When k is zero,

Tout is disabled, and the hotness of blocks is only re-

lated to the hit frequency which makes D-HFA, P-HFA

and H-HFA behave close to original Demote, Promote

and Hint-K respectively. It can be seen that the ag-

gregate hit ratio increases to a peak value when k is 4

for P-HFA and 5 for both D-HFA and H-HFA, and then

goes smoothly. The larger the value of k, the longer the

operation history of blocks recorded in Tout, which cal-

culates the hotness values more accurately. However,

according to (3), the old history (large k) contributes

much less to the hotness than new operations. Fur-

ther, since Tout’s size is fixed, the old history could be

removed by the clean-up process. As a result, after

parameter k grows to a proper value, the aggregate hit

ratio will not increase anymore. Therefore, in the con-

figuration of HFA, we set k to a fixed value of 6 for all

workloads.



326 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

0 1 2 3 4 5 6

Value of k

7 8 9 10

70

40

50

60

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)  D-HFA P-HFA H-HFA
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ratio of each level is 1:2:4. The aggregate cache space is 114 GB.

5.3 Analysis

From the results in Subsection 5.2, compared with

the original Demote, Promote and Hint-K algorithms,

it is clear that HFA approach has many advantages

on cache performance. There are several reasons to

achieve these gains. First, HFA is based on the anal-

ysis of the history hint information of data blocks,

which is one of the most significant essences in mul-

tilevel cache systems. By effectively identifying the

hint frequencies, hot data blocks are selected to have

a long residence in upper-level cache, which increases

the aggregate hit radio of data blocks and decreases

the average response time. Second, HFA divides tra-

ditional queues into two dedicated queues, which keeps

the hint information locally to reduce the usage of inter-

cache bandwidth. Third, HFA reduces the overall hint

frequencies (inter-cache demotions/promotions), which

decreases the bandwidth consumption among different

levels. Besides, the space cost of HFA approach is very

low, which can help to provide high performance under

various workloads. In addition, HFA exhibits a good

stability from two aspects. On one hand, the turbu-

lence on the cache hit ratio is low. On the other hand,

it can reach a stable status in a short time.

6 Conclusions

In this paper, we proposed a novel multilevel cache

approach called HFA, which explores hint frequencies of

data blocks. HFA monitors the status of data blocks to

keep hot data blocks with high hint frequencies resident

in cache as long as possible. Mathematical definitions

are given to effectively identify hot data blocks. And

we discussed various types of hints combined with the

HFA approach. The simulation results showed that,

compared with original Demote, Promote and Hint-

K algorithms, the corresponding algorithms combined

with HFA approach achieve better performance under

different I/O workloads.
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