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Abstract Indoor subarea localization can facilitate

numerous location-based services, such as indoor naviga-

tion, indoor POI recommendation and mobile advertising.

Most existing subarea localization approaches suffer from

two bottlenecks, one is fingerprint-based methods require

time-consuming site survey and another is triangulation-

based methods are lack of scalability. In this paper, we

propose a graph-based method for indoor subarea local-

ization with zero-configuration. Zero-configuration means

the proposed method can be directly employed in indoor

environment without time-consuming site survey or pre-

installing additional infrastructure. To accomplish this, we

first utilize two unexploited characteristics of WiFi radio

signal strength to generate logical floor graph and then

formulate the problem of constructing fingerprint map as a

graph isomorphism problem between logical floor graph

and physical floor graph. In online localization phase, a

Bayesian-based approach is utilized to estimate the

unknown subarea. The proposed method has been imple-

mented in a real-world shopping mall, and extensive

experimental results show that the proposed method can

achieve competitive performance comparing with existing

methods.

Keywords Subarea localization � Zero-configuration �
Graph-based matching � WiFi radio signal strength

1 Introduction

With the increasing number of mobile devices, indoor

location-based services, i.e., indoor advertising [29],

patient activity monitoring [27] and indoor check-in ser-

vices [30], are expected to witness a significant growth in

the next decade. Recent years have witnessed an increasing

attention on indoor subarea localization in view of its

importance to indoor location-based services, such as:

• Indoor advertising [29], which aims to reach out to a

specific section of customers based on their shopping

preferences. The key of indoor advertising is uncover-

ing customer’s preference, and traditional ways [1, 16]

are predominantly field surveys thus are not effective as

they need time-consuming and labor intensive survey.

Indoor subarea localization can facilitate indoor adver-

tising in terms of customer’s check-in activities (e.g.,

the check-in frequency and stay time in a store) imply

their preference, and such kind of check-in activities

can be extracted by continuous subarea localization.

• Mobile localization analytic [9, 24], which aims to in-

depth analyses and utilizes user’s location information,

which is seen as essential context information and can

provide deep insight about people’s behavior. Similar

to online behavior analysis in the Internet, location can

be seen people’s physical footstep, which is valuable

for understanding people’s behavior patterns, for
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example, how much time people spend in visiting

shops, how people come to these visiting shops (e.g., go

directly or just random visit), which interactions with

different kinds of shops.

• Patient activity monitoring [27, 28], which aims to

track bed-ridden patients in hospital environments and

report anomalous behavior and emergency. Indoor

subarea localization can facilitate patient activity

monitoring in terms of two aspects [28]: (1) indoor

subarea localization can serve as reliable and accurate

asset tracking systems, compared to manual tracking

system which are prone to human error; (2) indoor

subarea localization can be used to locate the position

of patients and medical professionals in real time with

room-level accuracy.

Since traditional GPS positioning technique is infeasible in

indoor environment and the positioning accuracy of cel-

lular-based method is not enough, localization methods

based on radio signal strength (RSS) have attracted enor-

mous research from both academia and industry. Existing

localization methods using RSS either require time-con-

suming site survey or huge costs for deploying additional

infrastructure. Therefore, indoor subarea localization

remains an unsolved problem according to the report from

Microsoft indoor localization competition [19]. Existing

localization methods using RSS consist of two categories:

infrastructure-based methods and infrastructure-free meth-

ods. Infrastructure-based methods require pre-installed

hardware for localization, such as UWB [18], ZigBee [8] or

wearable sensor [25], which make this kind of system

unsalable to large-scale environment. To address this

drawback, many infrastructure-free localization methods

[12, 33, 38] without requiring additional hardware have

been proposed. One of the most promising infrastructure-

free localization approach is using WiFi RSS, which is

mainly attributed to the widespread deployment of WLAN

infrastructure.

Existing localization methods based on WiFi RSS

include geometric-based scheme and fingerprint-based

scheme. Geometric-based scheme utilizes geometry rela-

tion between the unknown location and more than two

reference locations for localization, such as TOA [34],

TDOA[22] and AOA [13]. Geometric-based scheme re-

quires prior knowledge of WiFi access point (AP) and

indoor radio signal propagation model. However, there is

not a ubiquitous radio signal propagation model due to

complex phenomena (e.g., multi-path fading, shadowing)

in indoor environment. Moreover, the performance of

geometric-based scheme is sensitive to many factors, such

as layout changes or crowd walking. On the contrary, fin-

gerprinting-based scheme is more robust since it does not

depend on radio signal propagation model. Typically,

fingerprinting-based scheme consists of two phases: (1)

offline constructing fingerprint map, which firstly divides

indoor space into a few cells and manually associates each

cell with the scanned RSS values from surrounding APs;

(2) online localization, which estimates the unknown

location by matching the scanned RSS values with the

fingerprinting map. The main bottleneck of fingerprint-

based scheme is that manually constructing fingerprint map

is time-consuming and labor intensive. For instance, the

deployment overhead for a 300 m2 environment is more

than 7 h [19]. Additionally, the fingerprinting map needs to

be updated dynamically for maintaining localization

accuracy.

For a practical subarea localization system, several

requirements are necessary: reasonable localization accu-

racy; no additional hardware components on user’s side;

scalable to large-scale deployment. On this basis, we pro-

pose a graph-based indoor subarea localization method

with zero-configuration, which is infrastructure-free and

constructing fingerprint map by passive crowdsourcing.

Specifically, we firstly generate logical floor graph by

utilizing two inherent characteristics of WiFi RSS in indoor

environment and then we formulate the problem of con-

structing fingerprinting map as a graph mapping problem

between logical floor graph and physical floor graph.

Finally, we utilize a Bayesian-based approach to estimate

the unknown location.

The rest of this paper is structured as follows. Section 2

surveys related studies on indoor subarea localization.

Section 3 describes the proposed method in detail. Sec-

tion 4 reports and discusses our experimental results.

Finally, we present our conclusion and future work in Sect.

5.

2 Related work

In this section, we survey previous related works about

indoor subarea localization and discuss how these works

differ from our work. In general, existing studies on this

topic can be divided into two categories:

2.1 Infrastructure-based localization system

Infrastructure-based localization systems estimate

unknown location based on the information from additional

infrastructure or external equipment, such as WiFi signals,

Bluetooth signals and ZigBee signals. For instance, the

beacon frames from multiple Bluetooth APs [20] are used

to localization the room, ZigBee interface [8] is used to

collect WiFi RSS for room localization, wearable wrist

sensors [25] is used to detect a person. The main drawback
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of infrastructure-based system is lack of scalability since

costly infrastructure pre-deployment is necessary. More-

over, the performance of infrastructure-based systems is

limited by disturbances and errors caused by indoor

obstacles (e.g., walls, ceiling and furniture). Another

challenge of infrastructure-based systems is how to design

optimal configurations to trade-off the deployment cost and

localization performance. Hossain and Soh [11] analyzed

the localization performance and deployment issues by

revealing localization error trends with geometric config-

urations and concluded the optimal configuration is regular

polygon where the vertices represent the RSS APs.

2.2 Infrastructure-free localization system

In contrast, infrastructure-free localization systems utilize

user’s mobile device or existing infrastructure (e.g., WiFi

[14, 21, 33, 38, 39], magnetic field [2]) to estimate an

unknown location without deploying additional hardware.

Infrastructure-free localization system relies on mobile

device usually calculates user’s current location according

to the previously determined position by built-in sensors

(e.g., gyroscope, accelerometer and compass) of mobile

devices, which is also called dead reckoning positioning.

However, dead reckoning relies on the initial location and

will suffer from cumulative error, and continually collect-

ing data from multi-sensor is energy-consuming.

Typically, infrastructure-free localization system con-

sists of geometric-based method and fingerprint-based

method. Geometric-based method utilizes triangulation

principle to estimate the unknown location based on radio

propagation model, such as TOA [34], TDOA [22] and

AOA [13]. However, there is not a ubiquitous radio prop-

agation model in indoor environment, since the radio signal

propagation would be strongly affected by multi-path

effect. In addition, specific devices for measuring TOA or

AOA are costly. Fingerprint-based method utilizes the RSS

values collected from a specific location as its fingerprint

for labeling location. The localization process of this

scheme includes two phases: offline construction finger-

print map and online localization. For example, Castelli

et al. [6] utilized fingerprint-based method with WiFi RSS

to obtain room-level localization for visualizing indoor

energy consumption. Hida et al. [10] proposed an subarea

detection method using WiFi RSS. Biehl et al. [5] proposed

a more robust location fingerprint for localization using the

RSS relative ordering of each pair of APs. For reducing

erroneous estimation, Hotta et al. [12] utilized the RSS

characteristics when passing through a boundary point to

calibration. However, previous fingerprinting-based

method is infeasible because constructing fingerprint map

is time-consuming and labor intensive [19].

Recently, several studies have been proposed to auto-

matically construct fingerprinting map without time-con-

suming site survey. For instance, Jiang et al. [14] proposed

an indoor floor plan construction method with leveraging

WiFi RSS and user’s motion information, which can be

utilized to automatically construct fingerprinting map.

WILL [33] automatically construct fingerprint map by

utilizing RSS characteristics and user motions too. WicLoc

[21] records user motions as well as WiFi signals for

constructing fingerprint map. However, these methods need

user’s active participation when constructing fingerprint

map. In contrast, the proposed method only utilizes WiFi

RSS to automatically construct fingerprint map, which can

be done by passive crowdsourcing.

3 Graph-based localization method

In this section, we first introduce the key data structures

and notations used in the proposed subarea localization

method and then present the problem definition and

solution.

3.1 Problem definition

For ease of the following presentation, we define the key

notations used in the proposed method. Table 1 lists the

relevant notations used in this paper.

Definition 1 (RSS record) A RSS record is a triple

o(u, t, R) that means the collected WiFi RSS values by user

u at time t. R is a K-dimensional vector and denotes by

Table 1 Notations used in indoor subarea localization

Symbol Description

N, K The number of subareas, WiFi APs

M, F The number of RSS traces, floors

S, D The set of subareas, RSS traces

H The set of Histogram bins

ri The RSS value from api

R The RSS values from all WiFi APs

o(u, t, R) The RSS record collected by u at time t

Li; trajðLiÞ A WiFi RSS trace, a virtual trajectory

fsi The fingerprint of subarea si

mi Virtual subarea with similarity fingerprint

Y The fingerprint map

Gp;Gf The physical floor graph

Gf The logical floor graph

r; s User-specific thresholds

Pers Ubiquit Comput (2017) 21:489–505 491

123



ðr1; . . .; ri; . . .; rKÞ, ri means the scanned WiFi RSS value

from AP api, K is the number of WiFi APs in indoor space

and 1 6 i 6 K.

Definition 2 (WiFi RSS trace) We define a WiFi RSS

trace as a sequence of RSS records and denote by

L ¼ fo1; . . .; oi; . . .; oTg, oi represents the collected RSS

record at time ti, 1 6 i 6 T .

Definition 3 (Indoor subarea) S ¼ fs1; s2; . . .; sNg
denotes the set of subareas, N is the num of subareas and a

subarea si refers to a region that makes up part of indoor

space. Typically, subareas are rectangle, such as rooms and

corridors, but not necessary

Definition 4 (Subarea fingerprint) The feature of subarea

si is defined as a H � K matrix fsi ¼ fp1; p2; . . .; pKg, H is

the histogram bins and pj represents the histogram of

scanned RSS values from apj in si, 1 6 i 6 N and

1 6 j 6 K.

We split the RSS values range into H bins and then pj
denote by a H-dimensional vector; a bin-based method is

used to calculate the pj of subarea si, as shown in Eq. 1.

pj ¼
YH

h¼1

PK
j¼1 C

h
ij

Ci

ð1Þ

where
PK

j¼1 C
h
ij is the num of collected RSS values from

apj belongs to the h-th bin in total collected RSS values, Ci

means the total collected RSS values in subarea si.

Definition 5 (Fingerprint similarity) The fingerprint

similarity of subarea si and sj is calculated by cosine

similarity, as shown in Eq. 2.

Simðfsi; fsjÞ ¼
1

K

XK

n¼1

RownðfsiÞ � RownðfsjÞ
jjRownðfsiÞjj � jjRownðfsjÞjj

ð2Þ

where RownðfsiÞ and RownðfsjÞ represent the n-th row vector

of fsi and fsj, respectively.

Definition 6 (Fingerprint map) The fingerprint map is a

set of tuples by associating physical subarea and its fin-

gerprint and denote by Y ¼ fðs1; fs1; . . .; ðsi; fsiÞ
; . . .; ðsN ; fsNÞÞg.

Definition 7 (Physical floor graph) We denote the

physical floor graph by Gp ¼ hVp;Epi, where Vp ¼
fv1; v2; . . .; vNg and vi represents subarea si, Ep � V � V

correspond to the directly reachable of subareas in indoor

space.

Based on the above definitions, we formulate the prob-

lem of indoor subarea localization as: Given: (1) indoor

subarea set S ¼ fs1; s2; . . .; sNg. (2) WiFi RSS Trace set

D ¼ fL1; L2; . . .; LMg collected by passive crowdsourcing.

(3) physical floor graph Gp ¼ hVp;Epi. (4) a user local-

ization request o?ðu; t;RÞ; Objective: find the correspond

subarea si when scanning RSS record o?ðu; t;RÞ.
Our solution for this problem consists of two phases: (1)

construct fingerprint map by graph mapping; (2) estimate

the unknown subarea with a Bayesian approach.

3.2 Construct fingerprint map

In this subsection, we first give a high-level overview of the

graph-based method for constructing fingerprint map (as

shown in Fig. 1) and then present the details of the method.

Unlike existing fingerprint-based methods, our method

automatically constructs fingerprint map without manual

site survey. First, we collect RSS traces by crowdsourcing

(e.g., when participants go shopping, drink a coffee or

relaxing). Then, after obtaining enormous RSS traces, the

fingerprint map is constructed by the following three steps:

modeling physical floor plan to an undirected graph, gen-

erate logical floor graph, and mapping logical floor graph

to physical floor graph.

3.2.1 Modeling physical floor plan

Motivated by indoor robots pursuit/evasion research [15],

we model the indoor floor plan with a undirected graph

Gp ¼ hVp;Epi by decomposing the indoor floor plan into a

collection of convex subareas and further reduce the indoor

space to a graph by discretization. Specifically, the dis-

cretization includes two steps:

• Step 1 decomposing the indoor floor plan into a set of

convex subareas based on critical visibility events and

association vertex vi to subarea si;

• Step 2 adding edges between vertices which are directly

connected in the original indoor floor plan.

For example, the indoor floor plan of our experimental

environment is shown in Fig. 2a, which consisting of 27

rooms and covering over 2000 m2. Then, we decompose

the floor plan into a set of subareas and add edges between

directly connected vertices and finally model the indoor

floor plan as an undirected graph as shown in Fig. 2b.

3.2.2 Generate logical floor graph

Typically, large indoor space (e.g., urban shopping mall,

museum and airport) is multi-floor environment with

hundreds of WiFi APs to provide WiFi service. For gen-

erating logical floor graph, we need to cluster the RSS

records that collected from the same floor.

(1) Cluster RSS records to the same floor Several factors

can influence the propagation of WiFi radio signal in

indoor environment, such as people walking, layout change

492 Pers Ubiquit Comput (2017) 21:489–505

123



and multiple diffraction from window frames. According to

[17], one floor may weaken WiFi RSS values between

15dBm and 35dBm. Therefore, the range of RSS values

from a specific AP is useful for floor recognition [36].

Formally, let R ¼ ðr1; . . .; ri; . . .; rKÞ denote the scanned
RSS record from surround WiFi APs, L(x, y, f) denote the

location coordinate where the RSS record is collected,

where (x, y) is the two-dimensional coordinate of location

and f is the floor. Ideally, each location can correspond to a

unique WiFi RSS record, and we can cluster WiFi RSS

records to the same floor by reducing high-dimensional

RSS record to a 3-dimensional vector. However, WiFi RSS

record is very unstable [18, 19] even at the same location

due to a few factors, such as heterogeneous devices,

environmental change or crowd walking. We cluster RSS

records to the same floor by the following two steps:

• Step 1 using Laplacian Eigenmaps [4] to reduce the

RSS values with high-dimension to d-dimension vector

(d[ 2).

• Step 2 clustering the d-dimension vectors to F classes

by k-means algorithm, where F is the number of floors.

In the clustering process, we use the Euclidean distance

to measure the closeness of two vectors.

(2) Construct logical floor graph A few factors can influ-

ence the propagation of radio signal in indoor environment,

such as multiple diffraction, reflection of scattered signals

from adjacent walls and crowd walking. By investigating

spatial–temporal characteristics of indoor radio signal

propagation, we observe two valuable characteristics can

be exploited to subarea localization.

The first observation is physical obstacles, such as walls

and stairs, will make WiFi RSS values jump dramatically.

In order to investigate the physical obstacles effect on radio

signal propagation, we collected 200 RSS records from

three APs in room 1 and room 2, where AP1 and AP2 are

located in room 1 and AP3 is located in room 2. Statistical

information of RSS values is shown in Table 2, and we can

observe that the range of RSS values from the same AP

significantly differ in different rooms.

Therefore, this characteristic can reflect the indoor floor

plan to a certain degree and can be used to distinguish two

subareas, which is also demonstrated in [7]. Based on this

characteristic, we design a robust subarea fingerprint using

RSS histogram as shown in Definition 4. In order to dis-

tinguish different subareas, we further define the similarity

of subarea fingerprint as shown in Definition 5.
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Trajectories 

Indoor Floor Plan 
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Fig. 1 High-level overview of

constructing fingerprint map

a

p

o

n
mk l

ihgfed

c

b

j

1 98

765432

15
14

1716

18 19 20 2221 23 2524

10

26

131211

(a)

232221201918

1

8
a

2

262524

54
3

d e

109

c

1312

h

76

g

p

b

11

kj

f

17

1615

l

m

i

n o

14

(b)

Fig. 2 Modeling physical floor plan as a undirected graph, a indoor floor plan, b physical floor graph

Pers Ubiquit Comput (2017) 21:489–505 493

123



Take RSS values of Table 2 as an example, split the

range of RSS values into 4 bins:

fð�40;�55�; ð�55;�70�; ð�70;�85�; ð�85;�100�g, the

fingerprint of room 1 and room 2 can be calculated as fs1
and fs2, respectively.

fs1 ¼
0:575 0:36 0:05 0:015

0:465 0:405 0:105 0:025

0 0:0597 0:3134 0:6269

2
64

3
75 ð3Þ

fs2 ¼
0 0:0811 0:2973 0:6216

0:0161 0:0806 0:2742 0:629

0:6 0:315 0:075 0:01

2
64

3
75 ð4Þ

The second observation is the WiFi RSS values will jump

dramatically when passing a physical boundary point, such

as room entrances and corners. For example, we collect a

sequence of RSS values from three APs when walking

from room 1 to room 2, as shown in Fig. 3a. Specifically,

ft1; t2; t3; t4; t5g are collected in room 1, ft6; t7; t8g are

collected when passing the entrance, ft9; t10; t11; t12g are

collected in room 2, as shown in Fig. 3b. We find that the

‘‘jump’’ range can reach 15dBm-30dBm. However, the

RSS values should change smoothly in a small continuous

area according to indoor empirical propagation model [26].

Therefore, the RSS ‘‘jump’’ characteristic when passing

boundary points can be utilized to identify subarea

entrance.

Based on the two spatial–temporal characteristics of

radio signal propagation in indoor environment, we gen-

erate logical floor graph by three stages, as shown in Fig. 4.

Specifically, we first identify all physical boundary points

based on the RSS ‘‘jump’’ characteristic when passing a

physical boundary point and remove false identification

using subarea fingerprint similarity. Then, we partition a

WiFi RSS trace into a virtual trajectory according to

physical boundary points, as shown in Fig. 4. Finally, we

merge all virtual trajectories to generate logical floor graph,

as shown in Fig. 5.

Identify physical boundary points Based on the obser-

vation that the WiFi RSS values will jump significantly

when walking through a physical boundary point, we uti-

lize the fluctuation of RSS values in a small time window

to identify physical boundary points. Formally, given a

WiFi RSS trace L ¼ ho1; . . .; oi; . . .; oTi, we define

Varðti; sÞ to represent the RSS fluctuation in time window

ðti � s=2; ti þ s=2Þ, as shown in Eq. 5.

Varðti; sÞ ¼
1

K

XK

i¼1

VarðapiÞ ð5Þ

where K is the number of WiFi APs, VarðapiÞ is the

variation of RSS values from api during the time window,

as calculated in Eq. 6.

VarðapiÞ ¼
1

s� 1

Xtiþs=2

j¼ti�s=2

ðrij � riÞ2 ð6Þ

where ri is the average RSS values from api in time win-

dow ðti � s=2; ti þ s=2Þ , rij is the RSS value from api at

time tj.

If the RSS fluctuation in time window ðti � s=2; ti þ
s=2Þ is significantly higher than average, we can infer the

user is walking through a physical boundary point at time

Table 2 The RSS values scanned from three WiFi APs at different rooms

Range AP1 at Room 1 AP1 at Room 2 AP2 at Room 1 AP2 at Room 2 AP3 at Room 1 AP3 at Room 2

½�55;�40� 115 0 93 1 0 120

½�70;�55Þ 72 3 81 5 4 63

½�85;�70Þ 10 11 21 17 21 15

½�100;�85Þ 3 23 5 39 42 2
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ti. Formally, we use variation coefficient a to quantify the

degree of RSS ‘‘jump’’, as shown in Eq. 7.

a ¼ s� Varðti; sÞ
Ptiþs=2

j¼ti�s=2 Varðtj; sÞ
ð7Þ

For example, set time window size s ¼ 5 and variation

coefficient as a ¼ 1:3, the variation of RSS values from

three APs in Fig. 3b is calculated as shown in Table 3. We

further calculate the RSS fluctuation:

V ¼ f36:97; 34:6; 48:4; 78:67; 96:4; 86:8; 49:27; 30:77g

as shown in Fig. 3c and infer the user is passing a physical

boundary point in time ft6; t7; t8g.
Remove false identification As mentioned above, we

identify physical boundary points according to the RSS

‘‘jump’’ characteristic. However, this method may

bring some false positives, since other factors (e.g.,

crowd passing and furniture layout change) may create

similar RSS ‘‘jump’’. However, subarea fingerprint

using RSS histogram is stable and robust according to

the first observation. On the basis, we remove

false positives based on the similarity of subarea

fingerprint.

Formally, after obtaining time set X ¼
ftp; tpþ1; . . .; tqg that users may walk through physical

boundary points according to RSS ‘‘jump’’ characteristic,

we partition RSS trace L into a subsequence

set L ¼ foðt1 : tpÞ; oðtp : tpþ1Þ; . . .; oðtq�1 : tqÞ; oðtq : tTÞg,
oðtp : tpþ1Þ is the RSS subsequence collected from tp to

tpþ1. Then, we calculate the fingerprint of each RSS

subsequence as denote by F ¼ ffp; fpþ1; . . .; fqg, fp rep-

resents the fingerprint of RSS subsequence oðt1 : tpÞ.
Finally, we use a threshold-based approach to remove

false positives, which means tpþ1 is a false positive if the

fingerprint similarity between fp and fpþ1 is greater than

a threshold d, as shown in Eq. 8.

Iden�fy  Physical 
Boundary Points

Par��on RSS 
Trace

Remove false 
Boundary Points

Construct  Spa�o-
temporal  Trajectory

Fig. 4 Construct virtual trajectory of WiFi RSS trace
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Fig. 5 Constructing logical floor graph. a The virtual trajectories. b Using K-means to cluster all elements of virtual trajectories. c Adding edges
between two clusters if they are reachable

Table 3 The variation of RSS

values from three WiFi APs
time window (t1, t5) (t2, t6) (t3, t7) (t4, t8) (t5, t9) (t6, t10) (t7, t11) (t8, t12)

AP1 46.5 31.8 42.3 137.5 162.7 143.5 80.8 18.7

AP2 14.7 10.3 36.7 40.3 48.7 20.2 11.7 42.3

AP3 49.7 61.7 66.3 58.2 77.8 96.7 55.3 31.3
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Simðfp; fpþ1Þ[ d ð8Þ

Construct virtual trajectory After removing false identifi-

cation of physical boundary points, we repartition the RSS

trace L into a subsequence set L ¼ foðt1 : tpÞ; oðtp :
tpþ1Þ; . . .g and map each RSS subsequence oðtp : tpþ1Þ to a

virtual subarea mpþ1. A virtual subarea is a container which

consists of fingerprint with high similarity. Finally, we

construct the virtual trajectory of RSS trace L as trajðLÞ ¼
\mp ! mpþ1 ! � � � [; as shown in Fig. 4.

Generate logical floor graph After constructing virtual

trajectory for each RSS trace, we generate logical floor

graph Gf ðVf ;Ef Þ by merging all virtual trajectories

ftrajðL1Þ; trajðL2Þ; . . .; trajðLMÞg. Specifically, the merge

process consists of two steps:

• Step 1 using K-means algorithm to cluster all elements

of virtual trajectories ftrajðL1Þ; trajðL2Þ; . . . ; trajðLMÞg
into P classes, and mapping class center pi of cluster Pi

to vertex vi of logical floor graph, as shown in Fig. 5b.

Since traditional K-means algorithm is sensitive to

initial cluster centers, the selection of initial cluster

centers directly affects the accuracy and stability of the

clustering results. To solve this problem, we utilize the

elements density distribution to optimize the selection

of initial cluster center.

Definition 8 (Elements distance) For two elements xi and

xj of virtual trajectories, we calculate their distance as:

dðxi; xjÞ ¼ 1� Simðfxi; fxjÞ ð9Þ

where Simðfxi; fxjÞ is calculated as Equation 2.

Definition 9 (Element density) For an element xi, we

select its k-nearest neighbor elements Xi according to

elements distance. Then, we define the density of xi as:

densðxiÞ ¼
1

k

X

xj2Xi

dðxi; xjÞ ð10Þ

Algorithm 1 formally describes the framework of the

proposed method for selecting initial cluster centers of k-

means. First, as shown in Lines 2�5, we calculate the

density for all elements of virtual trajectories and sort the

elements according to element density. Then, as depicted in

Line 7�12, we choose a unvisited element with the highest

density and generate its k-nearest neighbors. Finally, we

select the gravity center of the k-nearest neighbors as a

cluster center. In the clustering process, we use the fin-

gerprint similarity (See in Definition 5) to measure the

closeness of two elements.

Algorithm 1 Density-based algorithm for selecting ini-
tial cluster centers of k-means
Require: 1) Element set of all virtual trajectories: X =

{x1, x2, ...}; 2) the number of local neighbors: K; 3) the
number of cluster centers: p

Ensure: The initial cluster centers: π = {π1,π2,...πk}
1: Label all elements of X as unvisited, π = ∅
2: for ∀xi ∈ X do
3: Select its k-nearest neighbor set Ωi according to ele-

ments distance.
4: Calculate the local density dens(xi) according to E-

quation. 10.
5: end for
6: Sort X according to the local density of element, denote

as X .
7: while the number of π is less than p do
8: for ∀xj ∈ X and xj is unvisited do

9: Calculate the cluster center: πj =
1
k xi∈Ωj

xi,

10: Label xj and elements of Ωj as visited, add πj to
π.

11: end for
12: end while
13: return cluster center set π.

• Step 2 adding an edge between vi and vj if cluster Pi and

cluster Pj is reachable, which means that there is at

least one pair of adjacent virtual subareas hmi ! mji for
8mi 2 Pi and 8mj 2 Pj, as shown in Fig. 5c.

3.2.3 Mapping logical floor graph to physical floor graph

For automatically constructing fingerprint map, we need to

associate virtual subarea mi to the corresponding subarea sj
by mapping logical floor graph to physical floor graph.

Formally, given logical floor graph Gf ¼ hVf ;Ef i and

physical floor graph Gp ¼ hVp;Epi, find a mapping func-

tion s : Vf ! Vp for 8eðu; vÞ 2 Ef ; eðsðuÞ; sðvÞÞ 2 Ep.

Obviously, this is a subgraph isomorphism problem and

can be solved by Ullman algorithm [31].

Graph matching Ullman algorithm utilizes a depth-first

search strategy to enumerate all subgraphs of Gf that

matching Gp. For ease of understanding, Fig. 6c is the

search tree for mapping Gf (Fig. 6a) to Gp (Fig. 6b), the i-th

layer of search tree represents mapping ui of Gf to each

node of Gp, and a path from root node to leaf node rep-

resents a subgraph matching between Gp and Gf . A sub-

graph matching is correct if the adjacency relationship of ui
in Gf is the same as its mapping node vj in Gp.

Since we have mapped each virtual subarea mi to the

corresponding physical subarea sj, we further compute the

fingerprint of sj according to Eq. 1. Then, we construct

subarea fingerprint map with associating sj to the calculated

fingerprint.
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Correction As shown in Fig. 6, the existence of sym-

metric subgraphs may lead to matching errors when map-

ping logical floor graph to physical floor graph. We

perform the correction stage to fix some error mapping.

Indoor space can typically be divided into places with

different functionalities, such as smart houses usually

consist of kitchens, bedrooms and seminar rooms, shopping

malls provide various leisure and food facilities (e.g., cafes,

game centers and theaters, as shown in Fig. 7). The basic

idea is the unique relationship between WiFi RSS and

different types of subareas due to signal reflection,

refraction and diffraction. In other words, different subar-

eas vary in internal structures and human activities that can

be reflected by RSS characteristics. Based on these obser-

vations, we extract two kinds of semantic features to cor-

rect some mapping errors:

• Average stay time After constructing the virtual trajec-

tories, we can extract the average stay time of all check-

ins in each subarea. Figure 8a reports the distribution of

average stay time with different types of subareas using a

real-world dataset collected over 33 days. As shown in

Fig. 8a, the average stay time have very different

distribution pattern in terms of different types of

subareas. For instance, the average stay time for subareas

belong to Clothes is mainly between 0 and 30 min, while

subareas with the stay time is more than 60 min have a

high probability belong to Cinema. Therefore, we

consider the average stay time to be a very useful feature

for distinguishing different types of subareas.

• Temporal distribution To show the temporal pattern of

different types of subareas, we aggregate the number of

virtual trajectories at a specific timestamp. In particular,

the opening hours of the shopping mall are 10:00 a.m.–

10:00 p.m. and we empirically divided a day into 5

timestamps: (1) Morning—hours between 10 a.m. and

12 p.m.; (2) Noon–hours between 12 p.m. and 2 p.m.;

(3) Afternoon—hours between 2 p.m. and 5 p.m.; (4)

Dinnertime—hours between 5 p.m. and 7 p.m.; (5)

Night—hours between 7 p.m. and 10 p.m. From

Fig. 8b, we can observe two very different temporal

patterns corresponding to two kinds of subareas (i.e.,

Restaurant and Cinema). For instance, the subareas

belong to Restaurant have clearly two peak periods,

corresponding to lunch and dinner time, respectively.

On the contrary, for subareas belong to Cinema, there is

one peak period (from 7:00 p.m. to 10:00 p.m.).

Therefore, the temporal distribution is discriminative

for the classification of subareas such as belong to

Restaurant and Cinema.

In our approach, we combine the ratio of average stay

time in different ranges and the temporal distribution

together as inputs for training a SVM classifier for different

types of subareas, which can further correct mapping

errors. For instance, the virtual subarea u1 may be mapped

to physical subarea v1 or v2 in Fig. 6, if more than 70% of

check-ins in u1 are less than 15 min, we should map u1 to

v1 rather than v2 (as v1 is a subarea belongs to corridor,

while v2 is a restaurant given by the shopping mall owner).

3.3 Online localization

At the online localization part, user sends localization

request with submitting the scanned RSS record o(u, t, R),

R ¼ fr1; r2; . . .; rKg, our method estimates the subarea of

u1

v4

v3

(a) (b)

(c)

v1

u3

u2 v2

root

u3

u2

u1 v4v3v2v1

v2v4 v4v1 v3v2

v4 v3

Fig. 6 Mapping logical floor graph to physical floor graph. a Logical

floor graph: Gf, b physical floor graph: Gp, c search tree for mapping

Gf to Gp
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Fig. 7 A shopping mall with coffee, restaurant, clothes, cinema and

corridor, etc
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his/her current location using a Bayesian approach.

According to Bayesian inference, the posterior probability

PðsijRÞ can be calculated as Eq. 11.

PðsijRÞ ¼
PðRjsiÞPðsiÞ

PðRÞ ð11Þ

Since the prior probability that user is located in each

subarea is equal and the RSS values from different WiFi

APs are independent, the posterior probability PðsijRÞ can
further be simplified as Eq. 12.

PðsijRÞ /
YK

j¼1

PðrjjsiÞ ð12Þ

For a given subarea si, the prior probability PðrjjsiÞ can be

calculated by the normalized histogram of apj in this

subarea. We partitioned the RSS values range into H bins

when constructing fingerprint map, suppose rj belongs to

the h-th bin, PðrjjsiÞ is equal to fsiðh; jÞ. Then, the local-

ization result for RSS record o(u, t, R), R ¼ fr1; r2; . . .; rKg
can be estimated by Eq. 13.

bs ¼ argMax
si2S

YK

j¼1

fsiðh; jÞ ð13Þ

Algorithm 2 formally describes the framework of our

proposed method for indoor subarea localization. First, as

shown in Lines 2�3, we first cluster the RSS records to the

same floor. Then, we generate the logical floor graph based

on two unexploited RSS characteristics in indoor space as

shown in Lines 5�10. Finally, as depicted in Line 11�12,

we construct subarea fingerprint map by mapping logical

floor graph to physical floor graph. At the online local-

ization part, we calculate the posterior probability for each

subarea based by Bayesian inference, as shown in Line

14�17. Finally, we select the subarea with the maximum

posterior probability as the localization result.

4 Experiment evaluation

In this section, we first describe the experimental setting

and dataset for evaluation. Then, we report the results of a

series of experiments conducted to evaluate the
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Fig. 8 The semantic features of subareas for correcting mapping errors. a Average stay time of different types of subareas. b Temporal

distribution of different types of subareas

Algorithm 2 Graph-based method for indoor subarea
localization
Require: 1) The RSS traces set D = {L1, L2, ..., LM}; 2)

Subarea set S = {s1, s2, ..., sN}; 3) The number of floors:
F ; 4) Physical floor graph Gp; 5) user-specific threshold:
τ, α, δ, d; 6)The RSS record of user’s localization request:
o < u, t, R > and R = {r1, r2, ..., rK}.

Ensure: The subarea su of user’s current location
1: ∗ ∗ ∗Phase 1: Cluster RSS Records∗ ∗ ∗
2: reduce the RSS values d-dimension vector by Laplacian

Eigenmaps.
3: cluster the d-dimension vectors to F classes by k-means

algorithm.
4: ∗ ∗ ∗Phase 2: Construct Fingerprint Map∗ ∗ ∗
5: for ∀Li ∈ D do
6: Identify physical boundary points according to Equa-

tion. 7.
7: Remove false identification according to Equation. 8.
8: Construct virtual trajectory traj(Li).
9: end for
10: Generate logical floor graph Gf by merging virtual tra-

jectories {traj(L1), traj(L2), ..., traj(LM )}.
11: Map logical floor graph Gf to physical floor graph Gp.
12: Construct subarea fingerprint map Y =

{(s1, fs1, ..., (si, fsi), ..., (sN , fsN ))}.
13: ∗ ∗ ∗Phase 3: online localization∗ ∗ ∗
14: for ∀(si, fsi) ∈ Y do
15: Otain the histogram bin h that rj belongs to.
16: Calculate the probability P (si|R) = K

j=1 fsi(h, j)
17: end for
18: return su=arg Max

si∈S
P (si|R).
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performance of our proposed method for indoor subarea

localization, followed by discussions.

4.1 Experimental datasets

Our experimental environment is a large indoor shopping

mall with four floors, and each floor is about 55m� 30m.

4.1.1 Dataset for floor clustering

To evaluate the method for clustering the RSS records to

the same floor, we need to label the floor that the RSS

record is collected. Finally, we collect 3948 RSS records

with floor information with a sampling rate of 1 Hz in total;

more details about this dataset are shown in Table 4. After

the analysis, there are 275 different WiFi APs; then we

extend each RSS sample to a 275 dimensional vectors and

set -110 dBm as default value for WiFi AP without col-

lecting RSS values.

4.1.2 Dataset for subarea localization

We evaluate the proposed subarea localization algorithm at

one floor with 26 shops and 7 corridors. Each shop is

regarded as a subarea and corridors are partitioned to 16

subareas, so there are 42 subareas in total. The floor plan

and subarea partition is shown in Fig. 2.

To evaluate our subarea localization method, we need to

record two labeled information: the subarea and whether

the location is a physical boundary point of each WiFi RSS

record. We develop a mobile application to collect WiFi

RSS samples with a sampling rate of 1 Hz, and each

sample is represented by a tuple: hL; oi. Specifically, L ¼
fsi; 0j1g is the label information: floor, subarea and whe-

ther is a physical boundary point, o is the scanned RSS

record from surround WiFi APs and represented by a triple

ðM; t; hr1; r2; . . .; rKiÞ, M is the MAC address of collection

device and t is the collection time, r1 is the scanned RSS

values from AP1. Note that we collect RSS information

with a sampling rate of 1 Hz at the offline phase for con-

structing fingerprint map and users only need to submit the

single RSS sample in online localization without continu-

ously submitting RSS information.

We collect 117 WiFi RSS traces for experiment evalu-

ation by 25 participants (including students and shop

workers) over 33 days, in which one RSS trace includes an

average of 10 subareas and 1532 RSS records, and each

subarea has been visited by at least three participants.

Statistically, there are 123 different WiFi APs and 179241

WiFi records. For constructing subarea fingerprint and

calculating fingerprint similarity, we extent each RSS

sample to a 127 dimensional vectors, as shown in Table 5.

For WiFi AP without collecting RSS values, we set �110

dBm as default value, and one example of RSS samples is

shown in Table 6.

4.2 Experimental results

4.2.1 Cluster RSS records

We use Fowlkes–Mallows index [32] to evaluate the per-

formance of cluster algorithm. Let TP denote the number

of true positives, FP denote the number of false positives,

and FN denote the number of false negatives, the Fowlkes–

Mallows index (FMI) is calculated by:

FMI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FP
� TP

TPþ FN

r
ð14Þ

Tuning parameters of cluster algorithm, such as the number

of clusters and the dimension of RSS records after reduc-

tion, are critical to the performance of clustering RSS

records to the same floor. Figure 9a reports the clustering

performance (FMI) with different number of clusters and

different dimensions of RSS records. From this figure, we

observe: (1) the best clustering performance is achieved

when setting the number of clusters equal to 4, which is the

number of floors. For example, the FMI is 43.6% using the

raw RSS records when the number of clusters equal to 4;

(2) the clustering performance using low-dimension vec-

tors after reducing have an obvious improvement compared

to use the raw RSS records, showing the advantages of

using Laplacian Eigenmaps to reduce the raw RSS records

to low-dimension vector. For instance, the best clustering

performance is achieved when reducing the raw RSS

records to three-dimensional vector and setting the number

of clusters equal to 4. The reason is dimension reduction

based on Laplacian Eigenmaps can find the manifold

structure of raw RSS records.

In Fig. 9b, we compare the clustering time of using raw

RSS records and low-dimension vectors after reducing, the

clustering time is obtained after repeating the experiments

10 times on Intel’s Core i5 based computer. It can be seen

from this figure that clustering with raw RSS records

consumes much more time than with low-dimension vec-

tors after reducing. The reason is large indoor space with

multi-floor usually has hundreds of available WiFi APs

(e.g., there are 275 WiFi APs in our experiment). Thus,

Table 4 Dataset for floor clustering

Floor 1 Floor 2 Floor 3 Floor 4

# of RSS records 1005 1471 760 712

# of different WiFi APs 81 72 56 66
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dimension reduction based on Laplacian Eigenmaps can

effectively reduce the clustering time.

4.2.2 Identify physical boundary points

Three parameters in our algorithm need to be determined

for identifying physical boundary points: time windows

size s, variation coefficient a for recognition boundary

points, user-specific threshold d for removing false identi-

fication. The three parameters directly impact the accuracy

of identifying physical boundary points. We use a cluster-

based method to select d. Specifically, we first cluster all

WiFi RSS records to N classes by KNN; N is the number of

subareas. Then, we calculate the fingerprint of each class

and further obtain the similarity for each pair of finger-

prints. Finally, we select the average similarity as d for

removing false identification.

For calculating the subarea fingerprint, we partition the

range of RSS values into 4 bins which is in line with typical

RSS quality partition [3, 23]: (1) bin-1, which represents

WiFi signal is excellent and the RSS values are in range

½�55; 0�; (2) bin-2, which represents WiFi signal is good

and the RSS values are in range ½�70;�55Þ; (3) bin-3,

which represents WiFi signal is poor and the RSS values

are in range ½�85;�70Þ; (4) bin-4, which represents WiFi

signal is bad and the RSS values are in range ½�100;�85Þ.
Table 7 shows the accuracy of identifying physical

boundary points with time window size s and variation

coefficient a. From this table, we observe: (1) the accuracy

drops sharply when the user-specific threshold of variation

coefficient a is lower than 1.2 or greater than 1.5; (2) Set

a ¼ 1:5, the accuracy increases with time window size

increasing from 1 to 5, and slightly decrease when the time

window size is larger than 5 due to the RSS fluctuation

between physical boundary point and other location will be

smaller for a large time window size. Finally, the best

performance (83%) is achieved when a ¼ 1:5 and s ¼ 5.

Figure 10a, b shows the identification accuracy as a func-

tion of variation coefficient and time window size, respec-

tively. From the two figures, we observe: (1) themethod using

Table 5 The RSS sample

format
001 002 ... 123 124 125 126 127

RSS value RSS value ... RSS value Timestamp Phone ID Boundary point flag Subarea ID

Table 6 One example of RSS

sample
[001] [002] ... [123] [124] [125] [126] [127]

-73 -65 ... -87 2015-12-07 15:28:15 1 0 1
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Fig. 9 The performance of clustering RSS records to the same floor. a The Fowlkes–Mallows index with different dimensions of RSS records.

b The clustering time with different dimensions of RSS records

Table 7 Parameter tuning for identifying physical boundary points

a s

3 4 5 6 7 8

1.1 0.23 0.29 0.43 0.37 0.30 0.24

1.2 0.37 0.48 0.56 0.45 0.37 0.29

1.3 0.44 0.51 0.61 0.51 0.44 0.32

1.4 0.47 0.59 0.75 0.70 0.59 0.48

1.5 0.52 0.71 0.83 0.79 0.67 0.54

1.6 0.37 0.64 0.76 0.57 0.55 0.38

1.7 0.29 0.48 0.70 0.46 0.39 0.31

1.8 0.24 0.41 0.63 0.47 0.35 0.21

1.9 0.19 0.21 0.53 0.33 0.20 0.16
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subarea fingerprint similarity can effectively remove false

recognition; (2) Set the time window size s ¼ 5, the accuracy

declines sharply when variation coefficient a is greater than

1.6 or lower than 1.4 and achieve the best accuracy when

a ¼ 1:5; (3) Set a ¼ 1:5, the identification accuracy increases

with the increasing number of time window size between 3

and 5 and slightly decrease when the time window size is

larger than 5; (4) the performance of removing false identifi-

cation decreases slightly with increasing time window size,

due to the difference of RSS fluctuation between physical

boundary point and normal location will be smaller with

increasing time window size.

Set s ¼ 5 and a ¼ 1:5, we investigate the identification

accuracy with different sampling rate in Fig. 10c. As

shown in Fig. 10c, we can see the identification accuracy

drops significantly with increasing the sampling rate. For

example, the identification accuracy is only 50.3% after

removing false recognition when setting the sampling rate

as 3. The reason is that if collecting RSS values with a

relatively long period (e.g., 3s), the RSS values of both

physical boundary point and normal location will fluctuate

wildly when users moving thus cannot effectively identify

physical boundary points

4.2.3 Construct fingerprint map

We utilize mapping accuracy to evaluate the performance

for constructing fingerprint map. The mapping accuracy

(MA) is defined in Eq. 15. We define si as the ground truth

subarea label of record oi, bsi is the mapping subarea label.

MA ¼
PTe

i¼1 Iðsi; bsiÞ
Te

ð15Þ

where Iðsi; bsiÞ is an indicator function that return 1 if

bsi ¼ si, Te is the test RSS records for evaluation.

One parameter needs to be determined for constructing

fingerprint map: the cluster number Kf for generating

logical floor graph. Figure 11 reports the performance of

constructing fingerprint map with different cluster numbers

(Kf ), where Kf is in the range [30, 33, ... 51]. In this Fig. 11,

we compare the performance of K-means and the improved

K-means (DBKM) when constructing logical floor graph.

As previously mentioned, DBKM utilizes a density-based

algorithm to select initial cluster centers of k-means. From

Fig. 11, we can see the proposed clustering method

(DBKM) always outperforms K-means (for example, the

FMI of DBKM for all subareas is about 91.3% when Kf =

42, and the performance is improved by 3% compared with

k-means), showing the advantages of selecting initial

cluster centers using density-based algorithm can achieve

better clustering performance.

From the three Fig. 11a–c, we can see that the mapping

accuracy for rooms increases gradually when Kf increases

from 30 to 42 and then drops when Kf is greater than 42,

the highest mapping accuracy of DBKM is 94.1% when Kf

equals to 42 (the number of physical subareas). Another

observation is the mapping accuracy for subareas located in

corridor is lower about 20 percent than rooms, which

shows there no obvious RSS ‘‘jump’’ characteristic for two

connected subareas in corridor because there are no walls

or physical boundary points can significantly weakened the

radio signal strength.

To investigate the performance of correcting mapping

errors using semantic features of subareas, we further com-

pare themapping accuracy of the proposedmethod (DBKM)

after correcting in Fig. 12. From Fig. 12a–c, we observe: (1)

themapping accuracy for both rooms and subareas located in

corridor has improved after correcting, showing the effi-

ciency of distinguishing different types of subareas using

semantic features. For example, the mapping accuracy for
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rooms increases 2.3% after correcting when the number of

logical numbers equals to 39; (2) the performance

improvement is more obvious for subareas located in corri-

dor than rooms. For example, the performance improvement

for subareas located in corridor is 9.5% when the number of

logical numbers equals to 39, while 2.3% for rooms. The

reason is that the semantic feature is sufficient to distinguish

subareas located in corridor and other types of subareas,

since more than 84% of check-ins in subareas belong to

corridor are less than 15 min.

Figure 13 reports the performance of constructing fin-

gerprint map as a function of number of WiFi RSS records

per subarea. We can see that the mapping accuracy is

relatively stable when RSS records of each subarea is more

than 400, which shows our algorithm for constructing the

fingerprint map will converge quickly and has a low

crowdsourcing data requirement. Moreover, the perfor-

mance of constructing fingerprint map will improve with

increasing collected data.
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4.2.4 Localization accuracy

We evaluate the performance of the proposed localization

method by comparing with two well-known subarea

localization methods. We first introduce the experimental

dataset and parameters setting and then detail the com-

parative localization techniques. Finally, we report and

discuss the experimental results.

Dataset We randomly select 70% RSS records of each

subarea as training dataset to construct fingerprint map and

the rest 30% as testing dataset for evaluation localization

accuracy.

Parameters setting Tuning algorithm parameters, such

as the time window size for identification physical

boundary points and the clusters for constructing logical

floor map, are critical to the performance of localization.

According to the experience of previous experiments,

our algorithm empirically set parameters as:

fs ¼ 5; a ¼ 1:5;Kf ¼ 42g, for constructing fingerprint

map.

Comparative methods We compare our method with the

following two methods that have been widely used in

subarea localization: (1) RSS-NN [39], which constructs

fingerprint map by manual site survey and estimates sub-

area using KNN classification; (2) RSS-Bayesian [12],

which also constructs fingerprint map by site survey and

estimates subarea using Bayesian inference.

Results and analysis We investigate the impact of

different mark-off rates (30%, 70% and 100%) to the

performance of GraphLoc, RSS-NN and RSS-Bayesian.

Mark-off rate is the ratio of RSS APs to construct fin-

gerprint map, for instance, 30% mark-off rate means we

utilize the RSS records from 30% WiFi APs by ran-

domly selecting to construct fingerprint map and online

localization. For each case, we repeat the experiments 10

times and report the average performance.

As shown in Fig. 14a–c, the performance of the three

methods all degrade to some extent as the mark-off rate

increases. Nevertheless, RSS-NN shows the best perfor-

mance consistently over all mark-off rates as it needs to

manually construct fingerprint map. While the performance

of our proposed method drops significantly when the mark-

off rate equals to 30%, for example, the localization

accuracy of the proposed method drops 14% compared to

RSS-NN. This is because our proposed method requires

enough WiFi APs for automatically constructing finger-

print map, since less WiFi APs will degrade the accuracy

of identifying physical boundary points.

Figure 14c shows the localization accuracy of the three

methods using all WiFi APs. It can be seen that the per-

formance for open subarea (subareas in the corridor) and

closed subarea (room) is significantly different for all

methods. As shown in Fig. 14c, the localization accuracy of

rooms is more than 87% for the three methods, but lower

than 85% for open subareas in corridor, which shows RSS

values of two connected open subareas are too similar to

distinguish. RSS-NN achieves the best performance for

both closed subareas (92%) and open subareas (83%).

Another observation is the average localization accuracy

rate is 88.2% for our method, which is 0.8% less than RSS-

NN. Therefore, our method can obtain considerable per-

formance compared with previous methods with labor

intensive and time-consuming site survey.

5 Discussion

GraphLoc involves more user efforts for collecting WiFi

RSS records by crowdsourcing during the phase of con-

structing fingerprint map, and it provides infrastructure-

free subarea localization without time-consuming site sur-

vey. We have invited 20 participants to collect data and
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found that if a user can freely use WiFi service, he is

willing to spend a few minutes practising data collection in

the shopping journey. The collection of WiFi RSS infor-

mation data costs some energy, but it is quite low

according to specifications of mainstream smart phones

[35], since the main energy-consuming component is

scanning and associating to WiFi APs without any trans-

mitting. Additionally, the sampling rate for collecting RSS

values has a significant impact on identifying physical

boundary points, as the RSS values of both physical

boundary point and normal location will fluctuate wildly

when users moving thus cannot effectively recognize

physical boundary points. The RSS variance caused by

heterogeneous devices and dynamic environmental status

will degrade the positioning accuracy for fingerprint-based

methods. Our previous studies [37, 38] have proposed

some effective solutions for the RSS variance problem,

while it has little effect on room-level localization. For

example, the RSS-NN can achieve 90% localization

accuracy using the raw RSS values.

The existence of symmetric subgraphs may lead to

matching errors when mapping logical floor graph to

physical floor graph, which may significantly degrade the

performance of constructing fingerprint map. We extract

two kinds of semantic features to correct the mapping

errors: average stay time and temporal distribution. The

basic idea is the relationship between WiFi RSS and dif-

ferent types of subareas due to signal reflection, refraction

and diffraction, since different subareas vary in internal

structures and human activities that can be reflected by

RSS characteristics. Even after the correcting stage, the

proposed approach cannot completely correct mapping

errors. Another limitation is the correcting method cannot

work in some indoor environment without obvious

semantic feature, such as academic building. We plan to

investigate existing methods [14, 33] by fusing internal

sensors to remove the mapping errors. Another problem of

mapping logical floor graph to physical floor graph is the

Ullman algorithm is NP-complete. However, the Ullman

algorithm is fast enough for practical use since there is

usually only a few dozen nodes in one logical floor graph

or physical floor graph.

6 Conclusion

This paper has proposed a ready-to-deploy method for

indoor subarea localization with zero-configuration, since

the proposed method is infrastructure-free and does not

need time-consuming site survey. The main idea is to

generate logical floor graph based on two characteristics

of WiFi RSS in indoor space and automatically construct

fingerprint map by mapping logical floor graph to

physical floor graph. The proposed method has been

implemented and deployed in a real-world shopping mall

with an average localization accuracy of 88.2%, which is

competitive to traditional approaches. For indoor space

with multi-floors, the proposed method firstly clusters

RSS records to the same floor using two steps: dimen-

sion reduction using laplacian eigenmaps and clustering

using k-means. The advantages on infrastructure-free and

automatically constructing fingerprint map make our

method can be widely used in indoor environment.

As future work, we plan to implement some valuable

indoor location-based services (e.g., indoor POI recom-

mendation or hotspot detecting) based on the proposed

subarea localization method.
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