
J. Parallel Distrib. Comput. 69 (2009) 546–558
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Loop scheduling and bank type assignment for heterogeneous
multi-bank memory
Meikang Qiu a,∗, Minyi Guo b, Meiqin Liu c, Chun Jason Xue d, Laurence T. Yang e, Edwin H.-M. Sha f
a Department of Electrical and Computer Engineering, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
b Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
c College of Electrical Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
d Department of Computer Science, City University of Hong Kong, Hong Kong
e Department of Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
f Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA

a r t i c l e i n f o

Article history:
Received 5 January 2008
Received in revised form
23 September 2008
Accepted 8 February 2009
Available online 6 March 2009

Keywords:
Type assignment
Heterogeneous
Low power design
Multi-bank memory
Loop scheduling

a b s t r a c t

Many high-performance DSP processors employ multi-bank on-chip memory to improve performance
and energy consumption. This architectural feature supports higher memory bandwidth by allowing
multiple data memory accesses to be executed in parallel. However, making effective use of multi-bank
memory remains difficult, considering the combined effect of performance and energy requirement.
This paper studies the scheduling and assignment problem about how to minimize the total energy
consumption while satisfying the timing constraint with heterogeneous multi-bank memory for
applications with loop. An algorithm, TASL (Type Assignment and Scheduling for Loops), is proposed.
The algorithm uses bank type assignment with the consideration of variable partition to find the best
configuration for both memory and ALU. The experimental results show that the average improvement
on energy-saving is significant by using TASL.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Memory access latency and energy consumption are two of
themost important design considerations inmemory architecture.
A number of papers have investigated how to exploit multi-
bank memory from a single aspect: improving performance or
increasing energy savings. However, the combined effect of both
performance and energy requirements is seldom tackled because
increased performance often conflicts with energy savings. In
high-performance digital signal processing (DSP) applications, strict
real-time processing is critical [42] since the growing speed gap
between CPU and memory becomes a bottleneck for designing
such real-time systems. In order to close this speed gap, embedded
systems need to utilize multi-bank on-chip memories [35,34]. The
high energy consumption ofmemoriesmakes them target of many
energy-conscious optimization techniques [4]. This is especially
true for mobile applications, which are typically memory-
intensive. This paper focuses on the problem of reducing the total

∗ Corresponding author.
E-mail addresses:mqiu@uno.edu (M. Qiu), guo-my@cs.sjtu.edu.cn (M. Guo),

liumeiqin@zju.edu.cn (M. Liu), jasonxue@cityu.edu.hk (C.J. Xue), ltyang@stfx.ca
(L.T. Yang), edsha@utdallas.edu (E.H.-M. Sha).

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.02.005
energy consumption while satisfying performance constraints for
loop applications with multi-bank memory architectures.
In many advanced memory architectures, there are hetero-

geneous memory banks. Different memory banks have different
memory access latencies and energy consumptions for same op-
erations [14,27,3,11]. A certain memory bank type may access the
data stored slower but with less energy consumption, while an-
other bank type will access the data faster with higher energy con-
sumption. Also, there is a limitation of how many banks can be
accessed simultaneously in certain memory architectures. There-
fore, an important problem arises: how to assign types to the banks
selected and partition variables for an application to minimize the
total energy consumption while satisfying timing constraints.
Much research has been conducted in the area of using multi-

bank memory to achieve maximum instruction level parallelism,
i.e., optimize performance [30,8,19,20,26,38]. These approaches
differ in either the models or the heuristics. However, they
seldom consider the combined effect of performance and energy
requirements. Actually, performance requirement often conflicts
with energy saving [9,17,32,10,24,39]. There is a trade off
between energy consumption and performance. Usually, improved
performance is achieved at the cost of higher energy consumption
if the user does not carefully study the intricate relationship
between performance and energy of a system. By exploiting

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:mqiu@uno.edu
mailto:guo-my@cs.sjtu.edu.cn
mailto:liumeiqin@zju.edu.cn
mailto:jasonxue@cityu.edu.hk
mailto:ltyang@stfx.ca
mailto:edsha@utdallas.edu
http://dx.doi.org/10.1016/j.jpdc.2009.02.005

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 547
heterogeneous multi-bank memory at the instruction level,
significant improvement of both energy saving and performance
can be obtained. Wang et al. [33] have considered the combined
effect and proposed the VPIS algorithm to improve both energy
saving and performance, but their algorithm does not fully
exploit the heterogeneous multi-bank memory architecture. We
also use loop scheduling to further improve energy saving and
performance.
Combining both energy and performance considerations for

both memory bank and ALU, in this paper, we propose a novel
graph model to overcome the weaknesses of previous works.
We design an algorithm, TASL (Type Assignment and Scheduling
for Loops), to minimize the total energy consumption while
satisfying performance requirements. The experimental results
show that TASL achieves a significant reduction on average in
total energy consumption. For example, using the SPAM compiler
(Princeton Spam Compiler Project, http://www.idiom.com/free-
compilers/TOOL/SPAMComp-1.html) with 3 memory types and 3
ALU types, compared with the VPIS algorithm [33], TASL shows an
average 16.2% reduction in total energy consumption.
In summary, the main contributions of this paper are the

following. First, we study the combined effects of energy saving
and performance of memory and ALU in a systematic approach.
Second, we exploit the energy saving with type assignment
and minimum resource scheduling for both memory and ALU.
Third, to the best of our knowledge, our paper is the first to
consider the combined effect of both energy and performancewith
heterogeneous multi-bank memory. Fourth, we obtain the best
results by rescheduling nodes repeatedly based on loop scheduling.
Fifth, we improve the heterogeneous scheduling and assignment
for both ALU and memory simultaneously.
In the next section, we introduce basic concepts and models.

An example is shown in Section 3. The algorithm is discussed in
Section 4. We show our experimental results in Section 5. Related
work and Concluding remarks are provided in Sections 6 and 7,
respectively.

2. Basic concepts and models

In this section, we introduce some basic concepts which will
be used in the later sections. First, the data flow graph (DFG) for
modeling heterogeneous multi-bank memory and multi-type ALU
architecture is described. Then, the basic concepts of retiming and
rotation scheduling are introduced, followed by the concepts of
variable partition and Variable Independence Graph (VIG). Finally,
we provide the formal definition of the heterogeneous multi-bank
type assignment problem.

2.1. Data flow graph

Data flow graph (DFG) is used to model many multimedia and
DSP applications. We use a cyclic data flow graph (CDFG) to denote
a loop in our work. The definition is as follows:

Definition 2.1. A CDFG G = 〈U, ED, d, T , E〉 is a node-
weighted and edge-weighted directed cyclic graph, where U =
〈u1, . . . , ui, . . . , uN〉 is a set of operation nodes; ED ⊆ U ×
U is an edge set that defines the precedence relations among
nodes in U; d(ed) is a function to represent the number of delays
for any edge ed ∈ ED; The edge without delay represents the
intra-iteration data dependency; the edge with delays represents
the inter-iteration data dependency and the number of delays
represents the number of iterations involved. T is a set of operation
time for all nodes in U; E is a set of energy consumption for all
nodes in U .
Fig. 1. (a) A DFG with both memory and ALU operations. (b) The types of memory.

CDFG G = 〈U, ED, d, T , E〉 is a sub case of general DFG
G = 〈U, ED, T , E〉. Fig. 1(a) shows a DFG. The ALU operations are
represented by circles, and thememory operations are represented
by triangles. Particularly, an edge from a memory operation node
to an ALU operation node represents a Load operation, whereas
the edge from an ALU operation node to a memory operation
node represents a Store operation. We start from loading value
of variable A into the ALU to perform operation 1, i.e., OP1. Then
variable B is loaded to implement OP2, and similarly is for OP3.
Next,OP4 is performedutilizing the inputs of the results ofOP2 and
OP3. Finally, the result of OP4 is stored into variable D in memory.
In this example, only 2 banks are available, i.e., can be accessed

at the same time. There are 3 types of banks to chose from and
we can use only 2 types of banks maximum. The memory bank
types are shown in Fig. 1(b). Type 1 hasmemory access time 2 clock
cycles with energy consumption 10 nJ; Type 2 has memory access
time 3 cycles with energy consumption 3 nJ; The access time is 5
cycles and energy consumption is 1 nJ for type 3.We can represent
the memory bank types in Type(Time, Energy) format, such as
type 1(2, 10). Regarding the ALU part, we use two homogeneous
ALUs with time 1 cycle and energy consumption 0.5 nJ. There is a
timing constraint L and it must be satisfied for executing thewhole
DFG, including both memory access part and ALU part.

2.2. Retiming and rotation scheduling

Static schedule: From the cyclic DFG of an application, we
can obtain a static schedule. A static schedule of a cyclic DFG is
a repeated pattern of an execution of the corresponding loop. In
our work, a schedule implies both assignment and allocation of a
control step. A static schedulemust obey the dependency relations
of the Directed Acyclic Graph (DAG) portion of the DFG. The DAG
is obtained by removing all edges with delays in the DFG. Fig. 2 (a)
shows the corresponding static schedule to Fig. 1(a).
Retiming: Retiming [18] is an optimal scheduling technique for
cyclic DFGs considering inter-iteration dependencies. It can be
used to optimize the cycle period of a cyclic DFG by evenly
distributing the delays. Retiming generates the optimal schedule
for a cyclic DFGwhen there is no resource constraint. Given a cyclic
DFG G = 〈U, ED, d, T , E〉, retiming r of G is a function from U to
integers. For a node u ∈ U , the value of r(u) is the number of delays
drawn from each of incoming edges of node u and pushed to all of
the outgoing edges. Let Gr = 〈U, ED, dr , T , E〉 denote the retimed
graph of G with retiming r, then dr(ed) = d(ed)+ r(u1)− r(u2) for
every edge e(u1 → u2) ∈ ED.
Rotation scheduling: Rotation Scheduling [5] is a scheduling
technique used to optimize a loop schedule with resource

http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html
http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html
http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html

548 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
Fig. 2. (a) The static schedule of Fig. 1(a) by removing the edge with delays. (b) The
rotated DFG.

constraints. It transforms a schedule to a more compact one
iteratively in a DFG. Inmost cases, theminimal schedule length can
be obtained in polynomial time by rotation scheduling. Fig. 2(b)
shows an example to explain how to obtain a new schedule
via rotation scheduling. We use the schedule generated by list
scheduling from Fig. 1(a) as an initial schedule. List scheduling
makes an ordered list of processes by setting the priority of a node
as the longest path from this node to a leaf node [23], and then
repeatedly executing the following two steps until a valid schedule
is obtained: (1) select from the list, the process with the highest
priority for scheduling, (2) select a resource to accommodate this
process. We get a set of nodes at the first row of the schedule
(in this case, it is {A}); and we rotate node A down. The rotated
graph is shown in Fig. 2(b).

2.3. Variable partition and variable independence graph (VIG)

Variable partition [42,33] is an important method to improve
the data locality. Different variable partitions may significantly
affect the schedule length and energy consumption of an
application. In order to properly partition variables, we use VIG
(Variable Independence Graph) to expose all parallel memory
accesses in a DFG [42]. The nodes of the graph represent variables,
and the edges in the graph represent potential parallelism existing
among the memory accesses for these variables.

Definition 2.2. A VIG is an undirected weighted graph Gv =
〈U, ED, w〉, where U is a set of nodes representing variables, and
ED ⊆ U × U is a set of edges connecting between nodes
in U , whose memory operations can be executed in parallel
potentially. Functionw(u1, u2)maps from ED to a set of real values
representing a priority of partitioning nodes u1 and u2 to different
memory banks of an edge u1 → u2 ∈ ED, u1, u2 ∈ U .

In order to capture the tradeoff between the desire of
parallelism and that of serialism, Wang et al. [33] used two lists
of weights. One is the list of possibility weights, which is proposed
by Zhuge et al. [42] and referred as parallelismweights. The second
is the list of weights that is referred as serialism weights. The goal
of introducing the serialism weights is to model the possibility of
serializing a pair of operations without sacrificing performance. In
this paper, we use both parallelism weights and serialism weights
to build a VIG.
For example, assume there are two memory banks and two

ALUs. Both banks are of type 1 (2, 10). Fig. 3(a) shows the schedule 1
with B and C in different banks. Thus, we can fully take advantage
of parallelism by assigning variable B to M1 and variable C to M2
at the same time unit 4 and 5. The schedule length is only 9. When
we group B and C into the same bank, then the schedule length
changes to be 11. In this case, we must use B and C in serial,
and cannot take advantage of the parallelism. The corresponding
schedule 2 is shown in Fig. 3(b). Therefore, it is apparent that
variable partition will affect the schedule length and the total time
and energy consumption for the DFG of an application.
In the following, we introduce some important concepts that

will be used in constructing a complete VIG. During the graph
construction, we will be particularly interested in some memory
operation pairs that help us identify the parallel memory accesses.
We call them ‘‘independent pairs’’. For example, the nodes B and C
in Fig. 1(a) are independent pairs.

Definition 2.3. Given DFG G = 〈U, ED, T , E〉, if nodes u1, u2 ∈ U ,
are not reachable from each other through any path without delay
in G, nodes u1 and u2 are independent pairs.

Below, we will introduce the concept of the mobility window.
Given a DFG G = 〈U, ED, T , E〉, amobility window [23] of node u ∈
U , which is denoted by MW (u) in this paper, is a set of time units
in a static schedule by which node u can be placed. The first time
unit where the node u can be scheduled is determined by as soon
as possible (ASAP) scheduling, and the last control step by which
node u can be scheduled is determined by as late as possible (ALAP)
scheduling with the longest path as a time constraint. Mobility
window gives the earliest and the latest position in which a node
can be scheduled. Note that the overlap of mobility windows
of two nodes indicates the possibility that the nodes could be
scheduled in the same time unit. The mobility property of a node
in a schedule is very important in improving the preciseness in the
graph construction.
In the following, we define the priority function of an edge

in VIG based on mobility windows of two parallel memory
accesses. We use the cardinality of mobility window overlap to
denote the possible occurrences of parallel operations and use
the multiplication of the cardinalities of two mobility windows to
denote all arrangements of two nodes in a schedule. We define the
variable partition problem as follows:

Definition 2.4. Given a VIG Gv = 〈U, ED, w〉, and let n to be the
number of partitions required, the variable partitioning problem is
to partition U into n disjoint sets P1, P2, . . . , Pn, such that the total
w(u, v), ∀u ∈ Pi, ∀v ∈ Pj, ∀i, j = 1, . . . , n, is maximum.

AVIG can be built in variousways, depending onhowaccurately
the graph conveys the potential memory access parallelism in
the program. Different graph constructions can lead to different
variable partitioning results. For the variable partitioning problem
that aims to produce a shorter schedule, the accuracy of the VIG
is limited by the unknown positions of the memory operations
in the schedule. We build a history table and use profiling to
predict unknown positions of the memory operations [25,36]. We
would like to provide a complete and accurate view for variable
partitioning as much as possible, but on the other hand, we also
would like to maintain the flexibility so that the partitioning
process can work with different scheduling algorithms. The
intricacy of building the graph model for the variable partitioning
problem is how to keep certain level of accuracy of the parallelism
and still have a graphworking for the variable partitioning problem
in an effective way. We first give two intuitive ways to build the
initial VIG graph.
Construction of VIG-1: Given DFG G = 〈U, ED, T , E〉, if there exists a
pair ofmemory operation nodes u and v that are independent pairs
in G, then there is an edge (u, v) in the VIG.

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 549
Fig. 3. (a) Schedule 1 with B and C in different banks. (b) Schedule 2 with B and C in the same bank.
Fig. 4. (a) ASAP schedule. (b) ALAP schedule. (c) Memory operation mobility graph.
Construction VIG-2: Given DFG G = 〈U, ED, T , E〉, if there exists a
pair of memory nodes u and v that are independent pairs in G, and
MW (u) ∩MW (v) 6= ∅, then there is an edge (u, v) in the VIG.
The construction of the VIG graph is based on the DFG

representation of an application. From the DFG representation of a
program, one can readily derive both the ASAP andALAP schedules,
considering the constraints of computation units. Let the control
steps of a memory operation, a, be ts(a) and tl(a) according to
ASAP and ALAP, respectively. The mobility, that is, the scheduling
freedom of a, defined as [ts, tl], represents the time interval in
which a can be scheduled without introducing additional delay.
Only when the mobilities of two memory operations have some
overlap may parallelizing the two corresponding variables be
beneficial, in terms of improving performance. Clearly, the larger
the overlap between two mobilities, the higher the potential of
the two variables being able to be parallelized. If the mobilities
of two operations are both small and their overlap is relatively
large, parallelizing the corresponding variables is more likely to
improve the schedule length. In other words, if such variables
are put in the same bank, accessing the two variables is forced
to be sequentialized, which is very likely to increase the overall
schedule length. Zhuge et al. [42] assigned a possibility weight
defined below to an edge to model this property.
We compute the possibility weight as follows: given two

memory operations, a and b, let their mobilities be [ts(a), tl(a)]
and [ts(b), tl(b)], and the maximum overlap between these two
mobilities be the interval [t1, t2], the possibility weight assigned to
the edge between the two variables accessed in operations a and b
is t2−t1+1

(tl(a)−ts(a)+1)(tl(b)−ts(b)+1)
.

For example, in Fig. 4(a), for theDFG in Fig. 1(a), we compute the
mobility of each variable by using the ASAP and ALAP schedules
of the DFG. Then we depict the ALSP schedule in Fig. 4(b). After
computing the mobility of each variable, we draw the mobility
graph in Fig. 4(c). For instance, variables B and C have MW (B) =
[3, 3] and MW (C) = [3, 3]. B and C are independent pairs in VIG,
using construction of VIG-1. Base on construction of VIG-2 and the
possibility weight computation formula shown above, we get: the
weight of the pair (B, C) is 1 and there is an edge (B, C) in VIG
graph. There is no edge between the twonodes of pairs (A, B), (A, C),
(D, B), and (D, C).

2.4. Heterogeneous multi-bank type assignment problem

An assignment A is a function from domain U to range R, where
U is the node set and R is the type set. For a node u ∈ U , A(u)
provides the selectedmode of node u. In a DFGG, TRj(u), 1 ≤ j ≤ M ,
represents the execution times of each node u ∈ U when running
with type Rj; For each type Rj with respect to node u, there is a
set of Ei, which is the energy consumption of each node in DFG.
ERj(u), 1 ≤ j ≤ M , is used to represent the energy consumption
of each node u ∈ U on mode Rj, ERj(u) =

∑
Ei, which is a fixed

value. Given an assignment A of a DFG G, we define the system total
energy consumption under assignment A, denoted as EA(G), to be the

550 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
Table 1
The results of Type_Assign for the DFG in Fig. 1(a).

Time 9 10 11 12 14 16 18
Energy 42 35 28 14 12 10 6

summation of energy consumption, EA(u)(u), u ∈ U , of all nodes,
that is, EA(G) =

∑
u∈U EA(u)(u). In this paper, we call EA(G) total

energy consumption in brief.
Define the (Heterogeneous Multi-Bank Type Assignment) prob-

lem as follows: Given M different types: R1,R2,· · ·,RM , a DFG G =
〈U, ED, T , E〉 with TRj(u) and ERj(u) for each node u ∈ U executed
on each type Rj, a timing constraint L, find a type assignment A us-
ing only K types to give theminimumenergy consumption E under
timing constraint L.

3. Motivational example

In this section, we continue the example in Fig. 1(a) and give the
final solution by using the proposed algorithm.
Based on precedence relations in Fig. 1(a) and the variable

partition information, we know that B and C should be placed in
different banks. Then, we perform type assignment to minimize
total energy consumption under different timing constraints L.
For instance, under the timing constraint of 11 cycles, the type
assignment for memory operations is: A, B in one bank with
type 1(2, 10) and C,D in another bank with type 2(3, 3). The total
time required for the memory part is 8 cycles, and the total energy
consumption is 26 nJ. Adding up the ALU part, which requires a
total time of 3 cycles and energy 2 nJ, the total time is 11 cycles and
the total energy is 28 nJ. The detail schedule is shown in Fig. 5(a).
For the homogeneous situation (i.e. when only one memory type
is allowed) we can choose type 1(2, 10), since the total time
cannot satisfy the timing constraint of 11 cycles with type 2 or
3. The detail schedule with homogeneous memory (type 1(2, 10))
is shown in Fig. 5 (b). The total energy is 42 nJ. Compared with
the heterogeneous memory type solution 28 nJ, the energy saving
is 33.3%.
For the example shown in Fig. 1, we obtained different

minimum energy consumptions while satisfying different timing
constraints by using our algorithm. The results are shown in
Table 1. In this example, the detail of inputs for Table 1 is described
in Section 2.1. Only 2 banks are available, i.e., can be accessed at the
same time. There are 3 types of banks to chose from andwe can use
only a maximum of 2 bank types. The memory types are shown
in Fig. 1(b). In Table 1, ‘‘Time’’ represents total time spent and
‘‘Energy’’ represents total energy consumption of the DFG. There is
only a total of seven solutions under different timing constraints.

4. The algorithms

In this section, an algorithm, TASL (Type Assignment and
Scheduling for Loops), is designed to solve the problem of
minimizing total energywithout sacrificing performance.We need
to overcome several challenges. First, for VIG design, we want to
keep a certain level of accuracy of the parallelism and still have
a graph working effectively for the variable partition problem. In
order to tackle the problem, we build a VIG with both serial and
parallel variable partition weights for each node. Second, after
obtaining the serial and parallel variable partition weights for
each node, we need to find an effective way to place all nodes
into different memory banks. This problem is addressed by the
algorithm TASL_ δ, which is an empirical method, to decide the
nodes that need to be placed into different banks. Third, we need
to fully exploit the parallelism of the memory architecture. For
that purpose, a novel algorithm, Type_Assign, is proposed to assign
suitable bank types to different nodes in order tominimize the total
energy consumption while satisfying timing constraints. Fourth,
we need to compute the configuration of the bank types and
minimize required resources. We schedule memory and ALU by
using Minimum Resource Scheduling and Configuration algorithm.
Finally, to further improve the result obtained from all previous
steps, we use loop scheduling to improve the scheduling and
assignment by rescheduling nodes repeatedly.

4.1. The TASL algorithm

The TASL algorithm is shown in Fig. 6. In this algorithm, we first
put all nodes in the first rowof S into setUr . Thenwedelete the first
row of S and shift S up by one control step. After that, we retime
each node u ∈ Ur such that r(u) ← r(u) + 1. Then based on the
precedence relation in the retimed graph Gr , we rotate each node
u ∈ Ur by putting u into the earliest location. After all nodes in Ur
are scheduled, we build the scheduling graph. Based on Fig. 1(a),
we obtained the variable partition weights by building VIG graph.
Then we put nodes into different memory banks by algorithm
TASL_ δ, which will be described in the following section. Next,
Type_Assign algorithm is used to find the type assignments with at
most K types ofmemory and P types of ALUwhile satisfying timing
constraint L. Finally, we do memory and ALU scheduling using
Minimum Resource Scheduling and Configuration algorithm. The
outputs include minimum energy consumption, corresponding
assignment, and minimum resource scheduling.
TASL algorithm has combined several novel techniques to

explore the heterogeneous type memory bank and ALU: First,
we propose a novel Type_Assign algorithm, which use dynamic
programmingwith the consideration of variable partition weights.
Second, VIG graph has been built to obtain variable partition
weights. Third, loop scheduling has been used to achieve the
optimal results. Third,we consider heterogeneous type assignment
and minimum resource scheduling and configuration for both
memory and ALU.

4.2. The algorithm TASL_δ

In each iteration of TASL algorithm, we first build VIG graph
for variable partition and find both serial and parallel variable
partition weights. Then, use dynamic programming Type_Assign
to get assignments with at most K types of memory with
the consideration of variable partition weight for memory part.
Between these two steps, we need to decide which node in the
DFG needs to consider variable partition weights. Assume there
are totally N nodes in the DFG. There are δ ∗ N nodes need to
consider variable partition weights, where δ is a constant value
decided by experiments through trials and errors. This means that
δ is obtained by empirical study. For example, for one kind of test
benchmark, we try 10 different δ values, compare the results of
performance. Then select the δ value corresponding to the best
performance. We do it several times and get the empirical value
of δ.
Below we give the algorithm TASL_ δ to decide the nodes that

need to put into different banks, which is shown in Fig. 7. We
use a combined weight functionW to compute the overall weight.
For example, W (ai) = α ∗ Si + β ∗ Pi, where Si is the serialism
weight [33] of node ai and Pi is the parallelism weight [42] of node
ai. Here, α and β are obtained by empirical study and they satisfy
the constraint: α + β = 1.

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 551
Fig. 5. (a) The best schedule of Type_Assignusing twomemory typeswith timing constraint 11. (b) The best schedule of using only onememory typewith timing constraint 11.
Fig. 6. TASL Algorithm.
Fig. 7. Algorithm TASL_ δ to decide the nodes that need to put into different banks.

552 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
Fig. 8. (a) Example of Rule 1. (b) Example of Rule 2. (c) Example of Rule 3.
4.3. Definitions and lemma of Type_Assign

To solve the type assignment problem for a certain schedule
S, we use dynamic programming method traveling the graph in a
bottomup or top down fashion. For the ease of explanation,wewill
index the nodes based on bottom up sequence.
We first give an example to illustrate our approach. Fig. 8 shows

a DFG with four nodes, A, B, C and D. The bank types are identical
to the bank types shown in Fig. 1(b). Only 2 banks are available,
i.e., can be accessed at the same time. There are 3 types of banks to
chose from and we can use only a maximum of 2 types of banks.
Using the bottom up approach, we start from node D, then move
to B and C, and finally we arrive at node A.
If we get a sequence (2, 10)(3, 3)(5, 1) for nodes D, B, and

C, we will discard this sequence. In this scenario, three memory
types are required, but there are only twomemory types available.
We summarize this scenario (which is shown in Fig. 8(a)) into a
cancellation rule, i.e., Rule 1, which will be shown in later part.
Based on the variable partition, we know that B and C should be

assigned to different banks. If B and C are assigned to same bank
type i, since B and C must be in different banks, two banks have
been used. Then node Dmust also be in type i because only 2 banks
are available. Therefore, B and C are not allowed to be in the same
type i unless D is also in the type i. For instance, if we get a sequence
(2, 10)(3, 3)(3, 3), it will be deleted. On the other hand, wewill keep
the sequence (3, 3)(3, 3)(3, 3). The scenario is shown in Fig. 8(b) and
we summarize it into Rule 2.
In Fig. 8(c), in order to arrive at node A, we can go through D, B,

C, A or D, C, B, A. If we get two sequences (2, 10)(3, 3)(2, 10) and
(2, 10)(2, 10)(3, 3), we only need to keep one sequence. Since they
are symmetric and there is no difference for the final solution. We
summarize this scenario as symmetric rule, i.e., rule 3, which will
be shown in later part.
Then we formalize our approach. Given the timing constraint

L, a DFG G, and an assignment A, we give several definitions as
follows:

(1) The function from domain of variable to range of bank type is
defined as Bank(). For example, ‘‘Bank(A) = type 1’’ means the
bank type of variable A is type 1.

(2) Gi: The sub-graph rooted at node ui, containing all the nodes
reached by node ui. In our algorithm, each step will add one
node which becomes the root of its sub-graph.

(3) EA(Gi) and TA(Gi): The total energy consumption and total
execution time of Gi under the assignment A. In our algorithm,
each step will achieve theminimum total energy consumption
of Gi under various timing constraints.

(4) In our algorithm, table Di,j will be built. Here, i represents
a node number, and j represents a timing constraint. Each
entry of table Di,j will store energy consumption Ei,j and its
corresponding linked list. Here we define Ei,j as follows: Ei,j is
the minimum energy consumption of EA(Gi) computed by all
assignments A satisfying TA(Gi) ≤ j. The linked list records the
type selection of all previous nodes passed, fromwhich we can
trace back how Ei,j is obtained.

We have the following lemma about energy consumption
cancellation with the same timing constraint.

Lemma 4.1. Given E1i,j and E
2
i,j with the same timing constraint, if

E1i,j ≥ E
2
i,j, then E

2
i,j will be kept.

In each step of dynamic programming, we have several rules
about cancellation of redundant energy consumption and its
corresponding linked list.

(1) Rule 1: If the number of memory types greater than K or
the number of ALU types greater than P , then discard the
corresponding energy consumption and linked list.

(2) Rule 2: If two siblings a and b, i.e., children of same node, are
not allowed to be same type, i.e., Bank(a) 6= Bank(b), in variable
partition, and Bank(a) = Bank(b) in assignment, then discard
the corresponding E and linked list, except the scenario that
all the nodes till now are in the same type, i.e., ∀u, v ∈ G,
Bank(u)= Bank(v).

(3) Rule 3: If two siblings a and b are just exchanged their types
and other nodes are same in type assignment for the two
corresponding linked lists, i.e., Bank(a) = Bank(b) then only
keep one E and its corresponding linked list.

In every step of our algorithm, one more node will be included
for consideration. The data of this node is stored in local table Bi,j,
which is similar to table Di,j, but with energy consumption only
on node ui. A local table stores only data of energy consumption
of a node itself. Table Bi,j is the local table only storing the energy
consumption of node ui. Ei,j is the energy consumption only for
node ui with timing constraint j. The algorithm to compute Di,j is
shown in Fig. 9.

4.4. The Type_Assign algorithm

Algorithm Type_Assign is shown in Fig. 10.Without loss of gene-
rality, we assume that bottom up approach is used. Algorithm
Type_Assign gives the near-optimal solution when the given DFG
is a DAG. In step 6, Di1,j + Di2,j is computed as follows. Let G

′ be
the union of all nodes in the graphs rooted at nodes ui1 and ui2 .
Travel all the graphs rooted at nodes ui1 and ui2 . If a node q in G

′

appears for the first time, we add the energy consumption of q to
D′i,j. If q appears more than once, that is, q is a common node, we
only count it once. That is, the energy consumption is just added
once. The final DN,j we get is the table in which each entry has the
minimum energy consumption under the timing constraint j.
In the following, we give the Theorem 4.1. about this.

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 553
Fig. 9. Algorithm to compute Di,j for a simple path.
Fig. 10. Type_Assign Algorithm.
Theorem 4.1. For each Ei,j in Di,j (1 ≤ i ≤ N) obtained by algorithm
Type_Assign, Ei,j is the minimum total cost for the graph Gi under
timing constraint j.

Proof. By induction. Basic Step:When i = 1, there is only one node
and D1,j = B1,j. Thus, when i = 1, Theorem 4.1 is true. Induction
Step: We need to show that for i ≥ 1, if for each Ei,j in Di,j, Ei,j
is the minimum total energy consumption of the graph Gi, then
for each Ei+1,j in Di+1,j, Ei+1,j is the total energy consumption of
the graph Gi+1 under timing constraint j. According to the bottom
up approach (for top down approach, just reverse the sequence),
the execution of Di,j for each child node of vi+1 has been finished
before executing Di+1,j. From step 5, D′i+1,j gets the summation of
the minimum total energy consumption of all child nodes of ui+1
because they can be executed simultaneously within time j. We
avoid the repeat counting of the commonnodes. Hence, each nodes
in the graph rooted by node ui+1 was counted only once. From
step 7, the minimum total energy consumption is selected from all
possible energy consumption caused by adding ui+1 into the sub-
graph rooted on ui+1. So for each Ei+1,j in Di+1,j, Ei+1,j is the total

554 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
Fig. 11. Algorithm Lower_Bound_RC.
Fig. 12. Algorithm Min_RC_Scheduling.
energy consumption of the graph Gi+1 under timing constraint j.
Therefore, Theorem 4.1 is true for any i (1 ≤ i ≤ N). �

4.5. The minimum resource scheduling and configuration

We have obtained type assignment with at most K types
of memory banks and P types of ALU. Then we will compute
the configuration of the types and give the corresponding
schedule which consumeminimum energywhile satisfying timing
constraint. We propose minimum resource scheduling algorithms
to generate a schedule and a configuration which satisfies our
requirements. We first propose Algorithm Lower_Bound_RC that
produces an initial configuration with low bound resource. Then
we propose Algorithm Min_RC_Scheduling that refine the initial
configuration and generate a schedule to satisfy the timing
constraint.
Algorithm Lower_Bound_RC is shown in Fig. 11. In the algorithm,
it counts the total number of every type in every time unit in the
ASAP (As Soon As Possible) and ALAP (As Late As Possible) schedule,
respectively. Then the lower bound for each bank type is obtained
by the maximum value that is selected from the average resource
needed in each time period. For example, for the Fig. 1(a), after
using Lower_Bound_RC, we find that the lower bound of ALU is 1,
and the lower bound of memory is also 1.
Using the lower bound of each type as an initial configuration,

we propose an algorithm, Algorithm Min_RC_Scheduling, which is
shown in Fig. 12, to generate a schedule that satisfies the timing
constraint and get the finial configuration. In the algorithm,we first
compute ALAP(v) for each node v, where ALAP(v) is the schedule
step of v in theALAP schedule. Thenweuse a revised list scheduling
to perform scheduling. In each scheduling step, we first schedule
all nodes that have reached the deadlinewith additional resource if

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 555
Fig. 13. The comparison of total energy consumption with Method 1, Method 2, VPIS, and TASL while satisfying timing constraint L = 2000 for various benchmarks.
necessary and then schedule all other nodes – as many as possible
– without increasing resource. For example, for the Fig. 1(a), after
using Min_RC_Scheduling, we find that only one ALU and two
memory (one is type 1, the other is type 2) are needed.
Algorithms Lower_Bound_RC and Min_RC_Scheduling both take

O(|U| + |ED|) to get results, where |U| is the number of nodes and
|ED| is the number of edges for a given DFG. The complexity of
algorithm TASL isO(R∗|V |∗L∗M), where R is the rotation time and
we set it as 10∗|V |. |V | is the number of nodes, L is the given timing
constraint, M is the number of bank types. When L equals O(|V |c)
(c is a constant) which is the general case in practice, algorithm
TASL is polynomial.

5. Experiments

5.1. Experimental setup

In our experiments, we implement our TASL algorithm in the
SPAM compiler environment [29] to replace the simulated anneal-
ing algorithm [30] originally used by (http://www.idiom.com/free-
compilers/TOOL/SPAMComp-1.html) the Princeton project. We
conduct experiments with our algorithm on a set of benchmarks
includingWaveDigital filter (WDF), Infinite Impulse filter (IIR), Dif-
ferential Pulse-Code Modulation device (DPCM), Two dimensional
filter (2D), Floyd-Steinberg algorithm (Floyd), and All-pole filter.
The proposed runtime system has been implemented and a sim-
ulation framework to evaluate its effectiveness has been built. M
different memory bank types, B1, . . . , BM , are used in the system,
in which type B1 is the quickest with the highest energy consump-
tion and type BM is the slowest with the lowest energy consump-
tion. We set the energy consumption of memory access operation
as 2.20 nJ [16,28], and theALU energy consumption as 0.65 nJ based
on 180 nm process. The leakage energy is negligible due to the
small size ofmemory andALUoperation circuits [22,33]. Themem-
ory size of each memory bank is 32 KB.
We conduct experiments on four methods: Method 1: uniform

type + list scheduling; Method 2: exhaustive type assignment
+ list scheduling; Method 3: the VPIS in [33]; Method 4: our
TASL algorithm. In Method 1, there is only one memory bank
type, the type is the one with minimum energy consumption,
i.e., type BM . Based on homogeneous type, we do list scheduling. In
Method 2, there are heterogeneous types. First we fix the type of
each memory, then do list scheduling. After that, we assign other
type to each memory and repeat again until we exhaust all type
assignment. Then find the type assignment with minimum energy
consumption. In the list scheduling, the priority of a node is set as
the longest path from this node to a leaf node [23].
In the experiments, we unfold all the benchmarks 20 times,

which means the number of nodes increases 20 times. The largest
benchmark 2D(1) originally has only 34 nodes. After unfolding
20 times, the benchmark has 680 nodes. The number of nodes
of the benchmarks is as the following: 2D(1) [680], WDF(1) [80],
WDF(2) [240], IIR [320], DPCM [320], All-pole [380], Floyd [320],
MDFG2 [160], MDFG1 [160], 2D(2) [80]. We set the rotation times
as 10 ∗ |V |, where |V | is the number of nodes in the DFG.

5.2. Experimental results

The experimental results for the four methods are shown in
Figs. 13–15. In Fig. 15, the number of ALU is 5 and there are
5 memory types and 4 memory banks. The X-axis represents
the name of each benchmark. The Y-axis represents the energy
consumption ‘‘Energy(nJ)’’. For each benchmark,wehave four data,
which represents the the minimum total energy consumption
obtained from three different scheduling algorithms: Method 1
(Field ‘‘Method 1’’), Method 2 (Field ‘‘Method 2’’), VPIS [33]
(Field ‘‘VPIS’’), and our TASL algorithm (Field ‘‘TASL’’).
The results show that our algorithm TASL can significantly

improve the performance of DSP processors. We can see that
with more type-selections, the reduction ratio for the total energy
consumption has increased. For example, with 3 types of both
memory andALU, comparedwithVPIS [33], TASL shows an average
16.2% reduction in total energy consumption. Using 5 types of
ALU and memory, the reduction rate changed to be 18.8% for
total energy consumption. It is worthwhile pointing out that we
obtain this improvement ratio without increasing the code size of
applications. Experimental results show that the performance of
our algorithm is improved with the increment of number of cores
since the degree of parallel has been increased. The experimental
results show that when the number of processors increases, the
percentage of reduction on total energy increases correspondingly.
The reasons why our algorithm is better than Method 2 are as

follows. First, Method 2 does not consider variable partition under
each fixed type assignment. Second,minimumresource scheduling
and configuration algorithm has been used to improve the final
performance. TASL also achieved significantly better results than

http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html
http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html
http://www.idiom.com/free-compilers/TOOL/SPAMComp-1.html

556 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
Fig. 14. The comparison of total energy consumption with Method 1, Method 2, VPIS, and TASL while satisfying timing constraint L = 3000 for various benchmarks.
Fig. 15. The comparison of total energy consumption with Method 1, Method 2, VPIS, and TASL while satisfying timing constraint L = 4000 for various benchmarks.
that of VPIS [33], because it fully exploits the heterogeneousmulti-
bank memory architecture and uses loop scheduling to further
optimize the performance and energy saving.
The results show that the rotation times to generate the best

schedule is less than 1∗|V | and close to the times when all nodes
have been rotated one time. The complexity of algorithm TASL
is O(R ∗ |V | ∗ L ∗ M), where R is the rotation time and we set
it as 10∗|V |. L is the given timing constraint, M is the number
of bank types. In the experiments, the running time of TASL on
each benchmark is less than 30 min. We compare TASL with the
algorithm DFG_Assign_CP in Shao et al.’s paper [27], which always
pick the node with the minimal ratio (between increased cost
and reduced time) among all nodes with all possible unmarked
types in the critical path. The experimental results show that
our scheduling time is similar to DFG_Assign_CP but the result is
significantly better than it. Algorithm DFG_Assign_CP needs about
20 min in average, but the performance of it is 25.6% lower than
that of our approach in average.
In conclusion, our algorithm has several main pros: First, we

study the combined effects of energy saving and performance of
memory and ALU in a systematic approach. Second, we exploit
the energy saving with type assignment and minimum resource
scheduling for both memory and ALU. Third, to the best of
our knowledge, our paper is the first to consider the combined
effect of both energy and performance with heterogeneous multi-
bank memory. Fourth, we obtain the best results by rescheduling
nodes repeatedly based on loop scheduling. Fifth, we improve
the heterogeneous scheduling and assignment for both ALU and
memory simultaneously.

6. Related work

Heterogeneous multi-bank memory: To improve the overall
performance, many DSPs employ Harvard architecture, which
provides simultaneous accesses to separate on-chipmemory banks
for instructions and data [12,1,31,13]. Some DSP processors are
further equipped with multi-bank memory that are accessible in
parallel, such as Analog Device ADSP2100, Motorola DSP56000,
NEC uPd77016, and Gepard Core DSPs [12,13,19,33]. Harvesting
the benefits provided by the multi-bank memory architecture

M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558 557
hinges on sufficient compiler support. Parallel operations afforded
by multi-bank memory give rise to the problem of how to
maximally utilize the instruction level parallelism. To the best of
our knowledge, we are the first to consider the combined effect
of both energy and performance with heterogeneous multi-bank
memory model.
Variable Partition: Some previous work on the variable partition-
ing problem introduced in [19,26] tries to solve the variable par-
titioning problem on dual memory banks by using an interference
graph. For most benchmarks used in our experiments, the variable
partitioning results based on the interference graph model gives
a longer schedule length. One of the limitations of the interfer-
ence graphmodel is that it can only be applied to a directed acyclic
graph (DAG), where parallelism across the loop body from differ-
ent iterations is not explored. The second problem with the inter-
ference graph is that it does not incorporate sufficient information
for a schedule to exploit the potential parallel memory accesses.
Other dual-bank variable partitioning techniques in previous work
are restricted to some specific architecture such as Motorola DSP
processors [30].
Previous related work on operation parallelism can be roughly

divided into two main categories: those that use compacted
intermediate code as the starting point [26,20,8,30]. and those
that start with uncompacted intermediate code [19,42]. Compacted
intermediate code refers to the intermediate code that is compacted
or scheduled by some heuristics such as list scheduling, to increase
the instruction level parallelism without considering the data
dependency. Since scheduling is done prior to exploring memory
bank assignments, it is obvious that some memory-operation-pair
combinations may be left out of consideration, no matter which
heuristic is used to compact the code. Thus, the approaches in the
first category often fail to exploitmany optimization opportunities.
Techniques in the second category overcome this problemby using
the uncompacted code to explore all possible pairs of memory
operations as long as there are no dependencies between them.
Therefore, we adopt the same philosophy as these techniques, that
is, starting with the uncompacted code.
Given a program represented by a data flow graph (DFG), an

undirected graph can be constructed to model the relationship
among the variables in the program. The nodes in the graph
represent all the local variables stored in memory. Partitioning the
nodes in the graph into different groups then leads to partitioning
the corresponding variables to different memory banks.
The effectiveness of such an approach relies on modeling

edge weights properly to capture all relevant information. A
straightforward way of assigning edge weights is to connect two
nodes with an edge of weight 1 if the two corresponding variables
do not have data dependencies and the memory operations
involving the variables can potentially overlap [19]. The reason
is that accessing such two variables in parallel may decrease the
schedule length. However, such potential parallelism may not
always be realizable due to certain timing constraints on the
associated memory operations.
Zhuge et al. [42] introduced the concept of possibility weight

to capture the likelihood of parallelizing pairs of instructions. The
model does improve on the simple graph model above, but it still
has some deficiencies. One deficiency of the possibility weight
model is associated with simple summation of the possibility
weights mentioned earlier. Another problem with the possibility
weight model is that it does not distinguish mobility overlaps
within a single mobility range from those in different mobility
ranges. Wang et al. [33] exploit serialism in instruction execution
to trade off performance for energy savings. They use two lists
to describe the edge weight in the graph model. By introducing
one more dimension to the graph edge weight, they can capture
the serialism information among operations and overcome the
deficiencies of previous models.
Heterogeneous scheduling and assignment: Heterogeneous
assignment of special purpose architectures for real-time DSP
applications has become a common and critical step in the
design flow in order to satisfy the requirements of stringent
timing constraint [6,15,37,5]. DSP applications need special high-
speed functional units (FUs) like adders and multipliers to
perform addition and multiplication operations [27]. Energy-
saving task scheduling in multi-FU DSP systems has been mostly
on homogeneous multiprocessors [7,2,41], few results considered
heterogeneous systems in energy-saving real-time task scheduling
[40,21,27]. Among the work for heterogeneous multi-FU DSP
systems, Yu and Prasanna [40] considered the minimization of
energy consumption for systems. The proposed algorithm is based
on the Integer Linear Programming (ILP) without guarantees on
the final solution. Luo and Jha [21] proposed list scheduling based
heuristics for the scheduling of real-time tasks in heterogeneous
distributed systems. However, little existing work for energy-
saving scheduling in heterogeneous multi-bank memory provides
guarantees on the energy consumption.

7. Conclusion

In this paper, we studied the scheduling and assignment
problem that minimizes the total energy without sacrificing
performance on heterogeneous multi-bank memory and multi-
type ALU. We proposed a highly efficient algorithm, namely
TASL (Type Assignment and Scheduling for Loops), to minimize
energy consumption with heterogeneous multi-bank memory for
applications with loops in particular. TASL achieved a significant
energy-saving using a novel type assignment and scheduling
approach with the consideration of variable partition, and
rescheduling nodes repeatedly based on loop scheduling. A wide
range of benchmarks have been tested and the experimental
results showed that our algorithm significantly improved both the
energy-saving and performance for applications on heterogeneous
multi-bank memory.

Acknowledgments

This work is partially supported by NSF CCR-0309461, NSF
IIS-0513669, HK CERG 526007 (HK PolyU B-Q06B), City U of
HK [Project No. 7200106], and NSFC 60728206, 60811130528,
60725208, 60533040, 60504024 and 60874050; National High-
Tech Research and Development Plan of China (863 Plan) under
Grants 2008AA01Z106 and 2006AA01Z202, Shanghai Pujiang Plan
No. 07pj14049; Zhejiang Provincial NSFC Y106010.

References

[1] ADSP-21 000 Family Application Handbook, vol. 1, Analog Devices, Inc.,
Norwood, MA, 1994.

[2] H. Aydin, R. Melhem, D. Mosse, P. Alvarez, Dynamic and aggressive scheduling
techniques for power aware real-time systems, in: IEEE RTSS, London, UK, Dec.
2001.

[3] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,
IEEE Transactions on Parallel and Distributed Systems 15 (4) (2004) 319–330.

[4] F. Catthoor, S.Wuytack, E.D. Greef, F. Balasa, L. Nachtergaele, A. Vandecappelle,
CustomMemoryManagement Methodology—Exploration of Memory Organi-
zation for EmbeddedMultimedia SystemDesign, Kluwer Academic Publishers,
1998.

[5] L.-F. Chao, A. LaPaugh, E.H.-M. Sha, Rotation scheduling: A loop pipelining
algorithm, IEEE Transactions on Computer-Aided Design 16 (1997) 229–239.

[6] L.-F. Chao, E.H.-M. Sha, Static scheduling for synthesis of DSP algorithms on
various models, Joural of VLSI Signal Processing 10 (1995) 207–223.

[7] J.-J. Chen, T.-W. Kuo, Multiprocessor energy-efficient scheduling for real-time
tasks with different power characteristics, in: IEEE ICPP, Oslo, Norway, Jun.
2005.

[8] J. Cho, Y. Paek, D. Whalley, Efficient register and memory assignment for non-
orthogonal architectures via graph coloring andMST algorithms, in: ACM Joint
Conf. LCTES-SCOPES, Berlin, Germany, Jun. 2002, pp. 130–138.

558 M. Qiu et al. / J. Parallel Distrib. Comput. 69 (2009) 546–558
[9] V. Delaluz, M. Kandemir, I. Kolcu, Automatic data migration for reducing
energy consumption in multi-bank memory systems, in: DAC, New Orleans,
LA, 2002, pp. 213–218.

[10] V. Delaluz, M. Kandemir, A. Sivasubramaniam, M.J. Irwin, Hardware and
software techniques for controlling DRAMpowermodes, IEEE Transactions on
Computers 50 (11) (2001).

[11] A. Dogan, F. Özgüner, Matching and scheduling algorithms for minimizing
execution time and failure probability of applications in heterogeneous
computing, IEEE Transactions on Parallel and Distributed Systems 13 (2002)
308–323.

[12] Dsp56000 24-bit digital signal processor family manual, Motorola, Schaum-
berg, IL, 1996.

[13] GEPARD family of embedded software programmable DSP core,
http://asic.amsint.com/databooks/digital/gepard.htm.

[14] K. Ito, L. Lucke, K. Parhi, ILP-based cost-optimal DSP synthesis with module
selection and data format conversion, IEEE Transactions on VLSI Systems 6
(1998) 582–594.

[15] K. Ito, K. Parhi, Register minimization in cost-optimal synthesis of DSP
architecture, in: Proc. of the IEEE VLSI Signal Processing Workshop, Sakai,
Japan, Oct. 1995.

[16] S. Kim, Reducing ALU and register file energy by dynamic zero detection,
in: IEEE IPCCC, New Orleans, LA, 2007, pp. 365–371.

[17] A.R. Lebeck, X. Fan, H. Zeng, C.S. Ellis, Power aware page allocation, in: ACM
ASPLOS, Cambridge, MA, Nov. 2000.

[18] C.E. Leiserson, J.B. Saxe, Retiming synchronous circuitry, Algorithmica 6 (1991)
5–35.

[19] R. Leupers, D. Kotte, Variable partitioning for dual memory bank DSPs, in: IEEE
ICASSP, Salt Lake City, May 2001, pp. 1121–1124.

[20] M. Lorenz, D. Kottmann, S. Bashfrod, R. Leupers, P. Marwedel, Optimized
address assignment for DSPs with SIMD memory accesses, in: IEEE/ACM ASP-
DAC, Yokohama, Japan, Jan. 2001, pp. 415–420.

[21] J. Luo, N. Jha, Static and dynamic variable voltage scheduling algorithms
for real-time heterogeneous distributed embedded systems, in: IEEE VLSID,
Bangalore, India, Jan. 2002.

[22] C.-G. Lyuh, T. Kim, Memory access scheduling and binding considering energy
minimization in multi-bank memory systems, in: IEEE/ACM DAC, San Diego,
CA, 2004, pp. 81–86.

[23] G.D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill,
1994.

[24] A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, Instruction
scheduling for lowpower, Journal of VLSI Signal Processing 37 (2004) 129–149.

[25] M. Qiu, Z. Jia, C. Xue, Z. Shao, E.H.-M. Sha, Loop scheduling to minimize cost
with data mining and prefetching for heterogeneous DSP, in: PDCS, Dallas,
Nov. 2006.

[26] M. Saghir, P. Chow, C. Lee, Exploiting dual datamemory banks in digital signal
processors, in: ACM ASPLOS, Cambridge, MA, Oct. 1996, pp. 234–243.

[27] Z. Shao, Q. Zhuge, C. Xue, E.H.-M. Sha, Efficient assignment and scheduling
for heterogeneous DSP systems, IEEE Transactions on Parallel and Distributed
Systems 16 (2005) 516–525.

[28] Y. Shimazaki, R. Zlatanovici, B. Nikolic, A shared well dual-supply-voltage
64-bit ALU, IEEE Journal of Solid-State Circuits 39 (3) (2004).

[29] A. Sudarsanam, Code generation libraries for retargetable compilation for
embedded digital signal processors, Ph.D. Dissertation, Princeton Univ.,
Princeton, NJ, 1998.

[30] A. Sudarsanam, S. Malik, Simultaneous reference allocation in code generation
for dual data memory bank ASIPs, ACM TODAES 5 (2) (2000).

[31] TMS320c6000 CPU and Instruction Set Reference Guide, Texas Instruments,
Inc., Dallas, TX, 2000.

[32] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor
systems, ACM Computing Surveys (CSUR) 37 (3) (2005) 195–237.

[33] Z.Wang, X. Hu, Energy-aware variable partitioning and instruction scheduling
for multibank memory architectures, ACM TODAES 10 (2) (2005) 369–388.

[34] Z. Wang, M. Kirkpatrick, E.H.-M. Sha, Optimal two level partitioning and loop
scheduling for hidingmemory latency for DSP applications, in: IEEE/ACMDAC,
Los Angeles, Jun. 2000, pp. 540–545.

[35] Z. Wang, T.W. O’Neil, E.H.-M. Sha, Minimizing average schedule length under
memory constraints by optimal partitioning and prefetching, Journal of VLSI
Signal Processing 27 (2001) 215–233.

[36] Z. Wang, T.W. O’Neil, E.H.-M. Sha, Minimizing average schedule length under
memory constraints by optimal partitioning and prefetching, Joural of VLSI
Signal Processing 27 (2001) 215–233.

[37] C.-Y. Wang, K. Parhi, Resource constrained loop list scheduler for DSP
algorithms, Journal of VLSI Signal Processing 11 (1995) 75–96.

[38] S.Wuytack, F. Catthoor, G.D. Jong, H.D. Man, Minimizing the requiredmemory
bandwidth in VLSI system realizations, IEEE Transactions on VLSI Systems 7
(4) (1999).

[39] W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, The design and use of
simplepower: A cycle-accurate energy estimation tool, in: IEEE/ACM DAC,
Los Angeles, Jun. 2000, pp. 340–345.

[40] Y. Yu, V.K. Prasnna, Power-aware resource allocation for independent tasks in
heterogeneous real-time systems, in: IEEE ICPADS, Taiwan, Dec. 2002.

[41] Y. Zhang, X. Hu, D.Z. Chen, Task scheduling and voltage selection for energy
minimization, in: IEEE/ACM DAC, Anaheim, CA, Jun. 2002. pp. 183–188.

[42] Q. Zhuge, E.H.-M. Sha, B. Xiao, C. Chantrapornchai, Efficient variable
partitioning and scheduling for DSP processors with multiple memory
modules, IEEE Transactions on Signal Processing 52 (4) (2004) 1090–1099.
Meikang Qiu received the B.E. and M.E. degrees from
Shanghai Jiao Tong University, China. He received the M.S.
and Ph.D. degrees of Computer Science from University
of Texas at Dallas in 2003 and 2007, respectively. From
August 2007, he has been an assistant professor of
Electrical and Computer Engineering at University of
New Orleans. He had worked at Chinese Helicopter R&D
Institute, and IBM. He is an IEEE Senior member and has
published 60 papers. He now serves as the Program Chair
of IEEE EmbeddedCom’09. He has been on various chairs
and TPC members for many international conferences,

such as IEEE SEC’08 IEEE CSE’08, IEEE ESO’08, IEEEGlobeCom’08, and IEEE RTCSA’09.
He received Air Force Summer Faculty Award 2009. His research interests include
embedded systems, computer security, and wireless sensor networks.

Minyi Guo received his Ph.D. degree in computer science
from University of Tsukuba, Japan. Before 2008, Dr. Guo
had been a research scientist of NEC Corp., Japan and
a professor at the School of Computer Science and
Engineering, The University of Aizu, Japan. Currently
Dr. Guo is a distinguished chair professor of Dept. of
Computer Science and Engineering, Shanghai Jiao Tong
University, China and an adjunct professor of University
of Aizu. Dr. Guo has published more than 160 research
papers in international journals and conferences. He has
served as general chair, program committee or organizing

committee chair for many international conferences. His research interests include
parallel and distributed processing, parallelizing compilers, pervasive computing,
embedded systems software optimization, and software engineering. He is a senior
member of IEEE, and member of the ACM, IPSJ, CCF, and IEICE.

Meiqin Liu received the B.S. and Ph.D. degrees in
control theory and control engineering from Central
South University, Changsha, China, in 1994 and 1999,
respectively. From 1999 to 2001, she was a postdoctoral
research fellow in Huazhong University of Science and
Technology, Wuhan, China. From 2008 to 2009, she was
a visiting scholar in the University of New Orleans, New
Orleans, LA, USA. She is now a professor of College
of Electrical Engineering, Zhejiang University, Hangzhou,
China. Her research fields are neural network, robust
control, and information fusion.

Chun Jason Xue received B.S. degree in Computer Science
and Engineering from University of Texas at Arlington in
May 1997, and M.S. and Ph.D. degree in computer Science
from University of Texas at Dallas, in Dec 2002 and May
2007, respectively. He is now an Assistant Professor in the
Department of Computer Science at the City University
of Hong Kong. His research interests include memory
and parallelism optimization for embedded systems,
software/hardware codesign for parallel systems and
computer security.

Laurence T. Yang is a professor at Department of Com-
puter Science of St Francis Xavier University, Canada. His
research includes high performance computing and net-
working, embedded systems, ubiquitous/pervasive com-
puting and intelligence. He has published around 300
papers in refereed journals, conference proceedings and
book chapters in these areas. He has been involved in
more than 100 conferences and workshops as a pro-
gram/general/steering conference chair. In addition, he is
the editor in chief of several international journals and few
book series. He has been acting as an author/coauthor or

an editor/coeditor of 25 books. He has won 5 Best Paper Awards and 1 Best Paper
Nomination in 2007; as well as a Distinguished Achievement Award, 2005; Canada
Foundation for Innovation Award, 2003.

Edwin H.-M Sha received Ph.D. degree from the De-
partment of Computer Science, Princeton University,
Princeton, NJ, in 1992. Since 2000, he has been a tenured
full professor in the Department of Computer Science at
the University of Texas at Dallas. He has published more
than 250 research papers in refereed conferences and
journals. He has served as an editor for many journals,
and as program committee and Chairs for numerous in-
ternational conferences. He received Oak Ridge Associa-
tion Junior Faculty Enhancement Award, Teaching Award,
Microsoft Trustworthy Computing CurriculumAward, NSF

CAREER Award and NSFC Overseas Distinguished Young Scholar (B) Award. His web
page can be found at http://www.utdallas.edu/~edsha.

http://asic.amsint.com/databooks/digital/gepard.htm
http://www.utdallas.edu/~edsha

	Loop scheduling and bank type assignment for heterogeneous multi-bank memory
	Introduction
	Basic concepts and models
	Data flow graph
	Retiming and rotation scheduling
	Variable partition and variable independence graph (VIG)
	Heterogeneous multi-bank type assignment problem

	Motivational example
	The algorithms
	The TASL algorithm
	The algorithm TASL_ δ
	Definitions and lemma of Type_Assign
	The Type_Assign algorithm
	The minimum resource scheduling and configuration

	Experiments
	Experimental setup
	Experimental results

	Related work
	Conclusion
	Acknowledgments
	References

