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Abstract—As a case study of the ubiquitous computing 
system, we have implemented a prototype for the JPEG 
encoding application. In order to achieve this eventual 
development in the real world, we studied resource 
allocation policies that can improve the overall performance 
of the system. In this paper, we consider those static and 
dynamic allocation approaches and then propose four 
different allocation algorithms. In particular, we extensively 
studied the dynamic allocation algorithms by exploring 
various cache policies which include disabled cache, 
unrestricted cache and restricted cache. Performance of 
these algorithms in large scale application scenario is also 
evaluated based on both the improved prototype and a 
simulation environment. The experimental results show a 
significant performance improvement achieved by the new 
proposed algorithms in terms of load balance, execution 
time, waiting time and execution efficiency. 
 
Index Terms—Resource allocation algorithm, caching, 
pervasive computing 

I.  INTRODUCTION 

The word ubiquitous means an interface, an 
environment and a technology that can provide all 
benefits in a transparent manner anytime and anywhere 
[1]. Ubiquitous computing is a concept that computing 
facilities are available everywhere in the real world [2]. 
In recent years, ubiquitous devices such as RFIDs, 
sensors, cameras, T-engines, and wearable computers 
have been consistently upgraded and have begun to play 
important roles in our daily life [3-5]. However, there are 
still many technical challenges to build such applications 
that potentially exist in nearly every aspect of lives over 
infrastructure-less networks.  

Olympus Future Creation Laboratory and University of 
Aizu have conducted a collaborative research on 
developing a general framework for the coming 
ubiquitous society, in which a ubiquitous computing 
scenario named Ubiquitous Multi-Processor (UMP), 
which is supported by many heterogeneous processing 
nodes, has been extensively studied. In order to evaluate 

the scalability and performance of the heterogeneous 
multiprocessor systems, a basic framework of 
multiprocessor simulation system has been implemented 
based on a multi-way cluster [6] and a double-buffered 
communication model [7] has been incorporated into the 
system that can improve the performance over 50%, in 
terms of communication speed, independent of various 
types of individual processors. We have extended the 
system and implemented a ubiquitous multi-processor 
network-based pipeline processing framework [8], at the 
hardware simulation level, to support the development of 
high performance pervasive applications. As a special 
case, the distributed JPEG encoding application has been 
successfully developed upon the proposed framework. 
The performance of this practical image encoding 
application has been evaluated in [9-10] and the optimal 
packet size of the UMP network been found through 
experiments in the UMP system.  

In order to further improve the performance of this 
application for its practical deployment, we shall extend 
our previous work [9-11] by exploring various resource 
allocation techniques. In this paper, we propose a group 
of resource allocation algorithms and evaluate their 
performance in terms of load balance of the Resource 
Router (RR), total execution time, execution efficiency 
and task waiting time (delay). 

The remainder of this paper is structured as follows. 
Section 2 gives the architecture of UMP system. Section 
3 discusses the existing resource allocation algorithm and 
proposes three improved algorithms. The implementation 
details and performance evaluation are shown in Section 
4. Section 5 summarizes our findings and the directions 
for the future work. 

II.  AN OVERVIEW OF THE UBIQUITOUS 
MULTI-PROCESSOR SYSTEM 

The architecture of our UMP system is illustrated in 
Fig. 1, in which there are three types of nodes: Client 
Node, Resource Router and Calculation Nodes. As the  
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Figure1. The architecture of the UMP system based on our current implementation 

 
mobile terminals, Client Nodes send task requests to the 
UMP system through a wireless network. The Resource 
Router is the gateway of the UMP system which receives 
requests from the Client Nodes and manages the 
corresponding tasks to be executed over the subnet. There 
exists only one Resource Router in a subnet. Each task 
can be decomposed into steps, each of which is executed 
on a specific Calculation Node in the subnet, such that the 
whole task can be accomplished by a set of Calculation 
Nodes that are cooperated and organized in a sequential 
manner. Various services/tasks thus can be supported by 
different execution sequences of the Calculation Nodes. 

As a case study of the UMP system, we implemented a 
prototype for the application of the JPEG encoding [8], 
which is to convert bitmap format image to JPEG format 
image with six steps. They are reading bitmap file, RGB 
to YCbCr, down sampling translator, processing Discrete 
Cosine Transform, Huffman Encoding, and JPEG image 
writer. At the beginning stage of the implementation, the 
scheduling algorithm is not the major optimization issue 
because it has little performance effect in a small-scale 
task request scenario. As we extend this prototype to the 
real-world JPEG encoding application, in which many 
users would request the tasks to the UMP system 
simultaneously, some improved scheduling algorithms 
should be carefully designed to achieve good 
performance, e.g. load balancing, high execution 
efficiency and short waiting and execution time.  

III.  RESOURCE ALLOCATION A LGORITHMS 

A.  A Preliminary Algorithm 
In this paper, we use JPEG encoding as an archetypal 

example to test the proposed algorithms. There are six 
stages to encode a bitmap file into JPEG image. When a 
user requests a task of JPEG encoding, the RR will first 
reserve six PEs as a chain for the whole processing. After 
the user connected to the first PE, the chain processing 
will be started. When the last PE finished its sub-task, the 

user can get the result and the RR change the entire PEs 
chain to a standby status. Due to the user side is assumed 
as a mobile client, the battery life-time is a very important 
factor in the system design. To reduce the energy 
consumption of user side, we fix the first PE and the last 
PE to provide the frequently access from user to search 
the last PE. Thus, all the optimization process is effect to 
the middle PEs in the whole process chain. Therefore, the 
algorithm can be described as follows. 

Static Allocating Algorithm (SA). When task comes, 
RR will reserve the whole PEs which will be needed to 
process the task until the task is finished. During the 
processing time, even some PEs are free, they cannot be 
used by other tasks. 

The characteristic of the current resource allocation 
algorithm can be analyzed into two parts: 

i) Mean delay:  
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where m is the number of tasks RR can handle at one 
time, t is the time to handle m tasks. 

So the first m tasks wait 0 time, the second m tasks 
wait t time, the i-th m tasks should wait (i-1)t time.  

We can also get task execution efficiency as follows: 
ii) Task Execution Efficiency: 
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Where ei (1  i  n) is the execution time in i-th PE, 
, 1j jc   is the communication time between j-th PE and 

(j+1)-th (1  j  n) PE. 
In our simulation, we assume the communication time 

between any two PEs is the same, i.e. 
Nnmjiccc nmji  ,,,,,
，N is the natural number set. 

Hence, 
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Abstract of the SA is described as follows.  

(1) Router retrieves a new task from the task queue. If 
there is no task in the task queue, then ends. 

(2) Router generates a PE chain which is used to 
process a task. Set the PEs in the PE chain as busy, 
which means these PE can not do any other task 
until they are released. 

(3)  Router sends the PE chain information and task to 
PE1. 

(4)  PE1 finishes its work and follows the PE chain 
information to transfer the task to PE2. 

(5)  PE2 finishes its work and follows the PE chain 
information to transfer the task to PE3. 

(6)  PE4 finishes its work and follows the PE chain 
information to transfer the task to PE5. 

(7)  PE5 finishes its work and follows the PE chain 
information to transfer the task to PE6. 

(8)  PE6 finishes its work and sends the processed task 
back to router. 

(9) Router sets all PEs in the PE chain as idle. 
(10) Remove the task from the task queue. If there is no 

task left in the task queue, then terminates. 
Otherwise go to Step (1). 

 

B. Improved Algorithms 
Dynamic Allocating Algorithm (DA). The biggest 

limitation of the current policy is that if the RR allocates 
the PEs to the users once, the all PEs are reserved until 
the whole task will be finished. This is obviously a big 
useless of the computational resource. To regard as this 
point, we apply a randomly distribute algorithm to the 
UMP system. The concept of DA is after the PE finished 
the execution of the process, the PE will ask the RR for 
the next phase of PE. The usage rate of PE is quite high, 
but the load balance is heavy for the RR. We can get task 
execution efficiency as follows: 

 
i) Task execution efficiency:  
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where niei 1 , is the execution time, nic ii  2,1
 

is the communication time between i-th PE and RR, 
nicri 1 is the communication time between (i-1)-th 

PE and i-th PE. 
Abstract of the DA is described as follows. 

(1) Router retrieves a new task from the task queue. If 
there is no task in the task queue, then ends. 

(2) Router finds an idle PE1 and any PE6 and then 
transfers the task to this PE1. 

(3) After getting the task from router, this PE1 sends a 
busy status message to router. 

(4) After processing the task, this PE1 send an idle 

status message to router and meantime ask the 
router for the next PE. 

(5) Router finds an idle PE2, and then tells the PE1. 
(6) PE2 sends the status busy to router; PE1 transfers 

the task to PE2, and sends idle status message to 
router. 

(7) PE2, PE3, PE4 act the same. 
(8) After PE5’s processing the task, PE5 transfers the 

task the PE6 which is decided by router at Step 2. 
(9) After PE6’s processing the task, transfer the 

processed task back to router. 
(10) Remove the task from the task queue. If there is no 

task left in the task queue, then terminates. 
Otherwise go to Step (1). 

 

Dynamic Allocating Algorithm with Cache 
Technology (DA-C). To improve the DA, we introduce a 
cache concept of the resource allocating algorithm. For 
every PE, we assign a cache for them to memorize the 
next stage’s PE. When they finished their sub-task, they 
will search the next phase of PE in their cache. If the all 
PEs in the cache are at the busy status, it will ask RR to 
assign one free PE as the next phase PE.  

We can get task execution efficiency as follows: 
i) The best case of task execution efficiency:  
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where niei 1  is the execution time, nic ii  2,1
 is 

the communication time between (i-1)-th PE and i-th PE. 
The best case means each (i-1)-th PE can access each i-th 
PE memorized in their cache because i-th PE is not busy. 
(i-1)-th PE is supposed to have communication with i-th 
PE three times in total. As the first communication, 
(i-1)-th PE asks i-th PE whether or not it is busy currently. 
Then, i-th PE replays to (i-1)-th PE in the second 
communication. Since this is the best case so that i-th 
PE’s answer must be “available”, (i-1)-th PE starts to 
send data to i-th PE in the third communication. 

ii) The worst case of task execution efficiency: 
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where niei 1  is the execution time, 11  nicri  
is the communication time between i-th PE and RR, 

nic ii  2,1
is the communication time between (i-1)-th 

PE and i-th PE. The worst case means each (i-1)-th PE 
cannot access each i-th PE memorized in their cache 
because i-th PE is busy. Therefore, each (i-1)-th PE has to 
ask RR for a free PE. 

Abstract of the DA-C is described as follows. 

(1) Router retrieves a new task from the task queue. If 
there is no task in the task queue, then ends. 

(2) Router finds an idle PE1 and any PE6 and then 
transfers the task to this PE1. 

(3) After getting the task from router, this PE1 sends a 
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busy status message to router. 
(4) After processing the task, this PE1 sends an idle 

status message to router. 
(5) Find the idle PE from its cache. 
(6) If the PE1 finds an idle PE2, then send a request 

message to verify whether the PE2 is truly idle or 
not. 

(7) If the response from PE2 is yes, then go to step 10; 
or send a request message to router, by which 
router will look for an idle PE2 without restriction 
of PE1’s cache. 

(8) If router finds one, then tell PE1, otherwise, repeat 
steps from step 5. 

(9) Router finds an idle PE2, and then tells the PE1. 
(10) PE2 send the busy status message to router; PE1 

transfers the task to PE2, and then sends the idle 
status message to router. 

(11) PE2, PE3, PE4 act the same, besides updates the 
information of cache of PE1, PE2, PE3, 
respectively. 

(12) After PE5’s processing the task, PE5 updates the 
information of cache of PE4; and then transfers the 
task the PE6 which is decided by router at Step 2. 

(13) After PE6’s processing the task, transfer the 
processed task back to router. 

(14) Remove the task from the task queue. If there is no 
task left in the task queue, then terminates. 
Otherwise go to Step (1). 

 
Dynamic Allocating Algorithm with Restricted 

Cache (DA-RC). We introduce a restrict cache concept 
to DA-C. The difference between the DA-RC and DA-C 
is the restriction of jumping to the PEs which is out of the 
cache that current PE has. That means when a certain PE 
finished its sub-task and the whole PEs in the cache are 
busy, the PE will not ask RR to assign a free PE out of the 
cache. For example, assume every cache at each phase 
has four PEs. When a certain PE at one stage finished the 
sub-task, it can search the next phase PE in the same 
cache. If the next phase PE is all busy status, it has to 
wait. This is the biggest difference between DA-C and 
DA-RC. And the Efficiency of DA-RC in the best case is 
the same to DA-C. Here, the best case means each 
(i-1)-th PE succeeds to find the next phase PE in only one 
access without asking all PE members in the cache. 

i) The worst case of task execution efficiency: 

1, 1,
1 1 2 1
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n n n l
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where niei 1  is the execution time, 

nic ii  2,1
is the communication time between (i-1)-th 

PE and i-th PE, ljnic iji  1,2,1
 where l is the 

number of PEs in one group, is also the communication 
time between (i-1)-th PE and i-th PEs in the group. The 
worst case means each (i-1)-th PE asks all next phase PEs 
in a group at every stage. It is because (i-1)-th PE checks 
whether or not PE in the group is busy one by one in 
order to seek one available PE. 

Abstract of the DA-RC is described as follows. 

(1)  Router retrieves a new task from the task queue. If 
there is no task in the task queue, then ends. 

(2)  Router finds an idle PE1 and any PE6 and then 
transfers the task to this PE1. 

(3)  After getting the task from router, this PE1 sends a 
busy status message to router. 

(4)  After processing the task, this PE1 sends an idle 
status message to router. 

(5)  Find the idle PE from its cache. 
(6)  If the PE1 finds an idle PE2, then send a request 

message to verify whether the PE2 is truly idle or 
not. 

(7)  If the response from PE2 is yes, then go to step 10; 
or waits a particular time, then go to step 5. 

(8)  PE1 transfers the task to PE2. 
(9)  PE2, PE3, PE4 act the same, besides updates the 

information of cache of PE1, PE2, PE3, 
respectively. 

(10)  After PE5’s processing the task, PE5 updates the 
information of cache of PE4; and then transfers the 
task the PE6 which is decided by router at Step 2. 

(11)  After PE6’s processing the task, transfer the 
processed task back to router. 

(12)  Remove the task from the task queue. If there is no 
task left in the task queue, then terminates. 
Otherwise go to Step (1). 

 

IV.  PERFORMANCE EVALUATION AND DISCUSSION 

A.  Detail of the Implementation 
We built a simulation system to evaluate the four 

algorithms. Theoretically, the number of tasks arriving at 
the UMP system during each period is a random number 
with an upper bound from 8 to 60 and a lower bound 0. 
We simulates 50 periods. Therefore, on average, the total 
number of tasks is about from 200 to 1500. Nevertheless, 
in our implementation, we ran the simulation in which the 
number of tasks is from 200 to 1800 with about every 
100 interval. The number of PE was set as 144. Because 
the JEPG encoding needs 6 steps to process, each task 
needs six PEs; therefore the total chains of PEs are 24. 
We also set the network delay in which a PE or Router 
sends a request or gets a response as 20, and the network 
delay in which a PE or Router send or receive the raw 
JEPG as 200. Table 1 shows the environment of the 
simulation. 

TABLE I 
THE EXPERIMENT ENVIRONMENT 

OS Windows Vista Business (32-bit) 

CPU AMD Athlon64 3200+ 

Memory DDR SDRAM 2GB 

Language JAVA 1.5 

Network Localhost 
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The SA algorithm                                        The DA algorithm 

 

 
 

The DA-C algorithm                                       The DA-RC algorithm 

Figure 2. The workload of RR of various algorithms 

B.  Simulation Results and Discussion 

We use three dimensional figures to provide an overall 
aspect in terms of number of tasks, execution time and 
resource workload. Here, we define the router’s workload 
as that every time each PE sends a request to the RR, we 
count the workload as 1. Fig. 2 shows the workload of 
RR from the simulation results. Left axis indicates the 
numbers of tasks and right axis indicates the execution 
time. Vertical axis shows RR’s workload. The workload 
of SA is obviously small than DA and DA-C because 
once the RR assign the PE to execute the task, it will 
never communicate with PEs. But when we focus on the 
total execution time, SA performs the worst result. We 
can find its execution time is almost four times 
comparing to the other three algorithms. Even the shape 
of the red lines of DA, DA-C and DA-RC in these 
pictures are alike, we can easy to know that by using the 
cache technology, DA-RC performs an extremely good 
result than DA and DA-C and nearly close to the SA in 

router workload. DA-RC’s router workload is only 12.5% 
of DA and DA-C’s. 

Fig. 3 which is the two dimensions of view of router 
workload also shows the significance improvement of 
DA-RC. It is nature that the DA had bad result, because 
almost every time the PE should ask RR to know the next 
phase PE which should be connected to. 

In Fig. 4, task execution efficiency is highly related 
with the waiting time, SA shows the worst result with the 
reason that it has to wait the execution to start even there 
are free PEs in the process chain. We can see the 
execution efficiency of DA-RC has 12.6% better than DA. 
Also, the curves of DA-C and DA-RC are almost the 
same and they are exactly matching the mathematic 
model we have described in the above section.  

Delay (waiting time) is an important factor in the real 
world system. Supposed even the total executions time of 
the system is good, but if the delay is huge, the system 
still cannot be well used by users. It is very clear that the 
average of delay of SA is extremely large because the 
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Figure 3. Algorithm VS (Router Workload)                  Figure 4. Algorithm VS (Average Execution Efficiency) 

 
Figure 5. Algorithm VS (Average Delay)                          Figure 6. Algorithm VS (Execution Time) 

execution procedure is almost the sequential. Hence, we 
omit it in Fig. 5 to prevent its negative influence on other 
curves of the three algorithms. The average delay of SA is 
60194, DA is 9189, DA-C is 4118 and DA-RC is 3540. 
From the figure, we can find DA-RC and DA-C 
improved much better performance than DA in terms of 
average delay time. The reason why DA-RC is slightly 
better than DA-C can be considered that in DA-RC the 
waste of the fail communication time is omitted. 

DA-C and DA-RC show good performance again in 
Fig. 6. From the figure, we can know DA boost the 
execution time in an exponential manner. It is hard to 
accept this algorithm for practical usage. On the other 
hand, DA-C and DA-RC remain slow increasing even the 
number of task becomes larger. Comparing to the 
algorithms with each other, DA-RC is the 15% better than 
DA-C at the number is 1700. It is obvious that DA-RC 
will overwhelmed the DA-C when the scale of the system 
goes bigger and bigger.   

Fig. 7 to 10 are the results comparing the cases when 
size of cache is 1, 2 and 4. We can know the execution 
efficiency and delay time is always good when the cache 
size is 4. From Fig. 7, the Router Workload is the same 

and at the early stage of the number of tasks of Fig. 8, 9 
and 10, we can see the performance is almost the same. 
However, as the number of tasks grows, the 4-size-cache 
case is showing a better result than the other two cases. 

 V.  CONCLUSION AND FUTURE WORK 

As the further step of our previous works, we studied 
resource allocation policies that can improve the overall 
performance of UMP system. In this paper, we 
considered those static and dynamic allocation 
approaches and then proposed four different allocation 
algorithms. We evaluated the performance with four 
different resources allocating algorithms and analyzed 
these algorithms from four points of view in terms of load 
balance, execution time, waiting time and execution 
efficiency. Through these extensive experiments, we have 
successfully validated our proposed algorithms achieved 
significant performance improvement. We found the 
Dynamic Allocating Algorithm with Restricted Cache is 
the best algorithm to allocate resources (PEs) under 
condition that the system has many users and many tasks 
to deal with. And the next better algorithm is DA-C, 
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Figure 7. Router Workload under various cache sizes                 Figure 8. Execution Time under various cache sizes 

    
            Figure 9. Average Delay Time under various cache sizes       Figure 10. Average Execution Efficiency under various cache sizes 

 
followed by DA. Furthermore, through the experiments 
we have realized that we can set the allocating policy 
flexibly to answer the users’ requests. In the future, we 
shall consider the multi-layer architecture of the resource 
router to reduce the workload and also focus on the upper 
layer of the UMP system - the service layer, to deal with 
the context information from users, resources and 
environments. 
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