

Improved Resource Allocation Algorithms for
Practical Image Encoding in a Ubiquitous

Computing Environment

Mianxiong Dong, Long Zheng, Kaoru Ota, Song Guo
School of Computer Science and Engineering, The University of Aizu

Aizu-Wakamatsu 985-8580, Japan
Email: mx.dong@ieee.org, {m5112105, d8102104, sguo}@u-aizu.ac.jp

Minyi Guo, Li Li
Department of Computer Science and Engineering, Shanghai Jiao Tong University

Shanghai, 200030, China
Email: {guo-my, lilijp}@cs.sjtu.edu.cn

Abstract—As a case study of the ubiquitous computing
system, we have implemented a prototype for the JPEG
encoding application. In order to achieve this eventual
development in the real world, we studied resource
allocation policies that can improve the overall performance
of the system. In this paper, we consider those static and
dynamic allocation approaches and then propose four
different allocation algorithms. In particular, we extensively
studied the dynamic allocation algorithms by exploring
various cache policies which include disabled cache,
unrestricted cache and restricted cache. Performance of
these algorithms in large scale application scenario is also
evaluated based on both the improved prototype and a
simulation environment. The experimental results show a
significant performance improvement achieved by the new
proposed algorithms in terms of load balance, execution
time, waiting time and execution efficiency.

Index Terms—Resource allocation algorithm, caching,
pervasive computing

I. INTRODUCTION

The word ubiquitous means an interface, an
environment and a technology that can provide all
benefits in a transparent manner anytime and anywhere
[1]. Ubiquitous computing is a concept that computing
facilities are available everywhere in the real world [2].
In recent years, ubiquitous devices such as RFIDs,
sensors, cameras, T-engines, and wearable computers
have been consistently upgraded and have begun to play
important roles in our daily life [3-5]. However, there are
still many technical challenges to build such applications
that potentially exist in nearly every aspect of lives over
infrastructure-less networks.

Olympus Future Creation Laboratory and University of
Aizu have conducted a collaborative research on
developing a general framework for the coming
ubiquitous society, in which a ubiquitous computing
scenario named Ubiquitous Multi-Processor (UMP),
which is supported by many heterogeneous processing
nodes, has been extensively studied. In order to evaluate

the scalability and performance of the heterogeneous
multiprocessor systems, a basic framework of
multiprocessor simulation system has been implemented
based on a multi-way cluster [6] and a double-buffered
communication model [7] has been incorporated into the
system that can improve the performance over 50%, in
terms of communication speed, independent of various
types of individual processors. We have extended the
system and implemented a ubiquitous multi-processor
network-based pipeline processing framework [8], at the
hardware simulation level, to support the development of
high performance pervasive applications. As a special
case, the distributed JPEG encoding application has been
successfully developed upon the proposed framework.
The performance of this practical image encoding
application has been evaluated in [9-10] and the optimal
packet size of the UMP network been found through
experiments in the UMP system.

In order to further improve the performance of this
application for its practical deployment, we shall extend
our previous work [9-11] by exploring various resource
allocation techniques. In this paper, we propose a group
of resource allocation algorithms and evaluate their
performance in terms of load balance of the Resource
Router (RR), total execution time, execution efficiency
and task waiting time (delay).

The remainder of this paper is structured as follows.
Section 2 gives the architecture of UMP system. Section
3 discusses the existing resource allocation algorithm and
proposes three improved algorithms. The implementation
details and performance evaluation are shown in Section
4. Section 5 summarizes our findings and the directions
for the future work.

II. AN OVERVIEW OF THE UBIQUITOUS
MULTI-PROCESSOR SYSTEM

The architecture of our UMP system is illustrated in
Fig. 1, in which there are three types of nodes: Client
Node, Resource Router and Calculation Nodes. As the

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 873

© 2009 ACADEMY PUBLISHER

Figure1. The architecture of the UMP system based on our current implementation

mobile terminals, Client Nodes send task requests to the
UMP system through a wireless network. The Resource
Router is the gateway of the UMP system which receives
requests from the Client Nodes and manages the
corresponding tasks to be executed over the subnet. There
exists only one Resource Router in a subnet. Each task
can be decomposed into steps, each of which is executed
on a specific Calculation Node in the subnet, such that the
whole task can be accomplished by a set of Calculation
Nodes that are cooperated and organized in a sequential
manner. Various services/tasks thus can be supported by
different execution sequences of the Calculation Nodes.

As a case study of the UMP system, we implemented a
prototype for the application of the JPEG encoding [8],
which is to convert bitmap format image to JPEG format
image with six steps. They are reading bitmap file, RGB
to YCbCr, down sampling translator, processing Discrete
Cosine Transform, Huffman Encoding, and JPEG image
writer. At the beginning stage of the implementation, the
scheduling algorithm is not the major optimization issue
because it has little performance effect in a small-scale
task request scenario. As we extend this prototype to the
real-world JPEG encoding application, in which many
users would request the tasks to the UMP system
simultaneously, some improved scheduling algorithms
should be carefully designed to achieve good
performance, e.g. load balancing, high execution
efficiency and short waiting and execution time.

III. RESOURCE ALLOCATION A LGORITHMS

A. A Preliminary Algorithm
In this paper, we use JPEG encoding as an archetypal

example to test the proposed algorithms. There are six
stages to encode a bitmap file into JPEG image. When a
user requests a task of JPEG encoding, the RR will first
reserve six PEs as a chain for the whole processing. After
the user connected to the first PE, the chain processing
will be started. When the last PE finished its sub-task, the

user can get the result and the RR change the entire PEs
chain to a standby status. Due to the user side is assumed
as a mobile client, the battery life-time is a very important
factor in the system design. To reduce the energy
consumption of user side, we fix the first PE and the last
PE to provide the frequently access from user to search
the last PE. Thus, all the optimization process is effect to
the middle PEs in the whole process chain. Therefore, the
algorithm can be described as follows.

Static Allocating Algorithm (SA). When task comes,
RR will reserve the whole PEs which will be needed to
process the task until the task is finished. During the
processing time, even some PEs are free, they cannot be
used by other tasks.

The characteristic of the current resource allocation
algorithm can be analyzed into two parts:

i) Mean delay:

/

1

1 (1) (/) /
n m

i
d m i t n n m m n m t

n

  



 
             

 
 (1)

where m is the number of tasks RR can handle at one
time, t is the time to handle m tasks.

So the first m tasks wait 0 time, the second m tasks
wait t time, the i-th m tasks should wait (i-1)t time.

We can also get task execution efficiency as follows:
ii) Task Execution Efficiency:

1

, 1
1 1 1

n n n

i i i i
i i i

f e e c



  

 
  

 
   (2)

Where ei (1  i  n) is the execution time in i-th PE,
, 1j jc  is the communication time between j-th PE and

(j+1)-th (1  j  n) PE.
In our simulation, we assume the communication time

between any two PEs is the same, i.e.
Nnmjiccc nmji  ,,,,,
，N is the natural number set.

Hence,

874 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

1 1
(1)

n n

i i
i i

f e e n c
 

 
    

 
  (3)

Abstract of the SA is described as follows.

(1) Router retrieves a new task from the task queue. If
there is no task in the task queue, then ends.

(2) Router generates a PE chain which is used to
process a task. Set the PEs in the PE chain as busy,
which means these PE can not do any other task
until they are released.

(3) Router sends the PE chain information and task to
PE1.

(4) PE1 finishes its work and follows the PE chain
information to transfer the task to PE2.

(5) PE2 finishes its work and follows the PE chain
information to transfer the task to PE3.

(6) PE4 finishes its work and follows the PE chain
information to transfer the task to PE5.

(7) PE5 finishes its work and follows the PE chain
information to transfer the task to PE6.

(8) PE6 finishes its work and sends the processed task
back to router.

(9) Router sets all PEs in the PE chain as idle.
(10) Remove the task from the task queue. If there is no

task left in the task queue, then terminates.
Otherwise go to Step (1).

B. Improved Algorithms
Dynamic Allocating Algorithm (DA). The biggest

limitation of the current policy is that if the RR allocates
the PEs to the users once, the all PEs are reserved until
the whole task will be finished. This is obviously a big
useless of the computational resource. To regard as this
point, we apply a randomly distribute algorithm to the
UMP system. The concept of DA is after the PE finished
the execution of the process, the PE will ask the RR for
the next phase of PE. The usage rate of PE is quite high,
but the load balance is heavy for the RR. We can get task
execution efficiency as follows:

i) Task execution efficiency:

1

1,
1 1 1 2

n n n n

i i i i i
i i i i

f e e cr c



   

 
   

 
    (4)

where niei 1 , is the execution time, nic ii  2,1

is the communication time between i-th PE and RR,
nicri 1 is the communication time between (i-1)-th

PE and i-th PE.
Abstract of the DA is described as follows.

(1) Router retrieves a new task from the task queue. If
there is no task in the task queue, then ends.

(2) Router finds an idle PE1 and any PE6 and then
transfers the task to this PE1.

(3) After getting the task from router, this PE1 sends a
busy status message to router.

(4) After processing the task, this PE1 send an idle

status message to router and meantime ask the
router for the next PE.

(5) Router finds an idle PE2, and then tells the PE1.
(6) PE2 sends the status busy to router; PE1 transfers

the task to PE2, and sends idle status message to
router.

(7) PE2, PE3, PE4 act the same.
(8) After PE5’s processing the task, PE5 transfers the

task the PE6 which is decided by router at Step 2.
(9) After PE6’s processing the task, transfer the

processed task back to router.
(10) Remove the task from the task queue. If there is no

task left in the task queue, then terminates.
Otherwise go to Step (1).

Dynamic Allocating Algorithm with Cache
Technology (DA-C). To improve the DA, we introduce a
cache concept of the resource allocating algorithm. For
every PE, we assign a cache for them to memorize the
next stage’s PE. When they finished their sub-task, they
will search the next phase of PE in their cache. If the all
PEs in the cache are at the busy status, it will ask RR to
assign one free PE as the next phase PE.

We can get task execution efficiency as follows:
i) The best case of task execution efficiency:

1,
1 1 2

(3)
n n n

i i i i
i i i

f e e c 
  

 
  

 
   (5)

where niei 1 is the execution time, nic ii  2,1
 is

the communication time between (i-1)-th PE and i-th PE.
The best case means each (i-1)-th PE can access each i-th
PE memorized in their cache because i-th PE is not busy.
(i-1)-th PE is supposed to have communication with i-th
PE three times in total. As the first communication,
(i-1)-th PE asks i-th PE whether or not it is busy currently.
Then, i-th PE replays to (i-1)-th PE in the second
communication. Since this is the best case so that i-th
PE’s answer must be “available”, (i-1)-th PE starts to
send data to i-th PE in the third communication.

ii) The worst case of task execution efficiency:

1

1,
1 1 2 1

(3)
n n n n

i i i i i
i i i i

f e e c cr



   

 
   

 
    (6)

where niei 1 is the execution time, 11  nicri
is the communication time between i-th PE and RR,

nic ii  2,1
is the communication time between (i-1)-th

PE and i-th PE. The worst case means each (i-1)-th PE
cannot access each i-th PE memorized in their cache
because i-th PE is busy. Therefore, each (i-1)-th PE has to
ask RR for a free PE.

Abstract of the DA-C is described as follows.

(1) Router retrieves a new task from the task queue. If
there is no task in the task queue, then ends.

(2) Router finds an idle PE1 and any PE6 and then
transfers the task to this PE1.

(3) After getting the task from router, this PE1 sends a

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 875

© 2009 ACADEMY PUBLISHER

busy status message to router.
(4) After processing the task, this PE1 sends an idle

status message to router.
(5) Find the idle PE from its cache.
(6) If the PE1 finds an idle PE2, then send a request

message to verify whether the PE2 is truly idle or
not.

(7) If the response from PE2 is yes, then go to step 10;
or send a request message to router, by which
router will look for an idle PE2 without restriction
of PE1’s cache.

(8) If router finds one, then tell PE1, otherwise, repeat
steps from step 5.

(9) Router finds an idle PE2, and then tells the PE1.
(10) PE2 send the busy status message to router; PE1

transfers the task to PE2, and then sends the idle
status message to router.

(11) PE2, PE3, PE4 act the same, besides updates the
information of cache of PE1, PE2, PE3,
respectively.

(12) After PE5’s processing the task, PE5 updates the
information of cache of PE4; and then transfers the
task the PE6 which is decided by router at Step 2.

(13) After PE6’s processing the task, transfer the
processed task back to router.

(14) Remove the task from the task queue. If there is no
task left in the task queue, then terminates.
Otherwise go to Step (1).

Dynamic Allocating Algorithm with Restricted

Cache (DA-RC). We introduce a restrict cache concept
to DA-C. The difference between the DA-RC and DA-C
is the restriction of jumping to the PEs which is out of the
cache that current PE has. That means when a certain PE
finished its sub-task and the whole PEs in the cache are
busy, the PE will not ask RR to assign a free PE out of the
cache. For example, assume every cache at each phase
has four PEs. When a certain PE at one stage finished the
sub-task, it can search the next phase PE in the same
cache. If the next phase PE is all busy status, it has to
wait. This is the biggest difference between DA-C and
DA-RC. And the Efficiency of DA-RC in the best case is
the same to DA-C. Here, the best case means each
(i-1)-th PE succeeds to find the next phase PE in only one
access without asking all PE members in the cache.

i) The worst case of task execution efficiency:

1, 1,
1 1 2 1

2
n n n l

i i i j i i
i i i j

f e e c c 
   

  
        
    (7)

where niei 1 is the execution time,

nic ii  2,1
is the communication time between (i-1)-th

PE and i-th PE, ljnic iji  1,2,1
 where l is the

number of PEs in one group, is also the communication
time between (i-1)-th PE and i-th PEs in the group. The
worst case means each (i-1)-th PE asks all next phase PEs
in a group at every stage. It is because (i-1)-th PE checks
whether or not PE in the group is busy one by one in
order to seek one available PE.

Abstract of the DA-RC is described as follows.

(1) Router retrieves a new task from the task queue. If
there is no task in the task queue, then ends.

(2) Router finds an idle PE1 and any PE6 and then
transfers the task to this PE1.

(3) After getting the task from router, this PE1 sends a
busy status message to router.

(4) After processing the task, this PE1 sends an idle
status message to router.

(5) Find the idle PE from its cache.
(6) If the PE1 finds an idle PE2, then send a request

message to verify whether the PE2 is truly idle or
not.

(7) If the response from PE2 is yes, then go to step 10;
or waits a particular time, then go to step 5.

(8) PE1 transfers the task to PE2.
(9) PE2, PE3, PE4 act the same, besides updates the

information of cache of PE1, PE2, PE3,
respectively.

(10) After PE5’s processing the task, PE5 updates the
information of cache of PE4; and then transfers the
task the PE6 which is decided by router at Step 2.

(11) After PE6’s processing the task, transfer the
processed task back to router.

(12) Remove the task from the task queue. If there is no
task left in the task queue, then terminates.
Otherwise go to Step (1).

IV. PERFORMANCE EVALUATION AND DISCUSSION

A. Detail of the Implementation
We built a simulation system to evaluate the four

algorithms. Theoretically, the number of tasks arriving at
the UMP system during each period is a random number
with an upper bound from 8 to 60 and a lower bound 0.
We simulates 50 periods. Therefore, on average, the total
number of tasks is about from 200 to 1500. Nevertheless,
in our implementation, we ran the simulation in which the
number of tasks is from 200 to 1800 with about every
100 interval. The number of PE was set as 144. Because
the JEPG encoding needs 6 steps to process, each task
needs six PEs; therefore the total chains of PEs are 24.
We also set the network delay in which a PE or Router
sends a request or gets a response as 20, and the network
delay in which a PE or Router send or receive the raw
JEPG as 200. Table 1 shows the environment of the
simulation.

TABLE I
THE EXPERIMENT ENVIRONMENT

OS Windows Vista Business (32-bit)

CPU AMD Athlon64 3200+

Memory DDR SDRAM 2GB

Language JAVA 1.5

Network Localhost

876 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

The SA algorithm The DA algorithm

The DA-C algorithm The DA-RC algorithm

Figure 2. The workload of RR of various algorithms

B. Simulation Results and Discussion

We use three dimensional figures to provide an overall
aspect in terms of number of tasks, execution time and
resource workload. Here, we define the router’s workload
as that every time each PE sends a request to the RR, we
count the workload as 1. Fig. 2 shows the workload of
RR from the simulation results. Left axis indicates the
numbers of tasks and right axis indicates the execution
time. Vertical axis shows RR’s workload. The workload
of SA is obviously small than DA and DA-C because
once the RR assign the PE to execute the task, it will
never communicate with PEs. But when we focus on the
total execution time, SA performs the worst result. We
can find its execution time is almost four times
comparing to the other three algorithms. Even the shape
of the red lines of DA, DA-C and DA-RC in these
pictures are alike, we can easy to know that by using the
cache technology, DA-RC performs an extremely good
result than DA and DA-C and nearly close to the SA in

router workload. DA-RC’s router workload is only 12.5%
of DA and DA-C’s.

Fig. 3 which is the two dimensions of view of router
workload also shows the significance improvement of
DA-RC. It is nature that the DA had bad result, because
almost every time the PE should ask RR to know the next
phase PE which should be connected to.

In Fig. 4, task execution efficiency is highly related
with the waiting time, SA shows the worst result with the
reason that it has to wait the execution to start even there
are free PEs in the process chain. We can see the
execution efficiency of DA-RC has 12.6% better than DA.
Also, the curves of DA-C and DA-RC are almost the
same and they are exactly matching the mathematic
model we have described in the above section.

Delay (waiting time) is an important factor in the real
world system. Supposed even the total executions time of
the system is good, but if the delay is huge, the system
still cannot be well used by users. It is very clear that the
average of delay of SA is extremely large because the

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 877

© 2009 ACADEMY PUBLISHER

Figure 3. Algorithm VS (Router Workload) Figure 4. Algorithm VS (Average Execution Efficiency)

Figure 5. Algorithm VS (Average Delay) Figure 6. Algorithm VS (Execution Time)

execution procedure is almost the sequential. Hence, we
omit it in Fig. 5 to prevent its negative influence on other
curves of the three algorithms. The average delay of SA is
60194, DA is 9189, DA-C is 4118 and DA-RC is 3540.
From the figure, we can find DA-RC and DA-C
improved much better performance than DA in terms of
average delay time. The reason why DA-RC is slightly
better than DA-C can be considered that in DA-RC the
waste of the fail communication time is omitted.

DA-C and DA-RC show good performance again in
Fig. 6. From the figure, we can know DA boost the
execution time in an exponential manner. It is hard to
accept this algorithm for practical usage. On the other
hand, DA-C and DA-RC remain slow increasing even the
number of task becomes larger. Comparing to the
algorithms with each other, DA-RC is the 15% better than
DA-C at the number is 1700. It is obvious that DA-RC
will overwhelmed the DA-C when the scale of the system
goes bigger and bigger.

Fig. 7 to 10 are the results comparing the cases when
size of cache is 1, 2 and 4. We can know the execution
efficiency and delay time is always good when the cache
size is 4. From Fig. 7, the Router Workload is the same

and at the early stage of the number of tasks of Fig. 8, 9
and 10, we can see the performance is almost the same.
However, as the number of tasks grows, the 4-size-cache
case is showing a better result than the other two cases.

 V. CONCLUSION AND FUTURE WORK

As the further step of our previous works, we studied
resource allocation policies that can improve the overall
performance of UMP system. In this paper, we
considered those static and dynamic allocation
approaches and then proposed four different allocation
algorithms. We evaluated the performance with four
different resources allocating algorithms and analyzed
these algorithms from four points of view in terms of load
balance, execution time, waiting time and execution
efficiency. Through these extensive experiments, we have
successfully validated our proposed algorithms achieved
significant performance improvement. We found the
Dynamic Allocating Algorithm with Restricted Cache is
the best algorithm to allocate resources (PEs) under
condition that the system has many users and many tasks
to deal with. And the next better algorithm is DA-C,

878 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 7. Router Workload under various cache sizes Figure 8. Execution Time under various cache sizes

 Figure 9. Average Delay Time under various cache sizes Figure 10. Average Execution Efficiency under various cache sizes

followed by DA. Furthermore, through the experiments
we have realized that we can set the allocating policy
flexibly to answer the users’ requests. In the future, we
shall consider the multi-layer architecture of the resource
router to reduce the workload and also focus on the upper
layer of the UMP system - the service layer, to deal with
the context information from users, resources and
environments.

ACKNOWLEDGEMENT

This work is supported by Future Creation Lab.,
Olympus Corp, Research Fellowships of the Japan
Society for the Promotion of Science for Young Scientists
Program, the National High-Tech Research and
Development Plan of China (863 Plan) under Grant Nos.
2008AA01Z106, the National Natural Science
Foundation of China under Grant Nos. 60811130528,
60725208, and 60533040, and Shanghai Pujiang Plan No.
07pj14049.

The authors are deeply grateful to Mr. Deze Zeng, Mr.
Gongwei Zhang and Mr. Peng Li in the Performance
Evaluation Laboratory at the University of Aizu.

REFERENCES

[1] M. Weiser, “The Computer for the 21st Century”, IEEE
Pervasive Computing, pp. 19-25, January-March 2002.

[2] Wikipedia, http://ja.wikipedia.org/wiki/
[3] M. Satyanarayanan, “Pervasive Computing: Vision and

Challenges”, IEEE Personal Communication, pp. 10-17,
August 2001.

[4] S. R. Ponnekanti, et.al, “Icrafter: A service framework for
ubiquitous computing environments”, in Proc. of Ubicomp
2001, pp. 56–75, Atlanta, Georgia, October 2001.

[5] V. Stanford, “Using Pervasive Computing to Deliver Elder
Care”, IEEE Pervasive Computing, pp. 10-13,
January-March, 2002.

[6] A. Shinozaki, M. Shima, M. Guo, and M. Kubo, “A High
Performance Simulator System for a Multiprocessor
System Based on a Multi-way Cluster”, Advances in
Computer Systems Architecture, Lecture Notes in
Computer Science vol. 4186, pp. 231-243, Springer
Berlin/Heidelberg, September, 2006.

[7] A. Shinozaki, M. Shima, M. Guo, and M. Kubo,
“Multiprocessor Simulator System Based on Multi-way
Cluster Using Double-buffered Model”, in Proc. of IEEE
AINA 2007, pp. 893-900, Niagara Falls, Canada, May
2007.

[8] M. Kubo, B. Ye, A. Shinozaki, T. Nakatomi and M. Guo,
“UMP-PerComp: A Ubiquitous Multiprocessor
Network-Based Pipeline Processing Framework for
Pervasive Computing Environments”, in Proc. of IEEE
AINA 2007, pp. 611-618, Niagara Falls, Canada, May
2007.

[9] M. Dong, S. Guo, M. Guo and S. Watanabe, “Design of the
Ubiquitous Multi-Processor System Focusing on
Transmission Data Size”, in Proc. of HPSRN, pp. 158-166,

JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009 879

© 2009 ACADEMY PUBLISHER

Sendai, Japan, March 2008.
[10] M. Dong, S. Watanabe, and M. Guo, “Performance

Evaluation to Optimize the UMP System Focusing on
Network Transmission Speed”, in Proc. of FCST, pp. 7-12,
Wuhan, China, November 2007.

[11] M. Dong, M. Guo, L. Zheng, S. Guo, “Performance
Analysis of Resource Allocation Algorithms Using Cache
Technology for Pervasive Computing System”, in Proc. of
ICYCS 2008, pp. 671-676, Zhang Jia Jie, China, November
2008.

Mianxiong Dong received the B.S. and M.S. degree both in
computer science and engineering from the University of Aizu,
Japan, in 2006 and 2008 respectively. He is currently a Ph.D.
student and a JSPS (Japan Society for the Promotion of Science)
Research Fellow at School of Computer Science and
Engineering, the University of Aizu, Japan. From January 2007
to March 2007, he was a visiting scholar of West Virginia
University, USA. His research interests include pervasive
computing, sensor networks, and ubiquitous-learning.

Long Zheng received the B.S in computer science and
technology from Huazhong University of Science and
Technology, China, in 2006. He is now a Master student at
School of Computer Science and Engineering, the University of
Aizu, Japan. His research interests include chip multiprocessor
(CMP), pervasive computing and Peer-to-Peer media streaming.

Kaoru Ota received the B.S. degree in computer science and
engineering from the University of Aizu, Japan, in 2006 and
M.S. degree in computer science at Oklahoma State University,
USA, in 2008. She is currently a Ph.D. student at School of
Computer Science and Engineering, the University of Aizu,
Japan. Her current interests of research are localization and
tracking by using mobile agents in wireless sensor networks.

Song Guo received the PhD degree in computer science from
the University of Ottawa, Canada in 2005. He then held a
position with the University of British Columbia on an NSERC
(Natural Sciences and Engineering Research Council of Canada)
postdoctoral fellowship. From 2006 to 2007, he was an
Assistant Professor at the University of Northern British
Columbia, Canada. He is currently an Assistant Professor at
School of Computer Science and Engineering, the University of
Aizu, Japan. His research interests are in the areas of protocol
design and performance analysis for communication networks,
with a special emphasis on wireless ad hoc and sensor networks
for reliable, energy-efficient, and cost effective
communications.

Minyi Guo received the PhD degree in computer science from
University of Tsukuba, Japan. Before 2000, Dr. Guo had been a
research scientist of NEC Corp., Japan, and a professor in the
School of Computer Science and Engineering, The University
of Aizu, Japan. Currently, Dr. Guo is a distinguished chair
professor of the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China and an
adjunct professor at the University of Aizu. He is also a guest
professor at Nanjing University, Huazhong University of
Science and Technology, and Central South University, China.
Dr. Guo has published more than 160 research papers in
international journals and conferences. Dr. Guo has served as
general chair, program committee, or organizing committee
chair for many international conferences. He is the founder of
the International Conference on Parallel and Distributed
Processing and Applications (ISPA) and the International

Conference on Embedded and Ubiquitous Computing (EUC).
He is the editor-in-chief of the Journal of Embedded Systems.
He is also on the editorial board of the Journal of Pervasive
Computing and Communications, the International Journal of
High Performance Computing and Networking, the Journal of
Embedded Computing, the Journal of Parallel and Distributed
Scientific and Engineering Computing, and the International
Journal of Computer and Applications. Professor Guo received
the National Science Fund of China (NSFC) for Distinguished
Young Scholars in 2007, and is also the PI of the NSFC Key
Project “Theoretical and Technical key points of Pervasive
Computing.” Dr. Guo’s research interests include parallel and
distributed processing, parallelizing compilers, pervasive
computing, embedded systems software optimization, and
software engineering. He is a senior member of the IEEE and
the IEEE Computer Society, and a member of the ACM, IPSJ,
CCF, and IEICE.

Li Li received the M.E. degree in computer science and
engineering from the University of Aizu, Japan in 2005. Her
employment experience included the department of information
physics of Nanjing University, China, the national institute for
environmental studies Tsukuba, Japan, respectively. Li Li has
worked for the school of software of Shanghai Jiao Tong
University as engineer since 2006. Her research interests
include pervasive computing, sensor networks, and
ubiquitous-learning.

880 JOURNAL OF COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

© 2009 ACADEMY PUBLISHER

