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Abstract

Multi-privileged group communications containing multiple data streams have been studied in the traditional wired network environ-
ment and the Internet. With the rapid development of mobile and wireless networks and in particular mobile ad-hoc networks (MAN-
ETs), the traditional Internet has been integrated with mobile and wireless networks to form the mobile Internet. The multi-privileged
group communications can be applied to the mobile Internet. Group users can subscribe to different data streams according to their
interest and have multiple access privileges with the support of multi-privileged group communications. Security is relatively easy to
be guaranteed in traditional groups where all group members have the same privilege. On the other hand, security has been a challenging
issue and is very difficult to handle in multi-privileged groups. In this paper, we first introduce some existing rekeying schemes for secure
multi-privileged group communications and analyze their advantages and disadvantages. Then, we propose an efficient group key man-
agement scheme called ID-based Hierarchical Key Graph Scheme (IDHKGS) for secure multi-privileged group communications. The
proposed scheme employs a key graph, on which each node is assigned a unique ID according to access relations between nodes. When
a user joins/leaves the group or changes its access privileges, other users in the group can deduce the new keys using one-way function by
themselves according to the ID of joining/leaving/changing node on the graph, and thus the proposed scheme can greatly reduce the
rekeying overhead.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the rapid development of mobile and wireless net-
works and the mobile ad-hoc networks (MANETs), the
traditional Internet has been integrated with mobile and
wireless networks to form so-called the mobile Internet.
With the rapid development of the mobile Internet and
increase of network bandwidth, more and more applica-
tions have been found for the mobile Internet. These net-
work applications are based upon unicast or multicast
communications. Unicast employs a client-server model,
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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where the server handles the requests of all users and deliv-
ers suitable packets to the users via a dedicated point-to-
point channel. However, unicast is inefficient if all users
request the same data stream. On the contrary, multicast
is an efficient method for delivery of data from a source
to multiple recipients, such as teleconference, information
service and live sports. If compared with unicast, multicast
can reduce sender transmission overhead and network
bandwidth requirements.

In order to guarantee the security of group communica-
tions, it must be ensured that a user that is not a member of
a group can not access any communications resource
belonging to the group. In order to achieve this require-
ment, an encryption key, also known as the Session Key
(SK) is shared by all legitimate group members [1]. In addi-
tion, in order to ensure forward secrecy and backward
secrecy [2], the SK should be changed after every join
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Table 1
Multi-layer service groups and their access relations

Access
relation

D1 (r1:base
layer)

D2 (r2: enhancement
layer 1)

D3 (r3: enhancement
layer 2)
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and leave so that a former group member has no access to
current communications and a new member has no access
to previous communications.

In traditional group communication schemes [3–8], all
members in a group have same level of access privilege.
In these schemes, if members hold the decryption key, they
can access all the content; otherwise, they can not read any-
thing. In order to improve the scalability of these schemes,
reducing the communication overhead and the rekeying
overhead are the major design concerns.

However, many group applications contain multiple
related data streams and the members have different access
privileges. For example:

• Multimedia applications distributing contents in multi-
layer coding format. In video broadcasting, users with
normal TV receivers can receive the contents with the
normal format only, while users with HDTV receivers
can receive the contents with both the normal format
and the extra information needed to achieve HDTV res-
olution [9].

• In e-newspaper broadcasting, there are multiple data
streams to broadcast the contents of top news, weather
forecasts, financial news, stock quotes, and sports news.
The service provider also classifies users into several
membership groups, such as gold, silver sports, silver
finance and basic. In such an application, different mem-
bership groups can access different contents [10].

Group key management in multi-privileged group com-
munications is crucial and complicated due to the follow-
ing two factors. First, the service generally provides
multiple data streams and encrypts different data streams
using separate SKs [11]. Users can subscribe to one or
multiple data streams and should have the corresponding
SKs for the purpose of security. The challenge is how to
manage these keys while ensuring that no users can access
the key and data beyond their privileges. Second, not only
the users can join or leave the group at will, but also the
users can change their access privileges according to their
interest at any time. Hence, a group key management
scheme should be flexible enough to accommodate users’
join/leave/change requirements. These challenging issues
raise the critical problem of how we can efficiently man-
age the keys when users join/leave/change their access
privileges. In this paper, we will present a new multi-priv-
ileged group rekeying scheme. The proposed scheme
employs a key graph to manage SKs and exploits a
one-way function to update the keys [12] in order to
reduce the rekeying messages in the join/leave and change
operations.

The rest of the paper is outlined as follows. In Section 2,
we describe the service model and logical key hierarchy. In
Section 3, we introduce some existing rekeying schemes for
multi-privileged group communications. In Section 4, we
propose a novel rekeying scheme. Finally, we conclude this
paper in Section 5.
2. Preliminaries

In this section, we first introduce the basic concepts that
describe the group communication systems containing mul-
tiple data streams and users with different access privileges,
and then describe the basic idea of key tree in group com-
munications containing single data stream.

2.1. System descriptions

2.1.1. One-dimensional data stream

Let {r1, r2,. . .} denote the set of resources in a group
communication system. In such a system, each resource
corresponds to a data stream.

A Data Group (DG) consists of a set of users that can
access to a particular resource. Obviously, the DGs can
have overlapped membership because users may subscribe
to multiple resources. The DGs are denoted by D1,
D2, . . .,DM, where M is the total number of the DGs. A
Service Group (SG) consists of a set of users who can
access the exactly same set of resources. The users in each
SG have same access privilege. The SGs have non-over-
lapped membership. The SGs are denoted by S1,
S2, . . . ,SI, where I is the total number of SGs. In order to
describe the access relations in group communications, ti

m

is defined as:

ti
m ¼

1; the users in SG Si subscribs to resource rm

0; otherwise

� �

for i = 1, . . . ,I, and m = 1, . . . ,M. In addition, S0 is defined
as a virtual SG, which represents users who do not partic-
ipate in any group communications.

The following Example 1 and Example 2 are two typical
applications of multimedia group communications [9].

Example 1. Multimedia applications that distribute con-
tents in multi-layer format. The access relations are
illustrated in Table 1.

Example 2. Multicast programs containing several related
services, as shown in Table 2.
2.1.2. Multi-dimensional data stream

An MPEG-4 FGS video frame, supporting T PSNR ser-
vice levels and M bitrate service levels, is divided into
T · M different two-dimensional units [13]. A single tile
JPEG 2000 frame can support four-dimensional scalability



Table 3
Data streams in video

Lowest quality Middle quality Full quality

Resolution level 0 r00 r01 r02

Resolution level 1 r10 r11 r12

K1-6

K6

K4K3K2K1

K3-4K1-2

K5-6K1-4

u1

u6u5

u4u3u2

K5

Fig. 1. Logical key hierarchy.

Fixed ID Version Revision Secret Material

Fig. 2. Structure of a key.

Table 2
Cellular phone service groups and their access relations
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innately: resolution, quality, component and precinct. That
is, data streams are scalable in multiple dimensions.

Suppose there is a scalable video with 2 resolution levels
and 3 quality layers. The group has 6 data streams, as
shown in Table 3.

Users that subscribe to rij can access a scalable unit of
resolution i and quality layer j. Similarly, a Service Group
(SG) defines a set of users who receive the same set of data
streams. When an SG has a privilege to access the video
stream at resolution 0 with full quality, the users in this
SG can receive r00, r01 and r02.

Each data stream needs one unique SK to encrypt the
data. In order to achieve access control, the users in each
DG share an SK. If a user subscribes to multiple data
streams, it needs an SK for each data stream. When a user
joins or leaves the group, the SKs the user holds must be
changed. However, when a user switches between SGs, it
is unnecessary to change SKs for data streams to which
the user is still subscribing.
2.2. Logical key hierarchy

Logical Key Hierarchy (LKH) [14] scheme provides
an efficient and secure mechanism to manage the keys
and to coordinate the key update. The LKH employs a
hierarchical tree whose root node is associated with a
group key and whose leaf nodes are individual keys of
all users in the group. The intermediate nodes corre-
spond to Key Encryption Key (KEK). Each user in
the group holds a set of keys on the path from its leaf
to the root. Consider a multicast group with six users.
The KDC constructs a hierarchy of keys as shown in
Fig. 1. The root node k1–6 is group key, and the user
u2 owns k2, k1–2, k1–4 and k1–6.

Reference [15] presents an efficient scheme to update
the key tree when users dynamically join or leave. Each
key contains a unique key ID, a version field and a revi-
sion field, as shown in Fig. 2. When a user wants to join
the group, the KDC assigns a leaf node to represent the
new user, and increases the revision numbers of all keys
on the path from the leaf node to the root by passing
the keys through a one-way function. When a
user notices the revision change in ordinate data packet,
the user updates the keys with new revision number from
old key using the one-way function. In this case, the
KDC needs only to send one rekeying message to
the new user. In addition, when a user wants to leave
the group, the KDC updates the keys that are held
by the leaving user. The number of rekeying messages
for a user leaving increases linearly with the logarithm
of group size.

2.3. Requirements of the rekeying schemes for

multi-privileged group communications

Obviously, it is impossible to directly apply the logical
key hierarchy to multi-privileged group communications.
In order to achieve hierarchical access control, a simple
method is to construct a separate key tree for each DG.
The leaves are associated with the users in each DG. The
method is very simple and it is easy to manage the keys
and the communications. But the method can bring redun-
dancy because DGs have overlapped membership and
doesn’t scale well when the number of data streams
increases.

Therefore, the rekeying schemes for multi-privileged
group communications should provide security, flexibility
and scalability.

• Security. Each user may subscribe to one or multiple
resources. The rekeying schemes must prevent the user
from accessing any data before he joins or after he leaves
the group. In addition, the rekeying schemes must
ensure that the user can’t access the data that he doesn’t
subscribe to.
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• Flexibility. Besides joining or leaving the group, the
users may change their access privileges, which can be
considered that the users switch between different SGs.
Because of the dynamics of users, the rekeying schemes
need to support users’ join/leave/ switch at any time.

• Scalability. When a new SG joins the group communica-
tions or an SG in a group decomposes, it should not lead
to the reconstruction of the structure for group key
management. In other words, it should support the
dynamic service group formation and decomposition.
3. The existing group key management schemes

In order to eliminate the redundancy because of over-
lapped membership among DGs, Sun and Liu [9] proposes
a Multi-Group Key Management Scheme (MGKMS). The
MGKMS scheme employs an integrated key graph to man-
age the keys when a user joins/leaves/switches. The key
graph is constructed as follows:

(1) The KDC constructs an SG-subtree for each SG. The
root of the SGi-subtree is the SG key KS

i . The leaves
are the users in the SG Si.

(2) The KDC constructs a DG-subtree for each DG. The
root of the DGm-subtree is the DG key KD

m. The
leaves are the SG keys in which the users can access
the resource rm.

(3) The KDC generates the key graph by connecting the
leaves of the DG-subtrees and the roots of the SG-
subtrees.

The procedure of constructing the integrated key graph
is illustrated in Fig. 3. Suppose each SG has 4 users. Each
user in Si holds a set of keys on the paths from the leaf to
the root of the DG-subtree of {Dm,"m : ti

m ¼ 1}.
Here, a switching user changes the SG from Si to Sj. /i

denotes a set of keys that the user holds in Si, and /j

denotes a set of keys that the user holds in Sj. The rekeying
algorithm consists of two steps as follows:
Fig. 3. Multi-group key management graph construction.
(1) The KDC updates the keys in �/i \ /j through a one-
way function and increases the revision numbers of
these keys. When users notice that the revision num-
bers of keys they hold increase, they compute the new
keys using the same one-way function.

(2) The KDC updates the keys in/i \ �/j, increases their
version numbers and sends the new keys encrypted
with their children keys to the users.

The MGKMS scheme can achieve the forward and
backward secrecy when users join/leave the group or switch
between different SGs. Compared with the tree-based
group key management scheme in multicast communica-
tions containing single data stream, it can greatly reduce
the storage, computation and communication overheads.
However, if there are complicated relations between SGs
and DGs, the merging key graph step will also be compli-
cated. In addition, the scheme can’t flexibly deal with for-
mation and decomposition of SGs.

In many applications, users and data streams both form a
partially ordered hierarchy, but the above MGKMS scheme
only considers the former. Therefore, a Hierarchical Access
Control Key Management Scheme (HACKMS) [10] is pro-
posed, which considers both partially ordered users and par-
tially ordered data streams. The HACKMS scheme presents
an algorithm to construct a key graph based the Directed
Acyclic Graph (DAG) of SGs and the DAG of resource
groups [16]. The algorithm traverses the unified DAG in
breath-first search and constructs the key graph from bottom
to top. The HACKMS scheme considers the partially
ordered relationship among data streams, and the number
of auxiliary keys of DGs and SKs is less than that of the
MGKMS scheme. So, compared with the MGKMS scheme,
it reduces the storage and rekeying overheads at key server
and users. But the construction of key graph is a little bit
complicated, because it must first form a unified DAG for
SGs and resource groups. In addition, if the partially ordered
relationship of data streams is changed, the key graph must
be reconstructed.

The above schemes only support one-dimensional data
streams. However, in some applications, there are multi-
dimensional data streams [17]. Therefore, Dynamic Access
Control Scheme (DACS) [18] is proposed, which supports
not only one-dimensional data streams, but also multi-
dimensional data streams. It don’t need to construct DG-
subtree, the root of each SG-subtree is associated with the
SKs of the scalable streams that the users in this SG can
access.This scheme isn’t only suitable for the multi-dimen-
sional data streams but also flexible for the dynamic service
group formation and decomposition. It scales well when the
new SG is formed. In addition, the storage overhead and the
rekeying overhead are less than those in the MGKMS
scheme because of no auxiliary keys in DG-subtrees.

In Distributed Key Management Scheme (DKMS) [19],
every SG maintains an SG server to be used to manage all
the users in the SG. The DKMS proposed a structure that
includes two parts: DG part and SG part. The DG part
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consists of all SG servers and is used to manage those serv-
ers. The SG part includes an SG server and all users in this
SG. Compared with the MGKMS scheme, both the stor-
age overhead and the rekeying overhead can be reduced.
And this scheme supports the service group formation
and decomposition. However, compared with the DACS
scheme, forming a new SG in DKMS is more complicated
because the group key of SGSG shared by all SG servers
needs to be updated.

4. Our proposed scheme

We propose an ID-based Hierarchical Key Graph
Scheme (IDHKGS) to manage multi-privileged group
communications. The proposed scheme employs a key
graph [9] and each node is assigned an ID to uniquely iden-
tify a key.

The key graph contains two types of nodes: u-nodes
which contain individual keys and k-nodes which contain
SG keys, DG keys and auxiliary keys. The proposed
scheme differs from the MGKMS scheme in two aspects,
i.e., the identification of a key and the rekeying operation.
In the proposed scheme, as long as a user knows the IDs of
another user’s u-node in the group, it can deduce the IDs of
k-nodes on the paths from the u-node to the SK nodes
which contain SKs. In addition, we update the keys using
a one-way function for the old users to compute the new
keys by themselves when a user joins/leaves the group or
switches between different SGs.

4.1. Identification of a key

In our proposed scheme, the key graph contains two
parts, the SG part and the DG part. The SG part is com-
posed of all SG-subtrees, and the DG part is composed
1 76432

R1 R2

<2,0>

<15,-1><30,-1>

<30,15>

<15,5>

<3,0>

<<3,5><3,4><3,3>

<<3,1>

5

Fig. 4. Illustration of
of all SK nodes and the k-nodes between the SG k-nodes
and the SK nodes on the key graph. The SGs are denoted
by S2, S3, . . .,Si, . . . , where i is a prime number. The server
assigns two integers as the ID of each node on the key
graph. In each SG-subtree, a node is identified by the SG
i(i = 2, 3, 5,. . .) to which the node belongs and by the posi-
tion m(m P 0) which is numbered from the root of its SG-
subtree in a top–down and left–right order. The node Æi, 0æ
is the root of the Si-subtree. We observe that the IDs of a
node and its parent node have the following simple rela-
tionship: kÆi,º(m�1)/2ßæ is the parent node of kÆi,mæ.

In the DG part, if a node has two children nodes Æj1, n1æ
and Æj2, n2æ, the node is identified by j that is the least com-
mon multiple of j1 and j2 and by n(n = max(j1, j2)). If a
node only has one child node Æj1, n1æ, such as the SK node,
the node is identified by j1 and by �1. Fig. 4 illustrates the
IDs of nodes in Fig. 3 of Section 3.

A user in SG Si holds a set of keys on the paths from the
leaf to the root of the DG-subtree of {Dm,"m : ti

m ¼ 1}.
When a user in a group knows the ID of u5’s u-node, Æ3,
3æ, then this user can deduce that user u5 holds kÆ3,1æ,
kÆ3,0æ, kÆ15,5æ, kÆ15,�1æ, kÆ30,15æ, kÆ30,�1æ.

In order to maintain forward secrecy and backward
secrecy, a rekeying operation is executed when a user
joins/leaves a group or switches between SGs.

4.2. Rekeying algorithm

In order to maintain the forward secrecy and backward
secrecy, a rekeying operation is executed when a user joins/
leaves a group or switches between SGs.

4.2.1. Single user join

When a user joins or switches between SGs, the IDs of
some u-nodes in the SG part will be changed and users
1211108
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key identification.



Fig. 6. Key graph after u13 joins.
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should know the up-to-date IDs of their u-nodes. In [20],
the authors prove that a user can deduce its current ID
by knowing its old ID and the maximum ID of the current
k-nodes. Then, a user in SG can compute its current ID
using the same method in our proposed scheme.

Suppose that a user u requests to join Si. The server
inserts it at the end of one of the shortest paths of the Si-
subtree, assigns Æi, mæ to the new u-node, broadcasts the
ID of the new u-node, Æi, mæJ (where J is named after the
join operation of the joining u-node), and the maximum
ID of the current k-nodes in Si, Æi, nkæ. When a user receives
the broadcast messages, the users in the group can deduce
the new keys using a one-way function so that k 0 = f(k)
(where k 0 denotes the updated version of key k). If kÆi,næ
is a newly created one, the new key is k0hi;ni ¼
f ðkhi;li � khi;0iÞ, where kÆi,læ is the key of the spitted u-node.
The rekeying algorithm for single user join is illustrated
in Fig. 5.

We explain the join operation of user u13, as shown in
Fig. 6. When a user u13 joins the group, a new u-node is cre-
ated to hold u13’s individual key. The server broadcasts Æ3,
8æJ (the ID of the new user u13’s u-node) and Æ3, 3æ (the
maximum ID of the k-node in S3 after u13 joins the group).

According to the IDs, the users in the group can deduce
that kÆ3,1æ, kÆ3,0æ, kÆ15,5æ, kÆ15,�1æ, kÆ30,15æ and kÆ30,�1æ need to
be updated andkÆ3,3æ is the newly created one. Then, the
users compute the new key values using a one-way function
by themselves. The new keys are:

k0h3;1i ¼ f ðkh3;1iÞ; k0h3;0i ¼ f ðkh3;0iÞ;
k0h15;5i ¼ f ðkh15;5iÞ; k0h15;�1i ¼ f ðkh15;�1iÞ;
k0h30;15i ¼ f ðkh30;15iÞ; k0h30;�1i ¼ f ðkh30;�1iÞ:
k0h3;3i ¼ f ðkh3;7i � kh3;0iÞ:
Finally, the server only needs to encrypt all new keys for
the newly joining user.

s! u13 : fk0h3;3i; k0h3;1i; k0h3;0i; k0h15;5i; k
0
h15;�1i;

k0h30;15i; k
0
h30;�1igkh3;8i
Fig. 5. Rekeying algorithm for single user join.
4.2.2. Single user leave

Suppose that a user u requests to leave Si. Then all the
keys the user u holds must be updated. The server broad-
casts the ID of the leaving u-node that is Æi, næL (where L

is named after the leave operation of the leaving u-node).
The users in the group deduce the new keys through a
one-way function such that k 0 = f(k ¯ k1) where k1 is one
of the auxiliary keys that is not on the leave paths. The ser-
ver only needs to encrypt and send these new keys to the
users who can not deduce them. The rekeying algorithm
for single user leave is illustrated in Fig. 7.

We explain the leave operation of user u8, as shown in
Fig. 8. The server removes the u-node of u8. The server
broadcasts Æ3, 6æL (the ID of the leaving user u8’s u-node).
The users in S3 can deduce that kÆ3,2æ and kÆ3,0æ need to be
Fig. 7. Rekeying algorithm for single user leave.
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Fig. 8. Key graph after u8 leaves.

Fig. 9. Rekeying algorithm for single user switch between SGs.
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updated and kÆ3,5æ and kÆ3,1æ are chosen to compute kÆ3,2æ
and kÆ3,0æ, respectively.

k0h3;2i ¼ f ðkh3;2i � kh3;5iÞ; k0h3;0i ¼ f ðkh3;0i � kh3;1iÞ:

In the DG part, the users deduce that kÆ15,5æ, kÆ30,15æ
kÆ15,�1æ and kÆ30,�1æ need to be updated and the new keys
except the SKs are:

k0h15;5i ¼ f ðkh15;5i � kh5;0iÞ; k0h30;15i ¼ f ðkh30;15i � kh2;0iÞ:

The server needs to encrypt and send the new keys to the
users that can not deduce them.

s! u7 : fk0h3;0igk0h3;2i
:

s! u5 � u7 : fk0h15;5igk0h3;0i
;

s! u5 � u7; u9 � u12 : fk0h30;15igk0h15;5i
:

In addition, the server computes the new SKs,

k0h30;�1i ¼ f ðkh30;�1i � k0h30;15iÞ; k0h15;�1i ¼ f ðkh15;�1i � k0h15;5iÞ;

and it encrypts and sends them to the users.

s! u1 � u7; u9 � u12 : fk0h30;�1igk0h30;15i
;

s! u5 � u7; u9 � u12 : fk0h15;�1igk0h15;5i
:

Fig. 10. Key graph after u8 switches from S2 to S1.
4.2.3. Single user switch

In multi-privileged group communications, the users can
flexibly change their access privileges according to their
interest at any time. That is, the users are able to switch
between different SGs.

Suppose that a user wants to switch from Si to Sj, which
can be considered as that the user first leaves Si and then
joins Sj. The server broadcasts the IDs of leaving/joining
node and the maximum ID of the current k-nodes in Sj,
Æi, næSL, Æj, mæSJ and Æj, nkæ, where SL is named after the
leave operation of the switching user u-node in Si and SJ
is named after the join operation of the switching user u-
node in Sj. The users deduce the new keys using one-way
function that are similar to the join operation and the leave
operation. The rekeying algorithm for single user switch
between SGs is illustrated in Fig. 9.

We explain the single user switch operation in Fig. 10. A
user u8 wants to switch from S2 to S1. A new u-node inS1 is
created to hold u8’s individual key. The server broadcasts
the ID of the switching user’s old u-node and new u-node
and the maximum ID of the k-node in S1 after u8 switches
to S1, Æ3, 6æSL, Æ2, 6æSJ and Æ2, 3æ. The users deduce that-
kÆ2,1æ, kÆ2,0æ,kÆ3,2æ, kÆ3,0æ need to be updated and kÆ2,1æ is a
newly created one. The new keys are computed as follows:
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k0h2;1i ¼ f ðkh2;1iÞ; k0h2;0i ¼ f ðkh2;0iÞ;
k0h2;3i ¼ f ðkh2;7i � kh2;0iÞ; k0h3;2i ¼ f ðkh3;2i � kh3;5iÞ;
k0h3;0i ¼ f ðkh3;0i � kh3;1iÞ:

In the DG part, the users deduce that kÆ15,5æ and kÆ15,�1æ
need to be updated,

k0h15;5i ¼ f ðkh15;5i � kh5;0iÞ:

The server encrypts k0h3;0i and k0h15;5i, and sends them to
the users who can not deduce them.

s! u7 : fk0h3;0igk0h3;2i
; s! u5 � u7 : fk0h15;5igk0h3;0i

:

Finally, the server computes the new SKs,

k0h15;�1i ¼ f ðkh15;�1i � k0h15;5iÞ;

and sends them to the corresponding users.

s! u5 � u7; u9 � u12 : fk0h15;�1igk0h15;5i
:

Fig. 12. kÆi,jæ is labeled as JOIN.
4.2.4. Batch update operation

If users join, leave or switch frequently, the individual
rekeying operations, that is, rekeying after each join, leave
or switch request, has very large rekeying overhead. In peri-
odic batch rekeying [21], the server collects all join, leave
and switch requests. At the end of each rekeying period of
time, the server processes all requests, generates new keys
and sends them to the corresponding users. In our proposed
scheme, when the SG-subtrees that the users want to join or
switch to become full binary trees, the server splits nodes
after the rightmost k-node at the highest level to accommo-
date the extra joins. Firstly, the server labels the k-nodes,
and the process consists of 3 steps as follows:

(1) The server removes the u-nodes of leaving users and
switching users in the SGs from which the users
switch, labels all k-nodes on the leave paths as
LEAVE.

(2) The server labels the newly created k-nodes as NEW,
labels all k-nodes on the join paths as JOIN.

(3) To the switching users, the server labels the k-nodes
which the users hold originally but do not hold after
the switch operation as LEAVE, labels the k-nodes
which the users do not hold originally but hold after
the switch operation as JOIN.

After the key graph is labeled, the server needs to broad-
cast the IDs of all joining users, leaving users and switching
users, Æai, biæL, Æcj, djæJ, hep; fpiSLp

, hgp; hpiSJp
, and the IDs of
Fig. 11. kÆi,jæ is labeled as LEAVE.
the k-nodes in some SGs that the users want to join and
switch to. According to the broadcast IDs, the users label
the k-nodes which they hold as JOIN, LEAVE or NEW.
Then, the users can deduce the new key for all labeled k-
nodes according to following three cases.

Case 1: As shown in Fig. 11, if the k-node is labeled as
LEAVE, whether or not it is labeled as JOIN, the users
compute the new key value as follows.

1) i is a prime number. The operation is similar to the
leave operation. The new key is
k0hi;ji ¼ f ðkhi;ji � khi;liÞ when kÆi,læ is not labeled. If both
two children nodes are labeled, the server computes
the new key, k0hi;ji ¼ f ðkhi;ji � k0hi;j�2þ1iÞ, encrypts and
sends it to the users.

2) i is not a prime number. kÆi,jæ has two children nodes,
and khi=j;l2i. If all ai and ep are not common factors of
j, the new key is k0hi;ji ¼ f ðkhi;ji � khj;l1iÞ (l1 = 0 when j

is a prime number, otherwise l1!=-1,0). If all ai and ep

are not common factors of i/j, the new key is
k0hi;ji ¼ f ðkhi;ji � khi=j;l2iÞ (l2 = 0 when i/j is a prime
number, otherwise l2! = �1, 0). When the two chil-
dren nodes are labeled, the server chooses a new child
node key to compute k0hi;ji.

Case 2: As shown in Fig. 12, the new key is
k0hi;ji ¼ f ðkhi;jiÞ.

Case 3: As shown in Fig. 13, the k-node is newly created,
the new key is k0hi;ji ¼ f ðkhi;j�2þ1i � khi;0iÞ.

Fig. 14 shows an example of the batch update operation.
During a rekeying period of time, u1 leaves the group, u13

joins S2, and u5 switches from S2 to S3. The server removes
the u-node uÆ2,3æ, broadcasts their IDs and the maximum
IDs of k-nodes in some SGs which some users want to join
and switch to, Æ2, 3æL, h3; 3iSL1

, h5; 8iSJ1
, Æ3, 3æJ, and Æ3, 2æ,

Æ5, 3æ. The server and the users label the k-nodes. The users
can compute the new keys according to the above method.
Fig. 13. kÆi,jæ is labeled as NEW.



Fig. 14. A batch update example.
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k0h5;1i ¼ f ðkh5;1iÞ; k0h5;0i ¼ f ðkh5;0iÞ; k0h5;�1i ¼ f ðkh5;�1iÞ;
k0h15;5i ¼ f ðkh15;5iÞ; k0h15;�1i ¼ f ðkh15;�1iÞ;
k0h5;3i ¼ f ðkh5;7i � kh5;0iÞ;
k0h3;1i ¼ f ðkh3;1i � kh3;4iÞ; k0h3;0i ¼ f ðkh3;0i � kh3;2iÞ;
k0h2;1i ¼ f ðkh2;1i � kh2;4iÞ; k0h2;0i ¼ f ðkh2;0i � kh2;2iÞ;
k0h30;15i ¼ f ðkh30;15i � k0h2;0iÞ:

To the SK, kÆ30,�1æ, the server computes the new key,

k0h30;�1i ¼ f ðkh30;�1i � k0h30;15iÞ:

Finally, the server encrypts the new keys that some users
can not compute by themselves and sends them to these
users.

s! u6 : fk0h3;0igk0h3;1i
; s! u2 : fk0h2;0i; k0h30;15igk0h2;1i

;

s! u5 � u13 : fk0h30;15igk0h15;5i
; s! u2 � u13 : fk0h30;�1igk0h30;15i

:

5. Theoretical analysis and simulation studies

5.1. Security analysis

In our proposed scheme, the attacker model is divided
into two kinds of adversaries. One kind of adversary does
not belong to a group, and the other is a member of a group.

For the former, suppose that the adversaries can eaves-
drop all traffic but they do not hold any keys in the key
graph since they do not belong to the group. So, they
can not get the SKs and decrypt the data messages.

For the latter, when the adversaries join the group
and hold all keys on their paths, they might collect pre-
vious key update messages. However, they cannot
deduce the previous SKs. This is so because, although
the adversaries get the current SKs and key update mes-
sages, it is computationally infeasible to compute the
previous SKs. When the adversaries leave the group,
the server updates the SKs and the key graph. Notice
that the new SK is deduced as k 0 = f(k ¯ k 01), with
k01 ¼ f ðk1 � k2Þ, where k01 is the new child key of SK
and k2 is one of children keys which is not on the leave
path. The adversaries cannot compute the new SKs
because they do not hold k2.

In conclusion, our proposed scheme ensures that users
who do not belong to a particular group cannot decrypt
data messages and thus both forward secrecy and back-
ward secrecy are maintained.

5.2. Performance analysis

Because the IDHKGS scheme and the MGKMS scheme
employ the same key graph, the storage overhead of the
server in the IDHKGS scheme is equal to that in the
MGKMS scheme, and the storage overhead of each user
in the MGKMS scheme is 1 less than that in the IDHKGS
scheme since a user in the IDHKGS scheme needs to hold
the maximum ID of k-nodes in SG to which the user
belongs, whereas a user in the MGKMS scheme does not
need it. Therefore, we only analyze the rekeying overhead
of single join/leave/switch.

In this section, we mainly compare the time and commu-
nication requirements of our new scheme and the MGKMS
scheme. Table 4 summarizes our comparisons, focusing on
the following measures: the multicast size, the unicast size,
the KDC computation, and all members computation.

Our analysis assumes that the trees used by IDHKGS
and MGKMS are binary. We define that CE, Cr and Cf



Table 4
Performance comparison for single join/leave/switch

MGKMS IDHKGS

Single join Multicast size 0 0
Unicast size (NJ + 1)K NJK

KDC comp. NJCf + 2(Cr + CE) NJCf + Cr + CE

Mem. comp. 2NJCf + 2CE 2NJCf + CE

Single leave Multicast size 2KNL KNL

Unicast size 0 0
KDC comp. NL(2CE + Cr) NL(CE + Cf + Cr)
Mem. comp. 2NLCE NL(CE + Cf)

Single switch Multicast 2KNSL KNSL

Unicast (NSJ+1)K NSJK

KDC comp. NSJCf + Cr(2+NSL)+2CE(1+NSL) 2NSJCf + Cr(1+NSL) + CE(1+NSL)
Mem. comp. 2NSJCf82CE(1+NSL) 3NSJCf + CE(1 + NSL)
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are the computational cost of an encryption/decryption
algorithm, the computational cost of generating one key
from a cryptographically secure random source, and the
computational cost of one evaluation of the one-way func-
tion f, respectively. In addition, K is the size of one key in
bits.

When a user wants to join the group Si or a user in Si

wants to leave the group, the numbers of old k-nodes that
are needed to be updated are NJ and NL.

N J ¼ hðSiÞ þ
XM

m¼1

ti
mhðDmÞ;

N L ¼ hðSiÞ þ
XM

m¼1

ti
mhðDmÞ;

where M is the total number of the DGs, h(Si)and
h(Dm), are the heights of Si-subtree and Dm-subtree,
respectively. Notice that if the position that the new user
joins is the same as the position of the leaving user in Si-
subtree, NJ = NL, otherwise, NJ „ NL.

When a user in Si wants to switch to Sj, (i „ j), the num-
ber of old k-nodes on the joining path and leaving path are
NSJ and NSL.

N SJ ¼ hðSiÞ þ
XM

m¼1

maxððti
m � tj

mÞ; 0Þ � hðDmÞ;

N SL ¼ hðSjÞ þ
XM

m¼1

maxððtj
m � ti

mÞ; 0Þ � hðDmÞ:

After a joining operation, in the two schemes, the KDC
doesn’t need to multicast any rekeying message because the
old users in the group can deduce the new keys by them-
selves and the KDC does not need to multicast rekeying
overhead. However, the unicast size, the KDC computa-
tion and all members computation of the IDHKGS scheme
are slightly smaller than that of the MGKMS scheme. The
reason is that the rekeying message for the newly created
key is not needed in the IDHKGS scheme.

While both MGKMS and IDHKGS require a number
of bits to be multicast to rekey after leaving or switching
operation, IDHKGS roughly halves the multicast length
over MGKMS because a child node of the updated k-node
that is not on the leave path is chosen for the new key der-
ivation in the IDHKGS scheme. Therefore, in the
IDHKGS scheme, the KDC only needs to multicast new
keys to the users that can’t deduce by themselves, and
achieves the goal of reducing the multicast size.

From Table 4, another advantage of IDHKGS over
MGKMS is that the KDC requires fewer random keys in
the IDHKGS. In particular, to evict one member, in the
IDHKGS scheme the KDC must generate NL new random
key. By contrast, in the MGKMS scheme the KDC must
generate 2KNL new keys. If generating random keys in
some practical application is relatively slow, the IDHKGS
scheme could save more time than the MGKMS scheme.

In addition, for both the KDC computation and all
members computation, the CE in the IDHKGS scheme is
smaller than that in the MGKMS scheme but the
IDHKGS scheme requires more Cf because the users in
the IDHKGS scheme can deduce more new keys by them-
selves and the number of rekeying messages that the KDC
needs to send is reduced. As the computational cost of the
encryption function is larger than that of the one-way func-
tion, therefore, the IDHKGS scheme can reduce the com-
putations of KDC and members compared with the
MGKMS scheme.

5.3. Simulation studies

We compare the IDHKGS scheme with the MGKMS
scheme in simulations using C++. The simulation scenario
is within a group of three data streams, in which N users
are randomly distributed on the three SGs. The users in
SG Si have access to the DG D1, D2,..., Di. To simplify
the model, batch rekeying is applied and the key trees are
binary. During fixed time interval t, users join different
SGs with the same probability a, the users in each SG leave
the group with the same probability b, and the users in the
group switch to the neighboring SGs with the same proba-
bility c, that is, the users in the S1 and S3 can only switch to
S2, the users in the S2 can switch to S1 and S3. After t, the
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KDC updates the keys and sends the rekeying messages
together. The parameters in the model are shown in
Table 5.

Fig. 15 shows the rekeying overhead at the KDC with
the increase of N using the IDHKGS scheme and the
MGKMS scheme respectively. When the total number of
users in the group is increased from 100 to 3000, the rekey-
ing overhead at the KDC of both schemes tends to increase
because more users join/leave the group or switch to differ-
ent SGs. It is clear that when N is very small, the rekeying
overhead of two schemes is similar. However, the
IDHKGS scheme reduces the rekeying overhead by more
than 50% with the increase of N.
Fig. 15. Rekeying overhead at the KDC (M = 3).

Fig. 16. Rekeying overhead at the KDC with different switch probability
(N = 15000).

Fig. 17. Rekeying overhead at the KDC with different numbers of SGs.

Table 5
The simulation parameters

Rekeying interval (t) 1000 (ms)

Probability of joining (a) 0.001
Probability of leaving (b) 0.01
Probability of switching (c) 0.001
 Fig. 16 shows the comparison of rekeying overhead at the

KDC with the change of switch probability when the total
number of users in the group is 1000. It can be seen that
the rekeying overhead at the KDC of both schemes tends
to increase first and then decrease. That is because users
are much more likely to switch SGs than to stay in the current
SG when the switch probability increases. Many users leave
an SG with batch rekeying requires less rekeying messages
than several users’ leaving. Whenc is smaller than 2b, the
rekeying overhead of the IDHKGS scheme increase slower
than the MGKMS scheme, the rekeying overhead will be
reduced by 70% in the best situation. Whenc is larger than
2b, the rekeying overhead of the IDHKGS scheme does
not reduce as fast as the MGKMS, but the former also
reduces the rekeying overhead by more than 50%.

Fig. 17 shows the rekeying overhead at the KDC with the
number of SGs increase. In the simulation, N = 15000,
t = 100 s, =0.02/M. The rekeying overhead of MGKMS
scheme does not change much in this situation. It is clear that
when M increases, the rekeying overhead of the IDHKGS
scheme also increase slowly. Therefore, in the IDHKGS
scheme, the scale of the key graph mainly depends on the
whole group size, not the number of SGs or data streams.
6. Conclusions

In this paper, we have investigated the issues of group key
management in support of multi-privileged group communi-
cations and proposed an ID-based hierarchical key graph
scheme for secure multi-privileged group communications
in the mobile Internet, where the mobile ad-hoc networks
(MANETs) are considered as an essential component in such
integrated network environment. According to the relation-
ship between children nodes and parent node as well as the
relationship between data streams and SGs, each node on
key graph is assigned a unique ID, in order for the node to
deduce the IDs of his parent node and ancestor nodes. The
server only needs to broadcast the IDs of joining user and
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leaving user, the old users in the group know which nodes
they hold should be updated. The new key value is computed
by a one-way function, the server does not need to send
rekeying messages when a user joins. When a user leaves,
part of users also can compute the new keys by themselves.
No matter when joining/leaving or switching, the users in
the group can deduce some updated keys. Theoretical anal-
ysis and simulation studies show that our proposed scheme
needs only half of the rekeying overhead of the MGKMS
scheme, and the proposed scheme outperforms the MKMG
scheme in all cases.

Currently the proposed scheme uses only binary tree
and can not flexibly deal with formation and decomposi-
tion of service groups. We plan to extend its usage of
k-ary trees and to propose solutions to the dynamic forma-
tion and decomposition of service groups.
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