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Abstract Application scheduling plays an important role in

high-performance cluster computing. Application schedul-

ing can be classified as job scheduling and task scheduling.

This paper presents a survey on the software tools for the

graph-based scheduling on cluster systems with the focus on

task scheduling. The tasks of a parallel or distributed appli-

cation can be properly scheduled onto multi-processors in

order to optimize the performance of the program (e.g., ex-

ecution time or resource utilization). In general, scheduling

algorithms are designed based on the notion of task graph that

represents the relationship of parallel tasks. The scheduling

algorithms map the nodes of a graph to the processors in

order to minimize overall execution time. Although many
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scheduling algorithms have been proposed in the literature,

surprisingly not many practical tools can be found in practical

use. After discussing the fundamental scheduling techniques,

we propose a framework and taxonomy for the scheduling

tools on clusters. Using this framework, the features of ex-

isting scheduling tools are analyzed and compared. We also

discuss the important issues in improving the usability of the

scheduling tools.
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1 Introduction

Many large-scale applications in science, engineering and

commerce should be executed on parallel systems to achieve

high performance computing. The rapid advances in power-

ful microprocessors, high-speed networks and standard soft-

ware tools are enabling the clusters of computers to be a

cost-effective substitute for parallel computers. Thus, paral-

lel computing has in large extent been migrating from ex-

pensive high-end supercomputers to lower-cost clusters built

with commodity-off-the-shelf (COTS) computers and com-

monly used software [6, 10].

A cluster is composed of multiple standalone computers

connected via a network. To exploit the system capability and

implement high-performance computing on it, software sup-

ports are required to realize the consolidated computational

capability. The software supports can be implemented at var-

ious levels such as operating systems (e.g., Solaris MC [9],

GLUnix [23], and MOSIX [40]), resource management sys-

tems (e.g., Condor [13], LSF [39], MARS [21], and Legion

[38]), and parallel programming environments (e.g., PVM

[45], MPI [41], and OpenMP [43]). Importantly, the soft-
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ware support for application scheduling is critical to realize

high-performance parallel computing. The application sch-

eduling aims to appropriately allocate parallel programs to

processors so that the resource utilization can be improved

and the execution time can be reduced. Application schedul-

ing can be performed at job level or task level. Job schedul-
ing [4, 18, 34] deals with the allocation of independent pro-

grams or tasks to processors according to the priorities of

the jobs and the availability of the resources. At present, job

scheduling is widely used for scheduling parallel programs

on clusters. A parallel job is submitted with the required

number of processors. Job scheduler assigns the job to a

suitable queue. When the required processors become avail-

able, the job is dispatched to run on them. Job scheduling

aims at balancing the workload among the processors and

therefore optimizing the system-wide throughput. It maps

the processes of a parallel job to the processors without the

consideration of the dependency between the tasks. A large

number of commercial job scheduling systems are available,

including Condor [13], LSF [39] and Loadleveler [30]. The

surveys of job scheduling techniques can be found in [4, 5,

18–20, 34].

Differently, task scheduling handles the allocation of de-
pendent tasks of a parallel program to the processors in order

to minimize the overall execution time [22, 35, 36, 47, 49, 59].

As an attempt to design a task scheduling method for a graph-

oriented programming environment on clusters [12], we face

the problem of formulating an effective scheduling approach

and implementing the support tool. This requirement moti-

vates us to survey the literature about the scheduling tools for

cluster computing. Since task scheduling is usually based on

the relationship between the tasks, which can be modeled as

a task graph, our survey emphasizes on the graph-based task

scheduling tools.

Although enormous task scheduling algorithms have been

proposed [15, 35, 36, 47], very few task scheduling tools can

be found on cluster systems. Moreover, most of the researches

in this area are theoretical work rather than practical imple-

mentation. Only a few tools are implemented for practical

use. In this paper, we propose a framework and taxonomi-

cal classification of scheduling tools to assist the design of

the tools. After the discussion on the requirements and fun-

damental techniques of task scheduling, the features of rep-

resentative scheduling tools are summarized and compared

using the proposed taxonomy. We also discuss the important

aspects in improving the usability of the scheduling tools. Our

framework can provide a guideline for developing scheduling

tools on clusters.

The rest of the paper is organized as follows. Section 2 is an

overview of the architecture, applications and task scheduling

tools of cluster computing. Section 3 introduces the general

task scheduling techniques. Section 4 describes our frame-

work and taxonomy of the scheduling tools. Section 5 dis-

cusses the representative scheduling tools and compares their

characteristics. Section 6 concludes the paper and discusses

the future research issues.

2 Task scheduling on clusters

Cluster systems have been widely used to process paral-

lel applications in various fields such as scientific comput-

ing, image processing, artificial intelligence, physical and

biological modeling, databases, and Web servers. With the

rapid development in hardware and software, a cluster sys-

tem is now capable of performing large-scale computations

that were conventionally feasible only on supercomputers.

Task scheduling plays an important role in enhancing this

capability of clusters.

2.1 Architectural features

In a cluster system, standalone computers are consolidated

into a single, unified system to perform parallel computing

[10, 29, 44]. Different from traditional parallel computers,

each machine in a cluster can be independently in operation

and be separately accessed by different users and applica-

tions. Also different from distributed systems, the machines

in a cluster are integrated into a unified single resource. A

user can access the cluster through a single interface. Ap-

plications can be launched on any machine in the cluster

and dispatched to run on more processors as in a parallel

computer.

Figure 1 shows the generic architecture of a cluster sys-

tem in which the computer nodes can be PCs, workstations,

SMPs (Symmetric Multiprocessors) and even supercomput-

ers. The nodes are interconnected via a commodity high-

speed network such as Fast Ethernet or Myrinet [42]. The

operating system (OS) on each node can be multi-user, mul-

titasking, and multi-threaded systems such as Linux, Solaris,

and Windows NT. A cluster can be a homogeneous system in

which all nodes have similar architecture and run the same
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OS. A cluster can also be a heterogeneous system where

the nodes have different architecture and run different OS.

A cluster middleware layer is constructed on top of the op-

erating systems to create a single system image (SSI) [10]

over the cluster and to manipulate resource management and

scheduling. Programming environments, software tools, and

user interfaces are settled upon the middleware layer to sup-

port application development. Communications between the

nodes are implemented based on message passing. In a clus-

ter, the inter-process communication latency is higher than

that in a shared-memory parallel computer or in the multipro-

cessors linked by proprietary interconnection network. The

high communication latency will influence the performance

of cluster computing.

Therefore, task scheduling is an important technique to

exploit the consolidated computing power, reduce the com-

munication overhead, and minimize the execution time. The

task scheduling is based on the computation and commu-

nication costs of the tasks, the speed and workload of the

processors, and the bandwidth of network. The scheduling

tools usually consist of the components existing in different

layers from user interface to cluster middleware. A schedul-

ing tool requires a user interface to input user program and

specify the scheduling requirements. Program preprocessors

are needed to process the program code or the task graph

to determine a scheduling scheme. The scheduling is even-

tually performed by the cluster middleware. The scheduling

tools may also support the execution profiling, performance

analysis and visualization.

2.2 Application requirements

Compute-intensive applications highly rely on the task

scheduling to realize high-performance computing on clus-

ters. The requirements of task scheduling can be identified

in the major application fields of cluster computing.

1. Scientific Computing
Scientific computing covers a wide range of applica-

tions, including matrix computation, linear system solver,

Fast Fourier Transform (FFT), Partial Differential Equation

(PDE) solver and other applications [11]. For example, par-

tial differential equations can be used to describe the behavior

of a physical system such as in computational fluid dynam-

ics (CFD) [33]. The PDE algorithms are massively parallel

computing problems with the computational complexity at

least an order of magnitude beyond the capabilities of today’s

workstations in memory requirement and CPU time. How-

ever, a cluster of workstations can provide adequate capacity

to run the PDE solvers. The task scheduling can produce a

proper mapping of the PDE algorithms to the processors so

that high performance computing can be achieved.

Scientific computing applications may also include heavy

inter-processor communication that restricts the performance

of these applications. Thus, task scheduling is required to de-

termine the task decomposition and mapping that can reduce

the communication overhead.

2. Image Processing
Image processing is an application area with potentially high

parallelism [3, 51]. For example, ray tracing is a graphical

rendering algorithm that creates an image from the descrip-

tion of the objects [50]. Parallel ray tracing usually uses two

methods to parallelize the rendering operations: image par-
allel and object-space parallel [11]. In the image parallel

method, a certain number of rays are assigned to each pro-

cessor. Each processor possesses the description of all objects

but renders a section of the image. In the object-space par-

allel method, the description of all objects is partitioned into

sub-volumes that are distributed to the local memory of each

processor. Each processor computes all the ray tracing re-

lated to that sub-volume. Due to the imbalanced workload in

parallel rendering, dynamic scheduling is required to balance

the workload on the processors.

3. System Modeling and Simulation
System modeling and simulation studies the features and

evolution of physical, biological, electrical, mechanical and

social systems. In system modeling, dynamic scheduling is

required to redistribute the imbalanced workload caused by

the system evolution. For example, the N-body problem [53]

is an application that simulates the evolution of the physical

systems in astrophysics, plasma physics, molecular dynam-

ics, fluid dynamics and other areas. A physical system con-

tains numerous bodies that impose force influences on one

another. The aggregated force influence results in the con-

tinuous evolution of the system. Running on a cluster, the

N-body simulation incurs high communication for the data

exchange between the processors. In addition, the computa-

tional workload is dynamically changing on the processors

due to the system evolution. Thus, dynamic scheduling is

required to balance the workload and reduce the communi-

cation overhead.

4. Optimization Problems
Optimization problems are a class of compute-intensive

problems. These problems are solved by searching and eval-

uating a set of possible solutions to find the optimal solution

that satisfies some problem-specific criteria [24]. Genetic al-

gorithms (GA) [11], for example, are the optimization meth-

ods based on the evolutionary process of Darwinian natural

selection and population genetics. A solution is represented

by a set of parameters, usually a string of values called a
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chromosome; each chromosome represents an individual.

The search process is directed by a fitness function that is

a measure of the quality of the evolution to find an optimal

or good feasible solution. The workload of the search oper-

ations is not predetermined. Dynamic scheduling is required

to balance the workload on parallel processors during the

search.

5. Database Systems
Clusters are increasingly used to support database applica-

tions such as data mining and pattern matching [11, 54]. For

a large database, the data can be distributed to the processing

nodes and disks in a cluster. Database applications intro-

duce the concepts of data placement and redistribution. Task

scheduling can be used to distribute the queries to the nodes.

The task scheduling should also handle the dynamic reorga-

nization of a database called data replacement, which moves

data between processing nodes to optimize the performance

of query operations.

Many other applications can also be found in cluster com-

puting. For example, cluster systems have been used as en-

terprise and Internet servers to provide high availability, re-

liability and scalability in business and e-commerce services

[31, 52, 57].

2.3 Tool support for application scheduling

From the perspective of architecture and applications, the

scheduling techniques on clusters should suit the features

of cluster computing such as distributed, heterogeneous re-

sources and high communication cost. Firstly, a cluster is

a collection of computers with distributed architecture. The

scheduling algorithms should adopt a distributed strategy to

improve the efficiency and reliability of the scheduling pro-

cedure. On contrary, traditional parallel systems usually use

the centralized scheduling where a single scheduler is re-

sponsible for the scheduling of all tasks to all processors.

Secondly, a cluster may consist of heterogeneous nodes

with varied performance. The scheduling should be adap-

tive to the working nodes. A scheduling tool should oper-

ate with the support of the resource management subsystem

(RMS) that monitors the available resources, starts the exe-

cution of applications and supports process migration [10].

A scheduling decision depends on the information provided

by the RMS.

Furthermore, the communication over commodity net-

works has higher latency than the proprietary networks in

supercomputers. The scheduling algorithms should also con-

sider how to reduce the communication overhead between the

tasks.

The supporting tools can also be designed by other means.

For example, a performance analysis tool collects the execu-

tion profile to analyze the feature of a program. The execute

profile can be used to guide the adaptive scheduling in the

future execution of the same program.

3 Task scheduling techniques

Various task scheduling algorithms have been proposed for

parallel computing. Generally, there are two scheduling mod-

els: static scheduling and dynamic scheduling [32, 36, 47].

Static scheduling is performed at compile time provided that

the characteristics of an application such as execution time,

communication cost, data dependency, and synchronization

requirement are known in advance [36, 47]. It allocates the

tasks to individual processors before execution and the al-

location remains unchanged during the execution. Dynamic

scheduling conducts the scheduling at run time [14, 25] and

the tasks can be reallocated during the execution. Dynamic

scheduling can support dynamic load balancing and fault tol-

erance. It is certain that the dynamic scheduling operations

introduce additional overhead to the program execution. So,

dynamic scheduling algorithms should endeavor to reduce

this overhead.

As a combination of static and dynamic scheduling, hybrid
scheduling [47] includes two scheduling phases. First, static

scheduling is made based on the estimated performance of a

program. Then, dynamic scheduling is performed at run time

to adjust the static task allocation to balance the workload on

the processors.

3.1 Task graph

Task graph is a general model that describes the structure

of a program for the purpose of scheduling. In a task graph,

the nodes represent the computational tasks and the edges

represent the relations between the tasks. A task scheduling

algorithm maps the nodes to a set of processors in a form

that can minimize the entire execution time of the program

(called schedule length). As the optimal task scheduling is

an NP-complete problem, many heuristics have been pro-

posed to make the scheduling solvable in polynomial time

complexity [15, 35, 36, 47]. These heuristics are the assump-

tions about the characteristics of parallel programs and par-

allel systems. Some heuristics assume that every task has

the same computation cost but some heuristics allow arbi-

trary computation cost for each task. Some heuristics ig-

nore the inter-task communication cost and some heuris-

tics allow arbitrary communication cost. Some heuristics

suppose an application to be run on an unlimited number
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of processors but some are based on a limited number of

processors.

Task scheduling algorithms are mainly designed based on

Directed Acyclic Graph (DAG) [36, 47]. The DAG has de-

terministic structure on which deterministic scheduling al-

gorithms can be designed. In a DAG, each node represents

a task which in turn contains a set of operations that will be

executed sequentially. When all input data to a node have

arrived to it, the node can be triggered to execution. A node

with no parent is called entry node. A node with no child

is called exit node. The weight of a node is the computation
cost of the task. The directed edges represent the precedence

of the tasks. The edges determine a partial order of the ex-

ecution flow. The weight of an edge is the communication
cost between the adjoining nodes. The communication cost

appears only when two adjoining nodes are executed on dif-

ferent processors. Otherwise, the communication cost will be

zero if two nodes are allocated to the same processor. Please

refer to [14, 35, 36, 47] for the details about the DAG-based

scheduling algorithms.

Figure 2(a) shows a DAG of parallel Fast Fourier Trans-

form (FFT) with 16 points running on four processors. As dis-

cussed in [24], the FFT performs a linear transformation that

maps n sampled points, X = 〈X [0], X [1], , X [n − 1]〉,from

a cycle of a periodic signal onto an equal number of points,

Y = 〈Y [0], Y [1], , Y [n − 1]〉, that represent the frequency

spectrum of the signal, where Y [i] = ∑n−1
k=0 X [k]ωki , 0 ≤

i < n and ω = e2π
√−1/n . The transform can be computed in

log n iterations. Each iteration performs n complex multipli-

cations and additions.

In parallel FFT algorithms such as the binary-exchange

algorithm given in [24], the n points are evenly distributed

to p processors by which every n/p contiguous points are

assigned to one processor. In each of the iterations, each

processor computes n/p complex multiplications and ad-

ditions. Then, each pair of processors with binary labels

only different in the mth most significant bit exchanges n/p
complex values, where m is the iteration level from 0 to

log n − 1. In Fig. 2(a), the DAG of parallel FFT shows the

iterative transform where n = 16 and p = 4. The size of the

task graph is related to the number of processors p. The

number of nodes at each level equals the number of pro-

cessors to run the program. Each node represents the com-

putational task of n/p complex multiplications and addi-

tions. The edges denote the data exchange between the it-

erations. The entry node distributes n points to p proces-

sors. The exit node collects the transform results from all

processors.
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3.2 Scheduling algorithms

The main algorithms for the DAG-based scheduling are list
scheduling and clustering. Other algorithms also include task
duplication that allows the processors to run duplicated in-

stances of the tasks. These algorithms are discussed below.

3.2.1 Heuristics

As discussed in Section 3.1, the scheduling algorithms make

various heuristics on a task graph and system architec-

ture to simplify the algorithms in order that a schedul-

ing can be determined in a reasonable time complexity

[35, 36, 47, 55]. The heuristics can be made in the following

aspects:

� Task graph: a task graph is allowed to possess an arbitrary
structure or restricted to a specific structure (e.g., a tree).

� Computation cost: the nodes in a graph can have either

arbitrary or uniform computation cost.
� Communication cost: the edges can have arbitrary, uni-

form, or all-zero communication cost. All-zero cost means

that the communication is negligible.
� Processors: an unlimited or limited number of processors

are usable to run a program.
� Architecture: the processors in a parallel system can be

fully connected or in a specific interconnection topology.

The architecture will influence the decision of task-to-

processor mapping strategy.

3.2.2 List scheduling

List scheduling is a commonly used method for the DAG-

based scheduling [36, 47]. It assigns priority to each node of

a task graph and then allocates the nodes to the processors

based on the priority. The nodes with high priority will be

scheduled first.

The priority of a node can be determined in different ways.

Also, different strategies can be used to map the nodes to the

processors. The priority of a node is usually calculated based

on two attributes: t-level (top level) and b-level (bottom level)

[35, 36]. The t-level of a node is the length of the longest path

from an entry node to the node (excluding the node itself).

The length of a path is defined as the sum of the weights

of the nodes and the weights of the edges in the path. The

t-level is related to the earliest start time of a node. The b-
level of a node is the length of the longest path from the node

to an exit node. The b-level is bounded with the length of

the critical path (CP), i.e., a path from an entry node to an

exit node with the maximum length. There are different ways

to determine the b-level. Most DAG-based scheduling algo-

rithms examine a node for scheduling only when all the prece-

dent nodes of the node have been scheduled. Nevertheless,

some algorithms allow the scheduling of a child node before

its parents. In such a case, the b-level becomes a dynamic

attribute.

DAG-based scheduling algorithms use t-level or b-level,
even both to decide the priority of a node. Some algorithms

assign a higher priority to a node with a smaller t-level. Other

algorithms assign a higher priority to a node with a larger b-
level. Also, some algorithms assign a higher priority to a node

with a larger difference between two levels, i.e., (b-level −
t-level).

By list scheduling, the FFT problem in Fig. 2(a) can be

scheduled to run on four processors as shown in Fig. 2(b).

The nodes and edges can be viewed with uniform compu-

tation cost and communication cost. Thus, the nodes on the

same level have the same t-level and b-level. The entry node

can run on any of the processors to start the program. It dis-

tributes the points to the four nodes on level 0. The latter

are scheduled to run on four processors. After the comple-

tion of the computational tasks, the nodes exchange the data.

Next, the nodes on level 1 are scheduled to the processors.

The nodes with the same label on all levels will be allo-

cated to the same processor to make use of local data left

by the precedent nodes. The procedure continues until the

transform has finished. Finally, the exit node running on one

processor collects the transform results. If the topology of

four processors is a hypercube, the nodes can be mapped to

the processors as shown in Fig. 2(c). The mapping guaran-

tees that the nodes with data exchange are allocated to the

neighboring processors so that the runtime communication

latency can be minimized.

3.2.3 Clustering

Clustering is another approach for the DAG-based schedul-

ing. Here, the cluster means a group of tasks. Clustering is

the process that merges the nodes in a graph into clusters

[47, 48, 59]. The tasks in the same cluster will be allocated

together to a processor. Clustering is a two-phase scheduling

procedure: merging the nodes into clusters and mapping the

clusters to processors. The mapping phase is fulfilled by a

sequence of optimization steps that include: (1) cluster re-
merging: if the number of clusters is greater than the number

of processors, the clusters will be further merged; (2) task
ordering: if the tasks in a cluster are related by a precedence,

the execution order of the tasks is arranged based on the

precedence.

Usually, a clustering algorithm starts from an initial clus-

tering and proceeds with a sequence of refinements on the

clusters [47]. In the initial clustering, each task is viewed as

a separate cluster. The clusters are refined by merging two

adjacent clusters so as to remove the edge between them to re-

duce the communication weight. In the refinement phase, the
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clusters are merged into larger clusters to reduce the overall

execution time (i.e., schedule length).

For example, Fig. 3 shows a multistage clustering al-

gorithm proposed in PYRROS [22, 59] for scheduling the

Gauss-Jordan method, i.e. an elimination method for solv-

ing linear systems Ax = b. Figure 3(a) is the DAG of the

Gauss-Jordan method. Node T j
k (where j �= k + 1) repre-

sents a computational task with input data being columns k
and j of the coefficient matrix and the output data being the

modified column j . Node T k+1
k is a broadcast node that sends

column k + 1 to all T j
k+1 nodes. To run the DAG on four pro-

cessors, the nodes are merged into four clusters enclosed in

the dotted boxes as shown in Fig. 3(a). Each cluster will be

mapped to one processor. The clustering algorithm will be

further discussed in Section 5.2.

3.2.4 Task duplication

Task duplication is a special scheduling method that dupli-

cates selected tasks to run on more than one processor to

reduce the inter-processor communication [1, 16, 46]. The

duplication of the tasks aims to utilize the spare time slots on

certain processors. The approach is conceived based on the

fact that some child nodes must wait for the output from the

parent nodes running on other processors. If the processors

remain idle at different time slots, the spare time can be used

to run the duplicated tasks of these parent nodes. Therefore,

the parent and child nodes can be executed on the same pro-

cessor and the output can be locally fed from parent to child

without inter-processor communication. Some critical tasks
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can even have multiple instances running on more processors

to further reduce the communication cost.

4 A framework and taxonomy of scheduling tools

Based on the discussion about cluster systems and task

scheduling, a framework of scheduling tools can be built

and a taxonomy of the tools can be specified.

4.1 Framework

Figure 4 shows the general framework of the scheduling

tools. As discussed in Section 2.3, a scheduling tool is built

on the resource management subsystem (RMS) that provides

the information about the resources and their performance in

a cluster. A scheduling tool is a middleware that links the

applications to a cluster system. The framework consists of

four layers. The components in each layer implement the

specified functionalities in the scheduling.

Layer 1: User Interface & API
The user interface provides program editor and/or graph ed-
itor for user to input an application in textual or graphical

form. The property specification component allows a user

to describe the computation and communication costs of the

application. The user can also define own scheduling algo-

rithm for the application. The program visualization compo-

nent is used for displaying the scheduling-related informa-

tion such as a task graph, the architecture of a cluster, and the

performance of an application. A user program can call the

API provided by the scheduling tool to perform scheduling-

related or other operations. For example, the ATME tool dis-

cussed in Section 5.5 provides execution profiling primitives
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that can be instrumented into a user program to probe the

runtime statistic data. The statistic data can be used to de-

termine the scheduling of the program in later execution.

The VDCE tool discussed in Section 5.1 provides task li-

braries that can be called in user applications to perform dif-

ferent operations such as computation, communication and

control.

Layer 2: Program/Graph Preprocessor
When an application is provided in the form of text or graph,

the program/graph analyzer will analyze the structure of the

program and convert it into a task graph. The analyzer may be

able to estimate the computation and communication costs

by analyzing the operations in the program. For a textual

input, the graph generation component creates a task graph

of the program. For a graphical input, the graph transfor-
mation converts the original graph into a task graph that

is suitable for scheduling. For example, it can expand the

graph by generating more nodes that can be executed in par-

allel. If performance analysis is needed, the program instru-
ment component can insert extra operations into the appli-

cation to collect the execution profile. The execution profile

can be used for performance visualization and post-mortem

analysis.

Layer 3: Scheduling Algorithms
This layer provides a library of scheduling algorithms. The

scheduling tool can automatically select a proper algorithm

from the library according to the features of an application

which is determined by the program analyzer at layer 2. User

can also manually select a scheduling algorithm through the

user interface at layer 1.

Layer 4: Runtime Support
This layer implements the task scheduling and execution.

The task scheduler executes the selected scheduling algo-

rithm to schedule the tasks to execution. The execution mon-
itor collects the runtime data for performance analysis when

required.

4.2 Taxonomy

Task scheduling tools can be categorized based on different

characteristics. We propose a taxonomy of scheduling tools

as shown in Fig. 5. The taxonomy classifies the tools with

respect to four features as following.

� Target system: the system for which a scheduling tool is

designed, including local-area system or wide-area sys-

tem.

Target

System

Main

Functionality

Control

Mode

Scheduling

Strategy

Local area

Wide area

Task Scheduling

Programming Tools

Performance Monitoring & Analysis

Cluster Computing Environement

Centralized

Distributed

Static

Dynamic

Hybrid

Scheduling

Tools

Fig. 5 Taxonomy of scheduling tools

� Main functionality: the main function of a scheduling

tool. Some tools are dedicated for task scheduling. Some

tools are the programming tools that provide the support

for task scheduling. Some are program monitoring and
performance analysis tools that evaluate the performance

of scheduling algorithms. Some tools provide a compre-

hensive cluster computing environment that incorporates

the support of task scheduling.
� Control mode: the scheduling mode adopted by a schedul-

ing tool. Centralized mode is usually used for local-area

systems where a centralized scheduler implements all

scheduling work. Distributed mode is usually used for

wide-area systems in which the scheduling is accomplished

by the cooperation of distributed schedulers running in dif-

ferent system domains.
� Scheduling policy: the scheduling may be implemented

by a static, dynamic, or hybrid method. As discussed in

Section 3, hybrid method is a combination of static and

dynamic scheduling.

The taxonomy is outlined in Fig. 5. It lists the four features

used to classify the scheduling tools with possible options for

each feature. For example, the scheduling tools can be clas-

sified by their main functionality. A tool can be dedicated

for task scheduling. A tool can be a programming tool to

support program development or even a cluster computing

environment that supports task scheduling. A tool may also

be designed for the performance monitoring and analysis of

task scheduling algorithms and parallel programs. Section 5

will discuss different types of task scheduling tools and com-

pare their features using this taxonomy.
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5 Task scheduling tools

Various scheduling tools have been developed on parallel and

distributed systems. In this section, we discuss eight repre-

sentative tools.

5.1 VDCE

Virtual Distributed Computing Environment (VDCE) [55,

56] is a software development environment for building and

executing large-scale applications on network of heteroge-

neous resources. VDCE is deployed across geographically

distributed computational sites, each of which has one or

more VDCE Servers. The servers provide an integrated en-

vironment of software tools and middleware for developing

parallel and distributed applications meanwhile scheduling

the tasks to the best available resources and managing the

QoS (Quality of Service) requirements.

The VDCE software architecture consists of three parts:

Application editor, Application scheduler, and Runtime sys-
tem. Applications are developed based on a dataflow pro-

gramming paradigm. The application editor is a web-based

graphical interface for user to develop an application in the

form of application flow graph (AFG). The editor provides

menu-driven task libraries that are grouped in terms of func-

tionality, e.g., matrix algebra library, C3 I (command, control,

and communication) library, etc. For example, the AFG of a

linear equation solver can be constructed using the LU de-

composition, matrix inverse, and matrix multiplication tasks

provided by the matrix algebra library.

After an AFG is created, the user can specify the properties

of each task such as the computational mode (sequential or

parallel), thread type (none, pthread, qthread, or cthread),

communication library (P4, socket, MPI, DSM, NCS, or

PVM), communication protocol (TCP/IP or ATM), system

domain, cluster, machine type, and the number of processors.

Then, the AFG is submitted for execution with the support

of the application scheduler and the runtime system.

VDCE provides a distributed scheduling method for wide-

area systems. In such a system, each site consists of a lo-

cal application scheduler running on the VDCE server. The

scheduling of an application is performed by the cooperation

of local site and a set of remote sites. The application sched-

uler interprets the application flow graph and allocates the

currently best available resources to the tasks. The applica-

tion scheduler runs two built-in algorithms for task mapping:

the site scheduler algorithm selects a subset of remote sites

and the host selection algorithm at a remote site determines

the best available machine in the site that can minimize the

predicted execution time of each task. Then every site sends

the task-to-machine mapping (i.e., machine name with pre-

dicted execution time) back to the local site. The local-site

scheduler algorithm finally selects the best site based on the

minimal summation of the predicted execution time and the

network transfer time. The scheduling heuristic is based on

the static list scheduling using b-level priority. The execution

time of a task on a base processor has already been measured

and stored in the task-performance database in the site repos-

itory.

The VDCE runtime system sets up the execution environ-

ment for a given application and manages its execution to

meet the hardware and software requirements. The runtime

system periodically measures the loads on the resources and

monitors the possible failures of the resources. It also sup-

ports low latency and high-speed communication and syn-

chronization services as well as I/O and application visual-

ization (real-time or post-mortem visualization) services.

5.2 PYRROS

PYRROS is a software system for automatic scheduling and

code generation [22, 59]. It processes an input parallel pro-

gram as tasks with precedence constraints and produces code

for message-passing architectures such as nCUBE-2 and

INTEL-2. Macro dataflow graph (i.e. DAG) is used to repre-

sent a parallel program. PYRROS uses clustering algorithm

to schedule a program onto parallel computers. PYRROS

provides the following components:

� Task graph language with an interface to C or FORTRAN,

which allows user to define partitioned programs and data.
� Scheduling system that performs the clustering of graph

nodes, cluster-to-processor mapping, load balancing, and

communication/computation ordering.
� Graphic displayer that displays task graphs and scheduling

results.
� Code generator that inserts synchronization primitives and

performs code optimization for some supercomputers.

PYRROS uses a multistage scheduling approach to sched-

ule a DAG onto p processors in four steps:

1. Clustering: The tasks in a graph are grouped into clus-

ters. The tasks in the same cluster will be assigned to one

processor. PYRROS uses the Dominant Sequence Algo-

rithm (DSC) to automatically determine the clustering of

the nodes in a graph. DSC performs a sequence of cluster-

ing refinement steps. In each step, it tries to zero an edge

to reduce the parallel time, i.e., the longest path called

Dominant Sequence in the graph (schedule length).

2. Cluster merging: If the number of clusters exceeds the

number of processors p, the clusters are further merged

into p completely connected clusters.

3. Physical mapping: Maps the clusters to the physical pro-

cessors. A heuristic algorithm is used for the mapping that

minimizes the total communication time among the pro-

cessors. The algorithm starts from an initial assignment
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and performs a series of pair wise interchanges for the

mapping so as to reduce the communication time. Yang

and Gerasoulis [59] explained the physical mapping us-

ing the example shown in Fig. 3. Assume that the weight

of each edge equals 3 time units. The communication

costs between the four clusters are shown in Fig. 3(b). If

four physical processors are linked as a hypercube, the

clusters are optimally mapped to the processors as shown

in Fig. 3(c). The clusters with the highest communication

are mapped to the neighboring processors so that the total

communication time can be minimized.

4. Task ordering: Order the execution of the tasks within

each processor to minimize the total parallel time. RCP

(ready critical path) algorithm is used for the ordering.

The algorithm computes the b-level priority of each task.

A task is ready if the data sent from its predecessors have

arrived to it. Each processor maintains a ready priority list

of tasks. The ready task with the highest priority is exe-

cuted as soon as the processor becomes available. With

the ready list scheduling in each processor, the total exe-

cution time can be minimized.

PYRROS was experimented on nCUBE-2 to test the per-

formance by scheduling the LINPACK BLAS-3 based pro-

gram of linear algebraic system [17].

5.3 Hypertool

Hypertool is a programming aid for automatic scheduling

and synchronization on message-passing systems [58]. Hy-

pertool takes user partitioned program as input, automati-

cally allocating these partitions to PEs and inserting proper

synchronization primitives where needed. It also produces

performance estimates and quality measures for the parallel

code.

User programs are defined in a uniform structure that is

a sequential program with a set of procedures. Hypertool

converts the program into a parallel program for a message-

passing target machine by means of parallel code synthesis

and optimization. It provides the lexer and parser to recog-

nize the data dependencies and user defined partitions in a

program. The graph generation module produces a macro
dataflow graph for the program. The scheduling module as-

signs the graph nodes to the computing tasks for minimiz-

ing the execution time of the graph. Hypertool uses two list

scheduling algorithms: (1) Modified critical-path (MCP) al-

gorithm is used for the graph scheduling on a given number

of PEs; (2) Mobility-directed (MD) algorithm is used for the

scheduling on an unbound number of PEs, which chooses

the optimal number of PEs that can achieve the minimal

execution time. Then, the mapping module maps each com-

puting task to a physical PE in a given topology that can

minimize the network traffic. The mapping is realized by a

heuristic algorithm that generates an initial assignment and

then iteratively refines it to reach a better solution. After the

scheduling and mapping, the synchronization module inserts

the communication primitives (send and receive) to the nodes

that are assigned to different PEs. Finally, the code generator

generates target machine code for each PE.

Hypertool was tested on a Sun workstation to generate

the scheduling of sample programs for multi-processors. The

sample programs include the Gaussian elimination algorithm

for solving linear systems and the Gauss-Seidel algorithm for

solving Laplace equations.

5.4 CASCH

CASCH (Computer Aided SCHeduling) is a software tool

for parallelizing and scheduling applications on message-

passing multiprocessors [2, 35]. It was originally designed

to evaluate various scheduling and mapping algorithms using

the task graphs that were generated randomly, interactively,

or directly from real programs.

CASCH can automatically parallelize a sequential pro-

gram and add the functions of scheduling, mapping, com-

munication, and synchronization to the parallelized program.

User can write a sequential C program as input through a

window-based interactive GUI. The structure of a user pro-

gram is similar to an input program in Hypertool, i.e., a set

of functions called by a main program. Communications are

invoked only at the beginning and the end of a function. The

lexical analyzer and parser analyze the data dependencies

and the partitions of the program. The DAG generator gen-

erates a macro dataflow graph (i.e. DAG) directly from the

main program with regard to the data dependencies between

the functions. Each node in the graph represents a function.

The weight of a node is the execution time of the function.

An edge represents a message sent from one function to an-

other. The weight of the edge is the transmission time of the

message. The weights of the nodes and edges are calculated

based on a database that stores the timing of various compu-

tation and communication operations on different machines.

Parallel code is generated by inserting communication prim-

itives (send, receive, etc.) into the functions.

CASCH provides a library of static list scheduling algo-

rithms which contains three classes of algorithms according

to the heuristics made: UNC (unbounded number of clusters),

BNP (bounded number of processors) and APN (arbitrary

processor network).

The GUI provides a graph editor to edit and display the

DAGs and the target system architecture (i.e., processors and

network topology). The scheduling trace can be displayed in

a Gantt chart showing the start and finish time of the tasks

on the processors.

CASCH has been tested by running a set of benchmarking

graphs including Peer-set graphs, random graphs, and traced
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graphs to evaluate the performance of different scheduling

algorithms. The FFT, PDE solver, and N-body problem are

also used to test the scheduling algorithms on a SUN work-

station connected to an Intel Paragon and an IBM SP2.

5.5 ATME

ATME (Adaptive Task Mapping Environment) [28] is an en-

vironment that generates an adaptive scheduling policy as the

response to the changes of the computation time of the tasks

and the communication requirement as well as the change

of the execution flow. ATME monitors the execution of a

program and generates an adaptive scheduling for the pro-

gram based on the accurate information collected from past

execution profiles.

ATME provides a runtime library of process control and

message passing operations for parallel programming. It ac-

cepts a parallel application in the form of DAG with the speci-

fication of the target machine topology. Before the execution,

the user tasks are preprocessed into ATME tasks which in turn

are analyzed and instrumented with the primitives to probe

and collect the execution profiles such as computation time,

communication volume, and task precedence. If a program

is executed more than once, the execution profiles are ag-

gregated and dumped into “trace files” after each execution.

The trace files are maintained in the program databases. The

execution profiles can be used to estimate the correspondent

performance values for the next execution.

Based on a deterministic list scheduling algorithm called

ERT (Earliest Ready Task) [37], ATME is able to support task

scheduling when the task weights and precedence vary be-

tween executions. In the first few runs, the default scheduling

method is used. When the accurate execution profiles have

been collected, ATME can produce an efficient scheduling

policy for later executions.

5.6 MARS

MARS (Metacomputer Adaptive Runtime System) is a

framework for minimizing the execution time of distributed

applications on heterogeneous, WAN-connected metacom-

puter [21]. MARS uses accumulated statistic data of an ap-

plication’s execution to derive an improved task-to-processor

mapping. It also supports load balancing and task migration

based on the dynamic information of processor load and net-

work performance.

MARS views a parallel application as being composed of

program phases. The MARS runtime system contains two

kinds of instances: (1) The Monitors gather the statistic data

about CPU workload, processor utilization, network perfor-

mance, program phases, and communication characteristics

of the applications; (2) The Managers utilize the statistic data

to determine the task-to-processor mapping and task migra-

tion. On each of the participating metacomputer nodes, a

Network Monitor gathers statistic data of the CPU load and

network performance. The Network Monitors periodically

exchange the statistic data between the computers. A pre-

processor inserts extra statements into the application code

to notify the MARS runtime system about the beginning of

a new program phase where the Migration Manager will

be invoked to decide whether a task re-mapping can reduce

the expected execution time. The tasks with high workload

will be mapped to the computer nodes with high computing

power. A set of smaller tasks can be mapped to a single node

to reduce the communication overhead.

In MARS, the execution trace of a parallel program is

represented as a directed graph called Dependency Graph
which is built in each run of the program based on the com-

munication pattern. The dependency graphs from successive

executions are consolidated to determine the task migration

whenever a checkpoint is reached.

MARS supports C and MPI programming. This frame-

work can also be used in other programming environments

like PVM, PARMACS, and Express. The applications such as

Bitonic sort and the CG (conjugate gradient) Poisson solver

for PDEs are used to test the performance of the schedul-

ing. Other applications including database and optimization

problems have also been tested.

5.7 HeNCE

HeNCE (Heterogeneous Network Computing Environment)

[7, 8] is an integrated graphical environment implemented on

top of PVM for creating and running parallel programs on a

network of heterogeneous computers. HeNCE provides the

programmers with a graphical interface to build parallel pro-

grams as well as an environment for automating the process

of designing, compiling, scheduling, executing, debugging,

and analyzing parallel computation. The programmers can

use the graph editor to build a parallel program by drawing

a directed graph. The nodes in the graph represent the com-

putational procedures or the control flows (e.g., conditional

branches, loops, fans, and pipes). HeNCE also provides a

textual interface for user to specify a program graph in a text

form. The code of the procedures can be written in C or FOR-

TRAN. The environment provides the facilities to edit and

compile the procedures on various architectures of a user-

defined collection of computers called virtual machine. This

capability allows user to specify multiple implementations

of the procedures for different architectures.

To define the execution cost, a programmer can specify

a cost matrix showing the relative costs of running the pro-

cedures on various architectures. HeNCE will automatically

schedule the procedures onto particular machines based on

the program graph and the cost matrix. The cost matrix is

also used as an indication of machine load. The sum of all
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procedure costs on a machine is viewed as the machine load.

HeNCE decides the least costly placement of the nodes onto

the machines using the cost matrix.

HeNCE also provides performance visualization and anal-

ysis tools. When a program is running, HeNCE can graph-

ically display an animated view of the program state based

on the program graph. Various statistics are recorded during

the execution. A post-mortem performance analysis tool is

associated with the graphical interface for understanding the

execution flow and processor utilization.

5.8 Legion

Legion is an object-based metasystem software project. It

is designed for a system composed of millions of hosts and

trillions of objects tied together with high-speed networks

[26, 27, 38]. Users working separately on own machines per-

ceive an illusion of a single computer; meanwhile they can

access all data and physical resources across the system. Le-

gion builds a metacomputing system by means of transparent

scheduling, data management, fault tolerance, site autonomy,

and a wide range of security options.

Legion is implemented in Mentat [25], an object-oriented

parallel processing system designed to simplify the pro-

gramming of portable parallel applications. Mentat has two

primary components: the Mentat Programming Language

(MPL) and the Mentat run-time system (RTS). The MPL

is an object-oriented programming language based on C++.

Mentat supports both task parallelism and data parallelism. It

operates over a wide spectrum of architectures from loosely-

coupled heterogeneous networks of workstations to tightly-

coupled multicomputers. Mentat supports medium to coarse

grained applications.

The Macro Dataflow (MDF) model is used in Mentat

and implemented by the run-time system. Macro dataflow

is a medium-grained, data-driven computational model. The

granularity is in the range of thousands instructions. Pro-

grams in the MDF model are represented as directed graphs.

The Mentat compiler generates the code to construct a macro

dataflow graph based on the data dependency detected at run-

time. The MPL programs are executed on a virtual macro

dataflow machine implemented by the Mentat run-time sys-

tem.

The Mentat objects are scheduled to the processors with

the purpose of minimizing the total execution time of an

application. Scheduling decisions are made by a distributed

algorithm which consists of two sub-decisions: (1) the trans-
fer policy determines whether to process a task locally or re-

motely; (2) the location policy determines the computer node

to which a task should be sent. The transfer policy is a thresh-

old policy. Each computer node determines the scheduling

based on local state information. A task originated on a node

is accepted for local processing if the local state is below a

threshold. Otherwise, the location policy is invoked.

Legion supports the MPL and the Basic FORTRAN Sup-

port (BFS). The BFS provides a set of Legion directives em-

bedded in FORTRAN code. It also provides a core PVM

interface and a core MPI interface to enable the PVM and

MPI applications to use Legion features. Legion is designed

to support a wide range of massively parallel applications

such as CFD computations, climate and ocean modeling and

simulation.

5.9 Comparison of the tools

The scheduling tools discussed above can be compared us-

ing the taxonomy defined in Section 4.2. Table 1 summarizes

the features of these tools using the characteristics given in

the taxonomy (i.e., target system, main functionality, con-

trol mode, and scheduling policy) as well as four additional

features as following:

� Task graph: the form of task graph. Most of the tools use

directed acyclic graph (DAG). Some tools use a special

form of DAG.
� Scheduling algorithm: the scheduling algorithm(s) used

by a tool such as list scheduling, clustering, and adaptive

scheduling which decides a schedule based on the execu-

tion profile of an application.
� User interface: a tool may provide some kind of user in-

terface such as program/graph editor, program and perfor-

mance visualization.
� Programming paradigm: the programming languages

and libraries supported by the tool.

As Table 1 shows, these scheduling tools are developed

for different purposes. The earlier systems like PYRROS and

Hypertool are designed for the task scheduling on message-

passing parallel machines. VDCE and HeNCE are software

development environments for supporting parallel program-

ming and task scheduling on heterogeneous networks. Le-

gion is a more powerful metasystem that provides compre-

hensive supports including resource management, data man-

agement, program development, fault tolerance, and security

for wide-area systems. MARS is a performance monitoring

and task scheduling tool for metacomputer, which collects the

execution profile of a program and performs adaptive task-

to-processor mapping based on the profile. ATME is also a

tool for adaptive task mapping based on execution profile.

CASCH is a tool to evaluate the performance of list schedul-

ing algorithms, which also supports automatic parallelization

of serial programs.

From Table 1, we can find that the task scheduling on local-

area systems is usually implemented in a centralized mode

where a single scheduler is running on one of the hosts such

as in PYRROS, Hypertool, CASCH, ATME, and HeNCE.
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Since distributed system is expanding to wide-area environ-

ment, distributed scheduling strategy is required to satisfy the

resource heterogeneity, site autonomy and fault-tolerance re-

quirements. The tools for wide-area systems such as VDCE,

MARS and Legion implement task scheduling based on a

distributed mode.

Most of the tools use a form of DAG to present the applica-

tions for scheduling. The deterministic structure of the DAG

facilitates the design and implementation of the scheduling

algorithms. However, DAG lacks the ability to describe com-

plex program structures such as iteration and changeable

communication pattern. Therefore, alternative forms of task

graph are required to enhance the capability of represent-

ing various application structures such as the directed graph

in HeNCE that includes special nodes to represent control

flow.

These tools are not originally designed for cluster com-

puting. However, they can be applied to cluster systems. In

principle, the tools designed for local-area systems includ-

ing PYRROS, Hypertool, CASCH, ATM and HeNCE can be

directly used on clusters. For the tools developed for wide-

area systems including VDCE, MARS and Legion, a cluster

can be viewed as a special case of the system that contains

only one local site. The local-site scheduling algorithms in

these tools can be used on the cluster system. As the rapid

advance of cluster computing, however, these tools do not

fully suit the architectural and application requirements of

cluster systems. New scheduling tools need to be developed

with the technological improvements as discussed in the next

section.

6 Discussion and conclusions

This paper explores the application scheduling approaches

and tools for cluster computing. The scheduling techniques

are important to realize high-performance parallel comput-

ing. Task graph, commonly represented as a weighted di-
rected acyclic graph, is a general model to represent a par-

allel program for task scheduling. Different scheduling al-

gorithms have been proposed based on various heuristics on

program features and system architecture. The task graph

based scheduling has been considered as an effective model

for the scheduling algorithms in theoretical studies. However,

it has not obtained wide use in practice. Few task scheduling

tools can be found on cluster systems. So far, no commercial

tool is available.

The usability of the scheduling techniques is restricted by

various factors. One factor is the discrepancy between the

simplified DAG structure and the complex real application

structures. DAG can only describe non-iterative computa-

tions in a straightforward way. It is not a model feasible to

describe complex program structures. As applications usu-

ally contain loops and branches, more complex graph struc-

tures should be adopted to describe these structures. On the

other hand, complex graphs may make the task scheduling

intractable in acceptable time complexity.

Another drawback of DAG is the low scalability. The

topology of a DAG is highly related to the problem size of

an application and the number of processors in use. When

the problem size or the number of processors has changed,

a new task graph should be drawn and a new scheduling

should be determined for it. In DAG, the iteration has to be

unrolled. An unrolled graph is usually oversized beyond the

scope of graph drawing and display facility. The low scala-

bility discourages the real use of the DAG-based scheduling

approaches.

To improve the usability of the graph based scheduling,

the method should be improved in the following aspects.

(1) Task graph model
A task graph should be highly scalable to the program

structure. In other words, a task graph ought to represent

the logical structure of a program which is independent

from the problem size and the number of processors. To

support the scalability, adaptive graph transformation is

needed to adapt a graph to these parameters when task

scheduling is being conducted. The clustering approach

discussed in Section 3.2.3 can be used to merge the graph

nodes when the number of parallel tasks exceeds the

available processors. The task graph should also allow

graph expansion to match the increased problem size

or the number of processors by decomposing the graph

nodes and reconstructing the edges. In the framework

shown in Fig. 4, the graph transformation component in

layer 2 is defined for this purpose.

(2) Scheduling strategy
For a wide-area system, high autonomy, heterogeneity

and scalability are the key merits of a scheduling strat-

egy. A distributed scheduling strategy is suited to wide-

area environment in which the scheduling of an appli-

cation is accomplished by the cooperation of the sched-

ulers in distributed domains. The scheduling algorithms

need to consider the network delay and the heterogeneous

computing resources so as to fully utilize the computing

power and reduce the communication overhead. In the

framework shown in Fig. 4, distributed scheduling algo-

rithms should be included in the library of scheduling

algorithms in layer 3 to satisfy the scheduling require-

ments in wide-area systems.

With all these efforts, the task graph based scheduling can

be expected to acquire broad use in high-performance cluster

computing.
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