
J. Parallel Distrib. Comput. 65 (2005) 553–563
www.elsevier.com/locate/jpdc

Improving communication scheduling for array redistribution

Minyi Guoa,b,∗, Yi Panb

aDepartment of Computer Software, The University of Aizu, Aizu-Wakamatsu City, Fukushima 965-8580, Japan
bDepartment of Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303, USA

Received 29 August 2002; received in revised form 15 October 2004; accepted 7 December 2004

Abstract

Many scientific applications require array redistribution when the programs run on distributed memory parallel computers. It is essential to
use efficient algorithms for redistribution, otherwise the performance of the programs will degrade considerably. The redistribution overheads
consist of two parts: index computation and inter-processor communication. If there is no communication scheduling in a redistribution
routine, the inter-processor communication will incur a larger communication idle time when there exists node contention and/or difference
among message lengths during one particular communication step. In order to solve this problem, in this paper, we propose an efficient
scheduling scheme that not only minimizes the number of communication steps and eliminates node contention, but also minimizes the
difference of message lengths in each communication step. Thus, the communication idle time is reduced in redistribution routines.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Automatic parallelization; Array redistribution; Communication scheduling; Block-cyclic distribution; MPI; Distributed memory multicomputers

1. Introduction

The array redistribution problem has recently received
considerable attention. This interest is motivated largely by
the observation that the most of scientific applications con-
sist of several separated nested loops, which are decomposed
into phases in the HPF[6] programming style. At each phase,
there is an optimal distribution of arrays onto the proces-
sor grid. Many applications and kernels, such as alternating
direction implicit (ADI), two-dimensional fast fourier trans-
form (FFT) and signal processing, require different array dis-
tributions at different computation phases for efficient exe-
cution on distributed memory machines. For example, in our
previous study, we found that we had to parallelize different
loops in different phases due to different data dependence
in those phases in a computational electromagnetics (CEM)
application[19]. In order to reduce the number of remote
accesses, efficient data redistribution is necessary. Because
the optimal distribution changes from phase to phase, array
redistribution turns out to be a critical operation.

∗ Corresponding author. Fax:+81 242 37 2744
E-mail address:minyi@u-aizu.ac.jp(M. Guo).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.12.001

A redistribution problem can simply be described as: A
set of routines that change the distribution schemes such
that, given a multi-dimensional arrayA on a set of source
processors with a source distribution scheme, they transfer
all the elements of the array to a set of target processors with
a target distribution scheme. Therefore, the redistribution
routines need to figure out exactly what data need to be sent
(received) by each source (target) processor.

Basically, the redistribution algorithms consist of two
parts: index computationand inter-processor communica-
tion. The index computation overheads are incurred when
each processor computes indices of array elements that
are to be communicated with the other processors, and it
also designates the destination processor numbers of such
array elements. When the processors exchange the array
elements, the communication overheads will occur, which
include software start-up overheads for invocation of the
send/receive system calls, transmission costs for sending
data over the interconnection network, and overheads due to
the node contention. For the first aspect, many researchers
have mainly concentrated on the efficient index computation
for generating the messages to be exchanged by the proces-
sors involved in the redistribution[2,4,7,10,20,26]. These

http://www.elsevier.com/locate/jpdc
mailto:minyi@u-aizu.ac.jp

554 M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563

research projects precisely built a different message for each
pair of processors that must communicate each other. This
effort guarantees that each processor sends or receives no
redundant data. However, until now researchers rarely pay
attention to the question of how to schedule the communi-
cation in redistribution routines except researches described
in [3,8,20,24], where, however, they only focused on reduc-
ing the data transmission cost for a special case. Our previ-
ous work[5] studied the communication scheduling to avoid
node contention. However, because we did not align the mes-
sage length in each communication step, it seems that the
algorithms cannot completely minimize the communication
idle time (refer to the motivating examples in Section2).

In this paper, we focus on the communication schedul-
ing for one-dimensional redistribution that redistributes from
cyclic(x) onp source processors(numbered from 0 top−1),
to cyclic(y) on q (numbered from 0 toq − 1) target pro-
cessors. For the sake of simplicity, assume that the size of
A is a multiple ofL = lcm(xp, yq), because the redistribu-
tion pattern repeats after each section ofL elements (we call
this consecutiveL elements aslice in a global array). We
improve our previous scheduling algorithms[5] so that the
new algorithms guarantee that the message communications
are not only node contention-free, but they also minimize
the total length of messages in all communication steps.

Our method can be extended to multi-dimensional arrays
easily. We have implemented our algorithms on a massively
parallel MIMD machine. The experimental results show that
the algorithms provide performance improvement for some
redistribution samples.

The rest of the paper is organized as follows: Section2
gives some motivating examples and describes the schedul-
ing problem. Related work is discussed in Section3. Sec-
tion 4, the core of this paper, proposes some algorithms for
improving communication according to different redistribu-
tion patterns. The experimental evaluations will be shown
in Section5. Finally, Section6 presents our conclusions.

2. Preliminaries, problem description and motivating
examples

The following is an example template of a simple algo-
rithm for array redistribution:

for dest = 0 to q − 1
compute all the elements that must send to dest;
pack the data into buffer[dest];

endfor
for dest = 0 to q − 1 other than me
send(buffer[dest], dest);

endfor
for src = 0 to p − 1 other than me
receive(buffer, src);
unpack the buffer;

endfor

whereme is the logical number of the processor executing
the program. Note that there is no explicit scheduling in this
method: all messages are sent almost simultaneously to the
same target process. This approach induces a tremendous
amount of waiting time for all receiving processors. Our
experiment shows that this communication pattern results in
overall performance degradation[5].

There are three main possibilities for implementing the
communications induced by a redistribution operation[3]:
Asynchronous (non-blocking) communications.Each

source processor communicates with a destination processor
by using non-blocking communication primitives. There is
no obvious barrier and synchronous communication steps.
This asynchronous strategy requires buffering for all the
messages to be received.
Synchronous communications. A synchronized algorithm

involves communication phases and steps. At each step, each
participating processor posts a request, sends a message, and
then waits for the completion of the receive. This strategy
may result in situations where some processors may have to
wait for others before they can receive any data, or hot spots
can arise if several processors attempt to send messages to
the same processor at the same step.

MPI_Alltoallv communication. Using MPI_
Alltoallv message passing routine in MPI can also
perform array redistribution.

All communication schemes have certain advantages over
the other. In this research, both synchronous communica-
tion and asynchronous communication are used in different
places to reduce communication times within a data redistri-
bution. Furthermore, we also compare our approaches with
MPI_Alltoallv implementation.

2.1. Local data descriptor, communication table, and
scheduling table

In [4,5] we proposed an approach to generate the redistri-
bution algorithm, which is based on the representation called
local data descriptor (LDD). An LDD expresses the set of
the array elements partitioned into a local distributed mem-
ory. We also defined some operations on LDDs and referred
to the fact that the data being redistributed between two pro-
cessors is indicated by the intersection of LDDs of the pro-
cessors. Because we will use some concepts of LDD in the
following sections, in this section we give an overview of
the redistribution algorithm based on LDD described in our
earlier papers[4,5]. Further details can be found there.
Definition of one-dimensional LDD. A 4-tuple d =

(o, b, s, n) is called an LDD which describes a set of the
global array index for a particular processor. Intuitively,d
represents a finite set of equally spaced, equally sized blocks
of elements, whereo is the starting index of the global array
elements distributed onto the processor;b the length of the
block; s the stride between two consecutive blocks; andn
is the number of blocks distributed onto the processor.

M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563 555

Consider a one-dimensional arrayA of sizeG. Using the
notion of LDD, it is possible to represent the set of elements
ofAowned by a processor under any regular distribution. An
LDD corresponds to a set of the global array index defined
as follows:

S[d] = {i | o+ s ∗ u� i < o+ b + s ∗ u,0�u < n}.
We also use|S[d]| to represent the number of element of set
S[d] within the sliceL.
Intersection of LDDs: Let d1 = (o1, b1, s1, n1) andd2 =

(o2, b2, s2, n2) be two LDDs, and their corresponding array
index sets areS[d1] andS[d2] (namely LDD set), respec-
tively. The intersection ofS[d1] andS[d2] is defined as fol-
lows:

S[d1] ∩ S[d2]
= {i | max(o1+ s1 ∗ u1, o2+ s2 ∗ u2)� i

< min((o1+ s1 ∗ u1)+ b1, (o2+ s2 ∗ u2)+ b2),

0�u1 < n1,0�u2 < n2}.

Lemma 1. Let d1 = (o1, b1, s1, n1) and d2 = (o2, b2,

s2, n2),

S[d1] ∩ S[d2] �= ∅
⇐⇒ ∀u1, u2(0�u1 < n1 ∧ 0�u2 < n2),

max(o1+ s1 ∗ u1, o2+ s2 ∗ u2)

< min(o1+ b1+ s1 ∗ u1, o2+ b2+ s2 ∗ u2), (1)

and

|S[d1] ∩ S[d2]|

=
L
xp

, L
yq∑

u1,u2=0

(min(o1+ b1+ s1 ∗ u1, o2+ b2+ s2 ∗ u2)

−max(o1+ s1 ∗ u1, o2+ s2 ∗ u2)). (2)

Communication table and scheduling table: We construct
a communication matrix (table)M for a redistribution, to
describe the communication pattern between the source and
target processor sets. An(i, j) entry, which is not equal to
0, represents the fact that a sending processorPi needs to
communicate to a receiving processorQj with the message
sizeM(i, j) . That is,M(i, j) = m if and only if sending
processorPi sends a data item with sizem (in a sliceL) to
receiving processorQj . According to the usage of LDDs, let
di anddj be the LDDs of processorsPi andPj , respectively,
then

M(i, j) =
{ |S[di] ∩ S[dj]|, di ∩ dj �= ∅,

0, di ∩ dj = ∅. (3)

A communication scheduling tableCS expresses the
scheduling result whereCS(i, k) = j means that a sending

processorPi sends a message to a receiving processorQj at
a communication stepk. (A communication step is defined as
the time during which all the sending and receiving processor
pairs complete a communication. A redistribution routine
needs several communication steps.) At a communication
stepk, if a sequenceCS(0, k),CS(1, k), . . . ,CS(p−1, k) is
a permutation of the set of receiving processor indices, we
say the communication is contention-free.

2.2. Motivating examples

Example 1. Consider the first example withx = 4, y =
3, p = q = 5. The redistribution routine needs all-to-all
communication. From Formulas (1)–(3), the Communica-
tion tableM can be obtained as shown in Fig.1(a). If we only
need to avoid the contention in all communication steps, we
can add a statementscheduled_dest= (me+ dest)modp
into the sending loop of a redistribution routine, and schedule
the send assend(buffer[scheduled_dest], scheduled_dest).
Thus, from this scheduling, theCS table may be shown as
Fig. 1(b). Although it can improve the communication per-
formance because node contention is avoided, there still ex-
ists communication waiting times. The reason is that the cost
of a step is likely to be dictated by the length of the longest
message exchanged during the step, and at each communi-
cation step, processors exchange messages with the differ-
ent lengths. Fig.1(d) shows the communication scheduling
in this pattern. A horizontal bar consisting of several dif-
ferently numbered boxes (or blank boxes) represents that a
sending processor sends a message with different lengths
(different number of blocks) to the receiving processors. A
box marks as one-unit message and the number in the box
is the target processor number. That is, the differently num-
bered boxes mark the messages which are sent to different

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

3
33

3 3
3 3

3 3

22 2
2 2 2

22 2

2 2 2

222

3 2
41

3 0
4 2

1 3

32 0
2 4 1

03 1

1 3 4

204

0 2
13

2 4
0 3

4 1

04 2
1 3 0

14 2

1 3 4

032

0

0 0 0 11 2 2 2 3 3 4 4

1 1 00 02 2 3 33 4 4

1 1 10 02 2 3 33 4 4

4 1 1 10 0 2 233 4 4

1 10 0 2 2 3 34 4 4 2

0 0 0 11 2 2 2 3 3 4 4

1 1 1 2 233 4 0 04 4

1 1 00 02 2 3 33 4 4

1 10 0 2 2 3 34 4 4 2

0 02 2 3 33 4 4 1 1 1

0 1 2 3 4 0 1 2 3 4

3
33

3 3
3 3

3 3

22 2
2 2 2

22 2

2 2 2

222

3 2
41

3 0
4 2

1 3

32 0
2 4 1

03 1

1 3 4

204

0 2
13

2 4
0 3

4 1

04 2
1 3 0

14 2

1 3 4

032

0

cyclic (4) to cyclic (3), p = q = 5

Q0Q1Q2Q3Q4 k 1 2 3 4 5 k 1 2 3 4 5

Communication table Scheduling table Scheduling table

(a) (b) (c)

(d) (e)

Q0 Q1 Q2 Q3 Q4 Idle time Q0 Q1 Q2 Q3 Q4 Idle time

Fig. 1. Motivating example 1.

556 M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563

cyclic (2) to cyclic (3), p = q = 6

k 1 2 3 4 5 6 K 1 2 3

Scheduling table Scheduling table

(b) (c)

0 2 4
45 01 23
1 3 5
2 4 0

54 10 32
3 5 1

0 2 4
4 5 0 1 2 3
1 3 5
2 4 0
5 4 1 0 3 2
3 5 1

P0

P1

P2

P3

P4

P5

P0

P1

P2

P3

P4

P5

P0

P1

P2

P3

P4

P5

Q0 Q1 Q2 Q3 Q4 Q5

Communication table

(a)

2 0 2 0 2 0
1 1 1 1 1 1
0 2 0 2 0 2
2 0 2 0 2 0
1 1 1 1 1 1
0 2 0 2 0 2

Fig. 2. Motivating example 2.

receiving processors. The vertical lines separate the commu-
nication steps. Obviously, there exists waiting time (blank
boxes) in each step. As the message length increases, the
waiting time may increase considerably as well.

On the other hand, if we schedule the communication ac-
cording to anotherCS table (Fig.1(c)), the corresponding
scheduling pattern is optimized as shown in Fig.1(e). We
observe that the communications are not only contention-
free, but the message length in each step is equal to each
other. In other words, each processor starts to send the mes-
sage and finishes communication simultaneously in a step.
Hence, the minimum waiting time can be achieved.

Example 2. Consider the following example withx =
2, y = 3, p = q = 6. The communication matrix is shown
in Fig. 2(a). Obviously, as the communication patterns are
different among some sending processors (e.g., processor
P0 andP3 need not send message to processorQ1, Q3 and
Q5), we can extend the contention-free scheduling algo-
rithm and obtain the scheduling result as shown in Fig.2(b).
Because the barrier synchronization is carried out at each
communication step, the total cost is estimated as 9 unit
lengths (2 units in 3 stepsk = 1,3,5 and 1 unit in 3 steps
k = 2,4,6). On the other hand, if the asynchronization
(non-blocking) communication strategy is applied and the
barrier is carried out in a “large” step (two communication
steps), the communication can be optimized to the cost of
6 unit lengths(Fig.2(c)). This is because, with respect to
processorsP1 andP4, the sum of the message lengths in
two “small” steps is just same as the message lengths of
one step for processorP0, P2, P3, and P5. The schedule
generated not only results in contention-free but also min-
imizes the communication waiting time. In fact, there is
no need to actually insert barrier when implementing these
algorithms using MPI, because in MPI implementation, if
the communication link is busy, the communication system
delays the communication.

From the above observation, we need to consider com-
munication scheduling techniques for some redistribution
schemes such that the communication becomes contention-

free and the difference of message lengths in each commu-
nication step is minimized. In this way, the communication
idle time is reduced in redistribution routines.

We divide the redistribution schemes into two categories:
one is that processors send and/or receive the same number
of messages, as well as if a message of lengthm occurs in
one of the sending/receiving processor pair, it also occurs
in the other pairs. Another is unbalanced pattern, in which
processors may have a different number of messages to send
and/or receive.

3. Related work

Recently, several algorithms have been reported that han-
dle general block-cyclic redistribution. However, most of
the work involves message generation only. For instance,
Thakur et al. [26,27] considered a redistribution library
for changing the distribution of arrays on a given set of
processors. The methods proposed treat possible source–
target distributions in a special pair-wise manner—
redistribution betweencyclic(x) and cyclic(k ∗ x) in one
dimension. This prevents them from handling very general
source–target distributions in an efficient manner. Further,
they proposed an expensive solution for multidimensional
redistributions. They consider such redistributions to be
composed of a series of one-dimensional redistributions,
which can lead to a considerable amount of unnecessary
communication.

A redistribution technique based on the descriptors called
pitfalls has been devised in[23]. It can treat arbitrary source
and target processor sets. However, the work has no capa-
bility of solving more complex redistribution applications,
such as shape changing redistribution—that is, either the
source processor grid is different from the target proces-
sor grid, or at least one dimension of the array is collapsed
before or after redistribution. In such a case, an expensive
run-time resolution approach is employed. Further, the ap-
proach used for multidimensional array redistribution in-
volves a series of one-dimensional redistributions, which can
be costly.

Chung et al. [2] presented a basic-cycle calculation
technique to efficiently performcyclic(x) to cyclic(y) re-
distribution. Their main idea is to develop closed forms
for computing source/destination processors of some spe-
cific array elements in abasic-cycle, which is defined as
lcm(x, y)/gcd(x, y). These closed forms are then used to
efficiently determine the communication sets of a basic-
cycle. Then they presented an extended technique called
generalized basic-cycle calculationmethod to perform a
redistribution fromcyclic(x) overP processors tocyclic(y)
overQ processors[7]. In this method, a generalized basic-
cycle is defined aslcm(xP, yQ)/(gcd(x, y) × P) in the
source distribution andlcm(xP, yQ)/(gcd(x, y) × Q) in
the destination distribution. From the source/destination
processor/data sets of array elements in the first generalized

M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563 557

basic-cycle, a packing/unpacking pattern table to minimize
the data-movement operations was constructed.

Many researchers have concentrated mainly on the effi-
cient index computation for generating the communication
messages to be exchanged by the processors involved in the
redistribution[1,11,12,21,22,25]. However, the question of
how to efficiently schedule the messages has received little
attention. The followings are the researches concerned with
the communication optimization in redistribution.

Kalns and Ni[13] presented a technique for mapping data
to processors in order to minimize the total amount of data
that must be communicated during redistribution. Hsu et al.
[8] extended their idea and proposed a generalized processor
mapping technique forcyclic(kx) to cyclic(x) redistribution
or vice versa. The main idea of these methods is to develop
mapping functions for computing a new rank of each target
processor. Based on the mapping functions, a new logical
sequence of target processors can be derived.

A multi-phase redistribution approach is suggested in
[9,26]. Kaushik et al. used the tensor product representation
of data distributions and the network contention model by
expressing the communication as a sequence of permuta-
tions, each of which can be executed in a fixed number of
contention-free steps. They developed a multi-phase strat-
egy which performs the redistribution as a sequence of
redistributions so that the total cost of the sequence is less
than that of direct redistribution.

Lim et al. [14,15] developed the algorithms that redis-
tribute an array from one block-cyclic scheme to another,
where the source and target schemes have the special rela-
tion. Their framework is based on a generalized circular ma-
trix formalism. Through the transform of the rows/columns
of the matrix, data communication is performed in a conflict-
free manner using direct, indirect, and hybrid algorithms. In
a direct algorithm, a data block is transferred directly to its
destination processor. In an indirect algorithm, data blocks
are moved from source to destination processors through
intermediate relay processors. The relay processors com-
bine data blocks with the same destination. A hybrid algo-
rithm is a combination of both direct and indirect algorithms.
They stated that their algorithms generate a schedule that
minimizes the number of communication steps and elimi-
nates node contention in each communication step. Follow-
ing their work[20], Park et al. proposed an extended algo-
rithm that reduces the overall time for communication by
considering the data transfer, communication schedule, and
index computation costs.

Desprez et al.[3] proposed an algorithm for the scheduling
of those messages: how to organize the message exchanges
into “structured” communication steps that minimize con-
tention. They built a scheduling for moving from a cyclic(r)
distribution on aP-processor grid to a cyclic(s) distribution
on aQ-processor grid for a one-dimensional redistribution,
where the values ofP,Q, r, ands are arbitrary. They con-
sidered the size of the communication messages as a term
of scheduling. However, their algorithm did not provide the

overlap between communication steps and also may cause
communication contention.

All the existing work either deals with the special redis-
tribution scheme (cyclic(kx)→ cyclic(x) or vice versa), or
only avoids the node contention. Our technique, however,
can deal with all redistribution schemes (cyclic(x) onp pro-
cessors tocyclic(y) on q processors); especially for some
“irregular” cases—processors may have a different num-
ber of messages to send and/or receive—our method can
achieve better performance as evidenced in our experimental
results.

4. Communication scheduling algorithms

Given the global addressg of an array element, we can
easily determine the processorP that owns this element and
the local addressLocof the element on that processor using
the following formulas:

P = (g divx)modp, (4)

Loc = x ∗ (g divpx)+ g modx. (5)

Without loss of generality, we can assumegcd(x, y) = 1,
because ifgcd(x, y) = z �= 1, let x = x′z, y = y′z, andM ′
be the communication table of redistribution fromcyclic(x′)
to cyclic(y′), we can proveM = z ∗M ′. Hereby there is no
influence forM’s pattern with assumptiongcd(x, y) = 1.
This fact can be validated by the following lemma.

Lemma 2. For an arbitrary processor pair(Pi,Qj), if
there isM ′(i, j) = m under redistribution cyclic(x) to
cyclic(y), thenM(i, j) = z ∗m is true under redistribution
cyclic(zx) to cyclic(zy), where z is a positive integer.

Proof. According to Formula (1), an element, whose
global subscript isg, redistributed fromPi to Qj satisfies
Pi = (g divx)modp, andQj = (g divy)modq. Because
M ′(i, j) = m means that there arem such elements in a
slice L, we assume that these elements’ global subscripts
areg1, . . . , gm.

For a g ∈ {g1, . . . , gm}, Pi = (g divx)modp ⇒ ex-
isting z numbers of the elements(gz, gz + x, . . . , gz +
(z − 1) ∗ x)) satisfy Pi = (gz divzx)modp, . . . , Pi =
((gz+ (z− 1) ∗ x)divzx)modp. The similar result occurs
in Qj = (gz divzy)modq, Because there arem num-
bers of suchg, the amount of such elements isz ∗ m. This
meansM(i, j) = z ∗ m under redistributioncyclic(zx) to
cyclic(zy). �

We divide the following discussions into two cases ac-
cording to whethergcd(x, q) = 1∧ gcd(y, p) = 1 or not,
because this condition indicates that if a source processor
sends a message with sizem to a destination processor, the
other source processors certainly must send a message with
the same length to a corresponding destination processor.

558 M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563

4.1. Scheduling algorithm when gcd(x, q) =
1∧ gcd(y, p) = 1

For the case of scheduling whengcd(x, q) = 1 ∧
gcd(y, p) = 1, we haveL = lcm(xp, yq) = �∗lcm(x, y) =
�∗x ∗y, where� > 1 is a constant. The algorithm is based
on the following theorem.

Theorem 1. Given redistribution parameters, x, y, p, q,
and let M represent the communication table from source
processors to target processors, then

M(i, j)=m⇒ M((i + y ∗ k)modp, (j + x ∗ k)modq)

=m, (0�k < �).

Proof. M(i, j) = m means that,m elements of the arrayA
in a sliceL, with global addressesg1, g2, . . . , gm, are dis-
tributed ontoPi andQj before and after redistribution, re-
spectively. LetA[g] be the one of thesem elements, then
A[g+x ∗y] is located on source processorP(i+y)modp (be-
cause the block length of source distribution pattern isx),
and on target processorQ(j+x)modq , respectively. Similarly,
A[(g+x∗y∗k)modL] (0�k < �) is located on source pro-
cessorP(i+y∗k)modp and on target processorQ(j+x∗k)modq .
BecauseA[g] ∈ {A[g1], A[g2], . . . , A[gm]}, g′ �= g′′ ⇒
(g′ + x ∗ y ∗ k)modL �= (g′′ + x ∗ y ∗ k)modL. Thereby
A[(g + x ∗ y ∗ k)modL] can also containm different ele-
ments in a slice. This meansM((i + y ∗ k)modp, (j + x ∗
k)modq) = m, which is required for our proof. �

The values(i+y∗k)modp are different each other when
0�k < L

x∗y , becausegcd(y, p) = 1. The same conclusion
can be obtained with(j + x ∗ k)modq. In other words, ac-
cording to Theorem 1, each source processor can send mes-
sage with the same size to distinct target processor in a step.
The source processorsP0, P1, . . . , Pp−1 send messages of
sizem to the target processors(Qj0,Qj1, . . . ,Qjq−1), where
j0, j1, . . . , jq−1 is a permutation of target processor num-
bers(0,1, . . . , q − 1). Thus the scheduling algorithm can
be as follows (CSi indicates theith row ofCSandKi is the
number of communication steps ofPi):

Algorithm 1. (Scheduling algorithm whengcd(x, q) = 1∧
gcd(y, p) = 1).
Step 1: For a source processorPi0(e.g.,P0), its CS vec-

tor is calculated asCSi0 = 〈Qj0,Qj1, . . . ,QjKi0
−1〉, where

M(i0, jk) �= 0 (in principle,j0, j1, . . . , jKi0−1 can be any
permutation of target processor numbers(0,1, . . . , q − 1)).
Step2: For any other source processorsPi(i �= i0∧0� i <

p − 1), if ∃k.i = (i0 + y ∗ k)modp, then theCSvectors
of Pi are calculated as
CSi = 〈Qj ′0,Qj ′1, . . . ,Qj ′Ki−1

〉, where j ′l = (jl + x ∗
k)modq(0� l < Ki). �

Back to the motivating example 1. First we can specify the
scheduling vector forP0 asCS0 = 〈0,1,2,3,4〉. Then for

P1, i = (i0+ y ∗ k)modp⇒ 1= (0+3∗2)mod 5⇒ k =
2⇒ j ′l = (jl+4∗2)mod 5= (jl+3)mod 5(0� l < 5), that
is CS1 = 〈3,4,0,1,2〉. The otherCSi can be obtained by
using the similar computations. The resultingCS is shown
as Fig.1(c).

4.2. Scheduling algorithm when gcd(x, q) �=
1∨ gcd(y, p) �= 1

Algorithm 1 is based on the fact that the receiving pro-
cessors form a permutation of the target processors in a
communication step. This is guaranteed by the values(j +
x ∗ k)modq(0�k < L

x∗y) are different from each other,
as the valuek is different. The similar result occurs in the
formula (i + y ∗ k)modp. However, if gcd(x, q) = t �=
1∨gcd(y, p) = s �= 1, then fork = 0,1, . . . , p−1, because
y is divided bys, (y ∗ k)modp = (y ∗ k + y ∗ p

s
)modp =

· · · = (y ∗ k + y ∗ p
s
∗ s)modp. Simplifying this equality,

∃n(0�n�s). (y ∗k)modp = (y ∗ (n∗ p
s
+k))modp. That

is, only if 0�k <
p
s
, (y ∗ k)modp have different values. A

similar result can be obtained for 0�k <
q
t
, (x∗k)modq. In

other words, there certainly existi1, . . . , i p
s

andj1, . . . , j q
t

such thatM(i1, j1) = · · · = M(ip
s
, j1) = · · · = M(ip

s
, j q

t
),

where ik = i1 + k ∗ s and jk = j1 + k ∗ t . Algorithm 1
cannot be applied in this case. Therefore, through the above
observations, we have the following theorem.

Theorem 2. Given redistribution parameters, x, y, p, and
q, the communication matrix M can be divided intop

s
× q

t
equivalent sub-matrices. Each sub-matrix has the sizes× t :

M =




C11 C12 . . . C1, q
t

C21 C22 . . . C2, q
t

.
Cp

s
,1 Cp

s
,2 . . . Cp

s
,
q
t


 ,

Cij =




c11 c12 . . . c1,t
c21 c22 . . . c2,t
.
cs,1 Cs,2 . . . Cs,t


 .

Notice thatCij are identical to each other.�t
j=1c1j =

· · · = �t
j=1csj in a sub-matrix(block) is the total message

length in this block. Therefore, we can extend the commu-
nication step to a “large” step in which sending processors
send Ki t

q
messages to several receiving processors in one

block. That is, the barrier is not inserted in every communi-
cation step but between two blocks. Asynchronous commu-
nication strategy (non-blocking communication in MPI) can
be used in the large step. For each sending processor, be-
cause the sum of message sizes are the same in a large step,
communication can be simultaneously completed at the end
of the step, if there is no node contention.

Let �i = Ki t
q

, be the number of small steps in a block,
andn be the large step number forPi (we will omit the sub-
script i of �i for Pi if there is no confusion). For a sending

M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563 559

M= C=

C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

c11

c21 c22

cs1 cs2

c2,t

cs,t

c12 c1,t

(a) (b)

Fig. 3. Large step and small step scheduling whengcd(x, q) �=
1∨gcd(y, p) �= 1. (a) The communication tableM is composed ofps × q

t
sub-matrix. The scheduling in a large communication step is along with
diagonal subblocks. (b) AllCij are identical to each other. Schedule the
communication with the same size in a small step.

processorPi , if the scheduling of the first large step is deter-
mined (denoted asQj1,Qj2, . . . ,Qj�), the processor num-
bers in the following large steps are((Qj1,Qj2, . . . ,Qj�)+
t ∗ (n − 1))modq. In order to schedule the first large
communication step optimally, we select the diagonal sub-
matrices C11, C22, . . . , Cp

s
,
p
s
,C1,2, . . . , Cp

s
,
p
s
+1, . . ., and

C1,h, . . . , Cp
s
,(

p
s
+h−1)mod q

t
as the scheduling lines in the

first large step, which guarantees that all sub-matrices have
different receiving processor numbers (assumep

s
<

q
t
,

without loss of generality). Then we schedule the small step
(communicate with one processor) in these sub-matrixes.
We can schedule the communication with the same message
size in a small step, according to the descending order of
message sizes, because the messages with the same size are
sent to the different receiving processors in a block (Theo-
rem 1). The details are shown in the Algorithm 2. Thus the
node contention can be avoided as much as possible (Fig.3).
The scheduling algorithm for this case is shown below.

Algorithm 2. (Scheduling algorithm whengcd(x, q) �= 1∨
gcd(y, p) �= 1).

Step1. Divide theM into p
s
× q

t
equivalent sub-matrices

Cij (1� i� p
s
,1�j � q

t
).

Step2. Do the following sub-steps:
2.1. Put sub-matrices C1,h, C2,h+1, . . . ,

Cp
s
,(

p
s
+h−1)mod q

t
as the first large commu-

nication step. The first� receiving proces-
sor numbers inCSi of Pi(0� i < p − 1)
are denoted as〈Qj1, . . . ,Qj�〉, where
M(i, jk) �= 0(1�k��).

2.2 List the message sizes appearing inM in the
descending order asm1�m2� · · · �ml .

2.3 Initialization:S1(i) = ⊥, S2(j) = ⊥(0� i <

p − 1,0�j < q − 1), �← 0, k← 1.
Step3. For each processorPi that satisfiesk < � do the

following steps.
Step4. n← 1.
Step5. �← �+ 1;

for h = 1,2, . . . , p
s

do
∀c�� = m� ∈ Ch,(n+h−1)mod q

t
,

i ← �+ (h− 1) ∗ s, j ← �+ (h− 1) ∗ t;
if S1(i) �= � ∧ S2(j) �= � thenQjk ← j ;
S1(i)←�, S2(j)←�.

Step6. If � < l go to step 5.
Step7. n← n+ 1, �← 0.
Step8. Repeat the steps 5, 6, and 7 untiln� p

s
.

Step9. If k < �, k← k + 1, go to step 3.
Step10. The CSi of the nth large step is(〈Qi,1, . . . ,

Qi,k〉 + t ∗ (n− 1))modq.

Steps 1 and 2 are the initialization of the algorithm. Step
3 to step 9 form the core of the algorithm. Step 5 determines
the scheduling in the small steps of a block.n is the count
for large steps and� is the count for the message sizes.S1(i)

and S2(j) are used for deciding whether processorQj is
served as a receiving processor forPi .

Back to the motivating Example2. The communication
tableM can be divided into 6 sub-blocks:

M =
[
C11 C12 C13
C21 C22 C23

]
, Cij =


 2 0

1 1
0 2


 .

Furthermore, we havem1 = 2,m2 = 1, s = 3, t = 2.
Using Algorithm 2, we obtainCS0 = 〈0,2,4〉, CS1 =
〈(45), (01), (23)〉, CS2 = 〈1,3,5〉, CS3 = 〈2,4,0〉, CS4 =
〈(54), (10), (32)〉, CS5 = 〈3,5,1〉. The scheduling result is
represented as Fig.2(c).

5. Experimental results

For purpose of performance evaluation of our optimized
communication scheduling algorithms, we present the exper-
imental evaluation for these techniques. All the experiments
are implemented on two platforms: one is CP-PACS Pilot3
[18], a 64-processor subset of an MIMD distributed memory
parallel computer developed at the University of Tsukuba,
and another is a workstation cluster. The node programs are
written in C++, using MPI communication library and sys-
tem callMPI_Wtime() for measuring execution time. The
single-precision array was used for the test.

5.1. Communication cost model

Modeling the communication cost for the all-to-many per-
sonalized communication for array redistribution requires
accounting for the message startup and transmission costs
and the overhead arising due to node and link contention.
If the message startup cost isTs , the network bandwidth is
1
Td

, then the communication cost in one step transmittingm
data items can be modeled as

Tcomm= Ts +m ∗ Td.

NoticeTs � Td for most parallel architectures. If the wait-
ing time invoked by node contention is considered, the com-
munication cost for one step may change toTcomm = N ∗
(Ts +m ∗ Td), whereN is the maximum number of sending
processors which send messages to the same processor. On
the other hand, if the communication steps in redistribution

560 M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563

routines try to avoid the node contention, but do not con-
sider the scheduling involved in message lengths, all com-
munication cost may estimated as

Tcomm= K ∗ (Ts +max(m1,m2, . . . , mK) ∗ Td),

whereK is the communication steps andm1, . . . , mK are the
message size for each step, respectively. If the algorithms
proposed in this paper are used, the cost is approximately as

Tcomm= K ∗ Ts + (m1+m2+ · · · +mK) ∗ Td.

From the above two formulas for communication cost
estimation , theoretically we can estimate our algorithms
proposed in this paper should be better than contention-
free algorithms since(m1 + m2 + · · · + mK)�K ∗
max(m1,m2, . . . , mK). The experiments in the following
subsections are used to confirm this observation.

5.2. Experiments for comparison with naive redistribution
routine and contention-free algorithm

CP-PACS (Computational Physics by Parallel Array Com-
puter System) is a massively parallel processor developed
and in full operation at the Center for Computational Physics
at the University of Tsukuba. It is an MIMD machine with
a distributed memory, equipped with 2048 processing units
and 128 GB of main memory. The theoretical peak perfor-
mance of CP-PACS is 614.4 Gflops. CP-PACS achieved
368.2 Gflops with the Linpack benchmark in 1996, which
at that time was the fastest Gflops rating in the world. CP-
PACS has two remarkable features. Pseudo Vector Process-
ing feature (PVP-SW) on each node processor, which can
perform high-speed vector processing on a single chip su-
perscalar microprocessor; and a three-dimensional Hyper-
Crossbar (3-D HXB) interconnection network, which pro-
vides high-speed and flexible communication among node
processors.

Fig. 4 shows the communication time (ms) of redistribu-
tion fromcyclic(4) to cyclic(3), with different local sizes on
5 processors (Example1). The reason that we selected this
scheme as our experimental example is to show how our
algorithm can improve communication performance for the
case of inter-processor communication with different mes-
sage lengths in a communication step. Three versions of
redistribution are compared in our experiments. The curve
marked with “general” is a naive redistribution algorithm
[4] which is a simple algorithm as shown in the beginning
of Section2. It is implemented in a runtime library of an
optimized C++ compiler version 02-06-C installed in CP-
PACS (Pilot3); the curve marked with “align-message” is our
scheduling algorithm proposed in this paper, and the curve
marked with “contention-free” is the scheduling algorithm
only avoiding the node contention, proposed in[5]. Since
we are mainly concerned with the communication cost, the
communication times were only measured in the redistribu-
tion routines. In this experimental example, the algorithm

6000 12000 24000 48000 72000 96000 120000
0

20000

40000

60000

80000

100000

120000
general

contention-free

align-message

ex
ec

ut
io

n
tim

e
(m

s)

local array sizes

Fig. 4. Comparing communication time on the CP-PACS Pilot3 for
cyclic(4) to cyclic(3),p = q = 5.

0

20000

40000

60000

80000

100000

120000

6000 12000 24000 36000 48000 60000 72000

general

contention-free

align-message
ex

ec
ut

io
n

tim
e

(m
s)

local array sizes

Fig. 5. Comparing communication time on the CP-PACS Pilot3 for
cyclic(3) to cyclic(2), p = q = 6.

“align-message” minimizes the waiting time. The waiting
time is approximately equal to 1/5 of the communication
time used to transfer a message in each step. We can observe
that about 15% speed-up can be achieved due to the exis-
tence of the waiting time in the old algorithm. As the mes-
sage length increases, the speed-up also increases because
most of the time is consumed in data transmission.

The second experiment corresponds to motivating Ex-
ample2. In this experiment, the communication primitive
MPI_Isend and MPI_Irecv are used for communi-
cation between two large steps. The results are shown in
Fig. 5. Compared to the contention-free algorithm, because
the message unit is reduced from 9 to 6, about 1/3 of the
waiting time can be cut down.

The third experiment tries to demonstrate the efficacy and
scalability of our proposed algorithm when the numbers of
source and destination processors are different. We selected
a global array size of 120,000, a redistribution fromcyclic(8)
to cyclic(6), and the number of source processors ranging
from 5,10,20,30,40,50, to 60 and the number of desti-
nation processors is immutably 5. From Fig.6, we observe
that if there is no scheduling, the execution time is not im-
proved although the local array size is decreased as the num-
ber of source processors is increased. Using the proposed

M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563 561

0

10000

20000

30000

40000

50000

60000

70000

80000

5

general

contention-free

align-message

number of source procs

10 20 30 40 50 60

ex
ec

ut
io

nt
im

e
(m

s)

Fig. 6. Comparing communication time on the CP-PACS Pilot3 for
cyclic(8) to cyclic(6), global array size is 120,000, and different number
of source processors.

algorithm in this paper, the performance is better in all the
cases of different number of source processors.

These figures show that the algorithms proposed in this
paper achieve better performance than some previously ex-
isting redistribution algorithms. The performance improve-
ment becomes more appreciable as the message length in-
creases. This means that it is vital to use communication
scheduling with aligning at message sizes in each commu-
nication step of redistribution routines.

5.3. Experiments for comparison withMPI_Alltoallv

In principle, as mentioned above, all-to-all redistribution
with the same length of messages can be implemented
using MPI_Alltoall , and all-to-all redistribution with
the different length of messages can be implemented using
MPI_Alltoallv , where parameterssend_count[] ,
send_displacements[] , recv_count[] , and
recv_displacements[] can specify the different mes-
sage lengths and displacements in the sending and receiving
phases, respectively.

In order to measure the performance in different platforms
and compare our algorithms with MPI library routines, we
also implemented our approach in a homogenous worksta-
tion (WS) cluster. This WS cluster system consists of 24
SUN workstations with 400 Hz CPU, and with 128 M mem-
ory on each node. All nodes are connected by a 100Base-T
Ethernet via a switching hub. The OS is Solaris 8 and MPI
library is MPICH Ver.1.1.2 developed by the Argonne Na-
tional Laboratory.

We evaluated Algorithm 1 and Algorithm 2 described
in Sections4.1 and 4.2, contention-free algorithm, and
MPI_Alltoallv for the same local array sizes. Fig.7
presents the results forcyclic(6) to cyclic(8) on 5 source
and target processors. In this figure, Algorithm 1 (marked
as “align-message”), the contention-free algorithm (marked
as “contention-free”) andMPI_Alltoallv (marked
as “MPI_Alltoallv”) were measured. The measured ex-
ecution time of Algorithm 1 and the contention-free al-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

12000 24000 48000 72000 96000 120000 144000

MPI_Alltoallv

contention-free

align-message

local array sizes

ex
ec

ut
io

n
tim

e
(s

ec
)

Fig. 7. Comparing communication time on the Sun Workstation cluster
for cyclic(6) to cyclic(8), p = q = 5.

0

0.2

0.4

0.6

0.8

1

1.2

(8.9)->(5.9)
(3.6)->(2.6)

(80.7)->(30.7)

(20.12)->(30.12)

(8.20)->(6.20)

tim
e

(s
ec

)

MPI_Alltoallv

align-message

redistribution schemes

Fig. 8. Comparing communication time on the Sun Workstation cluster for
the different redistribution schemes with local array sizeN = 120,000.

gorithm include dynamic displacement calculation and
packing and unpacking for each communication step. De-
spite of this overhead, our methods are still better than
MPI_Alltoallv in most cases, especially Algorithm 1
can approximately get 20% performance improvement. This
reason is in our experimental environment of MPI, the im-
plementation ofMPI_Alltoallv do not avoid communi-
cation bottleneck. It should be noted that our algorithms can
be tuned further on packing/unpacking and displacement
calculation.

Fig. 8 shows another comparison for our methods
with MPI_Alltoallv . In this experiment, the dif-
ferent redistribution schemes are implemented. Strictly,
MPI_Alltoallv cannot be invoked if the number of
source and target processors are different (although some
data length between source and target processors can be set
to 0 so that the real communication does not occur among
the part of source and target processors, the start-up time
are still wasted. Thus it influences the total communication
overhead). We only measured some schemes with the same
source and target processors ((x, p) → (y, p) marked in
x-axis means that redistribute fromcyclic(x) to cyclic(y)
on processorp). (We also experimented the schemes with

562 M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563

different number of source and target processors using our
algorithms which are not shown in the paper.) Further-
more, the contention-free algorithm cannot be adapted in
the schemes listed in the figure. Thus, we only measured
Algorithm 1, Algorithm 2 andMPI_Alltoallv for local
array sizeN = 120,000, where(8,9)→ (5,9), (80,7)→
(30,7), and(8,20)→ (6,20) are implemented with Algo-
rithm 1, while(3,6)→ (2,6) and(20,12)→ (30,12) are
implemented with Algorithm 2. From the figure we observe
that Algorithm 2 is a little worse thanMPI_Alltoallv
due to more complicated displacement calculation used in
the algorithm. However, in all schemes which is suitable for
Algorithm 1, better performance is achieved in Algorithm
1 than inMPI_Alltoallv .

6. Conclusions

In this paper, we have shown an efficient approach for
communication scheduling in redistribution routines. Our
scheduling algorithms not only consider avoiding the node
contention when data are received from various sending pro-
cessors, but also arrange messages of the same lengths as
much as possible in a communication step. The communi-
cation scheduling results in a permutation of the destination
processors in each communication step. Furthermore, if the
messages of same length cannot be put into a communication
step no matter how to schedule, the barriers are inserted be-
tween two “large” steps. Because the sum of message lengths
in each large step is identical to each other, and through
using non-blocking communication in each large step, the
minimum communication idle time can be achieved. The
algorithms proposed in this paper can guarantee a lower
communication overhead in a redistribution process. These
methods are also useful in the implementation of MPI rou-
tine MPI_Alltoallv .

However, our algorithms only consider improving com-
munication performance on software aspect and do not
schedule communication to fit the hardware communication
architecture. We have noticed the related work with respect
to optimization of multicast, all-to-all communication in hy-
percube, mesh, torus and other network topologies[16,17].
There are different scheduling strategies for different mul-
ticomputer architectures. In the future, we will extend our
algorithms to consider the aspect of hardware support, such
as various communication topologies.

Acknowledgments

This research was supported in part by the Japanese
Okawa Foundation for Information and Telecommunica-
tions under Grant Program 01-12, and by the US National
Science Foundation under Grant ECS-0196569. The au-
thors thank the four anonymous reviewers for their careful

reading of the manuscript and many insightful comments
and suggestions.

References

[1] R. Bixby, K. Kennedy, U. Kremer, Automatic data layout using
0-1 integer programming, Proceedings of the 1994 International
Conference on Parallel Archs. and Compilation Techniques,
Montreal, Canada, August 1994.

[2] Y. Chung, C. Hsu, S. Bai, A basic-cycle calculation technique for
efficient dynamic data redistribution, IEEE Trans. Parallel Distrib.
Systems 9 (4) (1998) 359–377.

[3] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, Y. Robert,
Scheduling block-cyclic array redistribution, IEEE Trans. Parallel
Distrib. Systems 9 (2) (1998) 192–205.

[4] M. Guo, Y. Yamashita, I. Nakata, Efficient implementation of multi-
dimensional array redistribution, IEICE Trans. Inform. Systems E81-
D (11) (1998) 1195–1204.

[5] M. Guo, I. Nakata, Y. Yamashita, Contention-free communication
scheduling for array redistribution, Parallel Comput. 25 (3) (2000).

[6] HPF Forum, High Performance Fortran Language Specification,
version 2.0 edition, Rice University, Houston, Texas, November 1996.

[7] C. Hsu, S. Bai, Y. Chung, C. Yang, A generalized basic-cycle
calculation method for efficient array redistribution, IEEE Trans.
Parallel Distrib. Systems 11 (12) (2000) 1201–1216.

[8] C. Hsu, Y. Chung, D. Yang, C. Dow, A generalized processor
mapping technique for array redistribution, IEEE Trans. Parallel
Distrib. Systems 12 (7) (2001) 743–757.

[9] S.D. Kaushik, C.-H. Huang, R.W. Johmson, P. Sadayappan, An
approach to communication-efficient data redistribution, Proceedings
of the Eighth ACM International Conference on Supercomputing,
Manchester, UK, July 1994.

[10] S.D. Kaushik, C.-H. Huang, J. Ramanujam, P. Sadayappan, Multi-
phase redistribution: a communication-efficient approach to array
redistribution, Technical report, The Ohio Sate University, 1995.

[11] K. Kennedy, U. Kremer, Automatic data layout for high performance
fortran, Proceedings of Supercomputing’95, San Diego, CA,
December 1995.

[12] U. Kremer, NP-completeness of dynamic remapping, Proceedings of
the Fourth Workshop on Compilers for Parallel Computers, Delft,
The Netherlands, December 1993.

[13] E.T. Kalns, L.M. Ni, Processor mapping techniques toward efficient
data redistribution, IEEE Trans. Parallel Distrib. Systems 6 (12)
(1995) 1234–1247.

[14] Y.W. Lim, P.B. Bhat, V. Prasanna, Efficient algorithms for block-
cyclic redistribution of arrays, IEEE Symposium on Parallel and
Distributed Processing, October 1996.

[15] Y.W. Lim, N. Park, V. Prasanna, Efficient algorithms for multi-
dimensional block-cyclic redistribution of arrays, Proceedings of the
26th International Conference on Parallel Processing, Bloomingdale,
IL, August 1997.

[16] P.K. McKinley, H. Xu, A.-H. Esfahanian, L.M. Ni, Unicast-based
multicast communication in wormhole-routed networks, IEEE Trans.
Parallel Distrib. Systems 5 (12) (1994) 1252–1265.

[17] D.F. Robinson, D. Judd, P.K. McKinley, B.H.C. Cheng, Efficient
multicase in all-port wormhole-routed hypercubes, J. Parallel Distrib.
Comput. 31 (1995) 126–140.

[18] K. Nakazawa, H. Nakamura, T. Boku, I. Nakata, Y. Yamashita, CP-
PACS: a massively parallel processor at the University of Tsukuba,
Parallel Comput. 25 (13–14) (1999) 1635–1661.

[19] Y. Pan, J. Shang, M. Guo, A scalable HPF implementation of a
finite volume CEM application on a CRAY T3E parallel system,
Concurrency Comput.: Pract. Exp. 15 (6) (2003) 607–621.

[20] N. Park, V.K. Prasanna, C.S. Raghavendra, Efficient algorithms for
block-cyclic array redistribution between processor sets, IEEE Trans.
Parallel Distrib. Systems 10 (12) (1999) 1217–1239.

M. Guo, Y. Pan / J. Parallel Distrib. Comput. 65 (2005) 553–563 563

[21] D.J. Palermo, P. Banerjee, Automatic selection of dynamic
data partitioning schemes for distributed-memory multicomputers,
Proceedings of the Eighth Workshop on Languages and Compilers
for Parallel Computing, August 1995.

[22] D.J. Palermo, E.W. Hodges IV, P. Banerjee, Dynamic data partitioning
for distributed-memory multicomputers, J. Parallel Distrib. Comput.
(38) (1996) 158–175.

[23] S. Ramaswamy, B. Simons, P. Banerjee, Optimizations for efficient
array redistribution on distributed memory multicomputers, J. Parallel
Distrib. Comput. 38 (1996) 217–228.

[24] S. Ranka, J-C. Wang, G. Fox, Static and run-time algorithms for
all-to-many personalized communication on permutation networks,
IEEE Trans. Parallel Distrib. Systems 5 (12) (1994) 1266–1274.

[25] L. Prylli, B. Tourancheau, Efficient block-cyclic data redistribution,
in: EuroPar’96, Volume of Lectures Notes in Computer Science,
Springer, Berlin, 1996. pp. 155–164.

[26] R. Thakur, A. Choudhary, J. Ramanujam, Efficient algorithms for
array redistribution, IEEE Trans. Parallel Distrib. Systems 7 (6)
(1996) 587–593.

[27] R. Thakur, A. Choudhary, G. Fox, Runtime array redistribution in
HPF programs, in: Proceedings of the Scalable High Performance
Computing Conference, May 1994, pp. 309–316.

Dr. Minyi Guo received his Ph.D. degree
in information science from University of
Tsukuba, Japan in 1998. From 1998 to 2000,
Dr. Guo had been a research scientist of
NEC Soft, Ltd. Japan. He is currently a pro-
fessor at the Department of Computer Soft-
ware, The University of Aizu, Japan. From
2001 to 2004, he was a visiting profes-
sor of Georgia State University, USA, Hong
Kong Polytechnic University, and University
of New South Wales, Australia. Dr. Guo has
served as general chair, program committee
or organizing committee chair for many

international conferences. He is the editor-in-chief of the International
Journal of Embedded Systems. He is also in editorial board of Interna-
tional Journal of High Performance Computing and Networking, Journal
of Embedded Computing, Journal of Parallel and Distributed Scientific
and Engineering Computing, and International Journal of Computer and
Applications. Dr. Guo’s research interests include parallel and distributed
processing, parallelizing compilers, data parallel languages, data mining,
molecular computing and software engineering. He is a member of the
ACM, IEEE, IEEE Computer Society, and IEICE. He is listed in Marquis
Who’s Who in Science and Engineering.

Dr. Yi Pan entered Tsinghua University in
March 1978 with the highest college en-
trance examination score among all 1977
high school graduates in Jiangsu Province.
Dr. Pan received his B.Eng. and M.Eng.
degrees in computer engineering from Ts-
inghua University, China, in 1982 and 1984,
respectively, and his Ph.D. degree in com-
puter science from the University of Pitts-
burgh, USA, in 1991. Currently, he is a
Yamacraw professor in the Department of
Computer Science at Georgia State Univer-
sity.

Dr. Pan’s research interests include parallel and distributed computing,
optical networks, wireless networks, and bioinformatics. Dr. Pan has
published more than 80 journal papers with 27 papers published in
various IEEE journals. In addition, he has published over 90 papers in
refereed conferences (including IPDPS, ICPP, ICDCS, INFOCOM, and
GLOBECOM). He has also co-edited 13 books (including proceedings)
and contributed several book chapters. His pioneer work on computing
using reconfigurable optical buses has inspired extensive subsequent work
by many researchers, and his research results have been cited by more than
100 researchers worldwide in books, theses, journal and conference papers.
He is a co-inventor of three U.S. patents (pending) and 5 provisional
patents, and has received many awards from agencies such as NSF,
AFOSR, JSPS, IISF and Mellon Foundation. His recent research has
been supported by NSF, NIH, NSFC, AFOSR, AFRL, JSPS, IISF and
the states of Georgia and Ohio. He has served as a reviewer/panelist for
many research foundations/agencies such as the U.S. National Science
Foundation, the Natural Sciences and Engineering Research Council of
Canada, the Australian Research Council, and the Hong Kong Research
Grants Council. Dr. Pan has served as an editor-in-chief or editorial board
member for 8 journals including 3 IEEE Transactions and a guest editor
for 7 special issues. He has organized several international conferences
and workshops and has also served as a program committee member for
several major international conferences such as INFOCOM, GLOBECOM,
ICC, IPDPS, and ICPP.
Dr. Pan has delivered over 50 invited talks, including keynote speeches
and colloquium talks, at conferences and universities worldwide. Dr. Pan
is an IEEE Distinguished Speaker (2000-2002), a Yamacraw Distinguished
Speaker (2002), a Shell Oil Colloquium Speaker (2002), and a senior
member of IEEE. He is listed in Men of Achievement, Who’s Who in
Midwest, Who’s Who in America, Who’s Who in American Education,
Who’s Who in Computational Science and Engineering, and Who’s Who
of Asian Americans.

	Improving communication scheduling for array redistribution
	Introduction
	Preliminaries, problem description and motivating examples
	Local data descriptor, communication table, and scheduling table
	Motivating examples

	Related work
	Communication scheduling algorithms
	Scheduling algorithm when gcd(x,q)=1 gcd(y,p)=1
	Scheduling algorithm when gcd(x,q) =2pt=1 =2ptgcd(y,p) =2pt=1

	Experimental results
	Communication cost model
	Experiments for comparison with naive redistribution routine and contention-free algorithm
	Experiments for comparison with MPI_Alltoallv

	Conclusions
	References

