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Abstract

Adleman wrote the first paper that demonstrated that DNA (DeoxyriboNucleic Acid) strands could be applied for dealing with
solutions of the NP-complete Hamiltonian path problem (HPP). Lipton wrote the second paper that showed that the Adleman
techniques could also be used to solve the NP-complete satisfiability (SAT) problem (the first NP-complete problem). Adleman
and his co-authors proposedstickerfor enhancing the Adleman–Lipton model. In this paper, it proves how to apply sticker in
the sticker-based model to construct solution space of DNA in theset-splitting problemand how to apply DNA operations in
the Adleman–Lipton model to solve that problem from the solution space of sticker.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Through advances in molecular biology[1], it is
now possible to produce roughly 1018 DNA strands
that fit in a test tube. Adleman[2] wrote the first
paper that showed how DNA strands could be ap-
plied to manipulate solutions for an instance of
the NP-complete Hamiltonian path problem (HPP).
Lipton [3] wrote a second paper that demonstrated
that the Adleman techniques could be employed to
solve the NP-complete satisfiability problem (the first
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NP-complete problem). Adleman and co-workers
[14] proposedsticker for enhancing the error rate of
hybridization in the Adleman–Lipton model.

In this paper, we usesticker in the sticker-based
model to construct solution spaces of DNA strands
for the set-splitting problem. Then by applying bio-
logical operations to the Adleman–Lipton model, we
develop a DNA-based algorithm. We also show that
using our proposed DNA-based algorithm for the so-
lution spaces of DNA strands solves the set-splitting
problem. Furthermore, this work presents clear evi-
dence of the ability of molecular computing to solve
the NP-complete problem.

This paper is organized as follows. InSection 2, the
Adleman–Lipton model is introduced and its compar-
ison is made with other models.Section 3introduces
a DNA algorithm for solving the set-splitting problem
from solution spaces of sticker in the Adleman–Lipton
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model. In Section 4, the experimental results of
simulated DNA computing are given. Conclusions are
drawn inSection 5.

2. DNA model of computation

2.1. The Adleman–Lipton model

A DNA (DeoxyriboNucleic Acid) strand is a poly-
mer, which is strung together from monomers called
DeoxyriboNucleotides[1,16]. The structure of a nu-
cleotide, cited from[16], is illustrated (in a very
simplified way) in Fig. 1, where B is one of the
four possible bases (abbreviated asA, G, C, or T),
P is the phosphate group, and the rest of the “stick”
is the sugar base (with its carbons enumerated 1′
to 5′).

The first way to link nucleotides together is for
the 5′-phosphate group of one nucleotide to join
with the 3′-hydroxyl group of the other, forming a
phosphodiesterbond. The resulting molecule has the
5′-phosphate group of one nucleotide, denoted as
5′-end, and the 3′-OH group of the other nucleotide,
denoted as 3′-end, available for bonding. This gives
the moleculedirectionality, and we can talk about
the direction of the 5′-end to the 3′-end or the 3′-end
to the 5′-end. The second way to link them together
is for the base of one nucleotide to interact with the
base of the other nucleotide to form ahydrogenbond.
This bonding is subject to the following restrictions
on the base pairing:A andT can pair together, andC
andG can pair together—no other pairings are possi-
ble. This pairing principle is called the Watson–Crick
complementary.

Two strands of DNA can form (under appropri-
ate conditions) a double strand, if the respective
bases are the Watson–Crick complements of each
other—A matchesT and C matchesG; also 3′-end
matches 5′-end. The length of a single stranded DNA
is the number of nucleotides comprising the single
strand. Thus, if a single stranded DNA includes 20
nucleotides, then we say that it is a 20 mer (it is

P      B

5'    4'    3'    2'   1'

Fig. 1. A schematic representation of a nucleotide.

a polymer containing 20 monomers). The length of
a double stranded DNA (where each nucleotide is
base paired) is counted in the number of base pairs.
Thus if we make a double stranded DNA from a sin-
gle stranded 20 mer, then the length of the double
stranded DNA is 20 base pairs, also written 20 bp. Hy-
bridization is a special technology term for the pairing
of two single DNA strands to make a double helix
and also takes advantages of the specificity of DNA
base pairing for the detection of specific DNA strands
[1,16]. (For more discussion of the relevant biological
background refers to[1,11,16].)

In the Adleman–Lipton model[2,3], splints were
used to construct the corresponding edges or paths of
a particular graph that represented all possible binary
numbers. As it stands, their construction indiscrimi-
nately builds all splints that lead to a complete graph.
This means that hybridization has a higher probability
of errors. Hence, Adleman and co-workers[14] pro-
posed the sticker-based model, which was an abstract
of molecular computing based on DNA with a random
access memory as well as a new form of encoding the
information. (For more discussion of the sticker-based
model refer to[14].)

DNA operations for the Adleman–Lipton model
[2,3,11,12] are described below. These operations
will be used for figuring solutions of the set-splitting
problem.

A (test) tube is a set of molecules of DNA (i.e.
a multi-set of finite strings over the alphabet{A, C,
G, T}). Given a tube, one can perform the following
operations:

1. Extract. Given a tubeP and a short single strand
of DNA, S, produce two tubes+(P, S) and−(P,
S), where+(P, S) is all of the molecules of DNA
in P which contain the strandSas a sub-strand and
−(P, S) is all of the molecules of DNA inP which
do not contain the short strandS.

2. Merge. Given tubesP1 and P2, yield ∪(P1, P2),
where∪(P1, P2) = P1 ∪ P2. This operation is to
pour two tubes into one, with no change to the
individual strands.

3. Detect. Given a tubeP, if P includes at least one
DNA molecule we say ‘yes’, and if it contains none
we say ‘no’.

4. Discard. Given a tubeP, the operation will discard
the tubeP.
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5. Read. Given a tubeP, the operation is used to de-
scribe a single molecule, which is contained in the
tubeP. Even ifPcontains many different molecules
each encoding a different set of bases, the opera-
tion can give an explicit description of exactly one
of them.

2.2. The comparison of the Adleman–Lipton model
with other models

Techniques in the Adleman–Lipton model could
be applied for solving the NP-complete Hamiltonian
path problem and satisfiability (SAT) problem by
linearly increasing time and exponentially increasing
the volumes of DNA[2,3]. Quyang et al.[4] proved
that restriction enzymes could be used to solve the
NP-complete clique problem. The maximum number
of vertices they can process is limited to 27 be-
cause the size of the pool along with the size of the
problem exponentially increases[4]. Arita et al. [5]
described new molecular experimental techniques for
searching a Hamiltonian path. Morimoto et al.[6]
offered a solid-phase method to find a Hamiltonian
path. Narayanan and Zorbala[7] demonstrated that
the Adleman–Lipton model was extended for solving
the traveling salesman problem. Shin et al.[8] pre-
sented an encoding scheme that applies fixed-length
codes for representing integer and real values. Their
method could also be employed towards solving the
traveling salesman problem. Amos[13] proposed the
parallel filtering model for resolving the Hamilto-
nian path problem, sub-graph isomorphism problem,
3-vertex-colourability problem, clique problem and
independent-set problem. Roweis et al.[14] proposed
sticker-based model to enhance the Adleman–Lipton
model. Their model could be used to determine so-
lutions for an instance of the set cover problem.
Perez-Jimenez and Sancho-Caparrini[15] employed
sticker-based model[14] to resolve the knapsack
problem. Fu[21] proposed new algorithms to resolve
3-SAT, 3-Coloring and the independent set. In our
previous work, Chang and Guo[17–20] proved how
the DNA operations from solution space ofsplint in
the Adleman–Lipton model could be employed to de-
velop DNA algorithms. Those DNA algorithms could
be applied for solving the dominating-set problem,
vertex cover problem, clique problem, independent-set

problem, 3-dimensional matching problem and
set-packing problem. In our previous work, Chang
and co-workers[25,26] employed the sticker-based
model and the Adleman–Lipton model to deal with
the dominating-set problem and the set-basis problem
for decreasing the error rate of hybridization.

3. Using sticker for solving the set-splitting
problem in the Adleman–Lipton model

3.1. Definition of the set-splitting problem

Assume that a finite setSis {s1, . . . , sd}, wherese is
theeth element for 1≤ e ≤ d in S. |S| is denoted as the
number of elements inSand |S| is equal tod. Suppose
that a collectionC is the set of subsets to a finite set
S and is {C1, . . . , Cf }, whereCg is the gth element
for 1 ≤ g ≤ f in C. |C| is denoted as the number
of subsets inC and |C| is equal tof. Mathematically,
the set-splitting problem is to find whether there is a
partition ofS into two subsetsS1 andS2 such that no
subset inC is entirely contained in eitherS1 or S2
[10]. The problem has been proved to be NP-complete
problem[10].

There are a finite setSand a collectionC of subsets
for S in Fig. 2. The finite setS is {1, 2} and the
collectionC is {{1, 2}}. The two sets define such a
problem. The set splitting forS and C in Fig. 2 is
S1 = {1} and S2 = {2} or S1 = {2} and S2 = {1}.
It is indicated from[10] that finding a set splitting is
a NP-complete problem, so it can be formulated as a
“search” problem.

S = {1, 2} and C = {{1, 2}}

3.2. Using sticker for constructing solution space of
DNA sequence for the set-splitting problem

In the Adleman–Lipton model, their main idea is
to first generate solution space of DNA sequences for
those problems solved. Then, basic biological opera-
tions are used to select legal solution and to remove
illegal solution from solution space. Therefore, a finite

S = {1, 2} and C = {{1, 2}}

Fig. 2. A finite setS and a collectionC of subsets forS.
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Table 1
The solution space of the subsets for the finiteS in Fig. 2

2-Digit binary number Corresponding subset

00 ∅
01 {1}
10 {2}
11 {2, 1}

set S with d elements and a collectionC with f ele-
ments for the subsets of the finite setS, the first step
of solving the set-splitting problem is to produce a
test tube, which includes all possible subsets from the
finite set. Assume that ad-digit binary number repre-
sents each possible subset forS. Also suppose thatS1
is a subset ofS. If the ith bit in a d-digit binary num-
ber is set to 1, then it represents that theith element in
S is in S1. If the ith bit in a d-digit binary number is
set to 0, then it represents the corresponding element
is not inS1. By doing it this way, all possible subsets
of S are transformed into an ensemble of alld-digit
binary numbers.

Hence,Table 1denotes the solution space of the
subsets for the finite setSin Fig. 2. The binary number,
00, in Table 1represents the corresponding subset to
be empty. The binary numbers, 01 and 10, inTable 1
represent those corresponding subsets{1} and {2}.
The binary number, 11, inTable 1represents the cor-
responding subset to be{2, 1}. Though there are four
2-digit binary numbers for representing four possible
subsets inTable 1, not every 2-digit binary number
corresponds to alegalsolution. In the next subsection,
basic biological operations are used to develop an al-
gorithm for removing illegal subsets and determining
legal solutions.

CollectionC with f elements is a collection of sub-
sets fromS. Therefore, every subset inC is represented
by the same method as above.Table 2denotes repre-
sentation of each subset in the collectionC of Fig. 2.
The only subset,{1, 2}, in Table 2is represented as
the 2-digit binary number, 11.

Table 2
Denote representation of each subset in the collectionC in Fig. 2

Subset Corresponding 2-digit binary representation

{1, 2} 11

To implement this, assume that an unsigned integer
X is represented by a binary numberxd, xd-1, . . . , x1,
where the value ofxi is 1 or 0 for 1≤ i ≤ d. The
integerX contains 2d kinds of possible values. Each
possible value represents a subset for a finite setS.
Therefore, it is clear that an unsigned integerX forms
2d possible subsets. A bitxi in an unsigned integerX
represents theith element inS. If the ith element is in a
subset, then the value ofxi is set to 1. If theith element
is out of a subset, then the value ofxi is set to 0.

To represent all possible subsets for a finite setS
with d elements for the set-splitting problem,sticker
[14,22] is used to construct solution space for that
problem to be solved. For every bitxi and 1≤ i ≤ d,
two distinct 15 base value sequences were designed.
The value ofxi can be 0 or 1. For the sake of con-
venience of presentation, assume thatx1

i denotes the
value of xi to be 1 andx0

i defines the value ofxi to
be 0. Each of the 2d possible subsets is represented
by a library sequence of 15× d bases consisting of
the concatenation of one value sequence for each bit.
DNA molecules with library sequences are termed li-
brary strands and a combinatorial pool containing li-
brary strands is termed a library. The probes used for
separating the library strands have sequences comple-
mentary to the value sequences. Because a collection
C is the set of subsets from a finite setS, every el-
ement inC is a subset fromS. Therefore, the same
DNA sequences above are also applied to represent
every element inC.

It is pointed out from[14,22]that errors in the sepa-
ration of the library strands are errors in the computa-
tion. Sequences must be designed to ensure that library
strands have little secondary structure that might in-
hibit intended probe-library hybridization. The design
must also exclude sequences that might encourage un-
intended probe-library hybridization. To help achieve
these goals, sequences were computer-generated to
satisfy the following constraint[22].

1. Library sequences contain only A’s, T’s, and C’s.
2. All library and probe sequences have no occurrence

of five or more consecutive identical nucleotides,
i.e. no runs of more than 4 A’s, 4 T’s, 4 C’s or 4
G’s occur in any library or probe sequences.

3. Every probe sequence has at least 4 mismatches
with all 15 base alignment of any library sequence
(except with its matching value sequence).
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4. Every 15 base subsequence of a library se-
quence has at least 4 mismatches with all 15
base alignment of itself or any other library
sequence.

5. No probe sequence has a run of more than 7
matches with any 8 base alignment of any library
sequence (except for with its matching value se-
quence).

6. No library sequence has a run of more than 7
matches with any 8 base alignment of itself or any
other library sequence.

7. Every probe sequence has 4, 5, or 6 G’s in its
sequence.

Constraint (1) is motivated by the assumption that
library strands composed only of A’s, T’s, and C’s
will have less secondary structure than those com-
posed of A’s, T’s, C’s, and G’s[23]. Constraint
(2) is motivated by two assumptions: first, that long
homopolymer tracts may have unusual secondary
structure and second, that the melting temperatures of
probe-library hybrids will be more uniform if none of
the probe-library hybrids involve long homopolymer
tracts. Constraints (3) and (5) are intended to ensure
that probes bind only weakly where they are not in-
tended to bind. Constraints (4) and (6) are intended
to ensure that library strands have a low affinity for
themselves. Constraint (7) is intended to ensure that
intended probe-library pairings have uniform melting
temperatures.

The Adleman program[22] was modified for
generating those DNA sequences to satisfy the con-
straints above. For example, the two elements in
the finite setS of Fig. 2, the DNA sequences gen-
erated were:x0

1 = AAAACTCACCCTCCT, x0
2 =

TCTAATATAATTACT, x1
1 = TTTCAATAACACCTC

and x1
2 = ATTCACTTCTTTAAT. Because the only

subset in the collectionC of Fig. 2 includes the
first element and the second element inS, two 15
base DNA sequences,ATTCACTTCTTTAAT(x1

2) and
TTTCAATAACACCTC(x1

1) are used for representing
them. For every possible subset from the finite setS
of Fig. 2, the corresponding library strand was syn-
thesized by employing a mix-and-split combinatorial
synthesis technique[24]. Similarly, for anyd-element
set, all of the library strands to represent every possi-
ble subset could also be synthesized using the same
technique.

3.3. The DNA algorithm for solving the set-splitting
problem

The following pseudo-algorithm explains how to
solve theset-splitting problem:

(1) Generate solution space of DNA sequences to en-
code 2d subsets for anyd-element set,S.

(2) Keep only those DNA sequences that represent
subsets that do not entirely contain any subset in
a collectionC.

(3) If any DNA sequences remain, then we have a
“yes” to read an answer. Otherwise we have a
“no”.

The finite setSand the collectionC in Fig. 2are ap-
plied to explain the processing of the pseudo-algorithm
for solving the set-splitting problem. From Step 1 in
the pseudo-algorithm, four DNA sequences are gener-
ated forSandC. They encode∅, {1}, {2} and{2, 1},
respectively. The only subset inC is {1, 2}. Hence,
from Step 2 in the pseudo-algorithm, legal DNA se-
quences are kept. The legal DNA sequences repre-
sent {1} and {2}, respectively. From Step 3 in the
pseudo-algorithm, because legal DNA sequences re-
main, the answer for the set-splitting problem is found
to beS1 = {1} andS2 = {2}, orS1 = {2} andS2 = {1}
from the finite setSand the collectionC in Fig. 2.

The following DNA algorithm is proposed to solve
theset-splitting problem:

Algorithm 1. Solving the set-splitting problem.

(1) Input (T0), where tubeT0 includes solution space
of DNA sequences to encode all of the possible
subsets for anyd-element set,S, with those tech-
niques mentioned inSection 3.2.

(2) Forj = 1 to |C|, where |C| is the number of subsets
in a collectionC.
(a) Fork = 1 to |Cj |, where |Cj | is the number of
elements inCj that is an element inC.

Assume that thekth element inCj is the ith
element inSandxi is used to represent it.

(b) T0 = +(T0, x
1
i ) andTOFF = −(T0, x

1
i ).

(c) TON = ∪(TOFF, TON).
EndFor
(d) Discard(T0).
(e) T0 = ∪(TON, T0).

EndFor
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(3) Forj = 1 to |C|, where |C| is the number of subsets
in a collectionC.
(a) Fork = 1 to |Cj |, where |Cj | is the number of
elements inCj that is an element inC.

Assume that thekth element inCj is theith
element inSandxi is used to represent it.

(b) T0 = +(T0, x
0
i ) and TOFF =

−(T0, x
0
i ).
(c) TON = ∪(TOFF, TON).

EndFor
(d) Discard(T0).
(e) T0 = ∪(TON, T0).

EndFor
(4) If Detect(T0) == “yes” then

(a) Read (T0).

It is obvious from the steps inAlgorithm 1 that
the set-splitting problem for any d-element set can be
solved.

Proof. In Step 1, a test tube of DNA strands, that
encode all 2d possible input bit sequencesxd, . . . , x1,
is generated. It is clear that the test tube includes all
2d possible subsets for anyd-element set,S.

Step 2 contains one outer loop and one inner
loop. The outer loop will execute |C| times, where |C|
is the number of subsets in a collectionC. The inner
loop will execute(|Cj| × |C|) times, where |Cj | is
the number of elements inCj that is an element inC.
According to the definition of set-splitting[9,10], it
is to find whether there is a partition ofS within two
subsetsS1 andS2 such that no subset inC is entirely
contained in eitherS1 or S2. Thus, the first execution
of Step 2b applies “extraction” operation to form two
test tubes:T0 andTOFF. The first tubeT0 contains all
of the strands that havexi = 1. The second tubeTOFF
consists of all of the strands that havexi = 0. Tube
T0 represents those partitions, which contains the ele-
mentsi. TubeTOFF represents those partitions, which
do not include the elementsi. That means element
si is in S1 but not inS2. Then, the first execution of
Step 2c uses the “merge” operation to pour two tubes,
TOFF andTON, into tubeTON. That means tubeTON
obtains the strands from tubeTOFF. After Steps 2b
and 2c are repeated to execute (|Cj |) times, tubeT0
includes the partitions, which contain every element
in Cj that is an element inC. TubeTON consists of the
partitions which do not include every element inCj.

It is indicated from definition of set splitting that the
strands inT0 represent illegal partitions. Hence, Step
2d uses the “discard” operation to discard the tubeT0.
Since the strands in tubeTON possible represent legal
partitions, Step 2e applies the “merge” operation to
pour two tubes,T0 andTON into tube,T0. That means
that tubeT0 obtains the strands in the tubeTON. For
other subsets inC, similar processing is also finished.
Therefore, after all of the second steps are processed,
tubeT0 includes the partitions, which do not entirely
contain every element in every subset inC.

Step 3 includes one outer loop and one inner
loop. The outer loop will execute |C| times, where |C|
is the number of subsets in a collectionC. The inner
loop will execute(|Cj| × |C|) times, where |Cj | is
the number of elements inCj that is an element inC.
Due to definition of set-splitting[9,10], the first exe-
cution of Step 3b applies the “extraction” operation
to form two test tubes:T0 andTOFF. The first tubeT0
contains all of the strands that havexi = 0. The sec-
ond tubeTOFF consists of all of the strands that have
xi = 1. TubeT0 represents those partitions, which do
not include elementsi. Tube TOFF represents those
partitions, which contain elementsi. This means that
elementsi is in S2 and out ofS1. Hence, the first exe-
cution of Step 3c uses the “merge” operation to pour
two tubes,TOFF andTON into tube,TON. That means
that tubeTON obtains the strands from tubeTOFF.
After Steps 3b and 3c are repeated to execute (|Cj |)
times, tubeT0 includes the partitions, which contains
every element inCj that is an element inC. Tube
TON consists of the partitions, which do not include
every element inCj. It is indicated from definition of
set splitting that strands inT0 represent illegal parti-
tions. Hence, Step 3d uses the “discard” operation to
discard tubeT0. Since strands in tubeTON possible
represent legal partitions, Step 3e applies the “merge”
operation to pour two tubes,T0 and TON into tube,
T0. That means tubeT0 obtains the strands from tube
TON. For other subsets inC, similar processing is
also finished. Therefore, after all of the third steps are
processed, tubeT0 includes the partitions, which do
not include every element in every subset inC.

Step 4 uses the “detect” operation to detect tubeT0.
If there is any strand in tubeT0, then Step 4a employs
the “read” operation to describe the ‘sequence’ of a
molecular in the tubeT0. Hence, the answer for the
set-splitting problem is found and described.
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The finite setS and the collectionC of Fig. 2 are
used to show the power ofAlgorithm 1. It is pointed
out in Step 1 ofAlgorithm 1 that tubeT0 is filled
with four library strands with those techniques men-
tioned inSection 3.2, representing four possible sub-
sets from setS in Fig. 2. The number of subsets inC
of Fig. 2 is one, so the number of executions of the
outer loop in Step 2 ofAlgorithm 1 is one time. The
number of elements in this one subset, which is in
collectionC, is two. Therefore, the number of execu-
tions of the inner loop in Step 2 ofAlgorithm 1 is two
times.

According to the first execution of Step 2b of
Algorithm 1, two tubes are generated. The first tube,
T0, contains subsets{1} and {1, 2} and the second
tube,TOFF, also contains subsets∅ and{2}. The first
execution of Step 2c inAlgorithm 1 pours two tubes
TOFF and TON into tube TON. Therefore, tubeTON
now contains additional subsets∅ and{2}. It is clear
from the second execution of Step 2b that two tubes
are yielded. The first tube,T0 contains subset{1,
2}. The second tube,TOFF, contains subset{1}. It is
indicated from the second execution of Step 2c that
tubeTON contains subsets∅, {1} and{2}. In light of
the definition for set splitting, tubeT0 contains illegal
partition, the first execution of Step 2d applies the
“discard” operation to discard tubeT0. After the first
execution of Step 2e the “merge” operation, tubeT0
contains subset∅, {1} and{2}.

Since the number of subsets inC of Fig. 2 is one,
the number of executions of the outer loop in Step
3 of Algorithm 1 is one time. The number of ele-
ments in this one subset, which is in collectionC, is
two. Therefore, the number of executions for the inner
loop of Step 3 is two times. During the first execution
of Step 3b, two tubes are generated. The first tube,
T0, contains subsets∅ and{2} and the second tube,
TOFF, contains subset{1}. Next, the first execution
of Step 3c pours two tubesTOFF and TON into tube
TON. Therefore, tubeTON now contains subset{1}. It
is clear from the second execution of Step 3b that two
tubes are yielded. The first tubeT0 contains subset∅.
The second tubeTOFF contains subset:{2}. It is indi-
cated from the second execution of Step 3c that tube
TON contains subsets{1} and {2}. Based upon the
definition of set splitting, tubeT0 contains the illegal
partition. Therefore, the first execution of Step 3d ap-
plies the “discard” operation to discard tubeT0. After

the first execution of Step 3e the “merge” operation,
tubeT0 contains subset{1} and{2}.

The first execution of Step 4 applies the “detect” op-
eration to detect tubeT0. Because tubeT0 is not empty,
Step 4a employs the “read” operation to describe the
‘sequence’ of a molecular in tubeT0. The answer for
the set-splitting problem is found to beS1 = {1} and
S2 = {2} or S1 = {2} andS2 = {1} from the finite set
Sand the collectionC in Fig. 2. �

3.4. The complexity of the proposed DNA algorithm

The following theorems describe the time complex-
ity of Algorithm 1, the volume complexity of solution
space ofAlgorithm 1, the number of tubes used in
Algorithm 1 and the longest library strand in solution
space ofAlgorithm 1.

Theorem 1. The set-splitting problem for any
d-element set S and any f-subset collection C can be
solved withO(d × f) biological operations in the
Adleman–Lipton model.

Proof. Algorithm 1 can be applied for solving the
set-splitting problem for anyd-element setS and any
f-subset collectionC. Algorithm 1includes three main
steps. It is indicated from Step 2 inAlgorithm 1 that
it takes(d × f) “extraction” operations,(d × f + f)

“merge” operations andf “discard” operations. From
Step 3 ofAlgorithm 1, it takes(d × f) “extraction”
operations,(d × f + f) “merge” operations and
f “discard” operations. From Step 4, it takes one
“detect” operation and one “read” operation. Hence, it
is inferred that the time complexity ofAlgorithm 1 is
O(d×f) biological operations in the Adleman–Lipton
model. �

Theorem 2. The set-splitting problem for any
d-element set S and any f-subset collection C can be
solved with sticker to constructO(2d ) library strands
in the Adleman–Lipton model.

Proof. Refer toTheorem 1. �

Theorem 3. The set-splitting problem for any
d-element set S and any f-subset collection can be
solved with three tubes in the Adleman–Lipton model.
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Proof. Refer toTheorem 1. �

Theorem 4. The set-splitting problem for any
d-element set S and any f-subset collection can be
solved with the longest library strand, O(15× d), in
the Adleman-Lipton model.

Proof. Refer toTheorem 1. �

4. Experimental results of simulated DNA
computing

We modified the Adleman program[22]. This mod-
ified program was applied to generate DNA sequences
for solving the set-splitting problem for anyd-element
setSand anyf-subset collectionC. We also added sub-
routines to the Adleman program for simulating bi-
ological operations in the Adleman–Lipton model in
Section 2. We added subroutines to the Adleman pro-
gram to simulateAlgorithm 1 in Section 3.3. For any
d-element setSand anyf-subset collectionC, the size
of the library strands is 2d . Due to the limit of memory
space and hard-disk space, the value ofd was less than
or equal to 20. The program shown inAlgorithm 1has
been abbreviated for this article. The full program is
available upon request from the authors.

The Adleman program is used to construct each
15-base DNA sequence for each bit of the library.
For each bit, the program is applied to generate two
15-base random sequences (‘1’ or ‘0’) and checking to
see if the library strands satisfy the seven constraints
in Section 3.2with the new DNA sequences added. If
the constraints are satisfied, the new DNA sequences
are ‘greedily’ accepted. If the constraints are not sat-
isfied then mutations are introduced one by one into
the new block until either ‘the constraints are satisfied
and then the new DNA sequences are accepted’ or ‘a
threshold for the number of mutations is exceeded’,
the program fails and it exits’. Ifd-bits that satisfy the
constraints are found then the program has succeeded
and it outputs these sequences.

Consider the finite setS and the collectionC in
Fig. 2. The finite setScontains{1, 2} and the collec-
tionCcontains{{1, 2}}. DNA sequences generated by
the modified Adleman program are shown inTable 3.
The program takes two mutations to make new DNA
sequences for the two elements inS. With the nearest

Table 3
Sequences chosen to represent the two elements inS in Fig. 2

Vertex 5′ → 3′ DNA sequence

x0
2 TCTAATATAATTACT

x0
1 AAAACTCACCCTCCT

x1
2 ATTCACTTCTTTAAT

x1
1 TTTCAATAACACCTC

Table 4
The energy for binding each probe to its corresponding region in
a library strand

Vertex Enthalpy
energy (H)

Entropy
energy (S)

Free
energy (G)

x0
2 104.8 283.7 19.9

x0
1 113.7 288.7 27.5

x1
2 107.8 283.5 23

x1
1 105.6 271.6 24.3

neighbor parameters, the program was used to calcu-
late the enthalpy, entropy, and free energy for binding
each probe to its corresponding region on a library
strand. The energy levels are shown inTable 4. Only G
really matters to the energy of each bit. For example,
the delta G for the probe binding a ‘1’ in the first bit is
estimated to be 24.3 kcal/mol and the delta G for the
probe binding a ‘0’ is estimated to be 27.5 kcal/mol.

The program simulated a mix-and-split combinato-
rial synthesis technique[24] to synthesize the library
strand to every possible subset. The library strands
shown inTable 5represent four possible subsets∅,
{1}, {2} and{1, 2}. The program also calculates the
average and standard deviation for enthalpy, entropy
and free energy for all probe and library strand inter-
actions as shown inTable 6. The standard deviation
for delta G is small because this is partially enforced

Table 5
DNA sequences chosen represents all possible subsets

5′-TCTAATATAATTACTAAAACTCACCCTCCT-3′
3′-AGATTATATTAATGATTTTGAGTGGGAGGA-5′
5′-TCTAATATAATTACTTTTCAATAACACCTC-3′
3′-AGATTATATTAATGAAAAGTTATTGTGGAG-5′
5′-ATTCACTTCTTTAATAAAACTCACCCTCCT-3′
3′-TAAGTGAAGAAATTATTTTGAGTGGGAGGA-5′
5′-ATTCACTTCTTTAATTTTCAATAACACCTC-3′
3′-TAAGTGAAGAAATTAAAAGTTATTGTGGAG-5′
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Table 6
The energy over all probe/library strand interactions

Enthalpy
energy (H)

Entropy
energy (S)

Free
energy (G)

Average 107.975 281.875 23.675
Standard deviation 3.48298 6.28739 2.72615

Table 7
DNA sequences generated by Step 2 represent possible partitions

5′-TCTAATATAATTACTAAAACTCACCCTCCT-3′
5′-TCTAATATAATTACTTTTCAATAACACCTC-3′
5′-ATTCACTTCTTTAATAAAACTCACCCTCCT-3′

Table 8
DNA sequences generated by Step 3 represent legal partitions and
the answer for the set-splitting problem

5′-TCTAATATAATTACTTTTCAATAACACCTC-3′
5′-ATTCACTTCTTTAATAAAACTCACCCTCCT-3′

by the constraint that is 4, 5, or 6 G’s (the seventh
constraint inSection 3.2of probe sequences).

The Adleman program is employed to compute dis-
tribution of the types of potential mishybridizations.
Distribution of the types of potential mishybridiza-
tions is the absolute frequency of a probe-strand match
from bit lengthk from 0 to bit length 15 (for DNA se-
quences) where probes are not supposed to match the
strands. Distribution is 57, 104, 110, 105, 100, 103,
59, 36, 11, 2, 1, 0, 0, 0, 0 and 0. The last five zeros
means there are 0 occurrences where a probe matches
a strand at 11, 12, 13, 14 and 15 places. This shows
that the third constraint inSection 3.2has been satis-
fied. It is clear that the number of matches peaks at
2(1 1 0). This means there are 110 occurrences where
a probe matches a strand at two places.

The simulation results for Steps 2 and 3 are shown
in Tables 7 and 8. The set-splitting simulation for Step
4 is shown inTable 8. This means that the answer for
the set-splitting problem isS1 = {1} andS2 = {2} or
S1 = {2} andS2 = {1} from the finite setS and the
collectionC in Fig. 2.

5. Conclusions

Algorithm 1 for solving the set-splitting prob-
lem is based on biological operations using the

Adleman–Lipton model and solution space of stick-
ers using the sticker-based model. This algorithm has
several advantages over the Adleman–Lipton model
and sticker-based model. Firstly, the algorithm actu-
ally has a lower rate of errors for hybridization when
using the modified Adleman program to generate
good DNA sequences for constructing the solution
space of stickers for the set-splitting problem. The ba-
sic biological operations used in the Adleman–Lipton
model were also employed to finish the function of
judging a legal partition for solving the set-splitting
problem. Secondly, the basic biological operations
used in the Adleman–Lipton model have been per-
formed in a fully automated manner in their labora-
tory. The full automation manner is essential not only
for the speedup of computation but also for error-free
computation. Thirdly, inAlgorithm 1 for solving
the set-splitting problem, the number of tubes, the
longest length of DNA library strands, the number
of DNA library strands and the number of biological
operations are O(c), O(15× d), O(2d ) and O(d × f),
respectively. From the above conclusions, it is ob-
vious that this algorithm can be easily performed in
a fully automated laboratory. Furthermore, the same
algorithm generates 2d library strands which satisfy
the constraints in[22] and correspond to 2d possible
solutions. This allows the algorithm to be applied to
a larger instance of the set-splitting problem.
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