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SUMMARY This paper shows how to use sticker to construct solution
space of DNA for the library sequences in the set-packing problem and
the clique problem. Then, with biological operations, we propose DNA-
based algorithms to remove illegal solutions and to find legal solutions for
the set-packing and clique problems from the solution space of sticker. Any
NP-complete problem in Cook’s Theorem can be reduced and solved by the
proposed DNA-based computing approach if its size is equal to or less than
that of the set-packing problem. Otherwise, Cook’s Theorem is incorrect
on DNA-based computing and a new DNA algorithm should be developed
from the characteristics of the NP-complete problem. Finally, the result to
DNA simulation is given.
key words: biological computing, molecular computing, DNA-based com-
puting

1. Introduction

Through advances in molecular biology [1]–[4], it is now
possible to produce roughly 1018 DNA strands that fit in a
test tube. Those 1018 DNA strands can also be applied for
representing 1018 bits of information. Basic biological op-
erations can be used to simultaneously operate 1018 bits of
information. Or we can say that 1018 data processors can be
executed in parallel.

2. DNA Model of Computation

Distinct nucleotides are detected using their bases, which
come from adenine, guanine, cytosine and thymine. Those
bases are abbreviated as A, G, C and T . Under appropriate
conditions two strands of DNA can form a double strand, if
the respective bases are the Watson-Crick complements of
each other — A matches T and C matches G; also the 3′ end
matches the 5′ end. The length of a single stranded DNA is
the number of nucleotides comprising a single strand. Thus,
if a single stranded DNA includes 20 nucleotides, we can
say that it is a 20 mer. The length of a double stranded DNA
is counted in the number of base pairs. Thus if we make a
double stranded DNA from a single stranded 20 mer, then
the length of the double stranded DNA is 20 base pairs.

A (test) tube is a set of molecules of DNA (i.e. a multi-
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set of finite strings over the alphabet {A, C, G, T }). Given a
tube, one can perform the following operations:

1. Extract. Given a tube P and a short single strand of
DNA called S , we can produce two tubes +(P, S ) and
−(P,S ), where +(P, S ) is all of the molecules of DNA
in P which consist of the short strand S , and −(P,S ) is
all of the molecules of DNA in P which do not contain
the short strand S .

2. Merge. Given tubes P1 and P2, yield ∪(P1, P2), where
∪(P1, P2) = P1∪P2. This operation is to pour two tubes
into one, with no change in the individual strands.

3. Detect. Given a tube P, if it includes at least one DNA
molecule we can say ‘yes’, and if it contains no DNA
we can say ‘no’.

4. Append. Given a tube P and a short strand of DNA
called Z, the operation will append the short strand Z
onto the end of every strand in tube P.

5. Discard. Given a tube P, the operation will discard the
tube P.

6. Read. Given a tube P, the operation is used to describe
a single molecule, which is contained in tube P. Even
if P contains many different molecules, the operation
can give an explicit description of only one of them.

3. Using Sticker for Solving the Set-Packing Problem
in the Adleman-Lipton Model

3.1 Definition of the Set-Packing Problem

Assume that a finite set S is {s1, . . . , sq}, where sm is the mth
element for 1 ≤ m ≤ q. Also suppose that |S | is the number
of elements in S and |S | is equal to q. Assume that C is
a collection of subsets to S and C is equal to {C1, . . . ,Cn},
where each subset, Ck, is a subset to S for 1 ≤ k ≤ n. Also
suppose that |C| is the number of subset in C and |C| is equal
to n. Suppose that the number of subsets in C is greater than
or equal to l, where l is a positive number. Suppose that
set-packing for S is a sub-collection C1 ⊆ C such that C1

contains at least l mutually distinct sets. In Fig. 1, a finite
set S is {1, 2} and a collection C is {{1}, {2}} for S . The
maximum-size set-packing for S is {{1}, {2}}.

S = {1, 2} and C = {{1}, {2}}
Fig. 1 The definition of our problem.
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3.2 Using Sticker for Constructing Solution Space of
DNA Sequence for the Set-Packing Problem

Assume that an n-digit binary number corresponds to each
possible set-packing to any n-subset collection, C. Also sup-
pose that C1 is a set-packing for C. If the ith bit in an n-digit
binary number is set to 1, then it represents that the ith sub-
set is in C1. If the ith bit in an n-digit binary number is set
to 0, then it represents that the corresponding subset is out
of C1.

Assume that q one-digit binary numbers represent q el-
ements in S . Also suppose that the mth one-digit binary
number corresponds to the mth element in S . If the kth bit
in n bits is set to 1 and the mth element in Ck is distinct from
other elements in other subsets, then it represents the corre-
sponding subset in C1 and the mth element in Ck is included
in C1. Therefore, it is obvious that the mth one-digit binary
number is appended onto the tail of those binary numbers,
containing the value 1 of the kth bit. If the kth bit in n bits
is set to 0, then it represents that every element in Ck is ex-
cluded from C1. This is to say that those elements in Ck are
not appended onto the tail of those binary numbers, contain-
ing the value 0 of the kth bit.

To implement this, assume that an n-bit binary number
Z is represented by a binary number z1, . . . , zn, where the
value of zk is 1 or 0 for 1 ≤ k ≤ n. A bit zk is the kth bit in an
n-bit binary number Z and it represents the kth subset in C.
Assume that q one-digit binary numbers are, subsequently,
y1, . . . , yq. Assume that ym represents the mth element in S .
An n-bit binary number Z includes all possible 2n choices
of subsets. Each choice of subsets corresponds to a possible
set-packing. If the value of zk is set to 1 and every element in
the subset Ck is distinct from other elements in other subsets,
then the value 1 for every element in Ck is, subsequently,
appended onto the tail of those binary numbers, including
the value 1 of the kth bit.

To represent all possible set-packing for the set-
packing problem, sticker [1]–[3] is used to construct solu-
tion space for the problem solved. For every bit zk repre-
senting the kth subset in C, two distinct 15 base value se-
quences were designed. One represents the value “0” of zk

and the other represents the value “1” of zk. For the sake of
convenience in our presentation, assume that zk

1 denotes the
value of zk to be 1 and zk

0 defines the value of zk to be 0.
Similarly, for every bit ym representing the mth element in
S , two distinct 15 base value sequences are also designed.
One represents the value, 1, for ym and the other represents
the value, 0, to ym. For the sake of convenience in our pre-
sentation, also assume that ym

1 denotes the value of ym to be
1 and ym

0 defines the value of ym to be 0.

3.3 The DNA Algorithm for Solving of the Set-Packing
Problem

Algorithm 1: Solving the set-packing problem.
(1) Input T0, where tube T0 is to encode all possible 2n

choices of subsets in a collection C = {C1, . . . ,Cn} and ev-
ery element of each subset in the collection C comes from a
finite set S = {s1, . . . , sq}.
(2) For k = 1 to n

(2a) TON = +(T0, zk
1) and TOFF = −(T0, zk

1)
(2b) For m = 1 to |Ck |
Assume that the mth element in Ck is sm and ym is used
to represent it.
(2c) TBAD = +(TON , ym

1) and TON = −(TON , ym
1).

(2d) Discard(TBAD).
(2e) Append(TON , ym

1).
End For
(2f) T0 = ∪(TON , TOFF ).
End For

(3) For k = 0 to n − 1
For j = k down to 0
(3a) T j+1

ON = +(T j, zk+1
1) and T j = −(T j, zk+1

1).
(3b) T j+1 = ∪(T j+1, T j+1

ON).
EndFor
EndFor

(4) For k = n down to 1
(4a) If (detect (Tk) = ‘yes’) then
(4b) Read (Tk) and terminate the algorithm.
EndIf
EndFor

Theorem 3-1: From those steps in Algorithm 1, the set-
packing problem for a q-element set S and an n-subset col-
lection C can be resolved.
Proof: A test tube of DNA strands, that represent all possi-
ble 2n input bit sequences z1, . . . , zn, is yielded in Step 1. It
is obvious that the test tube contains all possible 2n choices
of set-packing.

According to the definition of set-packing, Step 2 will
be at most executed n∗q times for checking which subsets
are disjoint. When the first execution of Step 2(a) uses
the “extraction” operation to form two test tubes: TON and
TOFF . The first tube TON includes all of the strands that
have zk = 1, that is to say, the first subset in C occurs in tube
TON . The second tube TOFF consists of all of the strands
that have zk = 0, this is to say that the first subset in C does
not appear in tube TOFF . Step 2(b) is an inner loop and is
used to examine whether those elements in the kth subset are
different from other elements in other subsets. On the first
execution of Step 2(c), it uses the “extraction” operation to
form two test tubes: TBAD and TON . The first tube TBAD in-
cludes all of the strands that have ym = 1. That is to say
that the first element in the first subset in C has appeared in
tube TBAD. The second tube TOFF contains all of the strands
that have ym = 0. This means that the first element of the
first subset in C does not appear in tube TON . From the
definition of set-packing, tube TBAD includes illegal strands.
Hence, Step 2(d) applies the “discard” operation to discard
tube TBAD. Step 2(e) employs the “append” operation to ap-
pend 15-based DNA sequences for representing the value 1
of ym into the tail of every strand in TON . Repeat execution
of Steps 2(c) to 2(e) until every element in the first subset in
C are processed. Then, Step 2(f) uses the “merge” operation
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to pour two tubes TON and TOFF into tube T0. This is to
say that tube T0 currently contains the strands to represent
every element in the first subset of C. Similarly, after other
subsets are processed, tube T0 consists of those strands for
representing a legal set-packing.

Each time the outer loop in Step 3 is executed; the num-
ber of executions for the inner loop is (k + 1) times. On the
first execution of the outer loop, the inner loop is only exe-
cuted one time. Therefore, Steps 3(a) and 3(b) are executed
one time. Step 3(a) uses the “extraction” operation to form
two test tubes: T ON

1 and T0. The first tube T1
ON contains all

of the strands that have z1 = 1. The second tube T0 consists
of all of the strands that have z1 = 0. That is to say that the
first tube encodes every set-packing with the first subset in
C and the second tube represents every set-packing without
the first subset in C. Hence, Step 3(b) applies the “merge”
operation to pour tube T1

ON into tube T1. After repeating
execution of Steps 3(a) and 3(b), it finally produces n new
tubes. Tube Tk for n ≥ k ≥ 1 then encodes those DNA
strands that contain k subsets.

Because the set-packing problem is to find a maximum-
size set-packing, tube Tn first is detected using the “detec-
tion” operation in Step 4(a). If it returns “yes”, then tube Tn

at least contains a maximum-size set-packing. Therefore,
Step 4(b) uses the “read” operation for describing the ‘se-
quence’ of a molecule in tube Tn and terminates the algo-
rithm. Otherwise, continue to repeat execution of Step 4(a)
until a maximum-size set-packing is detected in the tube.

The set S and the collection C in Fig. 1 can be applied
for showing the power of Algorithm 1. In Fig. 1, the finite
set S is {1, 2} and the collection C is {{1}, {2}}. Assume that
the collection C is {C1, C2}, where C1 and C2 are, {1} and {2}
respectively. From Step 1 in Algorithm 1, tube T0 is filled
with four library strands using the techniques mentioned in
Sect. 3.2, which represents four possible set-packing for S
and C. For the first execution of Step 2(a) in Algorithm 1,
two tubes are yielded. The first tube, TON , includes the num-
bers 1∗ (∗ can be either 1 or 0). The second tube, TOFF , con-
tains the numbers 0∗. That is to say that the first tube, TON ,
includes {C1} and {C1,C2} and the second tube, TOFF , con-
tainsΦ and {C2}. Then, for the first execution of Step 2(c), it
uses the “extraction” operation to form two test tubes: TBAD

and TON . This is to say that the first element, 1, in C1 has
appeared in TBAD and the first element, 1, in C1 does not
appear in TON . Step 2(d) applies the “discard” operation to
discard tube TBAD. After Step 2(e) is executed, tube TON

contains the bit string: 101(y1
1) and 111(y1

1). Next, after
Step 2(f) is executed, tube T0 includes the bit strings: 00,
01, 101(y1

1) and 111(y1
1). Similarly, after the second sub-

set, C2 is processed, tube T0 consists of the bit strings: 00,
101(y1

1), 011(y2
1) and 111(y1

1) 1 (y2
1).

The first execution of Step 3(a) in Algorithm 1 ap-
plies the “extraction” operation to produce two tubes, T1

ON

and T0. Tube T1
ON contains the bit strings: 101(y1

1), and
111(y1

1) 1 (y2
1), while tube T0 includes the bit strings: 00

and 011(y2
1). Step 3(b) applies the “merge” operation to

pour tube T1
ON into tube T1. Tube T1 includes the bit

strings, 101(y1
1), and 111(y1

1) 1 (y2
1), which represents two

set-packing, {C1} and {C1,C2}. After repeating execution of
Steps 3(a) and 3(b), it produces two new tubes. The new
tube Tk for 2 ≥ k ≥ 1 encodes the legal set packing that
contains k subsets, while tube T2 contains the bit strings,
111(y1

1) 1 (y2
1). Tube T1 includes the bit strings: 101(y1

1)
and 011(y2

1).
The set-packing problem is to find a maximum-size set-

packing. The first time of Step 4(a) is executed; tube T2

is first detected using the “detection” operation. This step
returns a “yes” for the “detection” operation for tube T2.
Therefore, Step 4(b) applies the “read” operation to describe
the ‘sequence’ of a molecule in tube T2 and terminates the
algorithm. The maximum-size set-packing is found to be
{C1,C2}.

3.4 The Complexity of Algorithm 1

Theorem 3-2: Suppose that a finite set S is {s1, . . . , sq} and a
collection C is {C1, . . . ,Cn}, where Ck is a subset of elements
from S for 1 ≤ k ≤ n. The set-packing problem for S and C
can be solved with O(q∗n + n2) biological operations in the
Adleman-Lipton model.
Proof: Algorithm 1 can be applied for solving the set-
packing problem for S and C. Algorithm 1 includes three
main steps. Step 2 is mainly used to remove illegal li-
brary strands from all of the 2n possible library strands.
From Algorithm 1, it is obvious that Steps 2(a) through
2(f) use (n + q∗n) “extraction” operations, (q∗n) “discard”
operations, (q∗n) “append” operations and n “merge” op-
erations. Step 3 is mainly used to figure out the number
of subsets in every legal set-packing. It is indicated from
Algorithm 1 that Step 3(a) takes (n∗(n + 1)/2) “extraction”
operations and Step 3(b) takes (n∗(n + 1)/2) “merge” op-
erations. Step 4 is employed to find a maximum-size set-
packing from legal set-packing. It is pointed out from Al-
gorithm 1 that Step 4(a) at most takes n “detection” opera-
tions and Step 4(b) takes one “read” operation. Hence, from
the statements above, it is inferred that the time complexity
of Algorithm 1 is O(q∗n + n2) biological operations in the
Adleman-Lipton model.
Theorem 3-3: Suppose that a finite set S is {s1, . . . , sq} and a
collection C is {C1, . . . ,Cn}, where Ck is a subset of elements
from S for 1 ≤ k ≤ n. The set-packing problem for S and
C can be solved with O(2n) library strands in the Adleman-
Lipton model.
Theorem 3-4: Suppose that a finite set S is {s1, . . . , sq} and a
collection C is {C1, . . . ,Cn}, where Ck is a subset of elements
from S for 1 ≤ k ≤ n. The set-packing problem for S and C
can be solved with O(n) tubes in the Adleman-Lipton model.
Theorem 3-5: Suppose that a finite set S is {s1, . . . , sq} and a
collection C is {C1, . . . ,Cn}, where Ck is a subset of elements
from S for 1 ≤ k ≤ n. The set-packing problem for S and C
can be solved with the longest library strand, O(15∗n+15∗q),
in the Adleman-Lipton model.
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3.5 Range of Application to Cook’s Theorem on DNA-
Based Computing

Cook’s Theorem is that if one algorithm for one NP-
complete problem is developed, then other problems will be
solved by means of reduction to that problem. The follow-
ing theorem is used to describe the range of application for
Cook’s Theorem on DNA-based computing.
Theorem 3-6: Assume that any other NP-complete prob-
lems can be reduced to the set-packing problem with a poly-
nomial time algorithm in a general electronic computer. If
the size of a reduced NP-complete problem is less than or
equal to that of the set-packing problem, then Cook’s Theo-
rem is correct on DNA-based computing.
Proof: We transform the clique problem to the set-packing
problem with a polynomial time algorithm. Assume that
a graph G = (V, E), where V is {v1, v2, . . . , vn} and E is
{(vp, vq)| (vp, vq) is an edge in G}. Assume that |E| is at most
(n∗(n− 1))/2. Suppose that a graph G is any instance for the
clique problem. We construct a finite set S and a collection
C, where S = {s1, . . . , s|E|} and C = {C1, . . . ,C|V |} such that
S and C have a maximum-size set-packing if and only if G
has a maximum-size clique.

Each vertex uk in V corresponds to a subset Ck in C
for 1 ≤ k ≤ n. Each edge in E also corresponds to an el-
ement sm in S for 1 ≤ m ≤ |E|. Each subset Ck in C for
1 ≤ k ≤ n is {sm |sm represents an edge containing the ver-
tex vk for 1 ≤ m ≤ |E|}. Setting S and C from G com-
pletes the construction of our instance to the set-packing
problem. Therefore, the number of elements in S and C
are |E| and n respectively. Algorithm 1 is used to deter-
mine the set-packing problem for S and C with 2n DNA
strands, O(|E|∗n + n2) biological operations, O(n) tubes and
the longest library strand, O(15∗n + 15∗|E|). That is to say
that Algorithm 1 can be applied to solve the clique problem
by means of reducing it to the set-packing problem. Hence,
it is derived that if the size of a reduced NP-complete prob-
lem is less than or equal to that of the set-packing problem,
then Cook’s Theorem is correct on DNA-based computing.

From Theorem 3-6, if the size of a reduced NP-
complete problem is equal to or less than that of the set-
packing problem, then Algorithm 1 can be directly used for
solving the reduced NP-complete problem. Otherwise, a
new DNA algorithm should be developed from the charac-
teristics of the NP-complete problem.

4. Using Sticker for Solving the Clique Problem in the
Adleman-Lipton Model

4.1 The DNA Algorithm for Solving the Clique Problem

Suppose that a graph G = (V,E), where V is {v1, v2, . . . , vn}
and E is {(vp, vq)|(vp, vq) is an edge in G}. Also Assume
that |V | is n and |E| is at most (n∗(n − 1))/2. Assume that
a complementary graph G1 = (V,E1) for G, where E1 is
{(vc, vd)|(vc, vd) is out of E}. Assume that |E1 | is (n∗(n −

1))/2 − |E|. A clique for a graph G = (V, E) is a complete
sub-graph to G. The clique problem is to find a maximum-
size clique in G. Algorithm 2 is presented for solving the
clique problem and the notations in Algorithm 2 are similar
to those described in Sect. 3.2.
Algorithm 2: Solving the clique problem.
(1) Input (T0), where tube T0 encodes all possible 2n choices
of clique for a graph G = (V, E), where |V | is n and |E| is at
most (n∗(n − 1))/2.
(2) For m = 1 to (n∗(n − 1))/2 − |E|.
Assume that em is an edge in G1 and em = (vc, vd).
Also suppose that zc and zd , respectively, represent vc and
vd.
(2a) TON = +(T0, z1

c) and TOFF = −(T0, z1
c).

(2b) T 1
ON = +(TON , z1

d) and TOFF
1 = −(TON , zd

1).
(2c) Discard(TON

1).
(2d) T0 = ∪(TOFF , TOFF

1).
EndFor
(3) For k = 0 to n − 1

For j = k down to 0
(3a) T j+1

ON = +(T j, zk+1
1) and T j = −(T j, zk+1

1).
(3b) T j+1 = ∪(T j+1, T j+1

ON).
EndFor
EndFor

(4) For k = n down to 1
(4a) If (detect (Tk) = ‘yes’) then
(4b) Read (Tk) and terminate the algorithm.
EndIf
EndFor

Theorem 4-1: From those steps in Algorithm 2, the clique
problem for a graph G = (V,E) can be solved, where |V | is n
and |E| is at most (n∗(n − 1))/2.
Proof: A test tube of DNA strands, that represent all possi-
ble 2n input bit sequences z1, . . . , zn, is yielded in Step 1. It
is obvious that the test tube contains all possible 2n choices
of clique.

From the definition of clique, Step 2 will be executed
((n∗(n − 1))/2 − |E|) times for checking which strands are
legal. When the first execution of Step 2(a) uses the “extrac-
tion” operation to form two test tubes: TON and TOFF . The
first tube TON includes all of the strands that have zc = 1.
That is to say that the cth vertex in V occurs in tube TON .
The second tube TOFF consists of all of the strands that have
zc = 0. This is to say that the cth vertex in V does not appear
in tube TOFF . Then, at the first execution of Step 2(b), it
uses the “extraction” operation to form two test tubes: TON

1

and TOFF
1. The first tube TON

1 includes all of the strands
that have zc = 1 and zd = 1. That is to say that tube TON

1

includes vertices, which are not connected in G. The second
tube TOFF

1 contains all of the strands that have zc = 1 and
zd = 0. This is to say that the cth vertex in V occurs in TOFF

1

and the dth vertex in V does not appear in TOFF
1. From

the definition of clique, tube TON
1 includes illegal strands.

Hence, Step 2(c) applies the “discard” operation to discard
tube TON

1. Next, Step 2(d) uses the “merge” operation to
pour the two tubes TOFF and TOFF

1 into tube T0. This is
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to say that tube T0 currently contains legal solutions. After
the remaining steps are processed, tube T0 consists of those
strands for representing legal clique.

Each time the outer loop in Step 3 is executed; the num-
ber of executions for the inner loop is (k + 1) times. On the
first execution of the outer loop, the inner loop is only exe-
cuted one time. Therefore, Steps 3(a) and 3(b) are executed
once. Step 3(a) uses the “extraction” operation to form two
test tubes: T1

ON and T0. The first tube T1
ON contains all of

the strands that have z1 = 1. The second tube T0 consists
of all of the strands that have z1 = 0. That is to say that
the first tube encodes every clique with the first vertex in G
and the second tube represents every clique without the first
vertex in G. Then, Step 3(b) applies the ”merge” operation
to pour tube T1

ON into tube T1. After repeating execution of
Steps 3(a) and 3(b), it finally produces n new tubes. The tube
Tk for n ≥ k ≥ 1 encodes those DNA strands that contain k
vertices.

Because the clique problem is to find a maximum-size
clique, tube Tn first is detected with the “detection” opera-
tion in Step 4(a). If it returns a “yes”, then tube Tn at least
contains a maximum-size clique. Therefore, Step 4(b) uses
the “read” operation for describing ‘sequence’ of a molecule
in tube Tn and terminating the algorithm. Otherwise, con-
tinue to repeat execution Step 4(a) until a maximum-size
clique is found in the tube detected.

4.2 The Complexity of Algorithm 2

Theorem 4-2: Suppose that a graph G = (V, E), where |V |
is n and |E| is at most (n∗(n − 1))/2. The clique problem for
G can be solved with O(n2−|E|) biological operations in the
Adleman-Lipton model.
Proof: Algorithm 2 can be applied for solving the clique
problem for G. Algorithm 2 includes three main steps.
Step 2 is mainly used to remove illegal library strands from
all of the 2n possible library strands. From Algorithm 2,
Steps 2(a) through 2(d) take (2∗((n∗(n − 1))/2 − |E|)) for
the “extraction” operations, (n∗(n− 1))/2− |E|) for the “dis-
card” operations and (n∗(n − 1))/2 − |E|) for the “merge”
operations. Step 3 is mainly used to figure out the number
of vertices in every legal clique. It is indicated from Algo-
rithm 2 that Step 3(a) takes (n∗(n + 1)/2) “extraction” oper-
ations and Step 3(b) takes (n∗(n+1)/2) “merge” operations.
Step 4 is employed to find a maximum-size clique from legal
clique. It is pointed out from Algorithm 2 that Step 4(a) at
most takes n “detection” operations and Step 4(b) takes one
“read” operation. Hence, from the statements mentioned
above, it is inferred that the time complexity of the worst-
case for Algorithm 2 is O(n2 − |E|) biological operations in
the Adleman-Lipton model.
Theorem 4-3: Suppose that a graph G = (V, E), where |V |
is n and |E| is at most (n∗(n − 1))/2. The clique problem for
G can be solved with O(2n) library strands in the Adleman-
Lipton model.
Theorem 4-4: Suppose that a graph G = (V, E), where |V |
is n and |E| is at most (n∗(n − 1))/2. The clique problem

for G can be solved with O(n) tubes in the Adleman-Lipton
model.
Theorem 4-5: Suppose that a graph G = (V, E), where |V |
is n and |E| is at most (n∗(n − 1))/2. The clique problem for
G can be solved with the longest library strand, O(15∗n), in
the Adleman-Lipton model.

4.3 The Comparison of Algorithm 2 with Algorithm 1 for
Dealing with the Clique Problem

From Theorem 3-6, the clique problem for graph G = (V, E)
can be directly reduced to the set-packing problem for a fi-
nite set S and a collection C. Algorithm 1 can be directly
applied to the clique problem for graph G = (V, E) with 2n

DNA strands, O(|E|∗n+n2) biological operations, O(n) tubes
and the longest library strand, O(15∗n + 15∗|E|). From the
characteristics of the clique problem for graph G = (V, E),
Algorithm 2 is proposed to deal with the same problem of 2n

library strands, O(n2 − |E|) biological operations, O(n) tubes
and the longest library strand, O(15∗n). From the statements
above, solving the clique problem, graph G = (V, E), Algo-
rithm 2 is better than Algorithm 1 in the form of biological
operations and the longest library strand. This is to imply
that an NP-complete problem should correspond to a new
DNA algorithm.

5. Experimental Results of Simulated DNA Computing

For the convenience of the presentation, simulation of Al-
gorithm 1 is described below in detail. Simulation of Al-
gorithm 2 is similar to that of Algorithm 1. The Adleman
program was used to construct each 15-base DNA sequence
for every bit of the library. Consider the finite set S and
the collection C in Fig. 1. DNA sequences generated by the
modified Adleman program are shown in Table 1. The pro-
gram took one mutation to make new DNA sequences for
{1}, {2}, 1 and 2. With the nearest neighbor parameters, the
Adleman program was used to calculate the enthalpy, en-
tropy, and free energy for the binding of each probe to its
corresponding region on a library strand. The energy used
was shown in Table 2.

These library strands are shown in Table 3 and rep-
resent every possible set-packing: ∅, {{2}}, {{1}} and {{1},
{2}}. The program also figured out the average and stan-
dard deviation for the enthalpy, entropy and free energy over

Table 1 Sequences chosen were used to represent the two subsets in C
and every element of S in Fig. 1.
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Table 2 The energy for binding of each probe to its corresponding region
on a library strand.

Table 3 DNA sequences chosen were used to represent every possible
set-packing in tube T0.

Table 4 The energy over all probe/library strand interactions.

all probe/library strand interactions. The energy levels are
shown in Table 4.

The Adleman program was employed for computing
the distribution of the different types of potential mishy-
bridizations. The distribution of the types of potential
mishybridizations is the absolute frequency of a probe-
strand match of length k from 0 to the bit length 15 (for
DNA sequences) where probes are not supposed to match
the strands. The distribution was, subsequently, 120, 209,
265, 378, 418, 396, 279, 147, 78, 32, 16, 0, 0, 0, 0 and 0. It
is pointed out from the last five zeros that there are 0 occur-

Table 5 DNA sequences generated by Step 2 were applied to represent
legal solutions in tube T0.

Table 6 DNA sequences generated by Step 3 were employed to repre-
sent legal solutions in tubes T0, T1 and T2.

Table 7 The answer was found from Step 4 in tube T2.

rences where a probe matches a strand at 11, 12, 13, 14 or 15
places. This shows that the third constraint in subsection 3.2
has been satisfied. Hence, the number of matches peaks at
4(418). That is to say that there are 418 occurrences where
a probe matches a strand at 4 places. The results for simu-
lation of Steps 2 through 4 are shown in Tables 5, 6 and 7.
From tube T2, the answer was found to be {{1}, {2}}.

6. Conclusions

The proposed algorithms (Algorithm 1 and 2) for solving
the set-packing and clique problems are based on biological
operations in the Adleman-Lipton model and the solution
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space of stickers in the sticker-based model. The present al-
gorithms have several advantages from the Adleman-Lipton
model and the sticker-based model. First, the proposed al-
gorithm actually has a lower rate of errors for hybridization
because we modified the Adleman program to generate good
DNA sequences for constructing the solution space of stick-
ers to the set-packing and clique problems. Only simple
and fast biological operations in the Adleman-Lipton model
were employed to solve the problems. Secondly, those bi-
ological operations in the Adleman-Lipton model had been
performed in a fully automated manner in their lab. The full
automation manner is essential not only for the speedup of
computation but also for error-free computation. Thirdly, in
Algorithm 1 for solving the set-packing problem, the num-
ber of tubes, the longest length of DNA library strands and
the number of DNA library strands, respectively, are O(n),
O(15∗n + 15∗q) and O(2n). In Algorithm 2 for solving the
clique problem, the number of tubes, the longest length of
DNA library strands and the number of DNA library strands,
respectively, are O(n), O(15∗n) and O(2n). This implies that
the present algorithms can be easily performed in a fully
automated manner in a lab. Fourthly, from the statements in
Sect. 4.3, for solving the clique problem, Algorithm 2 is bet-
ter than Algorithm 1 in the form of biological operations and
the longest library strand. Therefore, this seems to imply
that Cook’s Theorem is unsuitable on a DNA-based com-
puter and a NP-complete problem should correspond to a
new DNA algorithm.

Currently, there are lots of NP-complete problems that
cannot be solved because it is very difficult to support ba-
sic biological operations using mathematical operations. We
are not sure whether molecular computing can be applied to
dealing with every NP-complete problem. Therefore, in the
future, our main work is to solve other NP-complete prob-
lems that were unresolved with the Adleman-Lipton model
and the sticker model.
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