
128 Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3, 2004

Copyright © 2004 Inderscience Enterprises Ltd.

Using sticker to solve the
3-dimensional matching
problem in molecular
supercomputers

Minyi Guo*
Department of Computer Software,
University of Aizu,
Aizu-Wakamatsu City,
Fukushima 965 8580, Japan
E-mail: minyi@u-aizu.ac.jp
*Corresponding author

Weng-Long Chang
Department of Information Management,
Southern Taiwan University of Technology,
Tainan County, Taiwan, 710, ROC
E-mail: changwl@csie.ncku.edu.tw

Jiannong Cao
Department of Computing,
Hong Kong Polytechnic University,
Hong Kong
E-mail: csjcao@comp.polyu.edu.hk

Abstract: Adleman demonstrated that DNA (Deoxyribonucleic acid) strands
could be applied for dealing with solutions to an instance of the NP-complete Hamiltonian
path problem (HPP) (Adleman, 1994). The Adleman techniques could also be used to
solve the NP-complete satisfiability (SAT) problem (the first NP-complete problem)
(Lipton, 1995). Furthermore, sticker is used for enhancing the Adleman-Lipton model
(Roweis et al., 1999). In this paper, we first use sticker to construct solution space of DNA
library sequences for the 3-dimensional matching problem. Then, in the Adleman-Lipton
model, we propose an algorithm to remove illegal solution and find legal solution for the
3-dimensional matching problem from solution space of sticker. Finally, a simulation result
for our algorithm is generated.

Keywords: molecular supercomputing; DNA-based parallel algorithms; the NP-complete
problem; parallel computing.

Reference to this paper should be made as follows: Guo, M., Chang, W-L. and
Cao, J. (2004) ‘Using sticker to solve the 3-dimensional matching problem in molecular
supercomputers’, Int. J. High Performance Computing and Networking, Vol. 1, Nos. 1/2/3,
pp.128–139.

Biographical notes: Minyi Guo received PhD degree in information science from
University of Tsukuba, Japan, in 1998. He is currently a Professor at the Department of
Computer Software, The University of Aizu, Japan. From 2001 to 2003, he was a Visiting
Professor at a couple of universities. He is the Editor-in-Chief of the Journal of Embedded
Systems and is also in editorial board of many other journals. Guo’s research interests
include parallel and distributed processing, parallelising compilers, data parallel languages,
data mining, molecular computing and software engineering. He is a member of the ACM,
IEEE, IEEE Computer Society, and IEICE.

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 129

Weng-Long Chang received the PhD degree in Computer Science and Information
Engineering from National Cheng Kung University, Taiwan, Republic of China, in 1999.
He is currently an Assistant Professor of Southern Taiwan University of Technology. His
research interests include molecular computing, and languages and compilers for parallel
computing.

Jiannong Cao received the BSc degree in Computer Science from Nanjing University,
China, in 1982, and the MSc and PhD degrees from Washington State University, USA, in
1986 and 1990, all in Computer Science. Before joined the Hong Kong Polytechnic
University in 1997, where he is currently an Associate Professor, he has been on faculty of
Computer Science in James Cook University and The University of Adelaide in Australia,
and the City University of Hong Kong. Dr. Cao’s research interests include parallel and
distributed computing, networking, mobile computing, fault tolerance, and distributed
software architecture and programming. He has authored or coauthored over 120 journal
and conference papers in the above areas. Dr. Cao has directed many funded
research/teaching projects and participated in several research labs and centers. He is the
Director of the Internet and Mobile Computing Lab in the Computing Department. Dr. Cao
is a Vice Chairman and member of the Computer Architecture Professional Committee,
China Computer Federation. He is a member of the IEEE Computer Society, the IEEE
Communication Society, IEEE, and ACM. He has served as a member of editorial boards
of several international journals, a reviewer for international journals/conference
proceedings, and also as an organising/programme committee member for many
international conferences.

1 INTRODUCTION

Nowadays, it is possible to produce roughly 1018 DNA
strands that fit in a test tube through advances in molecular
biology (Sinden, 1994). Those 1018 DNA strands can be
applied for representing 1018 bit information. Basic
biological operations can be used to simultaneously operate
1018 bit information. This is to say that there are 1018 data
processors to be parallel executed. Hence, it is very obvious
that biological computing can provide very huge parallelism
for dealing with the problem in real world.

Adleman wrote the first paper in which it was
demonstrated that DNA (deoxyribonucleic acid) strands
could be applied for figuring out solutions to an instance of
the NP-complete Hamiltonian path problem (HPP)
(Adleman, 1994). Lipton wrote the second paper in which it
was shown that the Adleman techniques could also be used
to solving the NP-complete satisfiability (SAT) problem
(the first NP-complete problem) (Lipton, 1995). Adleman
and his co-authors proposed sticker for enhancing the
Adleman-Lipton model (Roweis et al., 1999).

In this paper, we use sticker to construct solution space of
DNA library sequences for the 3-dimensional matching
problem. Simultaneously, we also apply DNA operations in
the Adleman-Lipton model to develop one DNA algorithm.
The main result of the proposed DNA algorithm shows that
the 3-dimensional matching problem is resolved with
biological operations in the Adleman-Lipton model from
solution space of sticker. Furthermore, this work represents
obvious evidence for the ability of DNA-based computing
to solve the NP-complete problem.

The rest of this paper is organised as follows. In Section 2,
the Adleman-Lipton model is introduced in detail and the
comparison of the model with other models is also given. In
Section 3, the first DNA algorithm is proposed for solving
the 3-dimensional matching problem from solution space of

sticker in the Adleman-Lipton model. In Section 4, the
experimental result of simulated DNA computing is also
given. Conclusions are drawn in Section 5.

2 DNA MODEL OF COMPUTATION

In subsection 2.1, the summary of DNA structure
and the Adleman-Lipton model is described in detail.
In subsection 2.2, the comparison of the Adleman-Lipton
model with other models is also introduced in detail.

2.1 The Adleman-Lipton model

A DNA (deoxyribonucleic acid) is a polymer,
which is strung together from monomers called
deoxyribonucleotides (Sinden, 1994; Paun et al., 1998).
Distinct nucleotides are detected only with their
bases, which come from adenine, guanine, cytosine, and
thymine. Those bases are abbreviated as A, G, C, and T,
respectively. A DNA strand is essentially a sequence
(polymer) of four types of nucleotides detected by one of
four bases they contain (Sinden, 1994; Boneh et al., 1996;
Paun et al., 1998). Two strands of DNA can form
(under appropriate conditions) a double strand, if the
respective bases are the Watson-Crick complements of
each other – A matches T and C matches G; also 3’ end
matches 5’ end. The length of a single stranded DNA is the
number of nucleotides comprising the single strand. Thus, if
a single stranded DNA includes 20 nucleotides, then we say
that it is a 20-mer (it is a polymer containing 20 monomers).
The length of a double stranded DNA (where each
nucleotide is base paired) is counted in the number of base
pairs. Thus, if we make a double stranded DNA from a
single stranded 20-mer, then the length of the double
stranded DNA is 20-base pairs, also written as 20 bp. (More

130 M. GUO, W-L. CHANG AND J. CAO

discussion of the relevant biological background refers to
Sinden, 1994; Boneh et al., 1996; Paun et al., 1998.)

In the Adleman-Lipton model (Adleman, 1994;
Lipton, 1995), splints were used to construct to correspond
to the edges of a particular graph, the paths of which
represented all possible binary numbers. As it stands, their
construction indiscriminately builds all splints that lead to a
complete graph. This is to say that hybridisation has higher
probabilities of errors. Hence, Adleman and his co-authors
(Roweis et al., 1999) proposed the sticker-based model,
which was an abstract model of molecular computing based
on DNA with a random access memory and a new form of
encoding the information, to enhancing the Adleman-Lipton
model.

The DNA operations proposed by Adleman and
Lipton, cited from Adleman (1994), Lipton (1995),
Boneh et al. (1996), and Adleman (1996), are described
below. These operations will be used for calculating
solutions of the 3-dimensional matching problem.
The Adleman-Lipton model:

A (test) tube is a set of molecules of DNA (i.e., a
multi-set of finite strings over the alphabet {A, C, G, T}).
Given a tube, one can perform the following operations:

• Extract. Given a tube P and a short single strand of
DNA, S, produce two tubes +(P, S) and −(P, S), where
+(P, S) is all of the molecules of DNA in P which
contain the short strand S and −(P, S) is all of the
molecules of DNA in P which do not contain the short
strand S.

• Merge. Given tubes P1 and P2, yield ∪(P1, P2), where
∪(P1, P2) = P1 ∪ P2. This operation is to pour two tubes
into one, with no change of the individual strands.

• Detect. Given a tube P, say ‘yes’ if P includes at least
one DNA molecule, and say ‘no’ if it contains none.

• Append. Given a tube P and a short strand of DNA, Z,
the operation will append the short strand, Z, onto the
end of every strand in the tube P.

• Discard. Given a tube P, the operation will discard the
tube P.

• Read. Given a tube P, the operation is used to describe
a single molecule, which is contained in the tube P.
Even if P contains many different molecules each
encoding a different set of bases, the operation can give
an explicit description of exactly one of them.

2.2 Other related work and comparison with the
Adleman-Lipton model

Techniques in the Adleman-Lipton model could be
used to solve the NP-complete Hamiltonian path
problem and satisfiability (SAT) problem in linearly
increasing time and exponentially increasing volumes of
DNA (Adleman, 1994; Lipton, 1995). Quyang et al. (1997)
showed that restriction enzymes could be used to solve the
NP-complete clique problem (MCP). The maximum number
of vertices that they can process is limited to 27 because the
size of the pool with the size of the problem exponentially
increases (Quyang et al., 1997).

Arita et al. (1997) described new molecular
experimental techniques for searching a Hamiltonian path.
Morimoto et al. (1999) offered a solid-phase method to
finding a Hamiltonian path. Narayanan and Zorbala (1998)
proved that the Adleman-Lipton model was
extended towards solving the travelling salesman problem.
Shin et al. (1999) presented an encoding scheme that applies
fixed-length codes for representing integer and real values.
Their method could also be employed towards solving the
travelling salesman problem. Amos (1997) proposed
parallel filtering model for resolving the Hamiltonian
path problem, the sub-graph isomorphism problem, the
3-vertex-colourability problem, the clique problem, and the
independent-set problem.

Roweis et al. (1999) proposed sticker-based model
to enhance the Adleman-Lipton model. Their model could
be used for determining solutions to an instance of the
set cover problem. Perez-Jimenez and Sancho-Caparrini
(2001) employed sticker-based model (Roweis et al., 1999)
to resolve knapsack problems. Fu (1997) proposed new
algorithms to resolve 3-SAT, 3-coloring, and the
independent set. Winfree’s self-assembling reactions for
tiling fault tolerance in error-preventing codes and
self-control of non-determinism and molecule formation and
reaction efficiency were proposed in Winfree et al. (1998).
Garzon and Deaton (1999). presented a review of the most
important advances in molecular computing. In our
previous work, Chang and Guo (2002a, 2002b) proved how
the DNA operations from solution space of splint in the
Adleman-Lipton model could be employed for developing
DNA algorithms. Those DNA algorithms could be applied
for resolving the dominating-set problem, the vertex cover
problem, the clique problem, the independent-set problem,
the 3-dimensional matching problem, and the set-packing
problem. In our previous work, Chang et al., (2003) also
employed the sticker-based model and the Adleman-Lipton
model to deal with the dominating-set problem for
decreasing error rate of hybridisation.

3 USING STICKER FOR SOLVING THE
3-DIMENSIONAL MATCHING PROBLEM IN THE
ADLEMAN-LIPTON MODEL

In subsection 3.1, the summary of the 3-dimensional
matching problem is described. Applying sticker to
constructing solution space of DNA sequences for the
3-dimensional matching problem is introduced in
subsection 3.2. In subsection 3.3, one DNA algorithm is
proposed to resolve the 3-dimensional matching problem.
In subsection 3.4, the complexity of the proposed algorithm
is described.

3.1 Definition of the 3-dimensional matching problem

Assume that W, X, and Y are disjoint sets having the same
number q of elements. Suppose that W, X, and Y are
{w1, … wq}, {x1, …, xq} and {y1, …, yq}, respectively.
Assume that a finite set C ⊆ W × X × Y and C is

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 131

{(wk, xl, ym)| wk ∈ W, xl ∈ X, and ym ∈ Y for q ≥ k, l, and
m ≥ 1}. Assume that |C| denotes the number of elements in
C and |C| ≥ t, where t is a positive integer. A 3-dimensional
matching for C is a subset C1 ⊆ C with |C1| ≤ t such that no
two elements of C1 agree in any coordinate (Cormen
et al., 2003; Garey and Johnson, 1979). The 3-dimensional
matching problem is to find a minimum-size 3-dimensional
matching for C. The problem has been proved to be an
NP-complete problem (Garey and Johnson, 1979).

The 3-dimensional matching problem asks: Given four
finite sets above, how many elements are in a minimum-size
3-dimensional matching? In Figure 1, three finite sets W, X,
and Y are {1, 2}, {3, 4} and {5, 6}, respectively, and a finite
set C ⊆ W × X × Y and C = {(1, 3, 5), (2, 4, 6), (1, 4, 6)}.
The four sets, W, X, Y, and C denote such a problem. The
minimum-size 3-dimensional matching for C is {(1, 3, 5),
(2, 4, 6)}. Hence, the size of the 3-dimensional matching
problem in Figure 1 is two. It is indicated from Garey and
Johnson (1979) that finding a minimum-size 3-dimensional
matching is an NP-complete problem, so it can be
formulated as a ‘search’ problem.

Figure 1 The finite sets of our problem

3.2 Using sticker for constructing solution space of
DNA sequence for the 3-dimensional matching
problem

In the Adleman-Lipton model, their main idea is to first
generate solution space of DNA sequences for those
problems resolved. Then, basic biological operations are
used to remove illegal solution and find legal solution from
solution space. Therefore, the first step of resolving the
3-dimensional matching problem is to produce a test tube,
which contains all of the possible 3-dimensional matching.
Assume that a set Cd with {wk, xl, ym} is a subset in C and it
only contains three order elements. The first, second, and
third elements in Cd come from W, X, and Y, respectively.
Therefore, the finite set C can be regarded as a collection of
subsets of three order elements, and C can be represented as
{C1, …, CB}, where Cd is {(wk, xl, ym)| wk ∈ W, xl ∈ X, and
ym ∈ Y for q ≥ k, l, and m ≥ 1} for B ≥ d ≥ 1.

Suppose that a B-digit binary number represents all
possible 2B choices for subsets of three order elements. Also
assume that 3 × B one-digit binary numbers represent 3×B
elements in the subsets in C. Suppose that the (3 × d)th,
(3 × d + 1)th and (3 × d + 2)th one-digit binary numbers,
respectively, correspond to the first element, the second
element and the third element in the subset Cd for B ≥ d ≥ 1.
That is to say that the three order elements in the subset Cd
are represented with three continuous bits. Suppose that C1
is 3-dimensional matching for C. If the dth bit in B bits is set
to 0, then it represents the corresponding subset out of C1
and the three order elements in the subset are excluded from
C1. That is to say that the (3 × d)th, (3 × d + 1)th, and
(3 × d + 2)th one-digit binary numbers are not appended

onto the tail of those binary numbers, containing the value 0
of the dth bit. If the dth bit in B bits is set to 1, then it
represents the corresponding subset in C1 and the three
order elements in the subset are included in C1. Therefore, it
is very obvious that the (3 × d)th, (3 × d + 1)th and
(3 × d + 2)th one-digit binary numbers, subsequently, are
appended onto the tail of those binary numbers, containing
the value 1 of the dth bit.

To implement this way, it is assumed that a B-bit
binary number Z is represented as a binary number
z1, …, zB, where the value of zj is 1 or 0 for 1 ≤ j ≤ B. A bit zj
is the jth bit in a B-bit binary number Z and it represents the
jth subset in C. Assume that 3 × q one-digit binary numbers
are, subsequently, w1, …, wq, x1, …, xq and y1, …, yq, where
q ≥ B. Assume that wk, xl and ym represent the kth element in
W, the lth element in X, and the mth element in Y,
respectively. A B-bit binary number Z includes all possible
2B choices of subsets. Each choice of subsets corresponds to
a possible 3-dimensional matching. If the value of zj is set to
1 and the corresponding subset consists of three order
elements wk, xl, and ym, then the value 1 for the three bits is,
subsequently, appended onto the tail of those binary
number, including the value 1 of the jth bit.

Consider the four finite sets in Figure 1. Three subsets, C3,
C2, and C1 represent {1, 3, 5}, {2, 4, 6} and {1, 4, 6},
respectively, for C. Table 1 denotes solution space of
3-dimensional matching for the four finite sets in Figure 1.
In Table 1, the binary number, 000, indicates that the
corresponding 3-dimensional matching is empty. In Table 1,
the binary numbers, 001, 010, and 011, represent that those
corresponding 3-dimensional matching are {C3}, {C2}, and
{C2, C3}, respectively. The binary numbers, 100, 101, and
110, in Table 1 represent that those corresponding
3-dimensional matching, subsequently, are {C1}, {C1, C3},
and {C1, C2}. In Table 1, the binary number, 111, represents
that the corresponding 3-dimensional matching is
{C1, C2, C3}. Though there are eight 3-digit binary
numbers for representing eight possible 3-dimensional
matching in Table 1, not every 3-digit binary number
corresponds to a legal solution. Hence, in the following
subsection, basic biological operations are used to develop
an algorithm for removing illegal solutions and determining
legal answers.

Table 1 The solution space for the four finite sets in
Figure 1

3-digit binary
number

The corresponding 3-dimensional
matching

000 ∅

001 {C3}

010 {C2}

011 {C2, C3}

100 {C1}

101 {C1, C3}

110 {C1, C2}

111 {C1, C2, C3}

132 M. GUO, W-L. CHANG AND J. CAO

To represent all possible 3-dimensional matching for
the 3-dimensional matching problem, sticker (Roweis
et al., 1999; Braich et al., 2000) is used to construct solution
space for that problem resolved. For every bit zj representing
the jth subset in C, two distinct 15 base value sequences
were designed. One represents the value ‘1’ of zj and
another represents the value ‘1’ of zj. For the sake of
convenience of presentation, assume that zj

1 denotes the
value of zj to be 1 and zj

0
 defines the value of zj to be zero.

Similarly, for every bit wk, xl, and ym representing the kth,
lth, and mth elements in W, X and Y, two distinct 15
base value sequences were also designed. One represents
the value, 1, for wk, xl, and ym and another represents the
value, 0, to wk, xl, and ym. For the sake of convenience of
presentation, assume that wk

1, xl
1, and ym

1 denote the value
of wk, xl, and ym to be 1 and wk

0, xl
0, and ym

0 define the
value of wk, xl, and ym to be zero.

Each of the 2B possible 3-dimensional matching was
represented by a library sequence of 15 × (B + 3 × q) bases
consisting of the concatenation of one value sequence for
each bit. DNA molecules with library sequences are termed
library strands and a combinatorial pool containing library
strands is termed a library. The probes used for separating
the library strands have sequences complementary to the
value sequences.

Errors in the separation of the library strands are errors in
the computation (Roweis et al., 1999; Braich et al., 2000).
Sequences must be designed to ensure that library strands
have little secondary structure that might inhibit intended
probe-library hybridisation. The design must also exclude
sequences that might encourage unintended probe-library
hybridisation. To help achieve these goals, sequences were
computer-generated to satisfy the following constraint
(Braich et al., 2000).

1 library sequences contain only As, Ts, and Cs
2 all library and probe sequences have no occurrence of

more consecutive identical nucleotides
3 every probe sequence has at least four mismatches

with all 15 base alignment of any library sequence
(except for with its matching value sequence)

4 every 15 base subsequence of a library sequence has at
least 4 mismatches with all 15 base alignment of itself
or any other library sequence

5 no probe sequence has a run of more than 7 matches
with any 8 base alignment of any library sequence
(except for with its matching value sequence)

6 no library sequence has a run of more than 7 matches
with any 8 base alignments of itself or any other library
sequence

7 every probe sequence has 4, 5, or 6, Gs in its sequence.

Constraint (1) is motivated by the assumption that library
strands composed only of As, Ts, and Cs will have less
secondary structure than those composed of As, Ts, Cs, and
Gs (Mir, 1998). Constraint (2) is motivated by two
assumptions: first, that long homopolymer tracts may have
unusual secondary structure and second, that the melting
temperatures of probe-library hybrids will be more uniform

if none of the probe-library hybrids involve long
homopolymer tracts. Constraints (3) and (5) are intended to
ensure that probes bind only weakly where they are not
intended to bind. Constraints (4) and (6) are intended to
ensure that library strands have a low affinity for
themselves. Constraint (7) is intended to ensure that
intended probe-library pairings have uniform melting
temperatures.

The Adleman program (Braich et al., 2000) was
modified for generating those DNA sequences to
satisfying the constraints above. For example, for
representing the three subsets in C in Figure 1, the DNA
sequences generated were: z1

0 = AATTCACAAACAATT,
z2

0 = ACTCCTTCCCTACTC, z3
0 = TCTCTCTCTAATCAT,

z1
1 = TCTCCCTATTTATTT, z2

1 = TCACCAAACCTAAAA,
and z3

1 = CCATCATCTACCTTA. Similarly, for representing
every element in W, X, and Y in Figure 1, the DNA
sequences generated were: w1

0 = ACTCACATACACCAC,
w2

0 = CTTCTCCACTATACT, x1
0 = AAACTATCATACTTC,

x2
0 = TTCAATAAACATTTT, y1

0 = TTTTTCTCTCCCAAA,
y2

0 = TTTACCCTACTATCA, w1
1 = CAACCTATTATCTTA,

w2
1 = CCTAAATCTCCAATA, x1

1 = CTCTCAACAATCAAA,
x2

1 = ACCTCCTTAACACTT, y1
1 = CCCTATCACTAATAC

and y2
1 = TATAACCCATCCATA. For every possible

3-dimensional matching to C in Figure 1, the corresponding
library strand was synthesized by employing a mix-and-split
combinatorial synthesis technique (Cukras et al., 1998).
Similarly, for any n-subset set, all of the library strands for
representing every possible 3-dimensional matching could
be also synthesised with the same technique.

3.3 The DNA algorithm of solving the 3-dimensional
matching problem

The following DNA algorithm is proposed to solve the
3-dimensional matching problem.

Algorithm 1: Solving the 3-dimensional matching problem.
(1) Input (T0), where the tube T0 is to encode all
possible 2B choices of subsets of three order
elements for three finite sets W = {w1 ,…, wq},
X = {x1 ,…, xq}, and Y = {y1 ,…, yq} and a
collection C = {C1 ,…, CB}, where Cd = {(wk, xl,
ym)|wk ∈ W, xl ∈ X, and ym ∈ Y for q ≥ k, l, and
m ≥ 1} for B ≥ d ≥ 1.

(2) Forall i = 1 to B, where B is the number of subsets
in C.

(2a) TON = +(T0, zi
1) and TOFF = −(T0, zi

1).

Assume that (wk, xl, ym) is the element in the
subset, Ci.

(2b) TBAD = +(TON, wk
1) and TON = −(TON, wk

1).
(2c) Discard the tube TBAD.
(2d) Append(TON, wk

1).
(2e) TBAD = +(TON, xl

1) and TON = −(TON, xl
1).

(2f) Discard the tube TBAD.
(2g) Append(TON, xl

1).
(2h) TBAD = +(TON, ym

1) and TON = −(TON, ym
1).

(2i) Discard the tube TBAD.

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 133

(2j) Append(TON, ym
1).

(2k) T0 = ∪(TON , TOFF).
End Forall
(3) Forall j = 1 to q

(3a) T0 = +(T0, wj
1) and TBAD = −(T0, wj

1).
(3b) Discard the tube TBAD.
(3c) T0 = +(T0, xj

1) and TBAD = −(T0, xj
1).

(3d) Discard the tube TBAD.
(3e) T0 = +(T0, yj

1) and TBAD = −(T0, yj
1).

(3f) Discard the tube TBAD.
End Forall

(4) Forall i = 0 to B – 1
For j = i down to 0

(a) Tj+1
ON = +(Tj, zi+1

1) and Tj = −(Tj, zi+1
1).

(b) Tj+1 = ∪(Tj+1, Tj+1
ON).

EndFor
End Forall
(5) For d = 1 to B

(a) If (detect (Td) = 'yes') then
(b) Read (Td) and terminate

the algorithm.
EndIf

End For

Theorem 3-1: In light of those steps in Algorithm 1, the
3-dimensional matching problem for finite sets W, X, and Y
and B-subset set C can be resolved.

Proof: A test tube of DNA strands, which represent all
possible 2B input bit sequences z1, …, zB, is yielded in
Step (1). It is very obvious that the test tube contains all
possible 2B choices of 3-dimensional matching.

From definition of 3-dimensional matching (Garey and
Johnson, 1979), Step (2) will be executed B times for
representing three order elements in each subset. The first
execution of Step (2a) uses ‘extraction’ operation to form
two test tubes: TON and TOFF. The first tube TON consists of
all of the strands that have zi = 1. That is to say that the first
subset occurs in the tube TON. The second tube TOFF consists
of all of the strands that have zi = 0. This is to say that the
first subset does not appear in the tube TOFF. Obviously,
from the definition of 3-dimensional matching, the number
of order elements in each subset in C is all three. The first,
second, and three elements are from W, X, and Y,
respectively. Therefore, Steps (2b) to (2j) are used to
represent all of three order elements in each subset. The first
execution of Step (2b) applies ‘extraction’ operation to
generate two tubes: TBAD and TON. The first tube TBAD
includes all of the strands that have wk = 1. That is to say
that the first element in the first subset appears repeatedly in
other subsets in the tube TBAD. From the definition of
3-dimensional matching (Garey and Johnson, 1979), the
first tube TBAD includes illegal choices of 3-dimensional
matching. Hence, the first tube TBAD is discarded in Step
(2c). The second tube TON includes all of the strands that
have wk = 0. That is to say that the first element in the first
subset does not occur in the tube TON. Step (2d) uses
‘append’ operation to append the short strand, wk

1,

representing the first element in the first subset, onto the end
of every strand in the tube TON. Hence, the tube TON now
contains the first element in the first subset. Similarly, the
first execution of Step (2e) applies ‘extraction’ operation to
generate two tubes: TBAD and TON. The first tube TBAD
includes all of the strands that have xl = 1. That is to say that
the second element in the first subset appears repeatedly in
other subsets in the tube TBAD. Due to definition of
3-dimensional matching, the first tube TBAD includes illegal
choices of 3-dimensional matching. Hence, the first tube
TBAD is discarded in Step (2f). The second tube TON includes
all of the strands that have xl = 0. That is to say that the
second element in the first subset does not occur in the tube
TON. From the definition of 3-dimensional matching, Step
(2g) uses ‘append’ operation to append the short strand, xl

1,
representing the second element in the first subset, onto the
end of every strand in the tube TON. Hence, the tube TON
now contains the second element in the first subset. Then,
the first execution of Step (2h) applies ‘extraction’ operation
to generate two tubes: TBAD and TON. The first tube TBAD
includes all of the strands that have ym = 1. That is to say
that the third element in the first subset occurs repeatedly in
other subsets in the tube TBAD. It is indicated from the
definition of 3-dimensional matching that the first tube TBAD
includes illegal choices of 3-dimensional matching. Hence,
the first tube TBAD is discarded in Step (2i). The second tube
TON includes all of the strands that have ym = 0. That is to
say that the third element in the first subset does not occur
in the tube TON. Because of definition of 3-dimensional
matching, Step (2j) uses ‘append’ operation to append the
short strand, ym

1, representing the third element in the first
subset, onto the end of every strand in the tube TON. Thus,
the tube TON now contains the third element in the first
subset. This is to say that all of the elements in the first
subset are included in TON. Therefore, the first execution of
Step (2k) applies ‘merge’ operation to pour two tubes TON
and TOFF into the tube T0. The tube T0 includes every
element in the first subset. Similarly, after other (B – 1)
times to Step (2) are executed, every order element in each
subset is represented in the corresponding DNA sequences
in the tube T0.

Step (3) is used for checking whether DNA strands in the
tube T0 exactly represent every element in finite sets W, X,
and Y. Since the number of elements in finite sets W, X, and
Y is all q, Step (3) will be executed q times for finding
correct choices of 3-dimensional matching. The first
execution of Step (3a) applies ‘extraction’ operation to
check which subsets include the first element in W and
which subsets do not contain the first element in W.
Therefore, two tubes are generated. The second tube TBAD
includes illegal choices of subsets and therefore the tube
TBAD is discarded in Step (3b). Similarly, the first execution
of Step (3c) applies ‘extraction’ operation to check which
subsets contain the first element in X and which subsets do
not consist of the first element in X. Two tubes are
generated. The second tube TBAD includes illegal choices of
subsets and therefore the tube TBAD is discarded in Step (3d).
Then, the first execution of Step (3e) applies ‘extraction’

134 M. GUO, W-L. CHANG AND J. CAO

operation to check which subsets consists of the first
element in Y and which subsets do not include the first
element in Y. Two tubes are generated. Due to the definition
of 3-dimensional matching, the second tube TBAD includes
illegal choices of subsets and therefore the tube TBAD is
discarded in Step (3f). Similarly, after other (q – 1) times for
Step (3) are executed, every element in W, X, and Y is
represented in the corresponding DNA sequences in the tube
T0. That is to say that the remaining DNA strands in the tube
T0 represent legal choices of 3-dimensional matching.

When each time of the outer loop in Step (4) is executed,
the number of execution for the inner loop is (i + 1) times.
At the first execution of the outer loop, the inner loop is
only executed one time. Therefore, Steps (4a) and (4b) are
executed one time. Step (4a) uses ‘extraction’ operation to
form two test tubes: T1

ON and T0. The first tube T1
ON

contains all of the strands that have z1 = 1. The second tube
T0 consists of all of the strands that have z1 = 0. That is to
say that the first tube encodes every 3-dimensional matching
with the first subset in C and the second tube represents
every 3-dimensional matching without the first subset in C.
Then, Step (4b) applies ‘merge’ operation to pour the tube
T1

ON into the tube T1. After repeat to execute Steps (4a) and
(4b), it finally produces B new tubes. The tube Td for
B ≥ d ≥ 1 encodes those DNA strands that contain d subsets.

Because the 3-dimensional matching problem is to find a
minimum-size 3-dimensional matching, the tube T1 first is
detected with ‘detection’ operation in Step (5a). If it returns
‘yes’, then the tube T1 contains minimum-size
3-dimensional matching. Therefore, Step (5b) uses ‘read’
operation for describing ‘sequence’ of a molecular in the
tube T1 and terminating the algorithm. Otherwise, repeat to
execute Step (5a) until a minimum-size 3-dimensional
matching is found in the tube detected.

The sets in Figure 1 can be applied for showing the power
of Algorithm 1. In Figure 1, three finite sets W, X, and Y are
{1, 2}, {3, 4}, and {5, 6}, respectively. A finite set
C ⊆ W × X × Y and C = {(1, 3, 5), (2, 4, 6), (1, 4, 6)}. Every
triple element in C can be regarded as a 3-order-element
subset. Therefore, the finite set C can be regarded as a
collection of subsets of three order elements. Assume that
the collection C is {C1, C2, C3}, where C1, C2 and C3 are
{1, 3, 5}, {2, 4, 6}, and {1, 4, 6}, respectively. From Step
(1) in Algorithm 1, the tube T0 is filled with eight library
stands with those techniques mentioned in subsection 3.2,
representing eight possible 3-dimensional matching for
W, X, Y, and C.

Because the number of the subsets in the collection C is
three, the number of execution to Step (2) of Algorithm 1 is
three times. At the first execution of Step (2a) in
Algorithm 1, two tubes are yielded. The first tube, TON,
includes the numbers 1** (* can be either 1 or 0). The
second tube, TOFF, contains the numbers 0**. That is to say
that the first tube, TON, includes {C1}, {C1, C3}, {C1, C2},
and {C1, C2, C3} and the second tube, TOFF, contains Φ,
{C3}, {C2}, and {C2, C3}. Due to the first execution to
Step (2b) of Algorithm 1, two tubes are generated. The first
tube, TBAD, contains all of the strands that have w1 =1. That

is to say that the first element, 1, in C1 appears repeatedly in
the tube TBAD. It is indicated from the definition of
3-dimensional matching that the tube TBAD includes illegal
choices. Therefore, the tube TBAD is discarded in Step (2c).
The second tube TON contains all of the strands that have
w1 = 0. This is to say that the first element, 1, in C1 does not
occur in the tube TON. Step (2d) of Algorithm 2 uses
‘append’ operation to append DNA sequences of
representing 1 onto the tube TON. The tube TON now contains
the first element in C1. This is to say that the tube TON
consists of the strands representing those bit strings:
1001(w1 = 1), 1011(w1 = 1), 1101(w1 = 1) and 1111(w1 = 1).

Similarly, the first execution of Step (2e) applies
‘extraction’ operation to generate two tubes: TBAD and TON.
The first tube TBAD includes all of the strands that have
x1 = 1. That is to say that the second element, 3, in C1
appears repeatedly in other subsets in the tube TBAD. The
first tube TBAD includes illegal choices. Hence, the first tube
TBAD is discarded in Step (2f). The second tube TON includes
all of the strands that have x1 = 0. That is to say that the
second element, 3, in C1 does not occur in the tube TON. Step
(2g) uses ‘append’ operation to append DNA sequences of
representing 3 onto the end of every strand in the tube TON.
The tube TON now contains also the second element in C1.
That is to say that the tube TON contains the strands
representing those bit strings: 10011(w1 = 1)(x1 = 1),
10111(w1 = 1)(x1 = 1), 11011(w1 = 1)(x1 = 1) and 11111
(w1 = 1)(x1 = 1).

Then, the first execution of Step (2h) applies ‘extraction’
operation to generate two tubes: TBAD and TON. The first tube
TBAD includes all of the strands that have y1 = 1. That is to
say that the third element, 5, in C1 appears repeatedly in
other subsets in the tube TBAD. That is to say, the first tube
TBAD includes illegal choices. Thus, the first tube TBAD is
discarded in Step (2i). The second tube TON includes all of
the strands that have y1 = 0. That is to say that the third
element, 5, in C1 does not occur in the tube TON. Step (2j)
uses ‘append’ operation to append DNA sequences of
representing 5 onto the end of every strand in the tube TON.
The tube TON now contains the third element in C1. This is
to say that the tube TON includes the strands representing
those bit strings: 100111(w1 = 1)(x1 = 1)(y1 = 1), 101111
(w1 = 1)(x1 = 1)(y1 = 1), 110111(w1=1)(x1=1)(y1=1), and
111111(w1=1)(x1=1)(y1=1). Then, the first execution of
Step (2k) applies ‘merge’ operation to pour two tubes
TON and TOFF into the tube T0. The tube T0 now includes
the strands representing those bit strings: 000, 001, 010,
011, 100111(w1 = 1)(x1 = 1)(y1 = 1), 101111(w1 = 1)(x1 = 1)
(y1 = 1), 110111(w1 = 1)(x1 = 1)(y1 = 1),and 111111(w1 = 1)
(x1 = 1)(y1 = 1). Similarly, after other two times to
Step (2) are executed, the tube T0 contains the strands
representing those bit strings: 000, 001111(w1 = 1)(x2 = 1)
(y2 = 1), 010111(w2 = 1)(x2 = 1)(y2 = 1), 100111(w1 = 1)
(x1 = 1)(y1 = 1), and 110111111(w1 = 1)(x1 = 1)(y1 = 1)
(w2 = 1)(x2 = 1)(y2 = 1).

From the definition of 3-dimensional matching,
finding a 3-dimensional matching for W, X, Y, and C is to
check whether every element in W, X, and Y appears

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 135

exactly in chosen subsets. Because the number of the
elements in W, X, and Y is all 2, Step (3) of Algorithm 1 will
be executed two times. The first execution of Step (3a) in
Algorithm 1 results in that two tubes are generated.
The first tube T0 contains those bit strings:
001111(w1 = 1)(x2 = 1)(y2 = 1), 100111(w1 = 1)(x1 = 1)(y1 = 1),
and 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1).
The second tube TBAD includes these bit strings: 000
and 010111(w2 = 1)(x2 = 1)(y2 = 1). This is to imply that
3-dimensional matching in the second tube TBAD is all illegal
choices. Therefore, Step (3b) is used to discard the second
tube TBAD. Similarly, The first execution of Step (3c) in
Algorithm 1 indicates that two tubes are produced. The first
tube T0 contains those bit strings: 100111(w1 = 1)(x1 = 1)
(y1 = 1) and 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)
(x2 = 1)(y2 = 1). The second tube TBAD consists of the bit
string: 001111(w1 = 1)(x2 = 1)(y2 = 1). That is to say that
3-dimensional matching in the second tube TBAD is an illegal
choice. Therefore, Step (3d) is used to discard the second
tube TBAD. Similarly, the first execution of Step (3e) in
Algorithm 1 represents that two tubes are yielded. The first
tube T0 includes 100111(w1 = 1)(x1 = 1)(y1 = 1) and
110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The
second tube TBAD does not consists of any bit string. Step
(3f) is used to discard the second tube TBAD. The similar
processing can be applied to deal with the second element in
W, X, Y. After all of operations in Step (3) are processed,
the remaining strands in the tube T0 represent legal
3-dimensional matching, 110111111(w1 = 1)(x1 = 1)(y1 = 1)
(w2 = 1)(x2 = 1)(y2 = 1).

The first execution of Step (4a) in Algorithm 1 applies
‘extraction’ operation to produce two tubes, T1

ON and T0.
The tube T1

ON contains the bit string, 110111111(w1 = 1)
(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The tube T0 does not
include any bit string. Step (4b) applies ‘merge’ operation to
pour the tube T1

ON into the tube T1. The tube T1 includes the
bit string, 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)
(y2 = 1), representing a 3-dimensional matching, {C1, C2}.
After repeat to execute Steps (4a) and (4b), it finally
produces three new tubes. The new tube Td for 3 ≥ d ≥ 1
encodes the 3-dimensional matching that contains d subsets.
The tube T2 contains the bit string, 110111111(w1 = 1)
(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The tubes T1 and T3
do not include any bit string.

The 3-dimensional matching problem is to find a
minimum-size 3-dimensional matching. Therefore,
Step (5) is used to find a minimum-size 3-dimensional
matching. Because the number of the element in C is
three, Step (5a) at most will be executed three times. When
the first time of Step (5a) is executed, the tube T1 is
first detected with ‘detection’ operation. ‘Detection’
operation for the tube T1 returns ‘no’. That is to say that the
tube T1 does not contains a minimum-size 3-dimensional
matching. Next, the second time of Step (5a) is executed,
the tube T2 is detected with ‘detection’ operation.
‘Detection’ operation for the tube T2 returns ‘yes’.
Therefore, Step (5b) applies ‘read’ operation to describe
‘sequence’ of a molecular in the tube T2 and terminates the

algorithm. A minimum-size 3-dimensional matching is
found to be {(1, 3, 5), {2, 4, 6}}.

3.4 The complexity of the proposed DNA algorithm

The following theorems describe time complexity of
Algorithm 1, volume complexity of solution space in
Algorithm 1, the number of the tubes used in Algorithm 1,
and the longest library strand in solution space in
Algorithm 1.

Theorem 3-2: Suppose that W, X, and Y are disjoint
sets which have the same number q of elements. Assume that
W, X, and Y are {w1, …, wq}, {x1, …, xq}, and {y1, …, yq},
respectively. Suppose that C ⊆ W × X × Y and C is
{C1, …, CB} where Cd is {wk, xl, ym| wk ∈ W, xl ∈ X, and
ym ∈ Y for q ≥ k, l, and m ≥ 1} for 1 ≤ d ≤ B. The
3-dimensional matching problem for W, X, Y and C can be
resolved with O(B2) biological operations in the
Adleman-Lipton model.

Proof: Algorithm 1 can be applied for solving the
3-dimensional matching problem for any B-subset set C.
Algorithm 1 includes four main steps. Step 2 is mainly used
to construct DNA sequences for every element in each
subset in C and to remove illegal library strands from all of
the 2B possible library strands. From Algorithm 1, it is very
obvious that Step (2a) to Step (2k) totally take 4×B
‘extraction’ operations, 3×B ‘discard’ operations, 3×B
‘append’ operations and B ‘merge’ operations. Step (3) is
mainly applied to check which library strands exactly
include every element in W, X, and Y. It is indicated from
Algorithm 1 that Step (3a) to Step (3f) take 3×B ‘extraction’
operations and 3×B ‘discard’ operations. Step (4) is mainly
applied to figure out the number of element in every legal
3-dimensional matching. Algorithm 1 indicates that Step
(4a) takes (B ×(B – 1)/2) ‘extraction’ operations and Step
(4b) takes (B × (B – 1)/2) ‘merge’ operations. Step 5 is used
to find a minimum-size 3-dimensional matching from legal
3-dimensional matching. According to Algorithm 1, Step
(5a) at most takes B ‘detection’ operations and Step (5b)
takes one ‘read’ operation. Hence, from the statements
mentioned above, it is at once inferred that the time
complexity of Algorithm 1 is O(B2) biological operations in
the Adleman-Lipton model.

Theorem 3-3: Suppose that W, X, and Y are disjoint sets
which have the same number q of elements. Assume that W,
X, and Y are {w1, …, wq}, {x1, …, xq}, and {y1, …, yq},
respectively. Suppose that C ⊆ W × X × Y and C is
{C1, …, CB} where Cd is {wk, xl, ym|wk ∈ W, xl ∈ X, and
ym ∈ Y for q ≥ k, l, and m ≥ 1} for 1 ≤ d ≤ B. The
3-dimensional matching problem for W, X, Y and C can be
resolved with O(2B) library strands in the Adleman-Lipton
model.

Proof: Refer to Theorem 3-2.

Theorem 3-4: Suppose that W, X, and Y are
disjoint sets that have the same number q of elements.
Assume that W, X, and Y are {w1, …, wq}, {x1, …, xq},

136 M. GUO, W-L. CHANG AND J. CAO

 and {y1, …, yq}, respectively. Suppose that C ⊆ W × X × Y
and C is {C1, …, CB} where Cd is {wk, xl, ym| wk ∈ W, xl ∈ X,
and ym ∈ Y for q ≥ k, l, and m ≥ 1} for 1 ≤ d ≤ B.
The 3-dimensional matching problem for W, X, Y and
C can be resolved with O(B) tubes in the Adleman-Lipton
model.

Proof: Refer to Theorem 3-2.

Theorem 3-5: Suppose that W, X, and Y are
disjoint sets which have the same number q of
 elements. Assume that W, X, and Y are {w1, …, wq},
{x1, …, xq}, and {y1, …, yq}, respectively. Suppose
that C⊆W × X × Y and C is {C1, …, CB} where Cd is
{wk, xl, ym| wk∈W, xl∈ X, and ym∈Y for q ≥ k, l, and m ≥ 1}
for 1 ≤ d ≤ B. The 3-dimensional matching problem
for W, X, Y and C can be resolved with the longest
library strand, O(15×B + 15×3×q), in the Adleman-Lipton
model.

Proof: Refer to Theorem 3-2.

4 EXPERIMENTAL RESULTS OF SIMULATED DNA
COMPUTING

We finished the modification of the Adleman program
(Braich et al., 2000) in a PC with one Pentium(R) 4 and
128 MB main memory. Our operating system is Window 98
and our compiler is C++ Builder 6.0. This program
modified was applied to generate DNA sequences for
solving the 3-dimensional matching problem. Because the
source code of the two functions srand48() and drand48()
was not found in the original Adleman program, we used
the standard function srand() in C++ builder 6.0 to replace
the function srand48() and added the source code to the
function drand48(). We also added subroutines to the
Adleman program for simulating biological operations in
the Adleman-Lipton model in Section 2. We added
subroutines to the Adleman program to simulating
Algorithm 1 in subsection 3.3.

The Adleman program is used to constructing each
15-base DNA sequence for each bit of the library. For each
bit, the program is applied for generating two 15-base
random sequences (for the ‘1’ and the ‘0’) and checking to
see if the library strands satisfy the seven constraints in
subsection 3.2 with the new DNA sequences added. If the
constraints are satisfied, the new DNA sequences are
‘greedily’ accepted. If the constraints are not satisfied,
then mutations are introduced one by one into the new block
until either: (A) the constraints are satisfied and the
new DNA sequences are then accepted or (B) a threshold
for the number of mutations is exceeded and the
program has failed and so it exits, printing the sequence
found so far. If (B + 3 × q)-bits that satisfy the constraints
are found then the program has succeeded and it outputs
these sequences.

Consider those sets W, X, Y and C in Figure 1. The set, C,
includes three subsets: C1, C2, and C3. The sets W, X, and Y
are {1, 2}, {3, 4}, and {5, 6}, respectively. DNA sequences
generated by the Adleman program modified were shown in
Table 2. The program took one mutation and two mutations
to make new DNA sequences for the front six elements and
the last three elements. With the nearest neighbour
parameters, the program was used to calculate the enthalpy,
entropy, and free energy for the binding of each probe to its
corresponding region on a library strand. The energy was
shown in Table 3. Only G really matters to the energy of
each bit. For example, the delta G for the probe binding a
‘1’ in the first bit is thus estimated to be 25 kcal/mol and the
delta G for the probe binding a '0' is estimated to be
24.3 kcal/mol.

Table 2 Sequences chosen to represent the three subsets
in C and every element in W, X and Y in Figure 1

Subset 5’→3’ DNA Sequence

C1
0 AATTCACAAACAATT

C2
0 ACTCCTTCCCTACTC

C3
0 TCTCTCTCTAATCAT

C1
1 TCTCCCTATTTATTT

C2
1 TCACCAAACCTAAAA

C3
1 CCATCATCTACCTTA

w1
0 ACTCACATACACCAC

w2
0 CTTCTCCACTATACT

x1
0 AAACTATCATACTTC

x2
0 TTCAATAAACATTTT

y1
0 TTTTTCTCTCCCAAA

y2
0 TTTACCCTACTATCA

w1
1 CAACCTATTATCTTA

w2
1 CCTAAATCTCCAATA

x1
1 CTCTCAACAATCAAA

x2
1 ACCTCCTTAACACTT

y1
1 CCCTATCACTAATAC

y2
1 TATAACCCATCCATA

The program simulated a mix-and-split combinatorial
synthesis technique (Cukras et al., 1998) to synthesise the
library strand to every possible 3-dimensional matching.
Those library strands were shown in Table 4 and,
respectively, represent every possible 3-dimensional
matching: ∅, {C3}, {C2}, {C2, C3}, {C1}, {C1, C3}, {C1,
C2}, and {C1, C2, C3}. The program was also applied to
figure out the average and standard deviation for the
enthalpy, entropy, and free energy over all probe/library
strand interactions. The energy is shown in Table 5. The
standard deviation for delta G is small because this is
partially enforced by the constraint that there are 4, 5, or 6
Gs (the seventh constraint in subsection 3.2) in the probe
sequences.

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 137

Table 3 The energy for the binding of each probe to its
corresponding region on a library strand

Vertex
Enthalpy energy

(H)
Entropy energy

(S) Free energy (G)

C1
1 114.4 299.4 25

C1
0 107.8 278.6 24.3

C2
1 111.5 284.8 26.2

C2
0 109.1 279 25.9

C3
1 105.2 270.5 24.4

C3
0 97.3 252.3 22.1

w1
1 107 282.4 22.5

w1
0 94.7 239.8 22.8

w2
1 111.1 288.3 25

w2
0 101.9 266 22.4

x1
1 101.3 258 24.1

x1
0 102.1 269.7 21.4

x2
1 109.6 282.8 25

x2
0 110.6 289.3 23.9

y1
1 106.3 278.3 23.1

y1
0 114.8 292.2 27.5

y2
1 109.6 282.8 25.1

y2
0 106.8 278.4 23.5

Table 4 DNA sequences chosen represent every possible
3-dimensional matching in the tube T0

∅ 5'-AATTCACAAACAATTACTCCTTCCCTACTCT
CTCTCTCTAATCAT-3'
3'-TTAAGTGTTTGTTAATGAGGAAGGGATGAG
GAGAGAGATTAGTA-5'

{C3} 5'-AATTCACAAACAATTACTCCTTCCCTACTCC
CATCATCTACCTTA-3'
3'-TTAAGTGTTTGTTAATGAGGAAGGGATGAG
GGTAGTAGATGGAAT-5'

{C2} 5'-AATTCACAAACAATTTCACCAAACCTAAAAT
CTCTCTCTAATCAT-3'
3'-TTAAGTGTTTGTTAAAGTGGTTTGGATTTTA
GAGAGAGATTAGTA-5'

{C2, C3} 5'-AATTCACAAACAATTTCACCAAACCTAAAAC
CATCATCTACCTTA-3'
3'-TTAAGTGTTTGTTAAAGTGGTTTGGATTTTG
GTAGTAGATGGAAT-5'

{C1} 5'-TCTCCCTATTTATTTACTCCTTCCCTACTCT
CTCTCTCTAATCAT-3'
3'-AGAGGGATAAATAAATGAGGAAGGGATGA
GAGAGAGAGATTAGTA-5'

{C1, C3} 5'-TCTCCCTATTTATTTACTCCTTCCCTACTCC
CATCATCTACCTTA-3'
3'-AGAGGGATAAATAAATGAGGAAGGGATGA
GGGTAGTAGATGGAAT-5'

{C1, C2} 5'-TCTCCCTATTTATTTTCACCAAACCTAAAAT
CTCTCTCTAATCAT-3'
3'-AGAGGGATAAATAAAAGTGGTTTGGATTTT
AGAGAGAGATTAGTA-5'

{C1, C2,
C3}

5'-TCTCCCTATTTATTTTCACCAAACCTAAAAC
CATCATCTACCTTA-3'
3'-AGAGGGATAAATAAAAGTGGTTTGGATTTT
GGTAGTAGATGGAAT-5'

Table 5 The energy over all probe/library strand
interactions

 Enthalpy
energy (H)

Entropy
energy (S)

Free energy
(G)

Average 106.728 276.255 24.1222
Standard
deviation

5.34658 14.4172 1.53821

The Adleman program was employed for computing
the distribution of the types of potential mishybridisations.
The distribution of the types of potential mishybridisations
is the absolute frequency of a probe-strand match of
length k from 0 to the bit length 15 (for DNA
sequences) where probes are not supposed to match the
strands. The distribution was, subsequently, 280, 574, 933,
1520, 2008, 2074, 1552, 920, 507, 207, 70, 13, 0, 0, 0,
and 0. It is pointed out from the last four zeros that there are
0 occurrences where a probe matches a strand at 12, 13, 14,
or 15 places. This shows that the third constraint in
subsection 3.2 has been satisfied. It is very clear that the
number of matches peaks at 5(2074). That is to say that
there are 2074 occurrences where a probe matches a strand
at 5 places.

The results for simulation of Step 2 to Step 5 are shown in
Tables 6–9, respectively. From the tube T2, the answer was
found to be {C1, C2}.

Table 6 DNA sequences generated by Step 2 represent
possible 3-dimensional matching in the tube T0

∅ 5'-AATTCACAAACAATTACTCCTTCCCTACT
CTCTCTCTCTAATCAT-3'
5'-AATTCACAAACAATTACTCCTTCCCTACT
CCCATCATCTACCTTA

{C3}

CAACCTATTATCTTAACCTCCTTAACACTTT
ATAACCCATCCATA-3'
5'-AATTCACAAACAATTTCACCAAACCTAAA
ATCTCTCTCTAATCAT

{C2}

CCTAAATCTCCAATAACCTCCTTAACACTTT
ATAACCCATCCATA-3'
5'-TCTCCCTATTTATTTACTCCTTCCCTACT
CTCTCTCTCTAATCAT

{C1}

CAACCTATTATCTTACTCTCAACAATCAAAC
CCTATCACTAATAC-3'
5'-TCTCCCTATTTATTTTCACCAAACCTAAA
ATCTCTCTCTAATCAT
CAACCTATTATCTTACCTAAATCTCCAATAC
TCTCAACAATCAAAA

{C1, C2}

CCTCCTTAACACTTCCCTATCACTAATACTA
TAACCCATCCATA-3'

Table 7 DNA sequences generated by Step 3 represent
legal 3-dimensional matching in the tube T0

5'-TCTCCCTATTTATTTTCACCAAACCTAAAA
TCTCTCTCTAATCAT
CAACCTATTATCTTACCTAAATCTCCAATAC
TCTCAACAATCAAAA

{C1, C2}

CCTCCTTAACACTTCCCTATCACTAATACTA
TAACCCATCCATA-3'

138 M. GUO, W-L. CHANG AND J. CAO

Table 8 DNA sequences generated by Step 4 represent
legal 3-dimensional matching in the tube T2

5'-TCTCCCTATTTATTTTCACCAAACCTAAAA
TCTCTCTCTAATCAT
CAACCTATTATCTTACCTAAATCTCCAATACT
CTCAACAATCAAAA

{C1, C2}

CCTCCTTAACACTTCCCTATCACTAATACTAT
AACCCATCCATA-3'

Table 9 The answer was found from Step 5 in the tube T2

The answer 5’→3’ DNA sequence
5'-TCTCCCTATTTATTTTCACCAAACCTAA
AATCTCTCTCTAATCAT
CAACCTATTATCTTACCTAAATCTCCAATA
CTCTCAACAATCAAAA

{C1, C2}

CCTCCTTAACACTTCCCTATCACTAATAC
TATAACCCATCCATA-3'

5 CONCLUSIONS

The famous Cook’s theorem (Cormen et al., 2003; Garey
and Johnson, 1979) is that if one algorithm for one
NP-complete problem will be developed, then other
problems will be solved by means of reduction to that
problem. Cook’s theorem is correct in a general electronic
computer. In this paper, we proposed the algorithm for
dealing with the 3-dimensional matching problem.
Another famous NP-complete problem is the set-partition
problem. The set-partition problem can be reduced to the
3-dimensional matching problem. But our algorithm cannot
be applied to solving the set-partition problem. Therefore,
we are not sure whether Cook’s theorem is correct in a
molecular computer.

Currently, there still are lots of NP-complete problems
unsolved because it is very difficult to make basic biological
operations for supporting mathematical operations. We are
not sure whether molecular computing can be applied to
dealing with every NP-complete problem. Therefore, in the
future, our main work is to solve other NP-complete
problem unresolved with the Adleman-Lipton model and
the sticker model.

REFERENCES

Adleman, L. (1994) ‘Molecular computation of solutions to
combinatorial problems’, Science, November 11, Vol. 266,
pp.1021–1024.

Adleman, L.M. (1996) ‘On constructing a molecular computer.
DNA based computers’, in Lipton, R. and Baum, E. (Eds.):
DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, pp.1–21.

Amos, M. (1997) DNA Computation, PhD Thesis, Department of
Computer Science, the University of Warwick, pp.29–38.

Arita, M., Suyama, A. and Hagiya, M. (1997) ‘A heuristic
approach for Hamiltonian path problem with molecules’,
Proceedings of 2nd Genetic Programming (GP-97),
pp.457–462.

Boneh, D., Dunworth, C., Lipton, R.J. and Sgall, J. (1996) ‘On the
computational power of DNA’, Discrete Applied Mathematics,
Special Issue on Computational Molecular Biology, Vol. 71,
pp.79–94.

Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D.,
Chelyapov, N. and Adleman, L.M. (2000) ‘Solution of a
satisfiability problem on a gel-based DNA computer’,
Proceedings of the 6th International Conference on DNA
Computation in the Springer-Verlag Lecture Notes in
Computer Science series, pp.27–42.

Chang, W-L. and Guo, M. (2002a) ‘Solving the dominating-set
problem in Adleman-Lipton’s model’, The Third International
Conference on Parallel and Distributed Computing,
Applications and Technologies, Japan, pp.167–172.

Chang, W-L. and Guo, M. (2002b) ‘Solving the clique problem
and the vertex cover problem in Adleman-Lipton’s model’,
IASTED International Conference, Networks, Parallel and
Distributed Processing, and Applications, Japan, pp.431–436.

Chang, W-L., Ho, M. and Guo, M. (2004) ‘Fast parallel molecular
solution to the dominating-set problem on massively parallel
bio-computing’, Parallel Computing, Vol. 30, Nos. 9–10,
pp.1109–1125.

Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (2003)
Introduction to Algorithms, ISBN 0-07-013151-1, the MIT
Press, pp.966–1021.

Cukras, A.R., Faulhammer, D., Lipton, R.J. and
Landweber, L.F. (1998) ‘Chess games: a model for
RNA-based computation’, Proceedings of the 4th DIMACS
Meeting on DNA Based Computers, held at the University of
Pennsylvania, June 16–19, pp.27–37.

Fu, B. (1997) Volume Bounded Molecular Computation, PhD
Thesis, Department of Computer Science, Yale University,
pp.45–63.

Garey, M.R. and Johnson, D.S. (1979) Computer and
Intractability, Freeman, San Francisco, CA, pp.50–53.

Garzon, M.H. and Deaton, R.J. (1999) ‘Biomolecular computing
and programming’, IEEE Transactions on Evolutionary
Computation, Vol. 3, pp.236–250.

Lipton, R.J. (1995) ‘DNA solution of hard computational
problems’, Science, Vol. 268, pp.542–545.

Mir, K. (1998) ‘A restricted genetic alphabet for DNA
computing’, in Baum, E.B. and Landweber, L.F. (Eds.):
DNA Based Computers II: DIMACS Workshop, DIMACS:
Series in Discrete Mathematics and Theoretical
Computer Science, Providence, June 10–12, RI, Vol. 44,
pp.243–246.

Morimoto, N., Arita, M. and Suyama, A. (1999) ‘Solid phase DNA
solution to the Hamiltonian path problem’, DIMACS (Series in
Discrete Mathematics and Theoretical Computer Science),
Vol. 48, pp.93–206.

Narayanan, A. and Zorbala, S. (1998) ‘DNA algorithms for
computing shortest paths’, in Koza, J.R. et al. (Eds): Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pp.718–724.

Paun, G., Rozenberg, G. and Salomaa, A. (1998) DNA Computing:
New Computing Paradigms, ISBN: 3-540-64196-3,
Springer-Verlag, New York, pp.43–74.

Perez-Jimenez, M.J. and Sancho-Caparrini, F. (2001) ‘Solving
Knapsack problems in a sticker based model’, 2nd Annual
Workshop on DNA Computing, DIMACS: series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society, pp.161–171.

USING STICKER TO SOLVE THE 3-DIMENSIONAL MATCHING PROBLEM IN MOLECULAR SUPERCOMPUTERS 139

Quyang, Q., Kaplan, P.D., Liu, S. and Libchaber, A. (1997) ‘DNA
solution of the maximal clique problem’, Science, Vol. 278,
pp.446–449.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V.,
Goodman, M.F., Rothemund, P.W.K. and Adleman, L.M.
(1999) ‘A sticker based model for DNA computation’, in
Landweber, L. and Baum, E. (Eds.): 2nd Annual Workshop on
DNA Computing, DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, American Mathematical
Society, Princeton University, pp.1–29.

Shin, S-Y., Zhang, B-T. and Jun, S-S. (1999) ‘Solving traveling
salesman problems using molecular programming’,
Proceedings of the 1999 Congress on Evolutionary
Computation (CEC99), Vol. 2, pp.994–1000.

Sinden, R.R. (1994) DNA Structure and Function, Academic
Press, New York, pp.73–97.

Winfree, E., Liu, F., Wenzler, L.A. and Seeman, N.C. (1998)
‘Design and self-assembly of two-dimensional DNA crystals’,
Nature, Vol. 394, pp.539–544.

