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Abstract: Adleman demonstrated that DNA (Deoxyribonucleic acid) strands  
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path problem (HPP) (Adleman, 1994). The Adleman techniques could also be used to  
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(Lipton, 1995). Furthermore, sticker is used for enhancing the Adleman-Lipton model 
(Roweis et al., 1999). In this paper, we first use sticker to construct solution space of DNA 
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1 INTRODUCTION 

Nowadays, it is possible to produce roughly 1018 DNA 
strands that fit in a test tube through advances in molecular 
biology (Sinden, 1994). Those 1018 DNA strands can be 
applied for representing 1018 bit information. Basic 
biological operations can be used to simultaneously operate 
1018 bit information. This is to say that there are 1018 data 
processors to be parallel executed. Hence, it is very obvious 
that biological computing can provide very huge parallelism 
for dealing with the problem in real world. 

Adleman wrote the first paper in which it was 
demonstrated that DNA (deoxyribonucleic acid) strands 
could be applied for figuring out solutions to an instance of 
the NP-complete Hamiltonian path problem (HPP) 
(Adleman, 1994). Lipton wrote the second paper in which it 
was shown that the Adleman techniques could also be used 
to solving the NP-complete satisfiability (SAT) problem 
(the first NP-complete problem) (Lipton, 1995). Adleman 
and his co-authors proposed sticker for enhancing the 
Adleman-Lipton model (Roweis et al., 1999). 

In this paper, we use sticker to construct solution space of 
DNA library sequences for the 3-dimensional matching 
problem. Simultaneously, we also apply DNA operations in 
the Adleman-Lipton model to develop one DNA algorithm. 
The main result of the proposed DNA algorithm shows that 
the 3-dimensional matching problem is resolved with 
biological operations in the Adleman-Lipton model from 
solution space of sticker. Furthermore, this work represents 
obvious evidence for the ability of DNA-based computing 
to solve the NP-complete problem. 

The rest of this paper is organised as follows. In Section 2, 
the Adleman-Lipton model is introduced in detail and the 
comparison of the model with other models is also given. In 
Section 3, the first DNA algorithm is proposed for solving 
the 3-dimensional matching problem from solution space of 

sticker in the Adleman-Lipton model. In Section 4, the 
experimental result of simulated DNA computing is also 
given. Conclusions are drawn in Section 5. 

2 DNA MODEL OF COMPUTATION 

In subsection 2.1, the summary of DNA structure  
and the Adleman-Lipton model is described in detail.  
In subsection 2.2, the comparison of the Adleman-Lipton 
model with other models is also introduced in detail. 

2.1 The Adleman-Lipton model 

A DNA (deoxyribonucleic acid) is a polymer,  
which is strung together from monomers called 
deoxyribonucleotides (Sinden, 1994; Paun et al., 1998). 
Distinct nucleotides are detected only with their  
bases, which come from adenine, guanine, cytosine, and 
thymine. Those bases are abbreviated as A, G, C, and T, 
respectively. A DNA strand is essentially a sequence 
(polymer) of four types of nucleotides detected by one of 
four bases they contain (Sinden, 1994; Boneh et al., 1996; 
Paun et al., 1998). Two strands of DNA can form  
(under appropriate conditions) a double strand, if the 
respective bases are the Watson-Crick complements of  
each other – A matches T and C matches G; also 3’ end 
matches 5’ end. The length of a single stranded DNA is the 
number of nucleotides comprising the single strand. Thus, if 
a single stranded DNA includes 20 nucleotides, then we say 
that it is a 20-mer (it is a polymer containing 20 monomers). 
The length of a double stranded DNA (where each 
nucleotide is base paired) is counted in the number of base 
pairs. Thus, if we make a double stranded DNA from a 
single stranded 20-mer, then the length of the double 
stranded DNA is 20-base pairs, also written as 20 bp. (More 
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discussion of the relevant biological background refers to 
Sinden, 1994; Boneh et al., 1996; Paun et al., 1998.) 

In the Adleman-Lipton model (Adleman, 1994;  
Lipton, 1995), splints were used to construct to correspond 
to the edges of a particular graph, the paths of which 
represented all possible binary numbers. As it stands, their 
construction indiscriminately builds all splints that lead to a 
complete graph. This is to say that hybridisation has higher 
probabilities of errors. Hence, Adleman and his co-authors 
(Roweis et al., 1999) proposed the sticker-based model, 
which was an abstract model of molecular computing based 
on DNA with a random access memory and a new form of 
encoding the information, to enhancing the Adleman-Lipton 
model. 

The DNA operations proposed by Adleman and  
Lipton, cited from Adleman (1994), Lipton (1995),  
Boneh et al. (1996), and Adleman (1996), are described 
below. These operations will be used for calculating 
solutions of the 3-dimensional matching problem. 
The Adleman-Lipton model: 

A (test) tube is a set of molecules of DNA (i.e., a  
multi-set of finite strings over the alphabet {A, C, G, T}). 
Given a tube, one can perform the following operations: 

• Extract. Given a tube P and a short single strand of 
DNA, S, produce two tubes +(P, S) and −(P, S), where 
+(P, S) is all of the molecules of DNA in P which 
contain the short strand S and −(P, S) is all of the 
molecules of DNA in P which do not contain the short 
strand S. 

• Merge. Given tubes P1 and P2, yield ∪(P1, P2), where 
∪(P1, P2) = P1 ∪ P2. This operation is to pour two tubes 
into one, with no change of the individual strands. 

• Detect. Given a tube P, say ‘yes’ if P includes at least 
one DNA molecule, and say ‘no’ if it contains none. 

• Append. Given a tube P and a short strand of DNA, Z, 
the operation will append the short strand, Z, onto the 
end of every strand in the tube P. 

• Discard. Given a tube P, the operation will discard the 
tube P. 

• Read. Given a tube P, the operation is used to describe 
a single molecule, which is contained in the tube P. 
Even if P contains many different molecules each 
encoding a different set of bases, the operation can give 
an explicit description of exactly one of them. 

2.2 Other related work and comparison with the 
Adleman-Lipton model 

Techniques in the Adleman-Lipton model could be  
used to solve the NP-complete Hamiltonian path  
problem and satisfiability (SAT) problem in linearly 
increasing time and exponentially increasing volumes of 
DNA (Adleman, 1994; Lipton, 1995). Quyang et al. (1997) 
showed that restriction enzymes could be used to solve the 
NP-complete clique problem (MCP). The maximum number 
of vertices that they can process is limited to 27 because the 
size of the pool with the size of the problem exponentially 
increases (Quyang et al., 1997). 

Arita et al. (1997) described new molecular  
experimental techniques for searching a Hamiltonian path. 
Morimoto et al. (1999) offered a solid-phase method to 
finding a Hamiltonian path. Narayanan and Zorbala (1998) 
proved that the Adleman-Lipton model was  
extended towards solving the travelling salesman problem. 
Shin et al. (1999) presented an encoding scheme that applies 
fixed-length codes for representing integer and real values. 
Their method could also be employed towards solving the 
travelling salesman problem. Amos (1997) proposed 
parallel filtering model for resolving the Hamiltonian  
path problem, the sub-graph isomorphism problem, the  
3-vertex-colourability problem, the clique problem, and the 
independent-set problem. 

Roweis et al. (1999) proposed sticker-based model  
to enhance the Adleman-Lipton model. Their model could 
be used for determining solutions to an instance of the  
set cover problem. Perez-Jimenez and Sancho-Caparrini 
(2001) employed sticker-based model (Roweis et al., 1999) 
to resolve knapsack problems. Fu (1997) proposed new 
algorithms to resolve 3-SAT, 3-coloring, and the 
independent set. Winfree’s self-assembling reactions for 
tiling fault tolerance in error-preventing codes and  
self-control of non-determinism and molecule formation and 
reaction efficiency were proposed in Winfree et al. (1998). 
Garzon and Deaton (1999). presented a review of the most 
important advances in molecular computing. In our  
previous work, Chang and Guo (2002a, 2002b) proved how 
the DNA operations from solution space of splint in the 
Adleman-Lipton model could be employed for developing 
DNA algorithms. Those DNA algorithms could be applied 
for resolving the dominating-set problem, the vertex cover 
problem, the clique problem, the independent-set problem, 
the 3-dimensional matching problem, and the set-packing 
problem. In our previous work, Chang et al., (2003) also 
employed the sticker-based model and the Adleman-Lipton 
model to deal with the dominating-set problem for 
decreasing error rate of hybridisation. 

3 USING STICKER FOR SOLVING THE  
3-DIMENSIONAL MATCHING PROBLEM IN THE 
ADLEMAN-LIPTON MODEL 

In subsection 3.1, the summary of the 3-dimensional 
matching problem is described. Applying sticker to 
constructing solution space of DNA sequences for the  
3-dimensional matching problem is introduced in  
subsection 3.2. In subsection 3.3, one DNA algorithm is 
proposed to resolve the 3-dimensional matching problem.  
In subsection 3.4, the complexity of the proposed algorithm 
is described. 

3.1 Definition of the 3-dimensional matching problem 

Assume that W, X, and Y are disjoint sets having the same 
number q of elements. Suppose that W, X, and Y are 
{w1, … wq}, {x1, …, xq} and {y1, …, yq}, respectively. 
Assume that a finite set C ⊆ W × X × Y and C is  
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{(wk, xl, ym)| wk ∈ W, xl ∈ X, and ym ∈ Y for q ≥ k, l, and 
m ≥ 1}. Assume that |C| denotes the number of elements in 
C and |C| ≥ t, where t is a positive integer. A 3-dimensional 
matching for C is a subset C1 ⊆ C with |C1| ≤ t such that no 
two elements of C1 agree in any coordinate (Cormen  
et al., 2003; Garey and Johnson, 1979). The 3-dimensional 
matching problem is to find a minimum-size 3-dimensional 
matching for C. The problem has been proved to be an  
NP-complete problem (Garey and Johnson, 1979). 

The 3-dimensional matching problem asks: Given four 
finite sets above, how many elements are in a minimum-size 
3-dimensional matching? In Figure 1, three finite sets W, X, 
and Y are {1, 2}, {3, 4} and {5, 6}, respectively, and a finite 
set C ⊆ W × X × Y and C = {(1, 3, 5), (2, 4, 6), (1, 4, 6)}. 
The four sets, W, X, Y, and C denote such a problem. The 
minimum-size 3-dimensional matching for C is {(1, 3, 5),  
(2, 4, 6)}. Hence, the size of the 3-dimensional matching 
problem in Figure 1 is two. It is indicated from Garey and 
Johnson (1979) that finding a minimum-size 3-dimensional 
matching is an NP-complete problem, so it can be 
formulated as a ‘search’ problem. 

 
Figure 1   The finite sets of our problem 

3.2 Using sticker for constructing solution space of 
DNA sequence for the 3-dimensional matching 
problem 

In the Adleman-Lipton model, their main idea is to first 
generate solution space of DNA sequences for those 
problems resolved. Then, basic biological operations are 
used to remove illegal solution and find legal solution from 
solution space. Therefore, the first step of resolving the  
3-dimensional matching problem is to produce a test tube, 
which contains all of the possible 3-dimensional matching. 
Assume that a set Cd with {wk, xl, ym} is a subset in C and it 
only contains three order elements. The first, second, and 
third elements in Cd come from W, X, and Y, respectively. 
Therefore, the finite set C can be regarded as a collection of 
subsets of three order elements, and C can be represented as 
{C1, …, CB}, where Cd is {(wk, xl, ym)| wk ∈ W, xl ∈ X, and 
ym ∈ Y for q ≥ k, l, and m ≥ 1} for B ≥ d ≥ 1. 

Suppose that a B-digit binary number represents all 
possible 2B choices for subsets of three order elements. Also 
assume that 3 × B one-digit binary numbers represent 3×B 
elements in the subsets in C. Suppose that the (3 × d)th, 
(3 × d + 1)th and (3 × d + 2)th one-digit binary numbers, 
respectively, correspond to the first element, the second 
element and the third element in the subset Cd for B ≥ d ≥ 1. 
That is to say that the three order elements in the subset Cd 
are represented with three continuous bits. Suppose that C1 
is 3-dimensional matching for C. If the dth bit in B bits is set 
to 0, then it represents the corresponding subset out of C1 
and the three order elements in the subset are excluded from 
C1. That is to say that the (3 × d)th, (3 × d + 1)th, and 
(3 × d + 2)th one-digit binary numbers are not appended 

onto the tail of those binary numbers, containing the value 0 
of the dth bit. If the dth bit in B bits is set to 1, then it 
represents the corresponding subset in C1 and the three 
order elements in the subset are included in C1. Therefore, it 
is very obvious that the (3 × d)th, (3 × d + 1)th and 
(3 × d + 2)th one-digit binary numbers, subsequently, are 
appended onto the tail of those binary numbers, containing 
the value 1 of the dth bit. 

To implement this way, it is assumed that a B-bit  
binary number Z is represented as a binary number 
z1, …, zB, where the value of zj is 1 or 0 for 1 ≤ j ≤ B. A bit zj 
is the jth bit in a B-bit binary number Z and it represents the 
jth subset in C. Assume that 3 × q one-digit binary numbers 
are, subsequently, w1, …, wq, x1, …, xq and y1, …, yq, where 
q ≥ B. Assume that wk, xl and ym represent the kth element in 
W, the lth element in X, and the mth element in Y, 
respectively. A B-bit binary number Z includes all possible 
2B choices of subsets. Each choice of subsets corresponds to 
a possible 3-dimensional matching. If the value of zj is set to 
1 and the corresponding subset consists of three order 
elements wk, xl, and ym, then the value 1 for the three bits is, 
subsequently, appended onto the tail of those binary 
number, including the value 1 of the jth bit. 

Consider the four finite sets in Figure 1. Three subsets, C3, 
C2, and C1 represent {1, 3, 5}, {2, 4, 6} and {1, 4, 6}, 
respectively, for C. Table 1 denotes solution space of  
3-dimensional matching for the four finite sets in Figure 1. 
In Table 1, the binary number, 000, indicates that the 
corresponding 3-dimensional matching is empty. In Table 1, 
the binary numbers, 001, 010, and 011, represent that those 
corresponding 3-dimensional matching are {C3}, {C2}, and 
{C2, C3}, respectively. The binary numbers, 100, 101, and 
110, in Table 1 represent that those corresponding  
3-dimensional matching, subsequently, are {C1}, {C1, C3}, 
and {C1, C2}. In Table 1, the binary number, 111, represents 
that the corresponding 3-dimensional matching is  
{C1, C2, C3}. Though there are eight 3-digit binary  
numbers for representing eight possible 3-dimensional 
matching in Table 1, not every 3-digit binary number 
corresponds to a legal solution. Hence, in the following 
subsection, basic biological operations are used to develop 
an algorithm for removing illegal solutions and determining 
legal answers. 

Table 1   The solution space for the four finite sets in  
Figure 1 

3-digit binary 
number 

The corresponding 3-dimensional 
matching 

000 ∅ 

001 {C3} 

010 {C2} 

011 {C2, C3} 

100 {C1} 

101 {C1, C3} 

110 {C1, C2} 

111 {C1, C2, C3} 
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To represent all possible 3-dimensional matching for  
the 3-dimensional matching problem, sticker (Roweis 
et al., 1999; Braich et al., 2000) is used to construct solution 
space for that problem resolved. For every bit zj representing 
the jth subset in C, two distinct 15 base value sequences 
were designed. One represents the value ‘1’ of zj and 
another represents the value ‘1’ of zj. For the sake of 
convenience of presentation, assume that zj

1 denotes the 
value of zj to be 1 and zj

0
 defines the value of zj to be zero. 

Similarly, for every bit wk, xl, and ym representing the kth, 
lth, and mth elements in W, X and Y, two distinct 15  
base value sequences were also designed. One represents 
the value, 1, for wk, xl, and ym and another represents the  
value, 0, to wk, xl, and ym. For the sake of convenience of 
presentation, assume that wk

1, xl
1, and ym

1 denote the value 
of wk, xl, and ym to be 1 and wk

0, xl
0, and ym

0 define the  
value of wk, xl, and ym to be zero. 

Each of the 2B possible 3-dimensional matching was 
represented by a library sequence of 15 × (B + 3 × q) bases 
consisting of the concatenation of one value sequence for 
each bit. DNA molecules with library sequences are termed 
library strands and a combinatorial pool containing library 
strands is termed a library. The probes used for separating 
the library strands have sequences complementary to the 
value sequences. 

Errors in the separation of the library strands are errors in 
the computation (Roweis et al., 1999; Braich et al., 2000). 
Sequences must be designed to ensure that library strands 
have little secondary structure that might inhibit intended 
probe-library hybridisation. The design must also exclude 
sequences that might encourage unintended probe-library 
hybridisation. To help achieve these goals, sequences were 
computer-generated to satisfy the following constraint 
(Braich et al., 2000). 

1 library sequences contain only As, Ts, and Cs 
2 all library and probe sequences have no occurrence of 

more  consecutive identical nucleotides 
3 every probe sequence has at least four mismatches  

with all 15 base alignment of any library sequence 
(except for with its matching value sequence) 

4 every 15 base subsequence of a library sequence has at 
least 4 mismatches with all 15 base alignment of itself 
or any other library sequence 

5 no probe sequence has a run of more than 7 matches 
with any 8 base alignment of any library sequence 
(except for with its matching value sequence) 

6 no library sequence has a run of more than 7 matches 
with any 8 base alignments of itself or any other library 
sequence 

7 every probe sequence has 4, 5, or 6, Gs in its sequence. 

Constraint (1) is motivated by the assumption that library 
strands composed only of As, Ts, and Cs will have less 
secondary structure than those composed of As, Ts, Cs, and 
Gs (Mir, 1998). Constraint (2) is motivated by two 
assumptions: first, that long homopolymer tracts may have 
unusual secondary structure and second, that the melting 
temperatures of probe-library hybrids will be more uniform 

if none of the probe-library hybrids involve long 
homopolymer tracts. Constraints (3) and (5) are intended to 
ensure that probes bind only weakly where they are not 
intended to bind. Constraints (4) and (6) are intended to 
ensure that library strands have a low affinity for 
themselves. Constraint (7) is intended to ensure that 
intended probe-library pairings have uniform melting 
temperatures. 

The Adleman program (Braich et al., 2000) was  
modified for generating those DNA sequences to  
satisfying the constraints above. For example, for 
representing the three subsets in C in Figure 1, the DNA 
sequences generated were: z1

0 = AATTCACAAACAATT, 
z2

0 = ACTCCTTCCCTACTC, z3
0 = TCTCTCTCTAATCAT, 

z1
1 = TCTCCCTATTTATTT, z2

1 = TCACCAAACCTAAAA, 
and z3

1 = CCATCATCTACCTTA. Similarly, for representing 
every element in W, X, and Y in Figure 1, the DNA 
sequences generated were: w1

0 = ACTCACATACACCAC, 
w2

0 = CTTCTCCACTATACT, x1
0 = AAACTATCATACTTC, 

x2
0 = TTCAATAAACATTTT, y1

0 = TTTTTCTCTCCCAAA, 
y2

0 = TTTACCCTACTATCA, w1
1 = CAACCTATTATCTTA, 

w2
1 = CCTAAATCTCCAATA, x1

1 = CTCTCAACAATCAAA, 
x2

1 = ACCTCCTTAACACTT, y1
1 = CCCTATCACTAATAC 

and y2
1 = TATAACCCATCCATA. For every possible  

3-dimensional matching to C in Figure 1, the corresponding 
library strand was synthesized by employing a mix-and-split 
combinatorial synthesis technique (Cukras et al., 1998). 
Similarly, for any n-subset set, all of the library strands for 
representing every possible 3-dimensional matching could 
be also synthesised with the same technique. 

3.3 The DNA algorithm of solving the 3-dimensional 
matching problem 

The following DNA algorithm is proposed to solve the  
3-dimensional matching problem. 

Algorithm 1: Solving the 3-dimensional matching problem. 
(1) Input (T0), where the tube T0 is to encode all 
possible 2B choices of subsets of three order 
elements for three finite sets W = {w1 ,…, wq}, 
X = {x1 ,…, xq}, and Y = {y1 ,…, yq} and a 
collection C = {C1 ,…, CB}, where Cd = {(wk, xl, 
ym)|wk ∈ W, xl ∈ X, and ym ∈ Y for q ≥ k, l, and 
m ≥ 1} for B ≥ d ≥ 1. 

(2) Forall i = 1 to B, where B is the number of subsets 
in C. 

(2a) TON = +(T0, zi
1) and TOFF = −(T0, zi

1). 

Assume that (wk, xl, ym) is the element in the 
subset, Ci. 

(2b) TBAD = +(TON, wk
1) and TON = −(TON, wk

1). 
(2c) Discard the tube TBAD. 
(2d) Append(TON, wk

1). 
(2e) TBAD = +(TON, xl

1) and TON = −(TON, xl
1). 

(2f) Discard the tube TBAD. 
(2g) Append(TON, xl

1). 
(2h) TBAD = +(TON, ym

1) and TON = −(TON, ym
1). 

(2i) Discard the tube TBAD. 
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(2j) Append(TON, ym
1). 

(2k) T0 = ∪(TON , TOFF). 
End Forall 
(3) Forall j = 1 to q 

(3a) T0 = +(T0, wj
1) and TBAD = −(T0, wj

1). 
(3b) Discard the tube TBAD. 
(3c) T0 = +(T0, xj

1) and TBAD = −(T0, xj
1). 

(3d) Discard the tube TBAD. 
(3e) T0 = +(T0, yj

1) and TBAD = −(T0, yj
1). 

(3f) Discard the tube TBAD. 
End Forall 

(4) Forall i = 0 to B – 1 
For j = i down to 0 

(a) Tj+1
ON = +(Tj, zi+1

1) and Tj = −(Tj, zi+1
1). 

(b) Tj+1 = ∪(Tj+1, Tj+1
ON ). 

EndFor 
End Forall 
(5) For d = 1 to B 

(a) If (detect (Td) = 'yes') then 
(b) Read (Td) and terminate 

the algorithm. 
EndIf 

End For 

Theorem 3-1: In light of those steps in Algorithm 1, the  
3-dimensional matching problem for finite sets W, X, and Y 
and B-subset set C can be resolved. 

Proof: A test tube of DNA strands, which represent all 
possible 2B input bit sequences z1, …, zB, is yielded in  
Step (1). It is very obvious that the test tube contains all 
possible 2B choices of 3-dimensional matching. 

From definition of 3-dimensional matching (Garey and 
Johnson, 1979), Step (2) will be executed B times for 
representing three order elements in each subset. The first 
execution of Step (2a) uses ‘extraction’ operation to form 
two test tubes: TON and TOFF. The first tube TON consists of 
all of the strands that have zi = 1. That is to say that the first 
subset occurs in the tube TON. The second tube TOFF consists 
of all of the strands that have zi = 0. This is to say that the 
first subset does not appear in the tube TOFF. Obviously, 
from the definition of 3-dimensional matching, the number 
of order elements in each subset in C is all three. The first, 
second, and three elements are from W, X, and Y, 
respectively. Therefore, Steps (2b) to (2j) are used to 
represent all of three order elements in each subset. The first 
execution of Step (2b) applies ‘extraction’ operation to 
generate two tubes: TBAD and TON. The first tube TBAD 
includes all of the strands that have wk = 1. That is to say 
that the first element in the first subset appears repeatedly in 
other subsets in the tube TBAD. From the definition of  
3-dimensional matching (Garey and Johnson, 1979), the 
first tube TBAD includes illegal choices of 3-dimensional 
matching. Hence, the first tube TBAD is discarded in Step 
(2c). The second tube TON includes all of the strands that 
have wk = 0. That is to say that the first element in the first 
subset does not occur in the tube TON. Step (2d) uses 
‘append’ operation to append the short strand, wk

1, 

representing the first element in the first subset, onto the end 
of every strand in the tube TON. Hence, the tube TON now 
contains the first element in the first subset. Similarly, the 
first execution of Step (2e) applies ‘extraction’ operation to 
generate two tubes: TBAD and TON. The first tube TBAD 
includes all of the strands that have xl = 1. That is to say that 
the second element in the first subset appears repeatedly in 
other subsets in the tube TBAD. Due to definition of  
3-dimensional matching, the first tube TBAD includes illegal 
choices of 3-dimensional matching. Hence, the first tube 
TBAD is discarded in Step (2f). The second tube TON includes 
all of the strands that have xl = 0. That is to say that the 
second element in the first subset does not occur in the tube 
TON. From the definition of 3-dimensional matching, Step 
(2g) uses ‘append’ operation to append the short strand, xl

1, 
representing the second element in the first subset, onto the 
end of every strand in the tube TON. Hence, the tube TON 
now contains the second element in the first subset. Then, 
the first execution of Step (2h) applies ‘extraction’ operation 
to generate two tubes: TBAD and TON. The first tube TBAD 
includes all of the strands that have ym = 1. That is to say 
that the third element in the first subset occurs repeatedly in 
other subsets in the tube TBAD. It is indicated from the 
definition of 3-dimensional matching that the first tube TBAD 
includes illegal choices of 3-dimensional matching. Hence, 
the first tube TBAD is discarded in Step (2i). The second tube 
TON includes all of the strands that have ym = 0. That is to 
say that the third element in the first subset does not occur 
in the tube TON. Because of definition of 3-dimensional 
matching, Step (2j) uses ‘append’ operation to append the 
short strand, ym

1, representing the third element in the first 
subset, onto the end of every strand in the tube TON. Thus, 
the tube TON now contains the third element in the first 
subset. This is to say that all of the elements in the first 
subset are included in TON. Therefore, the first execution of 
Step (2k) applies ‘merge’ operation to pour two tubes TON 
and TOFF into the tube T0. The tube T0 includes every 
element in the first subset. Similarly, after other (B – 1) 
times to Step (2) are executed, every order element in each 
subset is represented in the corresponding DNA sequences 
in the tube T0. 

Step (3) is used for checking whether DNA strands in the 
tube T0 exactly represent every element in finite sets W, X, 
and Y. Since the number of elements in finite sets W, X, and 
Y is all q, Step (3) will be executed q times for finding 
correct choices of 3-dimensional matching. The first 
execution of Step (3a) applies ‘extraction’ operation to 
check which subsets include the first element in W and 
which subsets do not contain the first element in W. 
Therefore, two tubes are generated. The second tube TBAD 
includes illegal choices of subsets and therefore the tube 
TBAD is discarded in Step (3b). Similarly, the first execution 
of Step (3c) applies ‘extraction’ operation to check which 
subsets contain the first element in X and which subsets do 
not consist of the first element in X. Two tubes are 
generated. The second tube TBAD includes illegal choices of 
subsets and therefore the tube TBAD is discarded in Step (3d). 
Then, the first execution of Step (3e) applies ‘extraction’ 
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operation to check which subsets consists of the first 
element in Y and which subsets do not include the first 
element in Y. Two tubes are generated. Due to the definition 
of 3-dimensional matching, the second tube TBAD includes 
illegal choices of subsets and therefore the tube TBAD is 
discarded in Step (3f). Similarly, after other (q – 1) times for 
Step (3) are executed, every element in W, X, and Y is 
represented in the corresponding DNA sequences in the tube 
T0. That is to say that the remaining DNA strands in the tube 
T0 represent legal choices of 3-dimensional matching. 

When each time of the outer loop in Step (4) is executed, 
the number of execution for the inner loop is (i + 1) times. 
At the first execution of the outer loop, the inner loop is 
only executed one time. Therefore, Steps (4a) and (4b) are 
executed one time. Step (4a) uses ‘extraction’ operation to 
form two test tubes: T1

ON and T0. The first tube T1
ON 

contains all of the strands that have z1 = 1. The second tube 
T0 consists of all of the strands that have z1 = 0. That is to 
say that the first tube encodes every 3-dimensional matching 
with the first subset in C and the second tube represents 
every 3-dimensional matching without the first subset in C. 
Then, Step (4b) applies ‘merge’ operation to pour the tube 
T1

ON into the tube T1. After repeat to execute Steps (4a) and 
(4b), it finally produces B new tubes. The tube Td for 
B ≥ d ≥ 1 encodes those DNA strands that contain d subsets. 

Because the 3-dimensional matching problem is to find a 
minimum-size 3-dimensional matching, the tube T1 first is 
detected with ‘detection’ operation in Step (5a). If it returns 
‘yes’, then the tube T1 contains minimum-size  
3-dimensional matching. Therefore, Step (5b) uses ‘read’ 
operation for describing ‘sequence’ of a molecular in the 
tube T1 and terminating the algorithm. Otherwise, repeat to 
execute Step (5a) until a minimum-size 3-dimensional 
matching is found in the tube detected. 

The sets in Figure 1 can be applied for showing the power 
of Algorithm 1. In Figure 1, three finite sets W, X, and Y are 
{1, 2}, {3, 4}, and {5, 6}, respectively. A finite set 
C ⊆ W × X × Y and C = {(1, 3, 5), (2, 4, 6), (1, 4, 6)}. Every 
triple element in C can be regarded as a 3-order-element 
subset. Therefore, the finite set C can be regarded as a 
collection of subsets of three order elements. Assume that 
the collection C is {C1, C2, C3}, where C1, C2 and C3 are  
{1, 3, 5}, {2, 4, 6}, and {1, 4, 6}, respectively. From Step 
(1) in Algorithm 1, the tube T0 is filled with eight library 
stands with those techniques mentioned in subsection 3.2, 
representing eight possible 3-dimensional matching for  
W, X, Y, and C. 

Because the number of the subsets in the collection C is 
three, the number of execution to Step (2) of Algorithm 1 is 
three times. At the first execution of Step (2a) in  
Algorithm 1, two tubes are yielded. The first tube, TON, 
includes the numbers 1** (* can be either 1 or 0). The 
second tube, TOFF, contains the numbers 0**. That is to say 
that the first tube, TON, includes {C1}, {C1, C3}, {C1, C2}, 
and {C1, C2, C3} and the second tube, TOFF, contains Φ, 
{C3}, {C2}, and {C2, C3}. Due to the first execution to  
Step (2b) of Algorithm 1, two tubes are generated. The first 
tube, TBAD, contains all of the strands that have w1 =1. That 

is to say that the first element, 1, in C1 appears repeatedly in  
the tube TBAD. It is indicated from the definition of  
3-dimensional matching that the tube TBAD includes illegal 
choices. Therefore, the tube TBAD is discarded in Step (2c). 
The second tube TON contains all of the strands that have 
w1 = 0. This is to say that the first element, 1, in C1 does not 
occur in the tube TON. Step (2d) of Algorithm 2 uses 
‘append’ operation to append DNA sequences of 
representing 1 onto the tube TON. The tube TON now contains 
the first element in C1. This is to say that the tube TON 
consists of the strands representing those bit strings: 
1001(w1 = 1), 1011(w1 = 1), 1101(w1 = 1) and 1111(w1 = 1). 

Similarly, the first execution of Step (2e) applies 
‘extraction’ operation to generate two tubes: TBAD and TON. 
The first tube TBAD includes all of the strands that have 
x1 = 1. That is to say that the second element, 3, in C1 
appears repeatedly in other subsets in the tube TBAD. The 
first tube TBAD includes illegal choices. Hence, the first tube 
TBAD is discarded in Step (2f). The second tube TON includes 
all of the strands that have x1 = 0. That is to say that the 
second element, 3, in C1 does not occur in the tube TON. Step 
(2g) uses ‘append’ operation to append DNA sequences of 
representing 3 onto the end of every strand in the tube TON. 
The tube TON now contains also the second element in C1. 
That is to say that the tube TON contains the strands 
representing those bit strings: 10011(w1 = 1)(x1 = 1), 
10111(w1 = 1)(x1 = 1), 11011(w1 = 1)(x1 = 1) and 11111 
(w1 = 1)(x1 = 1). 

Then, the first execution of Step (2h) applies ‘extraction’ 
operation to generate two tubes: TBAD and TON. The first tube 
TBAD includes all of the strands that have y1 = 1. That is to 
say that the third element, 5, in C1 appears repeatedly in 
other subsets in the tube TBAD. That is to say, the first tube 
TBAD includes illegal choices. Thus, the first tube TBAD is 
discarded in Step (2i). The second tube TON includes all of 
the strands that have y1 = 0. That is to say that the third 
element, 5, in C1 does not occur in the tube TON. Step (2j) 
uses ‘append’ operation to append DNA sequences of 
representing 5 onto the end of every strand in the tube TON. 
The tube TON now contains the third element in C1. This is 
to say that the tube TON includes the strands representing 
those bit strings: 100111(w1 = 1)(x1 = 1)(y1 = 1), 101111 
(w1 = 1)(x1 = 1)(y1 = 1), 110111(w1=1)(x1=1)(y1=1), and 
111111(w1=1)(x1=1)(y1=1). Then, the first execution of  
Step (2k) applies ‘merge’ operation to pour two tubes  
TON and TOFF into the tube T0. The tube T0 now includes  
the strands representing those bit strings: 000, 001, 010, 
011, 100111(w1 = 1)(x1 = 1)(y1 = 1), 101111(w1 = 1)(x1 = 1) 
(y1 = 1), 110111(w1 = 1)(x1 = 1)(y1 = 1),and 111111(w1 = 1) 
(x1 = 1)(y1 = 1). Similarly, after other two times to  
Step (2) are executed, the tube T0 contains the strands 
representing those bit strings: 000, 001111(w1 = 1)(x2 = 1) 
(y2 = 1), 010111(w2 = 1)(x2 = 1)(y2 = 1), 100111(w1 = 1) 
(x1 = 1)(y1 = 1), and 110111111(w1 = 1)(x1 = 1)(y1 = 1) 
(w2 = 1)(x2 = 1)(y2 = 1). 

From the definition of 3-dimensional matching,  
finding a 3-dimensional matching for W, X, Y, and C is to 
check whether every element in W, X, and Y appears  
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exactly in chosen subsets. Because the number of the 
elements in W, X, and Y is all 2, Step (3) of Algorithm 1 will 
be executed two times. The first execution of Step (3a) in 
Algorithm 1 results in that two tubes are generated.  
The first tube T0 contains those bit strings: 
001111(w1 = 1)(x2 = 1)(y2 = 1), 100111(w1 = 1)(x1 = 1)(y1 = 1), 
and 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). 
The second tube TBAD includes these bit strings: 000  
and 010111(w2 = 1)(x2 = 1)(y2 = 1). This is to imply that  
3-dimensional matching in the second tube TBAD is all illegal 
choices. Therefore, Step (3b) is used to discard the second 
tube TBAD. Similarly, The first execution of Step (3c) in 
Algorithm 1 indicates that two tubes are produced. The first 
tube T0 contains those bit strings: 100111(w1 = 1)(x1 = 1) 
(y1 = 1) and 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1) 
(x2 = 1)(y2 = 1). The second tube TBAD consists of the bit 
string: 001111(w1 = 1)(x2 = 1)(y2 = 1). That is to say that  
3-dimensional matching in the second tube TBAD is an illegal 
choice. Therefore, Step (3d) is used to discard the second 
tube TBAD. Similarly, the first execution of Step (3e) in 
Algorithm 1 represents that two tubes are yielded. The first 
tube T0 includes 100111(w1 = 1)(x1 = 1)(y1 = 1) and 
110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The 
second tube TBAD does not consists of any bit string. Step 
(3f) is used to discard the second tube TBAD. The similar 
processing can be applied to deal with the second element in 
W, X, Y. After all of operations in Step (3) are processed,  
the remaining strands in the tube T0 represent legal  
3-dimensional matching, 110111111(w1 = 1)(x1 = 1)(y1 = 1) 
(w2 = 1)(x2 = 1)(y2 = 1). 

The first execution of Step (4a) in Algorithm 1 applies 
‘extraction’ operation to produce two tubes, T1

ON and T0. 
The tube T1

ON contains the bit string, 110111111(w1 = 1) 
(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The tube T0 does not 
include any bit string. Step (4b) applies ‘merge’ operation to 
pour the tube T1

ON into the tube T1. The tube T1 includes the 
bit string, 110111111(w1 = 1)(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1) 
(y2 = 1), representing a 3-dimensional matching, {C1, C2}. 
After repeat to execute Steps (4a) and (4b), it finally 
produces three new tubes. The new tube Td for 3 ≥ d ≥ 1 
encodes the 3-dimensional matching that contains d subsets. 
The tube T2 contains the bit string, 110111111(w1 = 1) 
(x1 = 1)(y1 = 1)(w2 = 1)(x2 = 1)(y2 = 1). The tubes T1 and T3 
do not include any bit string. 

The 3-dimensional matching problem is to find a 
minimum-size 3-dimensional matching. Therefore,  
Step (5) is used to find a minimum-size 3-dimensional 
matching. Because the number of the element in C is  
three, Step (5a) at most will be executed three times. When 
the first time of Step (5a) is executed, the tube T1 is  
first detected with ‘detection’ operation. ‘Detection’ 
operation for the tube T1 returns ‘no’. That is to say that the 
tube T1 does not contains a minimum-size 3-dimensional 
matching. Next, the second time of Step (5a) is executed, 
the tube T2 is detected with ‘detection’ operation. 
‘Detection’ operation for the tube T2 returns ‘yes’. 
Therefore, Step (5b) applies ‘read’ operation to describe 
‘sequence’ of a molecular in the tube T2 and terminates the 

algorithm. A minimum-size 3-dimensional matching is 
found to be {(1, 3, 5), {2, 4, 6}}. 

3.4 The complexity of the proposed DNA algorithm 

The following theorems describe time complexity of 
Algorithm 1, volume complexity of solution space in 
Algorithm 1, the number of the tubes used in Algorithm 1, 
and the longest library strand in solution space in  
Algorithm 1. 

Theorem 3-2: Suppose that W, X, and Y are disjoint  
sets which have the same number q of elements. Assume that 
W, X, and Y are {w1, …, wq}, {x1, …, xq}, and {y1, …, yq}, 
respectively. Suppose that C ⊆ W × X × Y and C is 
{C1, …, CB} where Cd is {wk, xl, ym| wk ∈ W, xl ∈ X, and 
ym ∈ Y for q ≥  k, l, and m ≥  1} for 1 ≤ d ≤ B. The  
3-dimensional matching problem for W, X, Y and C can be 
resolved with O(B2) biological operations in the  
Adleman-Lipton model. 

Proof: Algorithm 1 can be applied for solving the  
3-dimensional matching problem for any B-subset set C. 
Algorithm 1 includes four main steps. Step 2 is mainly used 
to construct DNA sequences for every element in each 
subset in C and to remove illegal library strands from all of 
the 2B possible library strands. From Algorithm 1, it is very 
obvious that Step (2a) to Step (2k) totally take 4×B 
‘extraction’ operations, 3×B ‘discard’ operations, 3×B 
‘append’ operations and B ‘merge’ operations. Step (3) is 
mainly applied to check which library strands exactly 
include every element in W, X, and Y. It is indicated from 
Algorithm 1 that Step (3a) to Step (3f) take 3×B ‘extraction’ 
operations and 3×B ‘discard’ operations. Step (4) is mainly 
applied to figure out the number of element in every legal  
3-dimensional matching. Algorithm 1 indicates that Step 
(4a) takes (B ×( B – 1)/2) ‘extraction’ operations and Step 
(4b) takes (B × (B – 1)/2) ‘merge’ operations. Step 5 is used 
to find a minimum-size 3-dimensional matching from legal  
3-dimensional matching. According to Algorithm 1, Step 
(5a) at most takes B ‘detection’ operations and Step (5b) 
takes one ‘read’ operation. Hence, from the statements 
mentioned above, it is at once inferred that the time 
complexity of Algorithm 1 is O(B2) biological operations in 
the Adleman-Lipton model.  

Theorem 3-3: Suppose that W, X, and Y are disjoint sets 
which have the same number q of elements. Assume that W, 
X, and Y are {w1, …, wq}, {x1, …, xq}, and {y1, …, yq}, 
respectively. Suppose that C ⊆ W × X × Y and C is 
{C1, …, CB} where Cd is {wk, xl, ym|wk ∈ W, xl ∈ X, and 
ym ∈ Y for q ≥  k, l, and m ≥ 1} for 1 ≤ d ≤ B. The  
3-dimensional matching problem for W, X, Y and C can be 
resolved with O(2B) library strands in the Adleman-Lipton 
model. 

Proof: Refer to Theorem 3-2.  

Theorem 3-4: Suppose that W, X, and Y are  
disjoint sets that have the same number q of elements. 
Assume that W, X, and Y are {w1, …, wq}, {x1, …, xq}, 
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 and {y1, …, yq}, respectively. Suppose that C ⊆ W × X × Y 
and C is {C1, …, CB} where Cd is {wk, xl, ym| wk ∈ W, xl ∈ X, 
and ym ∈ Y for q ≥ k, l, and m ≥ 1} for 1 ≤ d ≤ B.  
The 3-dimensional matching problem for W, X, Y and  
C can be resolved with O(B) tubes in the Adleman-Lipton 
model. 

Proof: Refer to Theorem 3-2.  

Theorem 3-5: Suppose that W, X, and Y are  
disjoint sets which have the same number q of 
 elements. Assume that W, X, and Y are {w1, …, wq}, 
{x1, …, xq}, and {y1, …, yq}, respectively. Suppose  
that C⊆W × X × Y and C is {C1, …, CB} where Cd is  
{wk, xl, ym| wk∈W, xl∈ X, and ym∈Y for q ≥  k, l, and m ≥  1} 
for 1 ≤ d ≤ B. The 3-dimensional matching problem  
for W, X, Y and C can be resolved with the longest  
library strand, O(15×B + 15×3×q), in the Adleman-Lipton 
model. 

Proof: Refer to Theorem 3-2.  

4 EXPERIMENTAL RESULTS OF SIMULATED DNA 
COMPUTING 

We finished the modification of the Adleman program 
(Braich et al., 2000) in a PC with one Pentium(R) 4 and 
128 MB main memory. Our operating system is Window 98 
and our compiler is C++ Builder 6.0. This program 
modified was applied to generate DNA sequences for 
solving the 3-dimensional matching problem. Because the 
source code of the two functions srand48() and drand48() 
was not found in the original Adleman program, we used 
the standard function srand() in C++ builder 6.0 to replace 
the function srand48() and added the source code to the 
function drand48(). We also added subroutines to the 
Adleman program for simulating biological operations in 
the Adleman-Lipton model in Section 2. We added 
subroutines to the Adleman program to simulating 
Algorithm 1 in subsection 3.3. 

The Adleman program is used to constructing each  
15-base DNA sequence for each bit of the library. For each 
bit, the program is applied for generating two 15-base 
random sequences (for the ‘1’ and the ‘0’) and checking to 
see if the library strands satisfy the seven constraints in 
subsection 3.2 with the new DNA sequences added. If the 
constraints are satisfied, the new DNA sequences are 
‘greedily’ accepted. If the constraints are not satisfied,  
then mutations are introduced one by one into the new block 
until either: (A) the constraints are satisfied and the  
new DNA sequences are then accepted or (B) a threshold 
for the number of mutations is exceeded and the  
program has failed and so it exits, printing the sequence 
found so far. If (B + 3 × q)-bits that satisfy the constraints 
are found then the program has succeeded and it outputs 
these sequences. 

 
 

Consider those sets W, X, Y and C in Figure 1. The set, C, 
includes three subsets: C1, C2, and C3. The sets W, X, and Y 
are {1, 2}, {3, 4}, and {5, 6}, respectively. DNA sequences 
generated by the Adleman program modified were shown in 
Table 2. The program took one mutation and two mutations 
to make new DNA sequences for the front six elements and 
the last three elements. With the nearest neighbour 
parameters, the program was used to calculate the enthalpy, 
entropy, and free energy for the binding of each probe to its 
corresponding region on a library strand. The energy was 
shown in Table 3. Only G really matters to the energy of 
each bit. For example, the delta G for the probe binding a 
‘1’ in the first bit is thus estimated to be 25 kcal/mol and the 
delta G for the probe binding a '0' is estimated to be 
24.3 kcal/mol. 

Table 2   Sequences chosen to represent the three subsets 
in C and every element in W, X and Y in Figure 1 

Subset 5’→3’ DNA Sequence 

C1
0 AATTCACAAACAATT 

C2
0 ACTCCTTCCCTACTC 

C3
0 TCTCTCTCTAATCAT 

C1
1 TCTCCCTATTTATTT 

C2
1 TCACCAAACCTAAAA 

C3
1 CCATCATCTACCTTA 

w1
0 ACTCACATACACCAC 

w2
0 CTTCTCCACTATACT 

x1
0 AAACTATCATACTTC 

x2
0  TTCAATAAACATTTT 

y1
0  TTTTTCTCTCCCAAA 

y2
0 TTTACCCTACTATCA 

w1
1  CAACCTATTATCTTA 

w2
1  CCTAAATCTCCAATA 

x1
1 CTCTCAACAATCAAA 

x2
1 ACCTCCTTAACACTT 

y1
1  CCCTATCACTAATAC 

y2
1  TATAACCCATCCATA 

The program simulated a mix-and-split combinatorial 
synthesis technique (Cukras et al., 1998) to synthesise the 
library strand to every possible 3-dimensional matching. 
Those library strands were shown in Table 4 and, 
respectively, represent every possible 3-dimensional 
matching: ∅, {C3}, {C2}, {C2, C3}, {C1}, {C1, C3}, {C1, 
C2}, and {C1, C2, C3}. The program was also applied to 
figure out the average and standard deviation for the 
enthalpy, entropy, and free energy over all probe/library 
strand interactions. The energy is shown in Table 5. The 
standard deviation for delta G is small because this is 
partially enforced by the constraint that there are 4, 5, or 6 
Gs (the seventh constraint in subsection 3.2) in the probe 
sequences. 
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Table 3   The energy for the binding of each probe to its 
corresponding region on a library strand 

Vertex 
Enthalpy energy 

(H) 
Entropy energy 

(S) Free energy (G) 

C1
1 114.4 299.4  25  

C1
0 107.8 278.6 24.3 

C2
1 111.5 284.8 26.2 

C2
0 109.1 279 25.9 

C3
1 105.2 270.5 24.4 

C3
0 97.3 252.3 22.1 

w1
1 107 282.4 22.5 

w1
0 94.7 239.8 22.8 

w2
1 111.1 288.3  25 

w2
0 101.9 266 22.4 

x1
1 101.3 258 24.1 

x1
0 102.1 269.7 21.4 

x2
1 109.6 282.8 25 

x2
0 110.6 289.3 23.9 

y1
1 106.3 278.3 23.1 

y1
0 114.8 292.2 27.5 

y2
1 109.6  282.8 25.1 

y2
0 106.8 278.4 23.5 

Table 4   DNA sequences chosen represent every possible 
3-dimensional matching in the tube T0 

∅ 5'-AATTCACAAACAATTACTCCTTCCCTACTCT 
CTCTCTCTAATCAT-3' 
3'-TTAAGTGTTTGTTAATGAGGAAGGGATGAG 
GAGAGAGATTAGTA-5' 

{C3} 5'-AATTCACAAACAATTACTCCTTCCCTACTCC 
CATCATCTACCTTA-3' 
3'-TTAAGTGTTTGTTAATGAGGAAGGGATGAG 
GGTAGTAGATGGAAT-5' 

{C2} 5'-AATTCACAAACAATTTCACCAAACCTAAAAT 
CTCTCTCTAATCAT-3' 
3'-TTAAGTGTTTGTTAAAGTGGTTTGGATTTTA 
GAGAGAGATTAGTA-5' 

{C2, C3} 5'-AATTCACAAACAATTTCACCAAACCTAAAAC 
CATCATCTACCTTA-3' 
3'-TTAAGTGTTTGTTAAAGTGGTTTGGATTTTG 
GTAGTAGATGGAAT-5' 

{C1} 5'-TCTCCCTATTTATTTACTCCTTCCCTACTCT 
CTCTCTCTAATCAT-3' 
3'-AGAGGGATAAATAAATGAGGAAGGGATGA 
GAGAGAGAGATTAGTA-5' 

{C1, C3} 5'-TCTCCCTATTTATTTACTCCTTCCCTACTCC 
CATCATCTACCTTA-3' 
3'-AGAGGGATAAATAAATGAGGAAGGGATGA 
GGGTAGTAGATGGAAT-5' 

{C1, C2} 5'-TCTCCCTATTTATTTTCACCAAACCTAAAAT 
CTCTCTCTAATCAT-3' 
3'-AGAGGGATAAATAAAAGTGGTTTGGATTTT 
AGAGAGAGATTAGTA-5' 

{C1, C2, 
C3} 

5'-TCTCCCTATTTATTTTCACCAAACCTAAAAC 
CATCATCTACCTTA-3' 
3'-AGAGGGATAAATAAAAGTGGTTTGGATTTT 
GGTAGTAGATGGAAT-5' 

Table 5   The energy over all probe/library strand 
interactions 

 Enthalpy 
energy (H) 

Entropy 
energy (S) 

Free energy 
(G) 

Average 106.728 276.255 24.1222 
Standard 
deviation 

5.34658 14.4172 1.53821 

The Adleman program was employed for computing  
the distribution of the types of potential mishybridisations. 
The distribution of the types of potential mishybridisations 
is the absolute frequency of a probe-strand match of  
length k from 0 to the bit length 15 (for DNA  
sequences) where probes are not supposed to match the 
strands. The distribution was, subsequently, 280, 574, 933, 
1520, 2008, 2074, 1552, 920, 507, 207, 70, 13, 0, 0, 0,  
and 0. It is pointed out from the last four zeros that there are 
0 occurrences where a probe matches a strand at 12, 13, 14, 
or 15 places. This shows that the third constraint in 
subsection 3.2 has been satisfied. It is very clear that the 
number of matches peaks at 5(2074). That is to say that 
there are 2074 occurrences where a probe matches a strand 
at 5 places. 

The results for simulation of Step 2 to Step 5 are shown in 
Tables 6–9, respectively. From the tube T2, the answer was 
found to be {C1, C2}. 

Table 6   DNA sequences generated by Step 2 represent 
possible 3-dimensional matching in the tube T0 

∅ 5'-AATTCACAAACAATTACTCCTTCCCTACT 
CTCTCTCTCTAATCAT-3' 
5'-AATTCACAAACAATTACTCCTTCCCTACT 
CCCATCATCTACCTTA 

{C3} 

CAACCTATTATCTTAACCTCCTTAACACTTT
ATAACCCATCCATA-3' 
5'-AATTCACAAACAATTTCACCAAACCTAAA 
ATCTCTCTCTAATCAT 

{C2} 

CCTAAATCTCCAATAACCTCCTTAACACTTT
ATAACCCATCCATA-3' 
5'-TCTCCCTATTTATTTACTCCTTCCCTACT 
CTCTCTCTCTAATCAT 

{C1} 

CAACCTATTATCTTACTCTCAACAATCAAAC
CCTATCACTAATAC-3' 
5'-TCTCCCTATTTATTTTCACCAAACCTAAA 
ATCTCTCTCTAATCAT 
CAACCTATTATCTTACCTAAATCTCCAATAC
TCTCAACAATCAAAA 

{C1, C2} 

CCTCCTTAACACTTCCCTATCACTAATACTA
TAACCCATCCATA-3' 

Table 7   DNA sequences generated by Step 3 represent 
legal 3-dimensional matching in the tube T0 

5'-TCTCCCTATTTATTTTCACCAAACCTAAAA 
TCTCTCTCTAATCAT 
CAACCTATTATCTTACCTAAATCTCCAATAC
TCTCAACAATCAAAA 

{C1, C2} 

CCTCCTTAACACTTCCCTATCACTAATACTA
TAACCCATCCATA-3' 
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Table 8   DNA sequences generated by Step 4 represent 
legal 3-dimensional matching in the tube T2 

5'-TCTCCCTATTTATTTTCACCAAACCTAAAA 
TCTCTCTCTAATCAT 
CAACCTATTATCTTACCTAAATCTCCAATACT
CTCAACAATCAAAA 

{C1, C2} 

CCTCCTTAACACTTCCCTATCACTAATACTAT
AACCCATCCATA-3' 

Table 9   The answer was found from Step 5 in the tube T2 

The answer 5’→3’ DNA sequence 
5'-TCTCCCTATTTATTTTCACCAAACCTAA 
AATCTCTCTCTAATCAT 
CAACCTATTATCTTACCTAAATCTCCAATA
CTCTCAACAATCAAAA 

{C1, C2} 

CCTCCTTAACACTTCCCTATCACTAATAC
TATAACCCATCCATA-3' 

5 CONCLUSIONS 

The famous Cook’s theorem (Cormen et al., 2003; Garey 
and Johnson, 1979) is that if one algorithm for one  
NP-complete problem will be developed, then other 
problems will be solved by means of reduction to that 
problem. Cook’s theorem is correct in a general electronic 
computer. In this paper, we proposed the algorithm for 
dealing with the 3-dimensional matching problem.  
Another famous NP-complete problem is the set-partition 
problem. The set-partition problem can be reduced to the  
3-dimensional matching problem. But our algorithm cannot 
be applied to solving the set-partition problem. Therefore, 
we are not sure whether Cook’s theorem is correct in a 
molecular computer. 

Currently, there still are lots of NP-complete problems 
unsolved because it is very difficult to make basic biological 
operations for supporting mathematical operations. We are 
not sure whether molecular computing can be applied to 
dealing with every NP-complete problem. Therefore, in the 
future, our main work is to solve other NP-complete 
problem unresolved with the Adleman-Lipton model and 
the sticker model. 
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