
www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 1505–1508
Guest editorial

Parallel and distributed scientific
and engineering computing
The scientific and engineering computing domains play a key role in shaping fu-

ture research and development activities in academia and industry. In the not too
distant future, every researcher in science and engineering fields will have to under-

stand parallel and distributed computing. With hyperthreading in Intel processors,

hypertransport links in next generation AMD processors, multicore silicon in to-

day’s high-end microprocessors from IBM, emerging cluster and grid computing,

parallel (and distributed) computing have moved into the mainstream of computing.

To fully exploit these advances, researchers must start to write parallel or distributed

scientific and engineering software and algorithms to cope with large and complex

problems with very tight timing schedules.
We would like to use this special issue to report the recent important advances in

the area of parallel and distributed scientific and engineering computing. There were

33 paper submissions, not only from the Asian Pacific, but also from Europe and

North America. All submissions were reviewed by at least three reviewers on rele-

vance and technical contents on basis of papers. It was extremely difficult to select

the presentation in the special issue because there were many excellent and interest-

ing submissions. In order to allocate as many papers as possible and keep the high

quality of the special issue, we finally decided to accept 13 papers. We believe all of
these papers and topics will not only provide novel ideas, new results, work in pro-

gress and state-of-the-art techniques in this field, but also stimulate the future re-

search activities in the area of parallel and distributed computing for science and

engineering applications.

This special issue is mainly divided into three sections, namely programming and

system support, advanced numerical computation and high performance applica-

tions, respectively.
Part 1: Programming and system support

In the first paper, Iwamoto et al. propose and evaluate the receiving message

prediction method for high performance message passing. This method is indepen-

dent of underlying computer architecture and message passing libraries. They also
0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.08.001



1506 Guest editorial / Parallel Computing 29 (2003) 1505–1508
propose the algorithms for the message prediction, and evaluate them from the view-

point of the success ratio and speed-ups. The application of the method to the MPI

libraries achieves a speed-up of 6.8% for the NAS Parallel Benchmarks, and the sta-

tic and dynamic selection of prediction methods based on profiling results improve

the performance.
Sun et al. present a distributed object model called MOIDE (multithreading

object-oriented infrastructure on distributed environment) for solving irregularly

structured problems in the second paper. The model creates an adaptive computing

infrastructure for developing and executing irregular applications on distributed sys-

tems. A runtime system is developed to implement MOIDE-based computing. Appli-

cations including N -body problem, ray tracing, and conjugate gradient are

developed to demonstrate the advantages of the model.

The popularity of Java and recent advances in compilation and execution techno-
logy for Java are making the language one of the preferred ones in the field of high

performance scientific and engineering computing. A framework to characterize

object access patterns, along three orthogonal dimensions of distributed Java Virtual

Machine is proposed by Fang et al. in the third paper. Several benchmark applica-

tions have been tested on their distributed JVM. The authors report the performance

results and give an in-depth analysis of the effects of the proposed adaptive solutions

as well.

Chan et al. in the fourth paper describe the graph-oriented programming (GOP)
model and environment for building and evaluating parallel applications. The GOP

model provides higher level abstractions for message-passing parallel programming

and the software environment offers tools which can make it easier for programmers

to parallelize, write, and deploy scientific and engineering computing applications.

The authors also describe the evaluation of the environment implemented on top

of MPI with a sample parallel scientific application program.

In the last paper of the section, Shen et al. present a Multi-Storage I/O System

(MS-I/O) that can not only effectively manage various distributed storage resources
in the system, but also provides novel high performance storage access schemes. Ad-

ditionally the authors present a User Access Pattern data structure which is associ-

ated with each dataset that can help MS-I/O easily make accurate I/O optimization

decisions.

Part 2: Advanced numerical computation

One of the fundamental tasks of numerical computing is to solve large and sparse

linear systems. The first two papers in this section deal with this problem. In the first

paper, Amestoy et al. consider the direct solution of general sparse linear systems

based on a multifrontal method. The approach combines partial static scheduling of

the task dependency graph during the symbolic factorization and distributed dynamic

scheduling during the numerical factorization to balance the work among the proces-

sors of a distributed memory computer. The performance analysis on an IBM SP3

with 16 processors per SMP node and up to 128 processors shows that they can signif-
icantly reduce both the amount of inter-node communication and the solution time.



Guest editorial / Parallel Computing 29 (2003) 1505–1508 1507
In another paper, Leo Chin Sim et al. propose a new high-speed computation

algorithm for solving a large matrix system using the Gauss-LU algorithm on a

MIMD-SIMD Hybrid System consisting of a combination of cluster of workstations

(COWs) and SIMD systems working concurrently to produce an optimal parallel

computation. This algorithm basically performs the ‘‘divide and conquer’’ approach
by breaking down the large N � N matrix system into manageable 32� 32 matrices

for fast computation.

Shen and Zhang present a fully parallel algorithm for constructing a block inde-

pendent set for general sparse matrices in a distributed environment in the third

paper of the section. The block independent set is used in the construction of parallel

multilevel preconditioners in solving large sparse matrices on distributed memory

parallel computers. The authors compare a few implementations of the parallel multi-

level ILU preconditioners with different block independent set construction strate-
gies. Numerical experiments indicate that the parallel block independent set

algorithm is effective in reducing both the parallel multilevel preconditioner con-

struction time and the size of the last level reduced system.

A parallel library of efficient algorithms for model reduction of large-scale systems

is discussed by Benner et al. in the fourth paper. The authors survey the numerical

algorithms underlying the implementation of the chosen model reduction methods,

then employ Newton-type iterative algorithms for the solution of the major compu-

tational tasks. Experimental results report the numerical accuracy and the parallel
performance of the proposed algorithms on a cluster of Intel Pentium II processors.

The last paper by Chen et al. describes the context, design, and recent develop-

ment of the LAPACK for clusters (LFC) project. It has been developed in the frame-

work of Self-Adapting Numerical Software (SANS) since such an approach can

deliver the convenience and ease of use of existing sequential environments bundled

with the power and versatility of highly tuned parallel codes that execute on clusters.

Accomplishing this task is far from trivial as the authors argue in the paper by pre-

senting pertinent case studies and possible usage scenarios.
Part 3: High performance applications

In this section, there are three papers to address high performance applications in

image compositing, air quality simulation and computational fluid dynamics, respec-

tively.

The first paper by Takeuchi et al. presents an improvement on the binary-swap
(BS) method, an efficient image compositing algorithm for sort-last parallel render-

ing. The proposed compositing method uses three acceleration techniques, namely

the interleaved splitting, multiple bounding rectangle, and run-length encoding to

balance the compositing workload among processors, to better exploit sparsity of

the image, and to reduce the cost of communication.

The aim of the second paper by Mart�ıın et al. is to provide a high performance air

quality simulation using the STEM-II program, a large-scale pollution modeling ap-

plication. Performance results are presented for a SGI Origin2000 multiprocessor,



1508 Guest editorial / Parallel Computing 29 (2003) 1505–1508
a Fujitsu AP3000 multicomputer and a cluster of PCs. Experimental results show

that the parallel versions of the code achieve important reductions in the CPU time

needed by each simulation, allowing users to obtain results with adequate speed and

reliability for the industrial environment.

The last paper analyzes the effects of various performance enhancement strategies
on the parallel efficiency of an overset grid Navier–Stokes CFD application running

on an SGI Origin2000 machine. Specifically, the roles of asynchronous communica-

tion, grid splitting, and grid grouping strategies are presented and discussed by Djo-

mehri et al. Details of a sophisticated graph partitioning technique for grid grouping

are also provided. Results indicate that performance depends critically on the level of

latency hiding and the quality of load balancing across the processors.
Acknowledgements

Of course, the proposed division into sections is one of the possible partitioning

strategies. The represented areas, as well, are not an exhaustive representation of

the world of current high performance scientific and engineering computing. None-

theless, they represent the rich and many-faceted knowledge, that we have the plea-

sure of sharing with the readers. We would like to thank the authors for their

excellent contributions and patience in assisting us. Finally, the fundamental work
of all reviewers on these papers is also very warmly acknowledged.

Laurence T. Yang *

Department of Computer Science
St. Francis Xavier University

P.O. Box 5000
Antigonish, NS

Canada B2G 2W5
Tel.: +1-902-867-5546; fax: +1-902-867-2448

E-mail: lyang@stfx.ca

Yi Pan
Department of Computer Science

Georgia State University
Atlanta, GA 30303

USA
E-mail: pan@cs.gsu.edu

Minyi Guo
Department of Computer Software, University of Aizu

Aizu-Wakamatsu City, Fukushima 965-8580
Japan

E-mail: minyi@u-aizu.ac.jp
* Corresponding author.


