Parallel Processing Letters, Vol. 11, Nos. 2 & 3 (2001) 363-374
© World Scientific Publishing Company

DENOTATIONAL SEMANTICS OF AN HPF-LIKE
DATA-PARALLEL LANGUAGE MODEL

MINYI GUO

Department of Computer Software, The University of Aizu
Aizu- Wakamatsu City, Fukushima 965-8580, Japan

Received May 2000
Revised January 2001
Accepted by Y. Muraoka

ABSTRACT

It is important for programmers to understand the semantics of a programming
language. However, little work has been done about the semantic descriptions of HPF-
like data-parallel languages. In this paper, we first define a simple language D, which
includes the principal facilities of a data-parallel language such as HPF. Then we present
a denotational semantic model of D. It is useful for understanding the components of
an HPF-like language, such as data alignment and distribution directives, forall data-
parallel statements.

1. Introduction

The data-parallel programming model, which is simple and portable across a large
variety of parallel architectures, is very often used in parallel programming. There
is a growing need for optimized compilers, or programming environments including
parallelizing, data distributing and debugging tools. The data-parallel languages,
such as HPF[4] and Fortran D[3], provide the parallel mechanism to execute the
parallel statement (forall in HPF), and describe how data are distributed onto each
local processor (in HPF, it is called directive). In the past recent years, much work
have been accomplished about the formal semantics of sequential languages. Also,
related to semantics of task-parallel (or control-parallel) programming model, some
models such as Hoare’s CSP, and Milner’s CCS languages are proposed. In contrast
with data parallelism, however, the semantics of data-parallel programming model
are also competing to take the lead. To correctly understand the meanings of
parallel components of a language such as HPF directives, is important for parallel
programming or automatic generation of parallelizing compilers. Therefore, it is
considered a significant work if we can present a formal semantic definition at ”high
level” for a data-parallel programming model.

In this paper, we intend to give a denotational semantic model for an HPF-like
data-parallel language. Domain-theoretic classical denotational semantics provides
efficient and well-understood techniques to reason about collections of programs. We

363

364 M. Guo

Implementation-

dependent directive
ALIGN
\ DISTRIBUTE @ @ /

— "9 0 © ///”——E%

oooo|
Oooo ©e 06 T :
B Group of Abstract -
aligned arrays rocessors]
Arrays P Physical :
processors

Figure 1: HPF data mapping pattern.

focus main attention on describing the semantics of those different with traditional
sequential language components. we are interested in how to specify the semantics of
declarations of virtual processors, templates, alignment and distribution directives
and data-parallel control constructs. The foundations of denotational semantics are
not concerned in the paper due to the lack of space but we explain our idea as detail
as possible.

The rest of the paper is organized as follows: the abstract syntax of the data-
parallel language D, some general functions used throughout and concepts of de-
notational semantics are given in Section 2. Section 3 defines the details about
the denotational semantics of D, including the semantic domains and the semantic
functions. In this section, we also present some examples for well-understanding
the semantics of the data-parallel languages defined in this paper. In Section 4,
an implementation framework is presented. Some related work and conclusions are
given in Section 5 and Section 6 respectively.

2. Preliminaries

HPF[4] or Fortran D|3] supports data-parallel programming paradigm (The com-
piler translates the source code to the SPMD code) through two aspects of the new
features including the data parallel execution features — FORALL construct and
the data distribution features — PROCRSSORS directive, TEMPLATE directive,
ALIGN directive, and DISTRIBUTE directive (We do not concern the realign and
redistribute directives because they have similar semantic model with align and
distribute directives).

To express parallel computation explicitly, the FORALL construct is to provide
a convenient syntax for simultaneous assignments to large groups of array elements.
Such assignments lie at the heart of the data parallel computations that HPF is
designed to express. The multiple assignment functionality it provides is very similar
to that provided by the array assignment statement in Fortran 90.

HPF data alignment and distribution directives allow the programmer to advise

Denotational Semantics of an HPF-Like Data-Parallel Language Model 365

the compiler how to assign array elements to processor memories. The model is
that there is a two-level mapping of data objects to memory regions, referred to
as ”abstract processors”. Data objects (typically array elements) are first aligned
relative to one another; this group of arrays is then distributed onto a rectilinear
arrangement of abstract processors specified by PROCESSORS directive (see Fig.1).

For the sake of simplicity, a common kernel of data-parallel languages, named
language D is designed in this paper. We only consider the above parallel features
and omit the scalar part of the sequential languages. Furthermore, we simplify
the construct of ALIGN directive and DISTRIBUTE directive in HPF replaced by a
united form “mapping statement”. That is, an HPF align directive

IHPF$ ALIGN array — expression WITH template — expression
is replaced by a mapping statement
template — expression : — array — expression.
and an HPF distribute directive
IHPF$ DISTRIBUTE template — expression ONTO processor — name
is replaced by a mapping statement
processor — expression : — template — expression.

The advantage of this notation is that two level mapping features have a united
notation, and BLOCK(n)/ CYCLIC(n) distribution can be expressed by subscript
computation in the mapping statement.

Clearly, it only changes the representations but does not change the semantics of
the directives. Formally the abstract syntax of the parallel mechanism part of D is
defined as in Fig.2. For example, the data-parallel program of matrix multiplication
written in D can be as follow. The mapping statements give the row-major order
block distribution for the arrays a and ¢ and column-major order block distribution
for b.

/* matrix.d */
#define n 64
#define pn 4

main()
{
vp procs(pn);
tmp s(n);
array a(n,n), bt(n,n), c(n,n);
int i,j,k;

366 M. Guo

parallel-directive | parallel statement
parallel-object-directive | mapping-statement
processors-directive | template-directive |
array-declaration

vp processors-name shape-spec-list

tmp template-name shape-spec-list
array array-name shape-spec-list
(processors-name | template-name)
index-expression-list : — (template-name |
array-name) index-expression-list

({ constant-expression }*)

({ index-expression |—}*)

forpar (forpar-header) assignment
index-name : '{’ subscript .. subscript ‘}’

parallel-mechanism
parallel-directive
parallel-object-directive

L

processors-directive
template-directive
array-declaration
mapping-statement

bl

shape-spec-list
index-expression-list
parallel-statement
forpar-header

Ll

Figure 2: Abstract syntax of the parallel mechanism of D

s(i) :- a(i,-);
s(i) :- bt(-,i);
s(i) :- c¢(i,”);
procs(i/16) :- s(i);

forpar (j:{0..n-1}, k:{0..n-1}) {
c(i,-) += a(j,-) * bt(-,k);
}

The semantics of a statement is a transformation from one state to another.
The main idea of the denotational semantics is that each phrase of the language is
given a denotation: a mathematical object (functions, numbers, tuples, etc.) that
represents the contribution of the phrase to the meaning of any complete program
in which it occurs. A denotational semantics of a programming language gives the
mapping from programs in the language to the functions denoted. There are three
essential parts that we must present clearly. That is abstract syntax, semantic
domains and semantic functions, where the semantic functions generally have the
form syntaxr — domain — semantic — domain; — --- — semantic — domain,.
The chief syntax domains of D which will be assigned a semantics involve Exp:
(index) expression, IeList: index expression list, Dec: parallel object directive,
Mp: mapping statement, and Cmd: statement.

The followings are some notations and functions will applied in the following
sections thoroughly.

e A shape specification list (shape-spec-list, an n-tuple (u1, ug, . . ., u,)) declared
in a parallel object directive id(u1, ug, . . ., un), where u; is a constant (or a constant

Denotational Semantics of an HPF-Like Data-Parallel Language Model 367

o:Pro=FEnvx S /* program state */
s:S =Loc— D /* statement state */
p:Env=FE;x E,, /* environment */
ps : Es=1Id— D /* static environment */
pm : Em = [Id x Id — Inz x Inz]+

[Id x Id — (Inz — Loc)] /* mapping environment */
l: Loc = Prcx Mem /* location */
g:Iv=Iid— N /* index value */
p: Prc= Pid x BS /* processor domain */
B:Tmp=Tidx BS /* template domain */
a: Arr = Aid x BS /* array object domain */
§:D = BS+ Loc+ Prc+ Arr+Tmp+Id+ --- /* denotative value */
i:Inz = BS /* index */
id: Id = Pid + Tid + Aid + Iid+ - - - /* identifier */

Figure 3: The semantic domains of D

expression), defines a bound set

BS = {(a1,az,...,an)|(a1,az,...,a,) € {1,...,u1} x ... x {1,...,un}}, which
specifies the shape (rank and the extent in each dimension) of a virtual processor,
a template, or an array.

The function all(id, k) = (0, ..., ug — 1) represents the all elements of the k —th
dimension of the object id and the function rank(id, k) = uj represents the rank
of the k — th dimension of the object id.

e Let £X — Y and g:X — Z are both total, one-to-one functions, the joint
function e: Y — Z is defined by

fog={W)f) ==}

Let Y — Z and g:X — Y are both total, one-to-one functions, the composition
function o: X — Z is defined by

(fog)(z) = f(g(2))-

Let F = {f1,..., fn}, where F : X — Y, is a function with f; = (z;,y;) € X XY,
and let also f/ = (2/,y’) € X x Y, the update function < is defined as

r f Af s fien f figs oo, fa}, for 2l = g,
Faj _{ {fi,- s fnr f'} otherwise.

Let F,G: X — Y be the functions with G = {g1, ..., gn}, we define

FaG=F<xg <...<49n.

368 M. Guo
3. Denotational Semantics of D

3.1. Semantic Domains

The semantic domains are some mathematical objects which correspond to the
denoted components of a language. Figure 3 shows the semantic domains of D
beginning from program state. We give the explanations for the meanings of these
domains. The semantic domains are defined by using the notation “domain variable:
domain name = the construct of domain”.

The semantics [P] of a program P is a function from program state to program
state. The program state Pro is made of an environment and a statement state. The
statement state S is a mapping from a location to a designation value domain. This
indicates a fact that is, after having executed a statement, the stored values in the
location are changed. The environment Env is made of a static environment E, and
a mapping environment E,,,, where E,, is a mapping from two identifier to a pair of
index or to a location, and E; is a static environment corresponding to the various
declarations of a program. The store domain Loc indicates the concept of the local
memory of a processor. The basic domains Prc, Tmp, and Arr are the domains of
the processors directives, template directives and array declarations. The domains
Mem and N are (virtual) memory and a set of natural number respectively. The
denotative value domain involves all values used in programs, and the Inxz domain
is the scope of index which may be used in mapping statements or array subscript
expressions.

3.2. Semantic Functions

As we mentioned in the above, the denotational semantics of a component of a
language can be understood as a function of mapping from one domain to another.
In our framework, the semantic functions involve three parts: semantic functions of
the parallel object directives, the mapping statements and the parallel statement.
Before the definitions of the semantic function for processors directive, template
directive, and array declaration, we first define a semantic function for expression
value evaluation which is used in the all of the following sections.

A semantic funtion Efexp](E : Exp — S — S) denotes the value obtained
by evaluating expression exp in the static environment Es and program state S.
Furthermore, if id(u1, us, . . ., uy,) is specified in a parallel object directive (vp, tmp,
or array) in D and id(ieq, . . .iey,) is its index expression used in mapping statements
or program statements, then E[(iey, .. .ie,)] = (E[ie1], ..., Efie,]). Let iex = —
represent the all elements of the k-th dimension, then E[iex] = all(id, k).

In the following discussions, the notation pid,tid and aid represent processor
name, template name and array name respectively, iel and jel are index expression
list.

3.2.1. Semantic Functions of Parallel Directives

A parallel object directive (processors, template or array) is a part of declarations

Denotational Semantics of an HPF-Like Data-Parallel Language Model 369

which modifies the current static environment. We might give the semantic function
for parallel object directive as: D : Dec — E; — E;.

D[vp pid(ui ...un)],, = ps < (pid,p), where p € Pre.

D[tmp tid(u1...un)],, = ps < (tid, B), where 8 € T'mp.

Dlarray aid(u:...us)],, = ps < (aid, (is, mem)), where is € BS and mem €
Mem.

A processors directive specifies a virtual processor grid, and a template directive
specifies an abstract space of indexed positions; it can be considered as an ”array
of nothings”. An array directive declares a virtual memory space because in a
parallel program, the global array will be distributed into local memory of processors
through mapping statement. Therefore, all of these parallel object objectives change
the static environment.

3.2.2. Semantic Functions of Mapping Statements

The mapping statements include two kinds:

e am = tid iel : — aid jel, which is used to specify that certain data objects
are to be mapped in the same way as certain other data objects (An array
aid is aligned with a template tid). Operations between aligned data objects
are likely to be more efficient than operations between data objects that are
not known to be aligned.

o dm = pid iel : — tid jel or pid iel : — aid jel, which specifies a mapping of
data objects to abstract processors in a processor arrangement.

The semantic function for a mapping statement is M : Mp — E,, — E,,.
Mlam], = pm < ((tid, aid), IP),
IP : IeList x IeList — Inx x Inx,
IP(iel, jel) = {(E[(ie1, - - -, ien)], E[(je1, - - -, jem)])|0 < Efiex] < txNO < Efjer] <
ap,1 <k<n,1<k'<m},
where t;, = rank(tid, k) and ay = rank(aid, k').
M[dm], = pm < ((pid, tid), SP),
SP: IeList x IeList — Inx x Loc,
SP(iel, jel) = {E[iel], (E[jel], mem)|0 < E[iex] < px N0 < Efjer] < trr, 1 <k <
n,1 <k’ <m},
where t, = rank(tid, k') and py = rank(pid, k).
M[am;am/], =Ml[am'], oMlam], .
Mlam;dm], = pm < AP,
AP = {(aid, pid), IP ¢« SP|IP € py(tid, aid) N SP = pp,(tid, pid)}.
M[dm;dm'], =M[dm'], oM[dm], .

370 M. Guo

3.2.3. Semantic Functions of Parallel Statement

The followings are some semantic functions that will be used in definition of the
semantic functions for a parallel statement.

Let g be an index identifier evaluation function at one time of iterations(a state
transition), for example, g = (i, 1),¢" = (4, 10), etc.. G = {go, - - ., gn } represents the
range of value assigned to an index identifier during whole iteration. The function
L: Aid x iel — Iv — Env — Loc, which is used to determine the locations of index
variables appeared in the left hand of assignment statements, is defined as
L{aid iel],,, = Ap.AP(aid, p)(E[iel]).

The semantic function for an assignment is C: Cmd — v — S — S,

Clel,, = Claid(iey, . . ., ien) = v],, = o < (Laid(iey, . . ., ien)] g, Ev]).

The semantic function for sequential loop LS: Cmd — pow(Iv) — § — S is
recursively defined as
LS[c],, = o, LS[c] g, = LS[c] g\ (4})o» Where g = min(G) and o’ = C[c],,.

The index range evaluation function R:ir — pow(Iv) is defined as R[iid :
{l.u}] = {9go,-- -, Gu—1}, where each g; is an index identifier evaluation function
such that g; = (iid, i + 1).

Let G = {go,---,9n} be a set of the index identifier evaluation functions and
let (jo,---,Jn) be an arbitrary permutation of (0,...,n). Now we can define the
semantic functions for sequential loop and parallel loop as follows:

Clforseq (i : {l..u}) c],, = LS[c(9)]rir},,- The semaitic function for parallel
loop LP: Cmd — pow(Iv) — S — S is recursively defined as
LP[c], = o', where Vi € {0,...,n}.0;=C[], ,, o' =0 <0, <...<0j,.

Clforpar (i : {l..u}) c],, = LP[c(9)]rir},o» Where ir =i : {l..u}.

The instances of a forpar loop body are supposed to have no dependencies
on each other. For this reason the semantics of the assignment in the body can
be determined for each index vector independently. However, if dependencies do
exist between the loop instances the order in which the assignments are executed
determines the semantics of such a loop. Since the semantics require that the loop
instances may occur in any order, the semantic function LP is non-deterministic in
case of existing loop dependencies. This is a principal different from semantics of
forseq loop. The latter is rigorously executed in lexicographic order.

3.8. FExamples

Example 1 For the following segment of a D program including parallel object
directives and mapping statements.

p1 : vp p(4);

t1 : tmp s(10);

to : tmp t(10,10);

a; : array a(10);

a2 : array b(10, 100, 10);

Denotational Semantics of an HPF-Like Data-Parallel Language Model 371

my : s(i) :—a(i*x2+1);
ma : t(Z,]) R b(] - 27 _7l+2)7
mz : p(i/4) :— s(i);

The denotational semantics of this segment are
D[pil,, = ps < (p,{0,1,2,3}),
D[ti], =ps < (5,{0,1,...,9}),
D[t2],, = ps < (¢, {0,...,9} x {0,...,9}),
DIIal]]pS = ps <(a, ({0,1,...,9}, {ko, - - o Ho}),
D[[CI,Q]]pS = ps] (b, ({0, . 9} X {O, ceey 99} X {0, ey 9}, {,u,(), .. .,Mgggg})), where M
represent the (virtual) memory locations.

M[[ml]]pm = pm ((37 a‘)7 IPml);
IP,,, = IP((i), (ix2+1)) = {(E[i], E[i*2+1])|0 <E[i] < s’ A0 < E[(i*x2+1)] <
a'}, because s’ = 10 and o’ = 10, then
IP((i), (i%241)) = {(i, i*+2+1)|0 < i < 10A0 < ##2+1 < 10} = {(0,1), (1,3),-.., (4,9)}.

The following mapping statement illustrates the combination from an array to a

template.
M[ma], = pm < ((t,b),1Pn,),

IPn, = IP((3,5), (G — 2, —, i+ 2))

{((,), BIG — 2.~ i+)]0 < B[,)] < 54 A0 <

E[(j —2,—,i+2)] <ay,0<k<2}
{G,5),G-2,(0,...,99),i4+2)[0,0 < 4,5 < 10,10 A
0<j—2<10A0<i+2<10}
{(G,5),(G—2,(0,...,99),i+2)[0<i<8A2<j< 10}

{((0,2),((0), (0, ..., 99), (2))), ((0,3), (1), 0, - -, 99), (2))), - - -, ((7, 9),
((7), 0, ..,99), (9)))}-

The following mapping statement illustrates how a template is distributed onto
PTroOcessors.
M[[mg]]pm = pm < ((s,0), SPy,),
SP, = SP((3), (i/4)) = {E[®)], (E[:/4)],D|0<i<10A0 < i/4 < 4}
= {((0)7 (Ov lO))7 ((1)7 (07l1))7 (27 (07 12))7 (37 (0713))’) ((87 (Z,lO))7 ((97 (27l1))}'

The following mapping statements thus determine the relationship of an array
to the processors by the two-level mapping.
M[mi;ma], = pm < APmyp,,
APpp, ={(a,p), 1P, ® SPy,|IPy, € pm(s,a) NSPp, = pm(s,p)}
= {(a1 p)’ {(17 (Ole))7 (3v (07l1))7 (57 (0: 12))7 (77 (07l3))? (97 (17l0))}}'

372 M. Guo

Example 2 Consider the following sequential loop statement:
forseq (i: {1..2}) a(i) = a(i —1) %2
Suppose a is an array of integers with integer a; which is stored at location L; at po-
sition i and if this statement is executed with program state o = ((Lo, 2), (L1, 3),...)
(that is, array a has the initial value a = (2,3,4,...)). Then the semantics of the
statement when executed:
Clforseq (i : {1..2}) a(i) = a(i — 1) x 2],

LS[a(i) = a(i — 1) * 2]]R[[i:{1..2}]|,o
= LS[a(i) = a(t — 1) * 2]]{g0,gl}a, (90(2) = 1,01(3) = 2)
LS[a(1) = a(0) * 2], ;- LS[a(2) = a(1) * 2] o = o,
where ¢’ = o < (L1,a0 *2), and ¢’ = o' < (La,a1 * 2). Now, the program state
g = ((L(), 2), (LI, 4), (LQ, 8), ..)
Example 3 Consider the following parallel loop statement:

forpar (i : {0..9} 7: {0..9}) a(i, j) = b(j, ©)
Let koo, - - ., ko,9 be an arbitrary permutation of (0,0),...,(9,9). Then

C[forpar (i : {0..9} j : {0..9}) a(4, j) = b(j,)],
= LPIIG(Z’ .7) = b(]7 i)]]{go,m,gg}{g('),...,gé}a = U/’

where 0/ = 0 QOky, ... < Okgy, and ok, ; = Cla(i, j) = b(j, i)(gi)]]g4g =0
(Laij ’ bjl)

4. Implementation

We have implemented a kernel of D compiler. It consists of a front end that
parses the input D program, and a back end that generates the SPMD target
code (which is MPI code currently). The front end parses the input D program and
outputs an intermediate language. Then we define a class of rewrite rule to generate
target code. The left hand side specifies a program pattern while the right hand
side defines its replacement. We say that a rule matches a program construct if the
rule is defined for this program construct. If a rule matches a program construct it
will replace this program construct by that of the right hand side.

We aim at achieving an engine that reads a program and a specification of a
transformation rule, and will result in a modified program. For example, the im-
plementation of mapping statements in D are performed by using following trans-
formation rules:

MP(proc, tmp) — MP(proc, array)\MP(tmp, array),
MP(proc, array) — distribute(local — array, proc, index — pair),

MP(tmp, array) — align(global — array, temp, index — pair).

Denotational Semantics of an HPF-Like Data-Parallel Language Model 373

The function distribute and align implement to distribute global array onto local
processors and align the index between two global arrays.

According to our semantic model, we interpret forpar as a normalized paral-
lelizing loop statement — a loop statement without communication in MPI — if
there is no data dependence in loop body. The implementation is based on the rule
below:

FP(header, body) — loop(header, body) if not DataDepend(header, body)

Here the function DataDepend detects for the given loop body if (flow, anti, and
output) data dependences exist.

5. Related work

Several researchers have attempted to give formal semantics to data-parallel
languages. Stewart [7] provided a axiomatic semantics and inference rules for three
representations of data-parallel array assignment — generalized array assignment,
FORTRAN 90 array assignment and HPF array assignment.

Bouge et. al. [1,2] defined both axiomatic and denotational semantics for a
”low level” data-parallel language £, which gives instructions and control constructs
including Skip, Assignment, Communication, Sequencing and iteration. They also
define an intermediate data-parallel language where asynchronism becomes explicit
in the syntax. Its semantics is based on a twin memory management. Based on
these semantic models, they researched some extent work such as implementation
of conditioning constructs and formal definitions of structural clocks for a loosely
synchronized language, compilation and program equivalence.

Breehaart, Paalvast, and Sips et.al. [9] proposed an experimental data parallel
language called Booster. Some parallel features such as View concept and the sep-
aration of algorithm description and machine mapping were introduced. Then they
developed an array based calculus named V-cal which could be used in translating
Booster. A semantic system based on A-calculus approach was introduced to be
able to translate and optimize programs into V-cal expressions.

6. Conclusions

A denotational semantics has been presented for a small (kernel) data parallel
language. This semantics presented differs from that of a simple sequential language
in that it provides meaning for:

(i) some data distribution features, and

(ii) a data parallel statement similar as FORALL in HPF
in place of the standard semantics for simple assignment. The semantics for local-
ized data-parallel statement is order independent, and the semantics for the data
distribution directives are defined by using mapping statement to bind an array
element to a local processor.

374 M. Guo

A number of research directions remain to be explored. It should be interesting
to extend the semantic explanations of some other directives such as INDEPENDENT
and INHERIT directives in HPF. Another direction would be to develop a ”low
level” (instruction level) data-parallel language with its semantic model, and give
the transformation rule from D to this language, in order to enable compilers writers
to explore the effect of heuristics used in parallelizing compilers systematically.

[1] L. Bouge, Y. LeGuyadec, G. Utard, and B. Virot: On the Expressivity of a Weakest
Precondition Calculus for a Simple Data-Parallel Programming Language (extended
version). Technical report, LIFO: RR94-07, Universite d’Orleans, April 1994.

[2] L Bouge, and P. Garda: Towards a Semantic Approach to SIMD Architectures and
Their Languages. Proc. 18th Spring School of the LITP, LNCS 469, Springer-Verlag
, 1990. pp. 142-175.

[3] S.Hiranandani, K. Kennedy, and C. Tseng: Compiling Fortran D for MIMD Distributed
Memory Machines, Communications of the ACM, Vol. 35, No. 8(1992), pp. 66-80.

[4] HPF Forum: High Performance Fortran Language Specification, Rice University,
Houston, Texas, version 2.0 edition, Nov. 1996.

[5] C.Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel: The High Performance
Fortran Handbook, The MIT Press, 1994.

[6] E. Robinson, Logical Aspects of Denotational Semantics. LNCS 283, 1987. pp. 238-253.

[7] A. Stewart: Reasoning about Data-Parallel Array Assignment, Journal of Parallel
and Distributed Computing, Vol. 27(1995), pp. 79-85.

[8] Thinking Machines Corporation: C* Programming Guide. Technical Report, Cam-
bridge MA, 1990.

[9] J.A. Trescher, L.C. Breebaart, P.F.G. Dechering, A.B. Poelman, J.P.M. de Vreught,
and H.J. Sips: A Formal Approach to the Compilation of Data-Parallel Languages.
Proc. Tth Annual Workshop on Languages and Compilers for Parallel Comput-
ing, LNCS 892, Springer-Verlag, 1995. pp. 155-169.

[10] G. Winskel: The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing Series. The MIT Press, 1993.

[11] M. Wolfe: High Performance Compilers for Parallel Computing, Addison-Wesley,
1995.

Copyright © 2002 EBSCO Publishing

Copyright of Parallel Processing Lettersis the property of World Scientific Publishing Company and its content
may not be copied or emailed to multiple sites or posted to alistserv without the copyright holder's express
written permission. However, users may print, download, or email articles for individual use.

