
Contention-free communication scheduling for
array redistribution

Minyi Guo a,*, Ikuo Nakata b, Yoshiyuki Yamashita a

a Institute of Information Sciences and Electronics, University of Tsukuba, 305-0006 Tsukuba, Japan
b University of Library and Information Science, 305-8550 Tsukuba, Japan

Received 12 March 1999; received in revised form 22 October 1999; accepted 28 January 2000

Abstract

Array redistribution is required often in programs on distributed memory parallel com-

puters. It is essential to use e�cient algorithms for redistribution, otherwise the performance

of the programs may degrade considerably. The redistribution overheads consist of two parts:

index computation and interprocessor communication. If there is no communication sched-

uling in a redistribution algorithm, the communication contention may occur, which increases

the communication waiting time. In order to solve this problem, in this paper, we propose a

technique to schedule the communication so that it becomes contention-free. Our approach

initially generates a communication table to represent the communication relations among

sending nodes and receiving nodes. According to the communication table, we then generate

another table named communication scheduling table. Each column of communication

scheduling table is a permutation of receiving node numbers in each communication step.

Thus the communications in our redistribution algorithm are contention-free. Our approach

can deal with multi-dimensional ``shape changing redistribution''. Ó 2000 Elsevier Science

B.V. All rights reserved.

Keywords: Parallelizing compilers; HPF; Array redistribution; Communication scheduling; Distributed

memory machines

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 1325±1343

* Corresponding author. Present address: NEC Software Ltd., 136-8608 Tokyo, Japan. Tel.: +81-3-5569-

3207.

E-mail address: guo@mxb.nes.nec.co.jp (M. Guo).

0167-8191/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (0 0) 0 0 0 2 7 - 2

1. Introduction

Array redistribution problem has recently received considerable attention. This
interest is motivated largely by the HPF [5] programming style, in which scienti®c
applications are decomposed into phases. At each phase, there is an optimal dis-
tribution of the arrays onto the processor grid. Because the optimal distribution
changes from phase to phase, array redistribution turns out to be a critical opera-
tion.

Basically, the redistribution algorithms consist of two parts: index computation
and interprocessor communication. The index computation overheads are incurred
when each processor computes indices of array elements that are to be communi-
cated with the other processors, as well as the destination processors of such array
elements. The communication overheads are incurred when the processors exchange
array elements. These include software start-up overheads for invocation of the send/
receive system calls, transmission costs for sending data over the interconnection
network, and overheads due to the node contention. Our e�orts attempted to reduce
the index computation overhead in [2,3]. However, without a proper communication
scheduling the redistribution overhead can be enormous. Especially, node contention
can signi®cantly in¯uence the communication performance. In this paper, we focus
on reducing the actual communication cost of redistribution. A communication
scheduling method is proposed to avoid node contention.

1.1. Communication contention problem

Figs. 1(a) and (b) are the framework of the redistribution algorithm with the naive
communication approach. Fig. 1(a) shows the part of the algorithm executed on the
source processors and Fig. 1(b) is the part executed by the destination processors,
where proc is the number of processors. Fig. 2(a) shows the sequence of events that
can occur during a redistribution involving four source and four destination pro-
cessors using the above redistribution algorithm [2,3]. We see that each destination

Fig. 1. Redistribution algorithm with the naive communication approach.

1326 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

processor receives all of its messages simultaneously; this may lead to communica-
tion contention.

The communication contention problem can be described as follows: For a set of
processors, since the receiving processor typically can receive messages from only
one processor at once, if there are more than two of sending processors they may
have to wait for other processors to complete their communication, in this case we
say that the communication (or node) contention occurred.

We show that the communication contention has a deteriorating e�ect on the
total time required for communication. Fig. 3 shows the impact of the communi-
cation contention on CP-PACS [11] Pilot3, a 64-processor MIMD distributed
memory parallel machine developed at the University of Tsukuba. In these experi-
ments, processor P0 is the receiving node, and processors Pi �16 i < 64� are the
sending nodes. In each step, each sending node sends an equal amount of data (1K
or 4 KB) to P0 simultaneously. We record the time (in ms) taken for P0 to complete
receiving all incoming data and for other sending nodes to complete sending data.

Fig. 2. Communication contention for array redistribution.

Fig. 3. Experiment about communication contention on CP-PACS Pilot3 (P0 is the receiving node;

Pi �16 i < 64� are the sending nodes).

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1327

The results reveal that when the number of messages sent to the same node (at the
same time) increases, the communication time increases. Thus it is ine�cient to allow
more than one node to send a message to the same processor simultaneously.

These observations suggest that node contention will result in overall performance
degradation. Avoiding node contention should therefore be considered as an im-
portant factor when we conduct the communication scheduling.

1.2. Avoidance of communication contention

Using the communication scheduling we can avoid the communication contention
in redistribution operations. For instance, we can use simple schemes to get rid of the
contention shown in Fig. 2(a); the e�ect of such schemes is illustrated in Fig. 2(b).
One of the schemes we use is to have each source processor starting with a di�erent
destination processor index, the modi®ed algorithm implementing this scheme is
shown in Fig. 4, where myid is the executing processor number.

The communication scheme used in the above redistribution algorithm is called
all-to-all communication (each sending processor has to communicate with all re-
ceiving processors in exactly proc communication steps). In the more complicated
situation, however, some communications in redistribution algorithms are all-
to-many communications, i.e., each sending processor should communicate with the
subset of all receiving processors. Fox example, consider the redistribution from
cyclic(6) to cyclic(2) for the total number of processors 4. In this case, each processor
has only to send messages to three processors. The above scheduling method cannot
simply be applicable for this case. Hence, we focus on the contention-free commu-
nication scheduling in the case of all-to-many communications in this paper. In other
words, we mainly consider solutions for redistribution among block-cyclic distrib-
uted arrays. In each array's dimension, the redistribution is processed from a cy-
clic(b) distribution on a P-processor grid to a cyclic(b0) distribution on a P 0-processor
grid and b � b � b0, or b0 � b � b, where b is a positive integer.

The rest of the paper is organized as follows. Section 2 discusses important related
work in this area. Section 3 gives an overview of the redistribution algorithm based

Fig. 4. Redistribution algorithm with the all-to-all communication scheduling.

1328 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

on the Local Data Descriptor (LDD) described in [2±4]. In Section 4, we give our
communication scheduling approach for one-dimensional redistribution and multi-
dimensional redistribution, and show how to get the receiving communication
scheduling table. Section 5 gives some experimental results for our approaches
compared with the redistribution algorithms without communication scheduling.
Finally, we conclude this paper and discuss possible future extensions to our work in
Section 6.

2. Related work

Many researches have mainly concentrated on the e�cient index computation for
generating the communication messages to be exchanged by the processors involved
in the redistribution [2,3,12,15,16]. However, the question of how to e�ciently
schedule the messages has received little attention. The following are some researches
concerned with the communication optimization in redistribution.

Lim et al. [9,10] developed the algorithms that redistribute an array from one
block-cyclic scheme to another, where the source and target schemes have the special
relation. Their framework is based on a generalized circulant matrix formalism.
Through the transformation of the rows/columns of the matrix, data communication
is performed in a con¯ict-free manner using direct, indirect, and hybrid algorithms.
In the direct algorithm, a data block is transferred directly to its destination pro-
cessor. In the indirect algorithm, data blocks are moved from source to destination
processors through intermediate relay processors. The relay processors combine data
blocks with the same destination. The hybrid algorithm is a combination of the
direct and indirect algorithms.

However, in their approaches, the scheduling algorithm for multi-dimensional
redistribution cannot reuse the one for one-dimensional redistribution. They
use di�erent approaches to process the one-dimensional and multi-dimensional
problems.

Kalns and Ni [8] presented a technique for mapping data to processors in order to
minimize the total amount of data that must be communicated during redistribution
but they do not further specify the general case of communication scheduling. A
multi-phase redistribution approach is suggested in [6,7]. They use the tensor
product representation of data distributions and the network contention model by
expressing the communication as a sequence of permutations, each of which can be
executed in a ®xed number of contention-free steps. They developed a multi-phase
strategy which performs the redistribution as a sequence of redistributions such that
the total cost of the sequence is less than that of direct redistribution.

Desprez et al. [1] proposed an algorithm for scheduling of those messages ± how
to organize the message exchanges into ``structured'' communication steps that
minimize contention. They built a scheduling for moving from a cyclic(r) distribution
on a P-processor grid to a cyclic(s) distribution on a Q-processor grid for one-
dimensional redistribution, where the values of P ;Q; r; and s are arbitrary. They
considered the size of the communication messages as a term of scheduling.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1329

However, they did not give the description of the approach how to get the information
about the sources and destinations of the communication and the message sizes.

Ranka et al. [13] developed algorithms to perform message routing for all-
to-many personalized communication. They also decomposed all-to-many commu-
nication into a set of disjoint partial permutations by using communication matrix.
An approximate analysis showed that with n processors, and assuming that every
processor sends and receives d messages to random destinations their algorithm can
perform the scheduling in O�d � n � ln d� time, on average, and can use an expected
number of O�d � log d� partial permutations to carry out the communication. In
[14], they extended this work to the case where the message sizes which each pro-
cessor sends (receives) are with high variance. They showed that such many-to-many
personalized communication with non-uniform messages can be performed using
two stages of all-to-all communication with uniform messages.

Our aim in this paper is to extend the concepts and results presented in our
previous work [2±4], in order to solve the communication scheduling problem in
array redistribution. Our method completely deals with all the processes of com-
munication scheduling ± determines the sources, destinations, and message sizes of
the communications, schedules the communications into steps. To avoid resource
contentions, each participating processor neither sends nor receives more than one
message at each step. We consider that the communication of array redistribution is
a special case of general personalized communication. By e�ciently using its pecu-
liarity, the overhead of communication scheduling of array redistribution becomes
less than the general all-to-many communication scheduling (see Section 4.2). The
multi-dimensional algorithms are simply obtained by reusing the one-dimensional
algorithm.

3. Overview of redistribution based on Local Data Descriptor

A redistribution problem can be de®nitely represented as following. A redistri-
bution R is the set of routines that change the distribution schemes such that, given
an multi-dimensional array A on a set of source processors Ps with distribution
scheme Ds, transfer all the elements of the array to a set of target processors Pt with
a target distribution scheme Dt. In a general case, Ds and Dt can specify arbitrary
regular data distributions along each dimension of the array. Therefore, the redis-
tribution routines, which are determined by two pairs �Ps;Ds� and �Pt;Dt�, need
to ®gure out exactly what data need to be sent (received) by each source (target)
processor.

In [2±4], we proposed an approach to generate the redistribution algorithm, which
is based on the representation called LDD. An LDD expresses the set of the array
elements partitioned onto a local distributed memory. We also de®ned some oper-
ations on LDDs and referred to the fact that the data being redistributed between
two processors are indicated by the intersection of LDDs of the processors. Because
we will use some concepts of LDD in the following sections, in this section, we give

1330 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

an overview of the redistribution algorithm based on LDD described in our earlier
papers [2±4]. The further details can be found in them.

De®nition of one-dimensional LDD. A 4-tuple d � �o; b; s; n� is called an LDD
which describes a set of the global array index for a particular processor. Intuitively,
d represents a ®nite set of equally spaced, equally sized blocks of elements, where o is
the starting index of the global array elements distributed onto the processor; b the
length of the block; s the stride between two consecutive blocks; and n is the number
of blocks distributed onto the processor.

Consider a one-dimensional array A of size G. Using the notion of LDD, it is
possible to represent the set of elements of A owned by a processor under any regular
distribution. An LDD corresponds to a set of the global array index de®ned as
follows:

S�d� � fi j o� s � u6 i < o� b� s � u; 06 u < ng:
Intersection of LDDs. Let d1 � �o1; b1; s1; n1� and d2 � �o2; b2; s2; n2� be two LDDs,

and their corresponding array index sets are S�d1� and S�d2� (namely LDD set),
respectively. The intersection of S�d1� and S�d2� is as follows:

S�d1� \ S�d2� � fi j max�o1 � s1 � u1; o2 � s2 � u2�
6 i < min��o1 � s1 � u1� � b1; �o2 � s2 � u2� � b2�; 06 u1 < n1;

06 u2 < n2g:

Lemma 1. Let d1 � �o1; b1; s1; n1� and d2 � �o2; b2; s2; n2�; S�d1� \ S�d2� � ; () 8u1;
u2�06 u1 < n1 ^ 06 u2 < n2�; max�o1 � s1 � u1; o2 � s2 � u2�P min�o1 � b1 � s1 � u1;
o2 � b2 � s2 � u2�:

Definition of multi-dimensional LDD. A multi-dimensional LDD is de®ned as

D � �~O;~B;~S; ~N�;
where ~O � ho1; . . . ; odi; ~B � hb1; . . . ; bdi; ~S � hs1; . . . ; sdi; ~N � hn1; . . . ; ndi, and d is
the number of dimensions. For 16 i6 d; di � �oi; bi; si; ni� is called the LDD of ith
dimension.

For a multi-dimensional LDD D, its index set S�D� is de®ned as the Cartesian
product of the index sets of its each dimensional LDD di:

S�D� � S�d1� � S�d2� � � � � � S�dd�:
We will abbreviate the above formula as

D � d1 � d2 � � � � � dd:

Also, the intersection of two multi-dimensional LDD can be computed by dimen-
sion-by-dimension intersection. That is, the intersection of two LDDs is the Carte-
sian product of the intersection of each dimensional LDDs. We can abbreviate this
result as

Di \ Dj � di1

ÿ � � � � � did

� \ dj1

ÿ � � � � � djd

� � di1 \ dj1

ÿ �� � � � � did \ djd

ÿ �
:

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1331

Lemma 2. Di \ Dj 6� ; () �di1 \ dj1
6� ;� ^ � � � ^ �did \ djd 6� ;�:

Redistribution algorithm based on LDD. To perform a redistribution, for any
source±target processor pair, one has to look at the set of elements owned by the
source processor before the redistribution (based on the source distribution scheme)
and the set of elements owned by the target processor after the redistribution (based
on the target distribution). An intersection of these sets is the data that need to be
transferred between the pair of source±target processors. The LDD representation is
particularly useful to determine which pair of source±target processors need to
communicate.

Theorem 1. Let Di be the LDD of a source processor Pi under the source distribution
scheme Ds, and ~Dj be the LDD of a target processor ~Pj under the target distribution
scheme Dt. In a redistribution from �Ps;Ds� to �Pt;Dt�, where Ps and Pt are the
source and target processor set, respectively, the data that each processor Pi �Pi 2 Ps�
should communicate with target processor ~Pj; � ~Pj 2 Pt�, are indicated by the inter-
section of Di and ~Dj.

4. Communication scheduling for array redistribution

In the following discussions, we focus on the contention-free communication
scheduling in the case of all-to-many communication. We ®rst consider the sending
communication scheduling in one-dimensional case, and the multi-dimensioal al-
gorithm will appear in Section 4.3. The case of b0 � b � b and receiving communi-
cation scheduling will be described in Section 4.4. We also assume that the array
index starts from 1 while processors are numbered starting from 0.

4.1. One-dimensional scheduling algorithm

We construct a communication matrix (table) COM for the redistribution
�Ds;Ps� to �Dt;Pt�. A ``1'' in the �i; j� entry represents the fact that processor Pi

needs to communicate to processor Pj. That is, COM�i; j� � 1 if and only if processor
Pi sends data to processor Pj. According to the usage of LDDs, let di and dj be the
LDDs of processors Pi and Pj, respectively, then

COM�i; j� � 1; di \ dj 6� ;;
0; di \ dj � ;:

�
�1�

Our goal is to generate an algorithm that derives another table from COM, called
communication scheduling table CS�i; k�, where 06 i < P , 06 k <K (K is the
number of communication steps), and if COM�i; j� � 1, there exists a k; 06 k <K
such that CS�i; k� � j and each column of CS is a (partial) permutation of processor
0; 1; . . . ; P 0 ÿ 1. Fig. 5 shows the examples of the communication table and its cor-
responding communication scheduling table.

1332 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

Observing the communication table COM with size P � P 0, we can obtain the
following properties:
1. The vector �j1; . . . ; jLi� when COM�i; jk� � 1 for 16 k6Li6K in row i of COM

represents the sending vector of processor Pi, where Li �
PP 0ÿ1

j�0 COM�i; j�, which
contains information of the destination nodes. Similarly, the vector �i1; . . . ; iL0j�
when COM�ik; j� � 1 for 16 k6L0

j6K0 in column j of COM represents the re-
ceiving vector of processor Pj, where L0

j �
PPÿ1

i�0 COM�i; j�, which contains infor-
mation of the source nodes.

2. The number of sending communication steps, K, is the maximum length of
the sending vectors: K � max06 i<P �Li�, and the number of receiving commu-
nication steps K0, is the maximum length of the receiving vectors:
K0 � max06 j<P 0 �L0

j�.
If a reasonable contention-free scheduling can be derived, K06K needs to be
satis®ed, otherwise, the number of source processors that send message to a desti-
nation processor simultaneously is larger than the communication step. Thus there
may be at least two source processors which send message to a destination processor
simultaneously after communication scheduling. If the number of processors P ; P 0

and block lengths b; b0 can be arbitrary values, it is possible that K0 >K in some
cases (for example, when P � 12; P 0 � 8; b � 4; b0 � 3, we have K0 � 4 but K � 2).
In this paper, we only consider the scheduling algorithm when K06K.

Theorem 2. In a redistribution operation, if a sending processor Pi need (not) send a
message to a receiving processor Pj, then for another sending processor Pi0 ; 06 i0 < P ,
there certainly exists a receiving processor Pj0 such that Pi0 need (not) send a message to
Pj0 , and j0 � �j� �i0 ÿ i� � �b=b0�� mod P 0. Using the notion of communication table,
this means

COM�i; j� � 0 �or � 1� () COM�i0; j0� � 0 �or � 1�;

and j0 � �j� �i0 ÿ i� � �b=b0�� mod P 0.

Fig. 5. Examples of the communication table and the communication scheduling table.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1333

Proof. Assume di � �i � b� 1; b; s; n� and dj � �j � b0 � 1; b0; s0; n0�, are two LDDs of
the sending processor Pi and receiving processor Pj, respectively, then, according to
Formula (1) and Lemma 1,

COM�i; j� � 0

() di \ dj � ; () 8u; v�06 u < n; 06 v < n0�;
max�i � b� 1� s � u; j � b0 � 1� s0 � v�
> min�i � b� b� s � u; j � b0 � b0 � s0 � v�:

For another processors Pi0 and Pj0 where j0 � �j� �i0 ÿ i� � �b=b0�� mod P 0,

max i0 � b
ÿ � 1� s � u; j0 � b0 � 1� s0 � v

�
� max i0 � b

�
� 1� s � u; 1� j

�
� �i0
�
ÿ i� � b

b0

�
mod P 0

�
� b0 � s0 � v

�
� max 1

�
� i0 � b� s � u; 1� j � b0 � �i0

�
ÿ i� � b

b0
� b0
�

� mod �P 0 � b0� � s0 � v
�
: �2�

Because P 0 � b0 � s0 and x mod y � xÿ y � w for a constant w. Assume v0 � vÿ w,
thus,

Eq: �2� � max 1

�
� i0 � b� s � u; 1� j � b0 � �i0 ÿ i� � b

b0
� b0 � s0 � v0

�
� max 1

ÿ � i � b� s � u; 1� j � b0 � s0 � v0
�� �i0 ÿ i� � b

> min �iÿ � 1� � b� s � u; �j� 1� � b0 � s0 � v0
�� �i0 ÿ i� � b

� min �i0ÿ � 1� � b� s � u; �j� 1� � b0 � �i0 ÿ i� � b� s0 � v0
�

� min �i0
�
� 1� � b� s � u; j

��
� �i0 ÿ i� � b

b0

�
mod P 0 � 1

�
� b0 � s0 � v

�
� min i0 � b

ÿ � b� s � u; j0 � b0 � b0 � s0 � v
�
:

By using the Lemma 1 again, the above inequality means

Di0 \ Dj0 � ; () COM�i0; j0� � 0: �

De®nition 1. According to Theorem 2, two entries �i; j� and �i0; j0� of COM are called
symmetrical if and only if

j0 � j
�
� �i0 ÿ i� � b

b0

�
mod P 0:

1334 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

Fig. 6 shows two communication tables with P � P 0 � 6; K � 4 and P � P 0 � 5;
K � 3, respectively. The entries enclosed in a circle are symmetrical entries.

Corollary 1. For a sending processor Pi, if there exist j1 and j2, such that
COM�i; j1� � 0 and COM�i; j2� � 0 and �j2 ÿ j1� mod P 0 � d, then for each other
sending node Pi0 , there certainly exist j01 and j02, such that COM�i0; j01� � 0 and
COM�i0; j02� � 0 and �j02 ÿ j01� mod P 0 � d, where d is a constant, namely distance.

Proof. According to Theorem 2, j01 � �j1 � �i0 ÿ i� � �b=b0�� mod P 0 and j02 � �j2�
�i0 ÿ i� � �b=b0�� mod P 0, therefore, �j02 ÿ j01� mod P 0 � �j2 ÿ j1� mod P 0 � d: �

De®nition 2. A scheduled sending vector of processor Pi is a sequence of destination
processor

SVi � �Pj0
; Pj1

; . . . ; PjKÿ1
�;

where COM�i; jk� � 1, 06 k <K, K is the number of the communication steps,
jk � �j0 � k� mod K, 1 and ju � jv

2 when u < v. SV k �� Pjk � represents the kth
entry in vector SV. SV 0 is called the start element of SV.

According to the above de®nition, the communication scheduling table CS is
composed of some SVi . SVi is the ith row of CS. From Corollary 1, if the start ele-
ments of two sending vectors are di�erent, then all the elements at the same entry are
di�erent for these two sending vectors. Therefore, in the following discussions, we
only focus on the algorithm that generates the start elements.

Fig. 6. Examples of communication tables and the symmetrical entries for one-dimensional redistribution.

1 Because we assume b � b � b0, all sending processors redistribute data to some neighbouring receiving

processors.
2 � is a special ascending order designated as ``<'' but taken a round of P 0. For example, if P 0 � 6 and

j0 � 3, then 3 � 4 � 5 � 0 � 1 � 2.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1335

From Theorem 2, if COM�i0; j0� � 1 (or � 0) for a sending node Pi0 , then there
certainly exists corresponding jk for each other sending node Pik such that
COM�ik; jk� � 1 (or � 0), 16 k < P . These jk form a group �j0; . . . ; jPÿ1�, called
relative group RG.

De®nition 3. Suppose J � is a ``1'' entry in the row i of COM for a sending node
Pi, the kth ``1'' entry J following J � in the row i of COM is de®ned as
that COM�i; J � � 1; J � � J , and there exist J �1�; . . . ; J �kÿ1� such that J � �
J �1� � � � � � J �kÿ1� � J ; COM�i; J �l�� � 1; 16 l6 k ÿ 1.

Algorithm 1. Because the sending vector SV can be determined according to SV 0, we
only need to ®nd the start element SV 0

i for each sending node Pi according to the
following steps:
1. Find out a ``1'' entry as the ®rst ``1'' entry J �0 for sending node P0 where

COM�0; J �0 � � 1 and its relative group RG � �J �0 ; . . . ; J �Pÿ1�:
(Take Fig. 7 as an example. RG � �0; 4; 2; 0; 4; 2� and RG0 � �0; 3; 1; 4; 2� for the

communication tables shown in Figs. 7(a) and (b), respectively.)
2. If some J �s in RG are equal to each other, i.e., J �i1 � J �i2 � � � � � J �in �J �iu 2 RG;

06 iu < P�, then put the sending node Pi1 ; . . . ; Pin into a sub-group SN. Thus P
sending nodes can be divided into m sub-groups SN0; . . . ; SNmÿ1, each sub-group
SNi has the same number of elements n, where P � m � n.
(For Fig. 7(a), SN0 � �P0; P3�; SN1 � �P1; P4�, SN2 � �P2; P5�.)

Fig. 7. Generation of scheduling tables from communication tables.

1336 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

3. If the number of elements of all the sub-groups is 1, that is, there are total P sub-
groups, then the start element of each row i is the ®rst ``1'' entry J �i .
(For Fig. 7(b), SN0 � �P0�; SN1 � �P1�; SN2 � �P2�; SN3 � �P3�; SN4 � �P4�.

Hence, the start elements are �0; 3; 1; 4; 2�.)
4. Otherwise, for the sending nodes Pi0 ; . . . ; Pinÿ1

in a sub-group, the start element
is the ®rst ``1'' entry , 2nd ``1'' entry, . . . ; nth ``1'' entry for the row i0; . . . ; inÿ1,
respectively.
(Hence, the start elements of �P0; P3�, �P1; P4� and �P2; P5� are �0; 1�, �4; 5� and

�2; 3�, respectively.)
5. All such sequences of the processor number which begin at the start element SV 0

are composed of sending vectors SV , which are the rows of the scheduling table
CS.

Fig. 7 gives some examples of generation of the scheduling tables from the
communication tables, according to Algorithm 1. The entries enclosed in a triangular
is the start elements of the sending vectors.

Theorem 3. Any column of a CS generated from Algorithm 1 is a permutation of the
processor numbers �0; 1; . . . ; P 0 ÿ 1�.

Proof.

1. If the SV 0 of each sending vector is derived from Step 3, according to the fact de-
scribed in Step 2, the start elements of various sending vectors are di�erent from
each other.

2. If the SV 0 are derived from Step 4, the maximum number of elements in a sub-
group is less than or equal to K. Otherwise, at least in a column j of COM,
the number of entry ``1'' is less than K. In other words, there is a receiving node
Pj which receives messages from less than K node. It is impossible for array re-
distribution. Therefore, for the nodes in the same sub-group, we can guarantee
there exist enough di�erent start elements.

3. According to Theorem 2, for each 1st, 2nd, . . . ; nth ``1'' entry of the sending
nodes in a sub-group, there must exist corresponding entry in other sub-group
and such entry is di�erent each other.

4. According to Corollary 1, all the elements at the same entry are di�erent for these
P sending vectors.
Therefore, the elements in any column of a CS are di�erent from each other, that

is, the columns are the permutations of processor node numbers. �

4.2. Estimation of the time complexity

Optimizing the scheduling algorithm itself can in¯uence the e�ciency of the data-
parallel compilers. On the other hand, because the produced results of two kinds of
algorithms ± communication table, which is used in the application programs, are
same, it is more interesting to compare the various e�ciency of an application
program under using the communication scheduling or not. Therefore, we will do

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1337

some experiments to illustrate the results about these in the next section, while only
compare the e�ciency of our algorithm and Ranka's one by estimating the time
complexity in this subsection.

Ranka et al. estimated the approximately average time complexity of their
algorithm (compact global masking algorithm) in [13,14] as
· time for compressing COM into another matrix CCOM with size P � k (no sched-

uling): O�P 2�;
· time for performing the scheduling: O�k � P � ln k�;
· time for performing the communication: O�k�Ts � Td � b0��, where Ts is the com-

munication start-up time and Td is the transmission time per byte.
Using the same estimating method as the one in [13], we can make the following

complexity analysis for Algorithm 1:
· for Step 1, time for ®nding out J �0 and its relative group is O�P � in sequential

program;
· for Steps 2±4, using the distance di far from processor P0, time for dividing each J �i

into sub-group and determining the start elements is O�P � �O�k� � O�P � k�;
· time for scheduling is O�k�Ts � Td � b0��.

That is, time for scheduling of our algorithm is O�P � �O�P � k� � O�P � k�.
Comparing with the time complexity of Ranka's algorithm, we can observe that our
scheduling algorithm gets better performance, due to the usage of the peculiarity of
redistribution. Applying Theorem 2 and Corollary 1 to our algorithm reduces the
computation cost for scheduling.

4.3. Multi-dimensional scheduling algorithm

For the multi-dimensional case, if the redistribution is the ``shape retaining'' case,
it can be done by simply looking at the representations for each dimension and
performing redistributions dimension-by-dimension independently. In this section,
we only consider the ``shape changing'' case. For the sake of simplicity, in the fol-
lowing discussions, we use two-dimensional case to explain the multi-dimensional
redistribution problems. We assume that the processor grid is P � P1 � P2 before the
redistribution and P 0 � P 01 � P 02 after the redistribution. Hence, the processor Pi can
be represented in two-dimensional coordinate, that is i � �i1; i2�.

With respect to 2D array redistribution, as we proposed in Lemma 2 of Section 3,

Di \ Dj 6� ; () di1 \ dj1
6� ; ^ di2 \ dj2

6� ;;
where i � �i1; i2� is the source processor number and j � �j1; j2� is the target pro-
cessor number. Using the notation of the communication table COM, it can be
represented as

COM�i; j� � COM��i1; i2�; �j1; j2�� � COM1�i1; j1� ^ COM2�i2; j2�;
where COM1 and COM2 are the communication tables corresponding to the ®rst
and second dimension, respectively.

The algorithm for determining the start element of each sending node is composed
of the 1D algorithms applied repeatedly. The algorithm is as follows.

1338 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

Algorithm 2. Similar to Algorithm 1, we also consider the start elements only.
1. First consider COM1. Applying Algorithm 1, we can get the start elements
�J 0

1 ; . . . ; J P1ÿ1
1 � for I0

1 ; . . . ; IP1ÿ1
1 , such that,

COM��I0
1 ; i2�; �J 0

1 ; j2��; . . . ;COM��IP1ÿ1
1 ; i2�; �J P1ÿ1

1 ; j2��

form P1 number of sub-communication tables. All these sub-communication tables
are equal to another communication table COM2 but no overlapping rows and
columns in COM.
2. Then consider sub-communication tables

COM��I0
1 ; i2�; �J 0

1 ; j2��; . . . ;COM��IP1ÿ1
1 ; i2�; �J P1ÿ1

1 ; j2��:

Applying Algorithm 1 again,
2.1. If P26 P 02 we can directly apply Algorithm 1 to tables

COM��I0
1 ; i2�; �J 0

1 ; j2��; . . . ;COM��IP1ÿ1
1 ; i2�; �J P1ÿ1

1 ; j2��;

and obtain the start elements �J 0
2 . . . ; J P2ÿ1

2 � for I0
2 ; . . . ; IP2ÿ1

2 .
2.2. If P2 > P 02, it is possible there are not enough columns to get start elements in

COM2, then we compound two sub-communication tables COM��I1; i2�;
�J1; j2�� and COM��I1; i2�, �Ĵ1; j2�� into a sub-table and use the Algorithm 1 to
it, where COM1�I1; J1� � 1 and COM1�I1; Ĵ1� � 1 and Ĵ1 is the ®rst ``1'' entry
following J1.

3. The pairs �J u
1 ; J

v
2� are the start elements for each sending node

�Iu
1 ; I

v
2��06 �u; v� < �P1; P2��.

For example, consider an array redistribution (BLOCK, BLOCK) to (BLOCK,
BLOCK) on P � 2� 4 to P 0 � 4� 2. The sub-communication tables COM1 and
COM2, the communication table COM, and the CS table derived from Algorithm 2
are shown in Fig. 8(a), (b), (c) and (d), respectively, where COM��i1; i2�; �j1; j2�� and
CS��i1; i2�; k� are represented as COM�4i1 � i2; 2j1 � j2� and CS�4i1 � i2; k�.

Fig. 8. Example for multi-dimensional redistribution.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1339

4.4. Receiving communication scheduling table

The receiving scheduling table CS0 can be directly derived from the sending
scheduling table CS:

CS�i; k� � j) CS0�j; k� � i;

where 06 i < P ; 06 j < P 0; 06 k <K. Also, the sending CS in the case of
b0 � b � b is equal to the receiving CS0 in the case of b � b � b0.

5. Experimental results

In order to evaluate the ideas presented in this paper, we conducted some ex-
periments implemented on CP-PACS, a 2048-processor MIMD distributed memory
parallel computer developed at the University of Tsukuba. All the node programs
are written in C, using PARALLELWARE 3 programming environment, a com-
mercially available package that extends C and FORTRAN77 with a portable
communication library.

As we mentioned in Section 1, most of the real applications (such as ADI, FFT)
which need to use redistribution algorithms have the all-to-all communication pat-
tern. However, the all-to-many redistribution algorithms are useful in the data-
parallel compilers, such as HPF compiler, because the HPF users may often write
such kind of REDISTRIBUTE directives. Therefore, we use an HPF program shown
in Fig. 9 as our experimental sample. Because we concentrate our attention on the
results that demonstrate the usefulness of the communication scheduling optimiza-
tions we presented in this paper, we only measure the execution time of the directive
REDISTRIBUTE (the HPF compiler invokes a redistribution routine). We use our
earlier algorithm without scheduling [2,3] as a base for comparison.

Fig. 10 shows the result of the experiment. Our LDD approach is applied in the
index computation part of the redistribution algorithm. The curve ``without sched-
uling'' represents the performance of the redistribution without communication
scheduling, and the curve ``with scheduling'' represents the performance of the re-
distribution with communication scheduling optimization presented in this paper.

Another similar experiment is done with the communication steps K � 6. The
result is shown in Fig. 11.

From these ®gures we observed that the algorithm with the communication
scheduling optimization achieves better performance than the former algorithm, no
matter how long the communication steps are. The performance improvement be-
comes more appreciable as the number of processors is increased. This means it is
vital to use the communication scheduling in the redistribution algorithms.

3 PARALLELWARE is a trademark of Nippon Steel Corporation. The trademark of the same software

in America is Express.

1340 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

Fig. 10. Comparison of the performance of the redistribution with and without communication sched-

uling on CP-PACS (data size � 120000;K � 3).

Fig. 11. Comparison of the performance of the redistribution with and without communication sched-

uling on CP-PACS (data size � 120000;K � 6).

Fig. 9. A sample HPF program used in the experiment.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1341

6. Conclusions

Redistribution operations of arrays can be optimized through two approaches ±
index computation optimization and communication scheduling. In this paper, we
have shown an e�cient approach for scheduling all-to-many communication in re-
distribution. Based on the notion of LDD proposed in [2±4], our communication
schedulings are designed using the communication table and communication
scheduling table. The communication scheduling results in a permutation of the
destination processors in each communication step. The communication steps of
each sending processor are exactly equal to the number of receiving processors which
sending processor must communicate with. Thus the communications in our redis-
tribution algorithm are node contention-free. Our approach can deal with multi-
dimensional ``shape changing redistribution''. However, our current algorithm can
only process the case of b � b � b0. In future, we will extend it to the general case and
consider the factor of message length into our scheduling algorithms.

References

[1] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, Y. Robert, Scheduling block-cyclic array

redistribution, IEEE Transactions on Parallel and Distributed Systems 9 (2) (1998) 192±205.

[2] M. Guo, Y. Yamashita, I. Nakata, E�cient implementation of multi-dimensional array redistribu-

tion, IEICE Transactions on Information and Systems E81-D (11) (1998) 1195±1204.

[3] M. Guo, Y. Yamashita, I. Nakata, Improving performance of multi-dimensional array redistribution

on distributed memory machines, in: Proceedings of the Third International Workshop on High-Level

Parallel Programming Models and Supportive Environments, March 1998, Orlando, FL, USA.

[4] M. Guo, E�cient techniques for data distribution and redistribution in parallelizing compilers, Ph.D.

Thesis, University of Tsukuba, Japan, July 1998.

[5] HPF Forum: High Performance Fortran Language Speci®cation, Rice University, Houston, TX,

version 2.0 edition, November 1996.

[6] S.D. Kaushik, C.-H. Huang, R.W. Johmson, P. Sadayappan, An approach to communication-

e�cient data redistribution, in: Proceedings of the Eighth ACM International Conference on

Supercomputing, July 1994, Manchester, UK.

[7] S.D. Kaushik, C.-H. Huang, J. Ramanujam, P. Sadayappan, Multi-phase redistribution: a

communication-e�cient approach to array redistribution, Technical Report, The Ohio Sate

University, 1995.

[8] E.T. Kalns, L.M. Ni, Processor mapping techniques toward e�cient data redistribution, IEEE

Transactions on Parallel and Distributed Systems 6 (12) (1995) 1234±1247.

[9] Y.W. Lim, P.B. Bhat, V. Prasanna, E�cient algorithms for block-cyclic redistribution of arrays, in:

Proceedings of the IEEE Symposium on Parallel and Distributed Processing, October 1996.

[10] Y.W. Lim, N. Park, V. Prasanna, E�cient algorithms for multi-dimensional block-cyclic redistri-

bution of arrays, in: Proceedings of the 26th International Conference on Parallel Processing, August

1997, Bloomingdale, IL.

[11] K. Nakazawa, H. Nakamura, T. Boku, I. Nakata, Y. Yamashita, CP-PACS: a massively parallel

processor at the University of Tsukuba, Parallel Computing 25 (13&14) (1999) 1635±1661.

[12] S. Ramaswamy, B. Simons, P. Banerjee, Optimizations for e�cient array redistribution on distributed

memory multicomputers, Journal of Parallel and Distributed Computing 38 (1996) 217±228.

[13] S. Ranka, J.-C. Wang, G. Fox, Static and run-time algorithms for all-to-many personalized

communication on permutation networks, IEEE Transactions on Parallel and Distributed Systems 5

(12) (1994) 1266±1274.

1342 M. Guo et al. / Parallel Computing 26 (2000) 1325±1343

[14] S. Ranka, R. Shankar, K. Alsabti, Many-to-many personalized communication with bounded tra�c,

in: Proceeding of Frontiers'95, 1995.

[15] R. Thakur, A. Choudhary, G. Fox, Runtime array redistribution in HPF programs, in: Proceedings

of the Scalable High Performance Computing Conference, May 1994, pp. 309±316.

[16] R. Thakur, A. Choudhary, J. Ramanujam, E�cient algorithms for array redistribution, IEEE

Transactions on Parallel and Distributed Systems 7 (6) (1996) 587±593.

M. Guo et al. / Parallel Computing 26 (2000) 1325±1343 1343

