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Abstract—Loops are the main source of parallelism in many applications. This paper solves the open problem of extracting the

maximal number of iterations from a loop to run parallel on chip multiprocessors. Our algorithm solves it optimally by migrating the

weights of parallelism-inhibiting dependences on dependence cycles in two phases. First, we model dependence migration with

retiming and formulate this classic loop parallelization into a graph optimization problem, i.e., one of finding retiming values for its

nodes so that the minimum nonzero edge weight in the graph is maximized. We present our algorithm in three stages with each being

built incrementally on the preceding one. Second, the optimal code for a loop is generated from the retimed graph of the loop found in

the first phase. We demonstrate the effectiveness of our optimal algorithm by comparing with a number of representative nonoptimal

algorithms using a set of benchmarks frequently used in prior work and a set of graphs generated by TGFF.

Index Terms—Loop parallelization, loop transformation, retiming, data dependence graph, iteration-level parallelism.
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1 INTRODUCTION

CHIP multiprocessors, such as Intel Dual-Core processors,
AMD Phenom processors, and ARM11 MPCore pro-

cessors, are widely used in both general-purpose and
embedded computing. The importance of harnessing
parallelism in programs to fully utilize their computation
power cannot be overemphasized. While programmers can
utilize multiple-threaded application development environ-
ments to generate coarse-grain parallel programs with
thread-level parallelization in practice [2], [3], loop paralle-
lization at the granularities of loop iterations is generally too
hard to be done manually. A lot of automatic loop
parallelization techniques have been developed for paral-
lel/vector compilers in the previous work [4], [5], [6], [7], [8],
[9]. Based on data dependence analysis, various techniques,
such as scalar renaming, scalar expansion, scalar forward
substitution, dead code elimination, and data dependence
elimination, have been proposed [4], [10], [11]. Most of these
techniques, however, focus on instruction-level parallelism.
In this paper, we propose an iteration-level loop paralleliza-
tion technique that supplements the previous work by
enhancing loop parallelism. We target at iteration-level
parallelism [12] by which different iterations from the same
loop kernel can be executed in parallel.

At the iteration level, based upon the degree of parallelism,
loops can be mainly classified into three categories: serial
loops, parallel loops (DOALL) [13], and partially parallel
loops (DOACROSS) [14], [15]. Without any loop transforma-
tions, all iterations in a serial loop must be executed
sequentially due to the dependences between successive
iterations. For a DOALL loop, all its iterations can be executed
in parallel since it exhibits no interiteration dependences. In
the case of a DOACROSS loop, its successive iterations can be
partially overlapped because of interiteration data depen-
dences. In this paper, we focus on maximizing loop
parallelism for serial and DOACROSS loops. The main
obstacle to their parallelization lies in the presence of
dependence cycles, a dependence relation in a set of
statements to which the statements are strongly connected
via dependence relations [16].

There have been numerous studies to enhance loop
parallelism by exploiting data dependences [17] of depen-
dence cycles [4], [10], [18], [19], [20], [21]. In [18], a
partitioning technique is proposed to group all iterations
of a loop together to form a dependence chain if the greatest
common divisor of their dependence distances is larger
than one. Cycle shrinking [19], [20], [22] is a loop tiling
technique by which consecutive dependence-free iterations
are grouped to form the innermost loop kernel of a new set
of nested loops. In [4] and [10], node splitting is used to
eliminate anti- or output-dependences by adding new copy
statements. In [21], cycle breaking is used to partition a loop
into a series of small loops. Unlike the previous work, this
work applies loop transformation to change interiteration
data dependences so optimal parallelism can be achieved
by the proposed technique in this paper.

For nested loops with a single statement each, the
minimum distance method [23], [24] is proposed to maximize
loop parallelism by partitioning a loop into multiple
independent execution sets and then map these execution
sets to different processors. In this method, a dependence
matrix formed from the original loop is transformed into an
upper triangular matrix, which is then used to identify the
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independent execution sets. This method is extended to solve
a special case for nested loops with multiple statements, in
which the loop dependences among all variables could be
transformed and derived as if they were from only one
variable, such that the dependence matrix is simplified and
can be used to obtain maximum partitions. However, such an
extension was discussed only briefly and illustrated by
examples. No systematic method is given to solve the
multistatement problem, in general. This paper focuses on a
more general case for one-level loop with multiple state-
ments, i.e., the loop dependences among all variables may or
may not be transformed and derived from one variable. Our
method can solve this class of loops optimally for the first
time in a systematic manner. A general algorithm is given and
illustrated by examples and experimental evaluation.

In our proposed technique, loop transformation is
modeled by retiming [25], [26], [27]. Retiming is originally
proposed to minimize the cycle period of a synchronous
circuit by evenly distributing registers. It has been extended
to schedule data flow graphs on parallel systems in [28]. For
loop transformation, retiming is used under the name of
“index shift method” for parallelizing nested loops [29]. The
basic idea of the index shift method is to defer or advance
the execution steps of some statements in such a way that
we can increase the parallelism of a loop based on the
hyperplane method. In [30], a loop optimization method is
proposed to optimize nested loops by combining the index
shift method [29] and the generalized cycle shrinking [22].
In [31], a loop transformation technique is proposed in an
attempt to fully parallelize an inner loop through retiming
an outer loop. Most of the above work focuses on
instruction-level parallelism and none considers iteration-
level parallelism for serial and DOACROSS loops. To our
knowledge, this work is the first to optimally solve the
iteration-level loop parallelization problem with depen-
dence migration modeled by retiming.

In this paper, we propose an optimal iteration-level loop
parallelization technique with loop transformation to max-
imize loop parallelism. Our basic idea is to migrate
interiteration data dependences by regrouping statements
of a loop kernel in such a way that the number of consecutive
independent iterations is always maximized. In our techni-
que, a dependence graph is constructed to model data
dependences among statements in a loop, and then retiming
is used to model dependence migration among edges in the
dependence graph. As a result, this classic loop optimization
problem is transformed into a graph optimization problem,
i.e., one of finding retiming values for its nodes so that the
minimum nonzero edge weight in the graph is maximized.
To solve the graph optimization problem incrementally, we
classify a dependence graph into one of the three types: a
Directed Acyclic Graph (DAG), a Cyclic Graph with Single
Cycle (CGSC), and a Cyclic Graph with Multiple Cycles
(CGMC). This allows us to present our technique in three
stages. For DAGs and CGSCs, we give two polynomial
algorithms to find their optimal solutions, respectively. For
CGMCs, we find their optimal solutions based on an integer
linear programming (ILP) formulation that can be solved
efficiently for the dependence graphs found in real code.
Finally, we give a loop transformation algorithm that can
generate the optimized code for a given loop, including its
prologue, loop kernel, and epilogue based on the retiming
values of the loop.

This paper makes the following contributions:

. We present for the first time an optimal loop
parallelization technique for maximizing the number
of concurrently executed loop iterations in a serial or
DOACROSS loop.

. We demonstrate the effectiveness of our technique
by comparing with a number of representative (non-
optimal) techniques using a set of benchmarks
frequently used in prior work and a set of graphs
generated by TGFF [32].

The rest of this paper is organized as follows: Section 2
presents some basic concepts about dependence graphs and
retiming, formalizes the problem addressed, and gives an
overview of our optimal loop parallelization technique. In
Section 3, we present our technique incrementally by
considering three different types of dependence graphs
and presenting three algorithms to find their optimal
retiming functions, with each being built on the preceding
one. In Section 4, we give an algorithm for generating the
optimal code for a loop based on a retiming function.
Section 5 evaluates and analyzes the proposed technique
against existing loop parallelization techniques. Section 6
concludes this paper and discusses future work.

2 BASIC CONCEPTS AND MODELS

In this section, we introduce basic concepts and models that
are used in the later sections. First, the notion of
dependence graph is introduced in Section 2.1. Then, in
Section 2.2, we examine briefly how to use retiming to
model dependence migration among the edges in a
dependence graph. A brief discussion on iteration-level
parallelism is presented in Section 2.3. Finally, the problem
addressed is defined in Section 2.4.

2.1 Dependence Graph

Given a loop, its dependence graph G ¼ ðV ;E;wÞ is an edge-
weighted directed graph, where V is the set of nodes with
each node representing a statement in the loop, E ¼ fðu; vÞ :
u! v 2 V g is the edge set that defines the dependence
relations for all nodes in V with ðu; vÞ denoting the edge
from node u to node v, and w : E 7! ZZ is a function that
associates every edge ðu; vÞ 2 E with a nonnegative weight
known as its dependence distance. By convention, an edge
ðu; vÞ represents an intraiteration dependence if wðu; vÞ ¼ 0
and an interiteration dependence otherwise (i.e., if
wðu; vÞ > 0). In either case, wðu; vÞ represents the number
of iterations involved. These two kinds of dependences are
further explained as follows:

. Intraiteration dependence wðu; vÞ ¼ 0. Such a depen-
dence occurs in the same iteration between a pair of
statements. If there exists an intraiteration depen-
dence between two statements u and v within the
same iteration, then statement v reads the results
generated by statement u.

. Interiteration dependence wðu; vÞ > 0. Such a de-
pendence occurs when two statements from
different iterations are dependent on each other.
If there exists an interiteration dependence be-
tween u and v, then the execution of statement v in
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iteration iþ wðu; vÞ reads the results generated by
u in iteration i. Thus, the earliest iteration in which
v can be executed is wðu; vÞ iterations later than the
iteration in which u is executed.

We use a real loop application from [33] to show how to
use a dependence graph to model a loop. The loop kernel is
shown in Fig. 1a and its corresponding dependence graph
in Fig. 1b. This loop has both intraiteration and interitera-
tion dependences. For example, the weight of edge ðS1; S2Þ
is zero, indicating an intraiteration dependence between S1

and S2. The weight of edge ðS3; S4Þ is 2, indicating an
interiteration dependence between S3 and S4 with a
distance of 2.

Fig. 1c illustrates how iteration-level loop parallelism can
be constrained by dependences with the first four iterations
shown. Let us examine intraiteration dependences first. In
each iteration, S2 must be executed after S1 sinceA½i� read by
S2 should be written by S1 first. In addition, S2 and S4 also
have an intraiteration dependence (due to D½i�Þ. In general,
intraiteration dependences are confined to the same iteration
and thus do not inhibit iteration-level parallelism. Let us next
examine interiteration dependences in the loop. S4 in
iteration 4 reads C½2�. Nevertheless, according to the execu-
tion order of loop iterations, C½2� should be written first by
statement S3 in iteration 2. Thus, S4 in iteration i can only be
executed until after S3 in iteration i� 2 has been executed.
Likewise,S3 in iteration i can only be executed until afterS1 in
iteration i� 1 has been executed. As a result, we cannot
execute more than one iteration in parallel since every
iteration requires results from the preceding two iterations.
Hence, interiteration dependences are the major obstacle to
iteration-level parallelism.

2.2 Retiming and Dependence Migration

Retiming [25] is used to model dependence migration, and
it is defined as follows:

Definition 2.1. Given a dependence graph G ¼ ðV ;E;wÞ, a
retiming r of G is a function that maps each node in V to an
integer rðvÞ. For a node u 2 V , the retiming value rðuÞ is the
number of dependence distances (edge weights) drawn from each
of its incoming edges and pushed to each of its outgoing edges.
Given a retiming function r, letGr ¼ ðV ;E;wrÞ be the retimed
graph of G obtained by applying r to G. Then, wrðu; vÞ ¼
wðu; vÞ þ rðuÞ � rðvÞ for each edge ðu; vÞ 2 E in Gr.

As defined above, by retiming a node, dependences are
moved from its incoming edges to its outgoing edges; thus,
dependence relations can be changed. On the other hand, a
retiming function can be directly mapped to a loop
transformation by which we can obtain a new loop that
has the corresponding dependence relations. How to
perform this mapping is discussed in detail in Section 4.
As retiming can be directly mapped to loop transformation,
a retiming function must be legal in order to preserve the
semantic correctness of the original loop. A retiming
function r is legal if the retimed weights of all edges in the
retimed graph Gr are nonnegative. An illegal retiming
function occurs when one of the retimed edge weights
becomes negative, and this situation implies a reference to
nonavailable data from a future iteration. If Gr is a retimed
graph of G derived by a legal retiming function, then Gr is
functionally equivalent to G [25].

For simplicity, we normalize a retiming r such that the
minimum retiming value(s) is always zero [34]. A retiming
function r can be normalized by subtracting minvrðvÞ from
rðvÞ for every v in V [35].

As an example shown in Fig. 2, the retiming value rðS3Þ ¼
1 conveys that one unit of dependence distance is drawn
from the incoming edge of node S3, S1 ! S3, and pushed to
both of its outgoing edges, S3 ! S1 and S3 ! S4. Therefore,
by applying rðS3Þ ¼ 1, the execution of S3 is moved forward,
and correspondingly, the original interiteration dependence
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Fig. 1. A loop kernel from [33] and its dependence graph. (a) The loop
kernel. (b) The dependence graph. (c) Intra- and interiteration
dependences.

Fig. 2. Loop transformation for Fig. 1b. (a) The original dependence
graph (with the minimum nonzero edge weight being 1). (b) The
transformed dependence graph with the minimum nonzero edge weight
being 2. (c) The new loop kernel after loop transformation. (d) A
graphical representation of parallelism in the transformed loop.



(wðS1; S3Þ ¼ 1) between S1 and S3 is transformed into an

intraiteration dependence ðwrðS1; S3Þ ¼ 0Þ. Fig. 2c shows the

new loop kernel obtained based on this retiming function.

Fig. 2d illustrates the iteration-level parallelism in the new

kernel, indicating that its two consecutive iterations can be

executed in parallel since they are now independent.

2.3 Iteration-Level Parallelism

Iteration-level parallelism is achieved when different

iterations from a loop are executed in parallel. However,

loop iterations must be executed in accordance with their

interiteration dependences. Thus, interiteration depen-

dences inhibit iteration parallelization. For example, in

Fig. 1c, S3 and S4 have an interiteration dependence with a

distance of 2. As a result, the ith and ði� 2Þth iterations

cannot be executed in parallel. Moreover, every two

consecutive iterations cannot be executed in parallel either

as there is also an interiteration dependence between S1

and S3 with a distance of 1. Therefore, the minimum

interiteration dependence distance in a loop (i.e., the

minimum nonzero edge weight in its dependence graph)

bounds the amount of parallelism exploitable in the loop

from above.
The focus of this work is on maximizing the minimum

nonzero edge weight with dependence migration and loop

transformation. Given a dependence graph for a loop, its

minimum nonzero edge weight, �, represents the paralle-

lism degree of the loop, which implies the absence of

interiteration dependences within � consecutive iterations.

We say that this loop is �-parallelizable. If the loop can be

fully parallelized, it is said to be fully parallelizable. For

example, the loop in Fig. 2 is 2-parallelizable, which can be

obtained from the transformed dependence graph.

2.4 Problem Statement

For a dependence graph used to model a given loop, the

problem of performing optimally iteration-level loop

parallelization is defined as follows:
Given a dependence graph G ¼ ðV ;E;wÞ of a loop, find a

retiming function r of G such that the minimum nonzero edge

weight � of the transformed dependence graph Gr ¼ ðV ;E;wrÞ
is maximized.

Existing solutions [4], [10], [18], [19], [20], [21] to this

problem are all approximate for serial and DOACROSS

loops. Our solution, as outlined in Fig. 3, solves the

problem optimally (for the first time) in two phases. In the

first phase, we introduce a dependence migration algorithm

(DMA) to find a retiming function for a given dependence

graph such that � in the graph is maximized. In the second

phase, we apply a loop transformation algorithm to generate

the optimal code for the given loop based on the retiming

function found.

3 DEPENDENCE MIGRATION ALGORITHM

In this section, we introduce our dependence migration

algorithm given in Algorithm 3.1 to find a retiming function

for a given dependence graph so that the minimum nonzero

edge weight in the retimed graph is maximized. For

efficiency reasons and also to ease understanding, DMA

finds an optimal retiming function by performing a case
analysis based on the structure of the dependence graph.

Algorithm 3.1. DMA(G, LG)

Input: A dependence graph G ¼ ðV ;E;wÞ of a loop LG.

Output: A retiming function of G.

1: SNode SCC  0; SCycle Num 0.

2: Let SCC Num be the number of SCCs found in G.

3: for each SCC do

4: Let N Num (E Num) be its node (edge) count.

5: if N Num ¼¼ 1 then SNode SCC þþ.

6: if N Num > 1 && E Num ¼¼ N Num then

7: SCycle Num þþ.
8: Let CG½SCycle Num� be the SCC ðVSCC; ESCC; wÞ.
9: end if

10: end for

11: if SNode SCC ¼¼ SCC Num then

12: Let � be the parallelism degree (any positive

number) we want to achieve.

13: DAG_Migration(G, �).

14: else if SCycle Num ¼¼ 1 && SNode SCC ¼¼
SCC Num� 1 then

15: Single_Cycle_Migration(G, CG½SCycle Num�).
16: else

17: Multi Cycle Migration(G).

18: end if

We classify a dependence graph into one of the three

types: a DAG, a Cyclic Graph with Single Cycle, and a

Cyclic Graph with Multiple Cycles, based on the structure of

the Strongly Connected Components (SCCs) in the graph.

The SCCs in a dependence graph can be obtained by using

the Tarjan’s Algorithm [36]. For DAGs and CGSCs, two

algorithms are given to find their optimal retiming functions

polynomially, respectively. For CGMCs, an optimal algo-

rithm is given based on an integer linear programming

formulation. The three different types of dependence

graphs, as illustrated in Fig. 4, are classified as follows:

. DAGs. If every SCC in G has one node only, then G
is a DAG. In this case, DAG Migration is invoked to
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Fig. 3. Optimal retiming-based loop parallelization.

Fig. 4. Three types of dependence graphs. (a) DAG. (b) CGSC.
(c) CGMC.



retime G. An example DAG with four singleton
SCCs are shown in Fig. 4a.

. CGSCs. In such a graph G, one SCC is actually a
single cycle and each other SCC has one node only.
In this case, Single Cycle Migration is invoked to
retime G. An example is given in Fig. 4b.

. CGMCs. In this general case, a graph G has more
than one cycle. Multi Cycle Migration comes into
play to retime G. Fig. 4c gives a dependence graph
with multiple cycles.

3.1 DAG Migration

This algorithm given in Algorithm 3.2 finds a retiming
function for a DAG so that the transformed loop is �-
parallelizable for any positive integer � given, which means
that a loop can be fully parallelized if its dependence graph
is a DAG. This implies that wrðu; vÞ ¼ wðu; vÞ þ rðuÞ �
rðvÞ � � for every edge ðu; vÞ in G after retiming. Hence,
in lines 1-3, these retiming constraints form a system of
linear inequalities. A solution to the system found by the
Bellman-Ford algorithm represents a retiming function of G
as desired (lines 4-8) [25].

Let jV j and jEj be the node and edge numbers of G,
respectively. In Algorithm 3.2, the number of all retiming
constraints is jEj and the number of all unknown variables
is jV j (for each node we want to know its retiming value).
Therefore, the node number of the constraint graph is jV j þ
1 and the edge number of the constraint graph is jEj þ jV j
(for each constraint, there is one edge in the constraint
graph and for the pseudonode there are jV j edges
connecting to all other nodes). So, it takes OððjV j þ 1ÞðjEj þ
jV jÞ to compute the retiming function by using the
Bellman-Ford algorithm. Thus, the time complexity of
Algorithm 3.2 is OðjV j2 þ jV kEjÞ.

Algorithm 3.2. DAG Migration(G, �)

Input: A DAG G ¼ ðV ;E;wÞ and a positive integer �.

Output: A retiming function r0 of G.

1: for each edge ðu; vÞ in G do

2: Generate a retiming constraint: rðvÞ � rðuÞ �
wðu; vÞ � �

3: end for

4: Build the constraint graph G0 such that its node set is V

and there is a directed edge from u to v with the weight

wðu; vÞ � � if rðvÞ � rðuÞ � wðu; vÞ � � is a retiming
constraint.

5: Let G00 be obtained from G0 by adding a pseudo source

node s0 and a zero-weighted edge from s0 to every

node in G0.

6: Obtain a retiming function r by applying the

Bellman-Ford algorithm to the single-source constraint

graph G00, in which for a node u (u 6¼ s0), rðuÞ is the

shortest distance from s0 to u.
7: Let r0 be a retiming function normalized from r.

8: Return r0.

An example is shown in Fig. 5. The original DAG G is
shown in Fig. 5a, in which the minimum nonzero edge
weight is 1. Thus, the parallelism of the original loop is 1.
Suppose that �, the expected degree of parallelism, is 3. By
imposing wrðu; vÞ � 3 for each edge ðu; vÞ in G, we obtain a

system of retiming constraints given in Fig. 5b. Based on this
system, the constraint graph G0 is built as shown in Fig. 5c.
This gives rise to the single-source constraint graph G00

shown in Fig. 5d, for which the solution found by Bellman-
Ford is shown inside the box. For example, the weight of the
shortest path from S0 to S1 is 0, i.e., rðS1Þ ¼ 0. The
transformed dependence graph is shown in Fig. 5e with
the retiming function r shown. The retiming values of some
nodes are negative. However, they are legal since there is no
negative edge weight in the transformed dependence graph.
The transformed dependence graph with the normalized
retiming function r0 is shown in Fig. 5f. It can be seen that the
edge weights remain unchanged after the normalization,
and the minimum nonzero edge weight is � ¼ � ¼ 3.
Therefore, the parallelism of the transformed loop is � ¼ 3.

Theorem 3.1. Let � be a positive integer. If the dependence graph
G ¼ ðV ;E;wÞ of a loop LG is a DAG, then a �-parallelizable
loop can be obtained from LG by DAG Migration in
polynomial time.

(The proof can be found in Supplementary File S1,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.171.)

3.2 Single Cycle Migration

A polynomial algorithm is proposed for a dependence
graph with a single cycle. As shown in Algorithm 3.3, we
first choose an edge ðu; vÞ in the cycle such that the weights
of all other edges in the cycle can be migrated to ðu; vÞ.
According to the retiming definition, for an edge ðu; vÞ, the
retimed edge weight wrðu; vÞ ¼ wðu; vÞ þ rðuÞ � rðvÞ. In
order to let the retimed weight of an edge in the cycle be 0
(i.e., wrðu; vÞ ¼ 0), rðvÞ should equal wðu; vÞ þ rðuÞ. There-
fore, from node v to u along the path, we can repeatedly
calculate the retiming value of each node in the cycle. For
node v, rðvÞ ¼ 0; for all other nodes in the cycle, the retiming
value of a node equals the summation of the weight of its
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Fig. 5. An illustration of DAG Migration. (a) The original DAG. (b) The
retiming constraints. (c) The constraint graph. (d) The single-source
constraint graph and retiming function (inside the box) obtained by
Bellman-Ford. (e) The transformed DAG by the retiming function. (f) The
transformed DAG by the normalized retiming function.



incoming edge and the retiming value of its parent. As a
result, the weight of edge ðu; vÞ equals the cycle weight �
while the weight of all other edges in the cycle becomes
zero. Next, we fix the retiming values of all nodes in the
cycle to guarantee each edge weight of the cycle remains
constant. At last, we let the weight of all edges not belonging
to the cycle be greater than or equal to � by invoking
Algorithm 3.2. After the processing of Algorithm 3.3, we can
obtain a retiming function, and the minimum nonzero edge
weight in the transformed dependence graph based on is
equal to the cycle weight �. Therefore, the transformed loop
is �-parallelizable.

Algorithm 3.3. Single Cycle Migration(G, CG)

Input: A CGSC G ¼ ðV ;E;wÞ with its single cycle CG 2 G.

Output: A retiming function of G.

1: � the weight of the cycle CG.

2: Select the edge ðu; vÞ in cycle CG with the biggest
weight.

3: k v.

4: Adj½k�  the adjacent node of k (Adj½k� 2 CG).

5: Let the retiming value of each node in G be 0.

6: while Adj½k� 6¼ v do

7: rðAdj½k�Þ  wðk;Adj½k�Þ þ rðkÞ.
8: k Adj½k�.
9: end while

10: Fix the retiming value of each node in the cycle CG such

that all nodes of the cycle can be fused into a single

node and G becomes a DAG.

11: Call DAG Migration(G, �) to let the weight of all edges

not in CG be greater than or equal to �.

12: Return the retiming function obtained.

Let jV j and jEj be the node and edge numbers of G,
respectively. In Algorithm 3.3, the node number of the
single cycle is bounded by jV j. Therefore, it takes OðjV jÞ to
finish the retiming value assignment in the single cycle
from Steps 1 to 10. Then, Algorithm 3.2 is called to obtain
the retiming values of all other nodes in G. Thus, the time
complexity of Algorithm 3.3 is OðjV j2 þ jV kEjÞ as well.

An example is shown in Fig. 6. The original CGSC
dependence graph is shown in Fig. 6a, in which the
minimum nonzero edge weight is 1. Thus, the parallelism
of the original loop is 1. The dependence migration of the
cycle is shown in Fig. 6b, in which all weights in the cycle
are migrated to edge ðS2; S3Þ. Then, by fixing the retiming
values of every node in the cycle CGðS1; S2; S3Þ, we apply
DAG Migration algorithm to obtain the retiming values of
all other nodes not in CG by making their edge weights be
no less than 4 as shown in Fig. 6c. The normalized
dependence graph is shown in Fig. 6d. Since the minimum
nonzero edge weight in the transformed dependence graph
is 4, the transformed loop is 4-parallelizable.

Theorem 3.2. Given a dependence graph G ¼ ðV ;E;wÞ of a loop
LG, if G is a graph with single cycle CG, and the cycle weight of
CG (the summation of the edge weights of CG) is �ð� � 0Þ, then
the best loop parallelization degree we can obtain from LG is �.

(Please find the proof in Supplementary File S2, which
can be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.171.)

Algorithm 3.3 can be used to solve one extended case for a
cyclic graph with multiple disjoint single cycles (CGMDSC).
For this type of graph, we can first obtain the retiming
function of each single cycle by invoking Algorithm 3.3.
Then, similar to Algorithm 3.3, we fix the retiming value of
each node in all the cycles, and let the weight of each edge not
belonging to the cycles be greater than or equal to the
minimum cycle weight among all the cycles by invoking
Algorithm 3.2. As a result, the parallelism of the transformed
dependence graph equals the minimum cycle weight among
all the cycles. (The complete algorithm and one example for
this case are given in the Supplementary File S3, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.171.)

3.3 Multi Cycle Migration

In this section, the Multi Cycle Migration algorithm is
proposed to construct an integer linear programming
formulation, by which the optimal solution can be obtained
for the dependence graph with multiple cycles. As shown in
Algorithm 3.4, we first obtain �, the minimum SCC weight,
and ’, the maximum SCC weight, where an SCC weight is
the summation of all edge weights of an SCC. Then, for each
edge, we add a set of retiming constraints so its retimed
edge weight will become either 0 or T . Finally, we set the
objective function as maximizing T where T 2 ½0; ��.

Algorithm 3.4. Multi Cycle Migration(G)
Input: A CGMC G ¼ ðV ;E;wÞ .

Output: A retiming function of G.

1: Let � (’) be the minimum (maximum) SCC weight.

2: for each edge ðu; vÞ 2 E do
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Fig. 6. An illustration of Single Cycle Migration. (a) The Original CGSC.
(b) The edge weights in the cycle have all been migrated to ðS2; S3Þ with
rðS1Þ ¼ 1, rðS2Þ ¼ 2, and rðS3Þ ¼ 0. (c) The transformed CGSC with the
minimum nonzero edge weight 4. (d) The transformed dependence
graph with the normalized retiming values.



3: Add the following constraints into the ILP
formulation:

wðu; vÞ þ rðuÞ � rðvÞ � 0
wðu; vÞ þ rðuÞ � rðvÞ þ ð1� "ðu; vÞÞ � ’ � T
wðu; vÞ þ rðuÞ � rðvÞ � ’� "ðu; vÞ � 0
"ðu; vÞ ¼ 0 or 1

8>><
>>:

4: end for

5: Set the objective function: Maximize T where T 2 ½0; ��.
6: Find the feasible retiming values that satisfy the ILP

formulation, and return the retiming function.

Theorem 3.3. An optimal solution can be obtained by Algorithm
Multi Cycle Migration if G is a dependence graph with
multiple cycles.

(The proof and an example can be found in Supplemen-
tary File S4, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.171.)

4 LOOP TRANSFORMATION ALGORITHM

The loop transformation algorithm generates the optimized
code for a given loop, including the new loop kernel,
prologue and epilogue, based on the retiming values
obtained by the DMA algorithm in the first phase. In our
loop transformation algorithm, based on the retiming value
of each node, some copies of the node are put into prologue
or epilogue, and its loop index is changed accordingly as
well. In addition, the execution sequence of nodes in the
new loop kernel is revised based on intraiteration depen-
dences in the transformed dependence graph. Finally, we
set the new upper bound of the loop index for the new loop
kernel. As a result, the code of the transformed loop is
produced. (For details, please refer to Supplementary
File S5, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.171.)

5 EVALUATION

In this section, we first evaluate our technique with a set of
benchmarks frequently used in iteration-level loop paralle-
lization. Then, we conduct a series of experiments with a set
of graphs randomly generated by TGFF [32] to evaluate the
scalability of our integer linear programming formulation.

We use real benchmarks to test the effectiveness of our
loop parallelization technique. The benchmarks include six
loop kernels with single cycle or multiple cycles which are
obtained from [10], [20], [33], [37], [38], [39]. For different
type of benchmarks, we use corresponding algorithm
introduced in Section 3 to solve. The basic information of
these loops is shown in Table 1. We compare our approach
with the previous work in [18] and [19].

As shown in Table 1, the original parallelism of SHRINK-
ING is 2 while the parallelism of other loops is 1. We apply
both cycle shrinking [19] and partitioning [18] to these loops.
It can be seen that both cycle shrinking and partitioning
cannot improve the loop parallelism for these loops. The
numbers in the last column show the parallelism achieved

by applying our technique. The results show that our
technique can remarkably enhance the parallelism for these
loops. Taking loop BREAKING as an example, the best result
by cycle shrinking and partitioning is 1 while our technique
can obtain 6. Therefore, by applying our technique, we can
parallelize these loops and achieve various degrees of
iteration-level parallelism. The detailed description of how
our technique improves loop parallelism of these six
benchmarks is given in Supplementary File S6, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.171.

To further evaluate the Multi Cycle Migration algorithm
given in Algorithm 3.4, we have conducted a series of
experiments with a set of CGMCs. Our experiments are
performed on a 3.0 GHz quad-core Intel Xeon machine
running Redhat Enterprise Linux 5 (kernel version is 2.6.18)
with 16 GB main memory and a 1TB hard disk. In our
experiments, each generated CGMC is modeled based on
the ILP formulation in Algorithm 3.4 and solved by ILOG
CPLEX 11.2 [40], a commercial linear programming solver.

We design a graph generation program to generate
CGMCs, and the program works as follows: a DAG is
initially generated by TGFF and then augmented by
randomly adding multiple edges in the DAG. A test is
made to see whether there exists more than one cycle in the
DAG. If the number of cycles is smaller than two, more
edges should be added in the DAG until the number of
cycles is greater than one. In this way, a cyclic graph with
multiple cycles can be generated.

In our experiments, we use this graph generation
program to randomly generate 12 graph sets, and each
graph set contains 210 CGMCs with various node counts
and edge counts. For the graphs in each set, the number of
nodes varies from 5 to 100 with an interval of 5, and the
number of edges varies from 10 to 200 with the same
interval. Each edge weight in a graph is set within the range
of 0-6. So, distinct CGMCs can be generated with different
combinations of node counts and edge counts.

Table 2 reports the statistical results for all graphs in each
graph set by the Multi Cycle Migration algorithm. As
shown, in each graph set, most of the graphs (more than
92.00 percent) are solved optimally within 60 seconds, and
only a small part of the graphs (less than 8.00 percent) are
solved optimally by taking more than 60 seconds. Among
all graphs, the maximum time spent is 15,000 seconds when
a graph with 44 nodes and 99 edges is processed. The
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TABLE 1
Loop Parallelism of DMA versus Cycle Shrinking

and Partitioning [18], [19]



average transformed loop parallelism for all graphs in each
graph set is 4 or 5, while the original loop parallelism of
each graph is 1. Therefore, our technique can effectively
enhance the parallelism. (For details about the graph sets
and the experimental results, please refer to Supplementary
File S6, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.171.)

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an optimal two-phase
iteration-level loop parallelization approach to maximize the
loop parallelism. In the first phase, we solved the dependence
migration problem that is to find a retiming value of each
node in a given dependence graph such that the minimum
nonzero edge weight in the dependence graph can be
maximized. In the second phase, based on the retiming
function obtained in the first phase, we proposed a loop
transformation algorithm to generate the transformed loop
kernel, prologue, and epilogue. We conducted experiments
on a set of benchmarks frequently used in iteration-level loop
parallelization in the previous work and a set of graphs
generated by TGFF. The results show that our technique can
efficiently obtain the optimal solutions and effectively
improve loop parallelism compared to the previous work.

There are several directions for future work. First, in the
paper, we only discuss how to apply our technique in
iteration-level parallelism. In fact, after iterations are
parallelized, they can be directly vectorized. How to
combine this technique with loop vectorization is one
direction for future work. Second, our technique can be
applied to optimize the innermost loop for nested loops. It
is an interesting problem to combine this approach with
loop tiling to solve iteration-level parallelism of nested
loops where more synchronization may occur. Third, we
will study how to integrate our technique into a compiler
and evaluate it based on a multicore processor.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback and improvements to this paper. The

work described in this paper is partially supported by the
grants from the Research Grants Council of the Hong Kong
Special Administrative Region, China (GRF PolyU 5260/
07E), the Innovation and Technology Support Programme
of Innovation and Technology Fund of the Hong Kong
Special Administrative Region, China (ITS/082/10), and the
Hong Kong Polytechnic University (A-PJ17 and 1-ZV5S).
This version is a revised version. A preliminary version of
this work appears in the Proceedings of the 2009 Interna-
tional Conference on Compilers, Architecture, and Synth-
esis for Embedded Systems (CASES 2009) [1].

REFERENCES

[1] D. Liu, Z. Shao, M. Wang, M. Guo, and J. Xue, “Optimal Loop
Parallelization for Maximizing Iteration-Level Parallelism,” Proc.
Int’l Conf. Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’09), pp. 67-76, Oct. 2009.

[2] P.-C. Yew, “Is There Exploitable Thread-Level Parallelism in
General-Purpose Application Programs?,” Proc. 17th Int’l Symp.
Parallel and Distributed Processing (IPDPS ’03), p. 160.1, 2003.

[3] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarrı́a-
Miranda, “Generalized Multipartitioning of Multi-Dimensional
Arrays for Parallelizing Line-Sweep Computations,” J. Parallel and
Distributed Computing, vol. 63, no. 9, pp. 887-911, 2003.

[4] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach, first ed. Morgan
Kaufmann, 2001.

[5] J. Xue, Loop Tiling for Parallelism. Kluwer Academic Publishers,
2000.

[6] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien, “Loop
Parallelization Algorithms: From Parallelism Extraction to Code
Generation,” Parallel Computing, vol. 24, nos. 3/4, pp. 421-444,
1998.

[7] A. Aiken and A. Nicolau, “Optimal Loop Parallelization,” ACM
SIGPLAN Notices, vol. 23, no. 7, pp. 308-317, 1988.

[8] M.E. Wolf and M.S. Lam, “A Loop Transformation Theory and an
Algorithm to Maximize Parallelism,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 4, pp. 452-471, Oct. 1991.

[9] D.-K. Chen and P.-C. Yew, “Redundant Synchronization Elimina-
tion for Doacross Loops,” IEEE Trans. Parallel and Distributed
Systems, vol. 10, no. 5, pp. 459-470, May 1999.

[10] W.-L. Chang, C.-P. Chu, and M. Ho, “Exploitation of Parallelism
to Nested Loops with Dependence Cycles,” J. Systems Architecture,
vol. 50, no. 12, pp. 729-742, 2004.

[11] N. Manjikian and T.S. Abdelrahman, “Fusion of Loops for
Parallelism and Locality,” IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 2, pp. 193-209, Feb. 1997.

[12] L. Bic, J.M.A. Roy, and M. Nagel, “Exploiting Iteration-Level
Parallelism in Dataflow Programs,” Proc. 12th Int’l Conf. Dis-
tributed Computing Systems, pp. 376-381, June 1992.

[13] D.A.P. Haiek, “Multiprocessors: Discussion of Some Theoretical
and Practical Problems,” PhD dissertation, Dept. of Computer
Science, Univ. of Illinois, Nov. 1979.

[14] R.G. Cytron, “Compile-Time Scheduling and Optimizations for
Multiprocessor System,” PhD dissertation, Univ. of Illinois,
Sept. 1984.

[15] D.-K. Chen, J. Torrellas, and P.-C. Yew, “An Efficient
Algorithm for the Run-Time Parallelization of Doacross Loops,”
Proc. Conf. Supercomputing (Supercomputing ’94), pp. 518-527,
1994.

[16] C.-P. Chu and D.L. Carver, “Reordering the Statements with
Dependence Cycles to Improve the Performance of Parallel
Loops,” Proc. Int’l Conf. Parallel and Distributed Systems (ICPADS
’97), pp. 322-328, 1997.

[17] Z. Li, P.-C. Yew, and C.-Q. Zhu, “An Efficient Data Dependence
Analysis for Parallelizing Compilers,” IEEE Trans. Parallel and
Distributed Systems, vol. 1, no. 1, pp. 26-34, Jan. 1990.

[18] D. Padua, D. Kuck, and D. Lawrie, “High-Speed Multiprocessors
and Compilation Techniques,” IEEE Trans. Computers, vol. C-29,
no. 9, pp. 763-776, Sept. 1980.

[19] C.D. Polychronopoulos, “Advanced Loop Optimizations for
Parallel Computers,” Proc. First Int’l Conf. Supercomputing,
pp. 255-277, Mar. 1988.

LIU ET AL.: OPTIMALLY MAXIMIZING ITERATION-LEVEL LOOP PARALLELISM 571

TABLE 2
Loop Parallelism and Computation Times of our

Technique on the Graphs in 12 Graph Sets



[20] C.D. Polychronopoulos, “Compiler Optimizations for Enhancing
Parallelism and Their Impact on Architecture Design,” IEEE Trans.
Computers, vol. 37, no. 8, pp. 991-1004, Aug. 1988.

[21] C.-M. Wang and S.-D. Wang, “Compiler Techniques to Extract
Parallelism within a Nested Loop,” Proc. 15th Ann. Int’l
Computer Software and Applications Conf. (COMPSAC ’91),
pp. 24-29, Sept. 1991.

[22] W. Shang, M.T. O’Keefe, and J.A.B. Fortes, “On Loop Transforma-
tions for Generalized Cycle Shrinking,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 2, pp. 193-204, Feb. 1994.

[23] J.-K. Peir and R. Cytron, “Minimum Distance: A Method for
Partitioning Recurrences for Multiprocessors,” IEEE Trans. Com-
puters, vol. 38, no. 8, pp. 1203-1211, Aug. 1989.

[24] J.K. Peir, “Program Partitioning and Synchronization on Multi-
processor Systems,” PhD dissertation, Univ. of Illinois, 1986.

[25] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, vol. 6, pp. 5-35, 1991.

[26] A. Darte, G.-A. Silber, and F. Vivien, “Combining Retiming and
Scheduling Techniques for Loop Parallelization and Loop Tiling,”
Parallel Processing Letters, vol. 7, no. 4, pp. 379-392, 1998.

[27] E.H.-M. Sha, C. Lang, and N.L. Passos, “Polynomial-Time Nested
Loop Fusion with Full Parallelism,” Proc. Int’l Conf. Parallel
Processing (ICPP ’96), vol. 3, pp. 9-16, Aug. 1996.

[28] T. O’Neil and E.H.-M. Sha, “Retiming Synchronous Data-Flow
Graphs to Reduce Execution Time,” IEEE Trans. Signal Processing,
vol. 49, no. 10, pp. 2397-2407, Oct. 2001.

[29] L.-S. Liu, C.-W. Ho, and J.-P. Sheu, “On the Parallelism of Nested
for-loops Using Index Shift Method,” Proc. Int’l Conf. Parallel
Processing (ICPP ’90), pp. 119-123, 1990.

[30] Y. Robert and S.W. Song, “Revisiting Cycle Shrinking,” Parallel
Computing, vol. 18, no. 5, pp. 481-496, 1992.

[31] A. Darte and G. Huard, “Complexity of Multi-Dimensional Loop
Alignment,” Proc. 19th Ann. Symp. Theoretical Aspects of Computer
Science (STACS ’02), pp. 179-191, 2002.

[32] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task Graphs for
Free,” Proc. Sixth Int’l Workshop Hardware/Software Codesign
(CODES/CASHE ’98), pp. 97-101, 1998.

[33] D.N. Jayasimha and J.D. Martens, “Some Architectural and
Compilation Issues in the Design of Hierarchical Shared-Memory
Multiprocessors,” Proc. Sixth Int’l Parallel Processing Symp.,
pp. 567-572, Mar. 1992.

[34] L.-F. Chao, “Scheduling and Behavioral Transformations for
Parallel Systems,” PhD dissertation, Dept. of Computer Science,
Princeton Univ., 1993.

[35] T.W. O’Neil, S. Tongsima, and E.H.-M. Sha, “Extended Retiming:
Optimal Scheduling via a Graph-Theoretical Approach,” Proc.
IEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP
’99), pp. 2001-2004, 1999.

[36] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,”
SIAM J. Computing, vol. 1, no. 2, pp. 146-160, 1972.

[37] D.-K. Chen and P.-C. Yew, “Statement Re-Ordering for Doacross
Loops,” Proc. Int’l Conf. Parallel Processing (ICPP ’94), vol. 2, pp. 24-
28, Aug. 1994.

[38] A. Fraboulet and A. Mignotte, “Source Code Loop Transforma-
tions for Memory Hierarchy Optimizations,” Proc. Workshop
Memory Access Decoupled Architecture, pp. 8-12, Sept. 2001.

[39] K. Okuda, “Cycle Shrinking by Dependence Reduction,” Proc.
Second Int’l Euro-Par Conf. Parallel Processing (Euro-Par ’96),
pp. 398-401, 1996.

[40] ILOG CPLEX 11.2 Users Manual, ILOG SA, Gentilly, 2008.

Duo Liu received the BE degree in computer
science from the Southwest University of
Science and Technology, Sichuan, China, in
2003, and the ME degree from the Department
of Computer Science, University of Science and
Technology of China, Hefei, China, in 2006,
respectively. He is currently working toward the
PhD degree in the Department of Computing at
the Hong Kong Polytechnic University. His
current research interests include emerging

memory techniques for embedded systems and high-performance
computing for multicore processors.

Yi Wang received the BE and ME degrees in
electrical engineering from Harbin Institute of
Technology, China, in 2005 and 2008, respec-
tively. He is currently working toward PhD
degree in the Department of Computing at the
Hong Kong Polytechnic University. His research
interests include embedded systems and real-
time scheduling for multicore systems.

Zili Shao received the BE degree in electronic
mechanics from the University of Electronic
Science and Technology of China, Sichuan,
China, in 1995, and the MS and PhD degrees
from the Department of Computer Science,
University of Texas at Dallas, in 2003 and
2005, respectively. He has been an associate
professor with the Department of Computing,
Hong Kong Polytechnic University, since 2010.
His research interests include embedded soft-

ware and systems, real-time systems, and related industrial applica-
tions. He is a member of the IEEE.

Minyi Guo received the BSc and ME degrees in
computer science from Nanjing University, Chi-
na, and the PhD degree in computer science
from the University of Tsukuba, Japan. He is
currently distinguished professor and head of
the Department of Computer Science and
Engineering, Shanghai Jiao Tong University
(SJTU), China. Before joined SJTU, he had
been a professor and department chair of
School of Computer Science and Engineering,

University of Aizu, Japan. He received the national science fund for
distinguished young scholars from NSFC in 2007. His present research
interests include parallel/distributed computing, compiler optimizations,
embedded systems, pervasive computing, and cloud computing. He has
more than 250 publications in major journals and international
conferences in these areas, including the IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions on Nanobioscience,
the IEEE Transactions on Computers, the ACM Transactions on
Autonomous and Adaptive Systems, the Journal of Parallel and
Distributed Computing, INFOCOM, IPDPS, ICS, CASES, ICPP,
WWW, PODC, etc. He received five best paper awards from
international conferences. He is on the editorial board of IEEE
Transactions on Parallel and Distributed Systems and IEEE Transac-
tions on Computers. He is a senior member of the IEEE, member of The
ACM, IEICE IPSJ, and CCF.

Jingling Xue received the BSc and MSc
degrees in computer science from Tsinghua
University, Tsinghua, China, in 1984 and 1987,
respectively, and the PhD degree in computer
science from Edinburgh, United Kingdom, in
1992. He is currently a professor with the School
of Computer Science and Engineering, Univer-
sity of New South Wales, Sydney, Australia. His
current research interests include programming
languages, compiler optimizations, program

analysis, high-performance computing and embedded systems. He is
a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012


