
Practical Foundations for Programming
Languages

Robert Harper
Carnegie Mellon University

Spring, 2010

[Draft of August 24, 2010 at 14:43.]



Copyright c© 2010 by Robert Harper.

All Rights Reserved.

The electronic version of this work is licensed under the Cre-
ative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/


Preface

This is a working draft of a book on the foundations of programming lan-
guages. The central organizing principle of the book is that programming
language features may be seen as manifestations of an underlying type
structure that governs its syntax and semantics. The emphasis, therefore,
is on the concept of type, which codifies and organizes the computational
universe in much the same way that the concept of set may be seen as an
organizing principle for the mathematical universe. The purpose of this
book is to explain this remark.

This is very much a work in progress, with major revisions made nearly
every day. This means that there may be internal inconsistencies as revi-
sions to one part of the book invalidate material at another part. Please
bear this in mind!

Corrections, comments, and suggestions are most welcome, and should
be sent to the author at rwh@cs.cmu.edu. I am grateful to the following peo-
ple for their comments, corrections, and suggestions to various versions
of this book: Arbob Ahmad, Andrew Appel, Zena Ariola, Guy E. Blel-
loch, William Byrd, Luca Cardelli, Iliano Cervesato, Manuel Chakravarti,
Richard C. Cobbe, Karl Crary, Daniel Dantas, Anupam Datta, Jake Don-
ham, Derek Dreyer, Matthias Felleisen, Frank Pfenning, Dan Friedman,
Maia Ginsburg, Kevin Hely, Cao Jing, Gabriele Keller, Danielle Kramer,
Akiva Leffert, Dan Licata, Karen Liu, Dave MacQueen, Greg Morrisett,
Tom Murphy, Aleksandar Nanevski, Georg Neis, David Neville, Doug Perkins,
Frank Pfenning, Benjamin C. Pierce, Andrew M. Pitts, Gordon D. Plotkin,
John C. Reynolds, Carter T. Schonwald, Dale Schumacher, Dana Scott, Zhong
Shao, Robert Simmons, Pawel Sobocinski, Daniel Spoonhower, Paulo Tan-
imoto, Michael Tschantz, Kami Vaniea, Carsten Varming, David Walker,
Dan Wang, Jack Wileden, Todd Wilson, Roger Wolff, Luke Zarko, Yu Zhang.

This material is based upon work supported by the National Science
Foundation under Grant Nos. 0702381 and 0716469. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are



those of the author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

The support of the Max Planck Institute for Software Systems in Saarbrücken,
Germany is gratefully acknowledged.



Contents

Preface iii

I Judgements and Rules 1

1 Inductive Definitions 3
1.1 Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Rule Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Iterated and Simultaneous Inductive Definitions . . . . . . . 9
1.6 Defining Functions by Rules . . . . . . . . . . . . . . . . . . . 11
1.7 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Hypothetical Judgements 15
2.1 Derivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Hypothetical Inductive Definitions . . . . . . . . . . . . . . . 19
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Syntactic Objects 23
3.1 Abstract Syntax Trees . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Abstract Binding Trees . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Generic Judgements 33
4.1 Rule Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Generic Derivability . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Generic Inductive Definitions . . . . . . . . . . . . . . . . . . 35



vi CONTENTS

4.4 Parametric Derivability . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Levels of Syntax 39

5 Concrete Syntax 41
5.1 Strings Over An Alphabet . . . . . . . . . . . . . . . . . . . . 41
5.2 Lexical Structure . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . 46
5.4 Grammatical Structure . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Abstract Syntax 51
6.1 Hierarchical and Binding Structure . . . . . . . . . . . . . . . 51
6.2 Parsing Into Abstract Syntax Trees . . . . . . . . . . . . . . . 53
6.3 Parsing Into Abstract Binding Trees . . . . . . . . . . . . . . . 55
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

III Statics and Dynamics 59

7 Statics 61
7.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Dynamics 67
8.1 Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Contextual Dynamics . . . . . . . . . . . . . . . . . . . . . . . 71
8.4 Equational Dynamics . . . . . . . . . . . . . . . . . . . . . . . 73
8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Type Safety 77
9.1 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Run-Time Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14:43 DRAFT AUGUST 24, 2010



CONTENTS vii

10 Evaluation Dynamics 83
10.1 Evaluation Dynamics . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Relating Structural and Evaluation Dynamics . . . . . . . . . 84
10.3 Type Safety, Revisited . . . . . . . . . . . . . . . . . . . . . . . 85
10.4 Cost Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

IV Function Types 89

11 Function Definitions and Values 91
11.1 First-Order Functions . . . . . . . . . . . . . . . . . . . . . . . 92
11.2 Higher-Order Functions . . . . . . . . . . . . . . . . . . . . . 93
11.3 Evaluation Dynamics and Definitional Equivalence . . . . . 95
11.4 Dynamic Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

12 Gödel’s System T 99
12.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.3 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.4 Non-Definability . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

13 Plotkin’s PCF 107
13.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
13.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.3 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
13.4 Co-Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . 113
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

V Finite Data Types 115

14 Product Types 117
14.1 Nullary and Binary Products . . . . . . . . . . . . . . . . . . 118
14.2 Finite Products . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.3 Primitive and Mutual Recursion . . . . . . . . . . . . . . . . 121
14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

AUGUST 24, 2010 DRAFT 14:43



viii CONTENTS

15 Sum Types 123
15.1 Binary and Nullary Sums . . . . . . . . . . . . . . . . . . . . 123
15.2 Finite Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
15.3 Applications of Sum Types . . . . . . . . . . . . . . . . . . . . 126

15.3.1 Void and Unit . . . . . . . . . . . . . . . . . . . . . . . 126
15.3.2 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . 127
15.3.3 Enumerations . . . . . . . . . . . . . . . . . . . . . . . 127
15.3.4 Options . . . . . . . . . . . . . . . . . . . . . . . . . . 128

15.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

16 Pattern Matching 131
16.1 A Pattern Language . . . . . . . . . . . . . . . . . . . . . . . . 132
16.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
16.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
16.4 Exhaustiveness and Redundancy . . . . . . . . . . . . . . . . 136

16.4.1 Match Constraints . . . . . . . . . . . . . . . . . . . . 136
16.4.2 Enforcing Exhaustiveness and Redundancy . . . . . . 138
16.4.3 Checking Exhaustiveness and Redundancy . . . . . . 139

16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

17 Generic Programming 141
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
17.2 Type Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 142
17.3 Generic Extension . . . . . . . . . . . . . . . . . . . . . . . . . 142
17.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VI Infinite Data Types 147

18 Inductive and Co-Inductive Types 149
18.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . 149
18.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

18.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
18.2.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . 154

18.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

19 Recursive Types 157
19.1 Solving Type Isomorphisms . . . . . . . . . . . . . . . . . . . 158
19.2 Recursive Data Structures . . . . . . . . . . . . . . . . . . . . 160

14:43 DRAFT AUGUST 24, 2010



CONTENTS ix

19.3 Self-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
19.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

VII Dynamic Types 165

20 The Untyped λ-Calculus 167
20.1 The λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 167
20.2 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
20.3 Scott’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 171
20.4 Untyped Means Uni-Typed . . . . . . . . . . . . . . . . . . . 173
20.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

21 Dynamic Typing 177
21.1 Dynamically Typed PCF . . . . . . . . . . . . . . . . . . . . . 177
21.2 Variations and Extensions . . . . . . . . . . . . . . . . . . . . 180
21.3 Critique of Dynamic Typing . . . . . . . . . . . . . . . . . . . 183
21.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

22 Hybrid Typing 185
22.1 A Hybrid Language . . . . . . . . . . . . . . . . . . . . . . . . 185
22.2 Optimization of Dynamic Typing . . . . . . . . . . . . . . . . 187
22.3 Static “Versus” Dynamic Typing . . . . . . . . . . . . . . . . 189
22.4 Reduction to Recursive Types . . . . . . . . . . . . . . . . . . 190

VIII Variable Types 193

23 Girard’s System F 195
23.1 System F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
23.2 Polymorphic Definability . . . . . . . . . . . . . . . . . . . . 199

23.2.1 Products and Sums . . . . . . . . . . . . . . . . . . . . 199
23.2.2 Natural Numbers . . . . . . . . . . . . . . . . . . . . . 200

23.3 Parametricity Overview . . . . . . . . . . . . . . . . . . . . . 201
23.4 Restricted Forms of Polymorphism . . . . . . . . . . . . . . . 202

23.4.1 Predicative Fragment . . . . . . . . . . . . . . . . . . . 203
23.4.2 Prenex Fragment . . . . . . . . . . . . . . . . . . . . . 204
23.4.3 Rank-Restricted Fragments . . . . . . . . . . . . . . . 205

23.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

AUGUST 24, 2010 DRAFT 14:43



x CONTENTS

24 Abstract Types 209
24.1 Existential Types . . . . . . . . . . . . . . . . . . . . . . . . . 210

24.1.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
24.1.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 211
24.1.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

24.2 Data Abstraction Via Existentials . . . . . . . . . . . . . . . . 212
24.3 Definability of Existentials . . . . . . . . . . . . . . . . . . . . 214
24.4 Representation Independence . . . . . . . . . . . . . . . . . . 215
24.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

25 Constructors and Kinds 219
25.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
25.2 Adding Constructors and Kinds . . . . . . . . . . . . . . . . 222
25.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
25.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

26 Indexed Families of Types 229
26.1 Type Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
26.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

IX Subtyping 231

27 Subtyping 233
27.1 Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
27.2 Varieties of Subtyping . . . . . . . . . . . . . . . . . . . . . . 234

27.2.1 Numeric Types . . . . . . . . . . . . . . . . . . . . . . 234
27.2.2 Product Types . . . . . . . . . . . . . . . . . . . . . . . 235
27.2.3 Sum Types . . . . . . . . . . . . . . . . . . . . . . . . . 237

27.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
27.3.1 Product Types . . . . . . . . . . . . . . . . . . . . . . . 238
27.3.2 Sum Types . . . . . . . . . . . . . . . . . . . . . . . . . 238
27.3.3 Function Types . . . . . . . . . . . . . . . . . . . . . . 239
27.3.4 Recursive Types . . . . . . . . . . . . . . . . . . . . . . 240

27.4 Safety for Subtyping . . . . . . . . . . . . . . . . . . . . . . . 242
27.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

28 Singleton and Dependent Kinds 245
28.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . 246

14:43 DRAFT AUGUST 24, 2010



CONTENTS xi

X Classes and Methods 249

29 Dynamic Dispatch 251
29.1 The Dispatch Matrix . . . . . . . . . . . . . . . . . . . . . . . 253
29.2 Method-Based Organization . . . . . . . . . . . . . . . . . . . 255
29.3 Class-Based Organization . . . . . . . . . . . . . . . . . . . . 256
29.4 Self-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
29.5 Irregular Systems . . . . . . . . . . . . . . . . . . . . . . . . . 259
29.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

30 Inheritance 263
30.1 Subclasses and Submethods . . . . . . . . . . . . . . . . . . . 264
30.2 Inheritance and Subtyping . . . . . . . . . . . . . . . . . . . . 266
30.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

XI Control Effects 269

31 Control Stacks 271
31.1 Machine Definition . . . . . . . . . . . . . . . . . . . . . . . . 271
31.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
31.3 Correctness of the Control Machine . . . . . . . . . . . . . . . 274

31.3.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . 276
31.3.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 276

31.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

32 Exceptions 279
32.1 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
32.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
32.3 Exception Type . . . . . . . . . . . . . . . . . . . . . . . . . . 282
32.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
32.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

33 Continuations 287
33.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . 287
33.2 Semantics of Continuations . . . . . . . . . . . . . . . . . . . 289
33.3 Coroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
33.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

AUGUST 24, 2010 DRAFT 14:43



xii CONTENTS

XII Types and Propositions 297

34 Constructive Logic 299
34.1 Constructive Semantics . . . . . . . . . . . . . . . . . . . . . . 300
34.2 Constructive Logic . . . . . . . . . . . . . . . . . . . . . . . . 301

34.2.1 Rules of Provability . . . . . . . . . . . . . . . . . . . . 302
34.2.2 Rules of Proof . . . . . . . . . . . . . . . . . . . . . . . 304

34.3 Propositions as Types . . . . . . . . . . . . . . . . . . . . . . . 305
34.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

35 Classical Logic 307
35.1 Classical Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

35.1.1 Provability and Refutability . . . . . . . . . . . . . . . 308
35.1.2 Proofs and Refutations . . . . . . . . . . . . . . . . . . 310

35.2 Deriving Elimination Forms . . . . . . . . . . . . . . . . . . . 312
35.3 Proof Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 314
35.4 Law of the Excluded Middle . . . . . . . . . . . . . . . . . . . 315
35.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

XIII Symbols 319

36 Symbols 321
36.1 Symbol Declaration . . . . . . . . . . . . . . . . . . . . . . . . 321

36.1.1 Stack-Like Dynamics . . . . . . . . . . . . . . . . . . . 322
36.1.2 Heap-Like Dynamics . . . . . . . . . . . . . . . . . . . 323

36.2 Symbolic References . . . . . . . . . . . . . . . . . . . . . . . 324
36.2.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
36.2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 325
36.2.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

36.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

37 Fluid Binding 329
37.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
37.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
37.3 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
37.4 Some Subtleties . . . . . . . . . . . . . . . . . . . . . . . . . . 332
37.5 Fluid References . . . . . . . . . . . . . . . . . . . . . . . . . . 335
37.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

14:43 DRAFT AUGUST 24, 2010



CONTENTS xiii

38 Dynamic Classification 337
38.1 Dynamic Classes . . . . . . . . . . . . . . . . . . . . . . . . . 338

38.1.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
38.1.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 339
38.1.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

38.2 Defining Dynamic Classes . . . . . . . . . . . . . . . . . . . . 340
38.3 Classifying Secrets . . . . . . . . . . . . . . . . . . . . . . . . 341
38.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

XIV Storage Effects 343

39 Modernized Algol 345
39.1 Basic Commands . . . . . . . . . . . . . . . . . . . . . . . . . 345

39.1.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
39.1.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 347
39.1.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

39.2 Some Programming Idioms . . . . . . . . . . . . . . . . . . . 351
39.3 Typed Commands and Typed Assignables . . . . . . . . . . . 353
39.4 Capabilities and References . . . . . . . . . . . . . . . . . . . 355
39.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

40 Mutable Data Structures 361
40.1 Free Assignables . . . . . . . . . . . . . . . . . . . . . . . . . . 362
40.2 Free References . . . . . . . . . . . . . . . . . . . . . . . . . . 363
40.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
40.4 Integrating Commands and Expressions . . . . . . . . . . . . 366
40.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

XV Laziness 371

41 Lazy Evaluation 373
41.1 Need Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 374
41.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
41.3 Lazy Data Structures . . . . . . . . . . . . . . . . . . . . . . . 380
41.4 Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
41.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

AUGUST 24, 2010 DRAFT 14:43



xiv CONTENTS

42 Polarization 385
42.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
42.2 Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
42.3 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
42.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
42.5 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
42.6 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
42.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

XVI Parallelism 395

43 Nested Parallelism 397
43.1 Binary Fork-Join . . . . . . . . . . . . . . . . . . . . . . . . . . 398
43.2 Cost Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 401
43.3 Multiple Fork-Join . . . . . . . . . . . . . . . . . . . . . . . . 404
43.4 Provably Efficient Implementations . . . . . . . . . . . . . . . 406
43.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

44 Futures and Speculation 411
44.1 Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

44.1.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
44.1.2 Sequential Dynamics . . . . . . . . . . . . . . . . . . . 413

44.2 Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
44.2.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
44.2.2 Sequential Dynamics . . . . . . . . . . . . . . . . . . . 414

44.3 Parallel Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 414
44.4 Applications of Futures . . . . . . . . . . . . . . . . . . . . . . 417
44.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

XVII Concurrency 421

45 Process Calculus 423
45.1 Actions and Events . . . . . . . . . . . . . . . . . . . . . . . . 423
45.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
45.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
45.4 Private Channels . . . . . . . . . . . . . . . . . . . . . . . . . 428
45.5 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 431
45.6 Channel Passing . . . . . . . . . . . . . . . . . . . . . . . . . . 434

14:43 DRAFT AUGUST 24, 2010



CONTENTS xv

45.7 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
45.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

46 Concurrent Algol 441
46.1 Concurrent Algol . . . . . . . . . . . . . . . . . . . . . . . . . 441
46.2 Asynchronous Communication . . . . . . . . . . . . . . . . . 444
46.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

XVIII Modularity 449

47 Separate Compilation and Linking 451
47.1 Linking and Substitution . . . . . . . . . . . . . . . . . . . . . 451
47.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

48 Basic Modules 453

49 Parameterized Modules 455

XIX Equivalence 457

50 Equational Reasoning for T 459
50.1 Observational Equivalence . . . . . . . . . . . . . . . . . . . . 460
50.2 Extensional Equivalence . . . . . . . . . . . . . . . . . . . . . 464
50.3 Extensional and Observational Equivalence Coincide . . . . 465
50.4 Some Laws of Equivalence . . . . . . . . . . . . . . . . . . . . 468

50.4.1 General Laws . . . . . . . . . . . . . . . . . . . . . . . 468
50.4.2 Extensionality Laws . . . . . . . . . . . . . . . . . . . 469
50.4.3 Induction Law . . . . . . . . . . . . . . . . . . . . . . 469

50.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

51 Equational Reasoning for PCF 471
51.1 Observational Equivalence . . . . . . . . . . . . . . . . . . . . 471
51.2 Extensional Equivalence . . . . . . . . . . . . . . . . . . . . . 472
51.3 Extensional and Observational Equivalence Coincide . . . . 473
51.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
51.5 Co-Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . 479
51.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

AUGUST 24, 2010 DRAFT 14:43



xvi CONTENTS

52 Parametricity 483
52.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
52.2 Observational Equivalence . . . . . . . . . . . . . . . . . . . . 484
52.3 Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 486
52.4 Parametricity Properties . . . . . . . . . . . . . . . . . . . . . 491
52.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

XX Appendices 497

A Mathematical Preliminaries 499
A.1 Finite Sets and Maps . . . . . . . . . . . . . . . . . . . . . . . 499
A.2 Families of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 499

14:43 DRAFT AUGUST 24, 2010



Part I

Judgements and Rules





Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Judgements

We start with the notion of a judgement, or assertion, about a syntactic object.1

We shall make use of many forms of judgement, including examples such
as these:

n nat n is a natural number
n = n1 + n2 n is the sum of n1 and n2
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgement states that one or more syntactic objects have a property or
stand in some relation to one another. The property or relation itself is
called a judgement form, and the judgement that an object or objects have
that property or stand in that relation is said to be an instance of that judge-
ment form. A judgement form is also called a predicate, and the syntactic
objects constituting an instance are its subjects.

We will use the meta-variable J to stand for an unspecified judgement
form, and the meta-variables a, b, and c to stand for syntactic objects. We
write a J for the judgement asserting that J holds of a. When it is not

1We will defer a precise treatment of syntactic objects to Chapter 3. For the present
purposes the meaning should be self-evident.



4 1.2 Inference Rules

important to stress the subject of the judgement, we write J to stand for
an unspecified judgement. For particular judgement forms, we freely use
prefix, infix, or mixfix notation, as illustrated by the above examples, in
order to enhance readability.

1.2 Inference Rules

An inductive definition of a judgement form consists of a collection of rules
of the form

J1 . . . Jk
J

(1.1)

in which J and J1, . . . , Jk are all judgements of the form being defined. The
judgements above the horizontal line are called the premises of the rule,
and the judgement below the line is called its conclusion. If a rule has no
premises (that is, when k is zero), the rule is called an axiom; otherwise it is
called a proper rule.

An inference rule may be read as stating that the premises are suffi-
cient for the conclusion: to show J, it is enough to show J1, . . . , Jk. When
k is zero, a rule states that its conclusion holds unconditionally. Bear in
mind that there may be, in general, many rules with the same conclusion,
each specifying sufficient conditions for the conclusion. Consequently, if
the conclusion of a rule holds, then it is not necessary that the premises
hold, for it might have been derived by another rule.

For example, the following rules constitute an inductive definition of
the judgement a nat:

zero nat
(1.2a)

a nat
succ(a) nat

(1.2b)

These rules specify that a nat holds whenever either a is zero, or a is
succ(b) where b nat. Taking these rules to be exhaustive, it follows that
a nat iff a is a natural number written in unary.

Similarly, the following rules constitute an inductive definition of the
judgement a tree:

empty tree
(1.3a)

a1 tree a2 tree

node(a1; a2) tree
(1.3b)

14:43 DRAFT AUGUST 24, 2010



1.3 Derivations 5

These rules specify that a tree holds if either a is empty, or a is node(a1; a2),
where a1 tree and a2 tree. Taking these to be exhaustive, these rules state
that a is a binary tree, which is to say it is either empty, or a node consisting
of two children, each of which is also a binary tree.

The judgement a = b nat defining equality of a nat and b nat is induc-
tively defined by the following rules:

zero= zero nat
(1.4a)

a = b nat
succ(a)= succ(b) nat

(1.4b)

In each of the preceding examples we have made use of a notational
convention for specifying an infinite family of rules by a finite number of
patterns, or rule schemes. For example, Rule (1.2b) is a rule scheme that
determines one rule, called an instance of the rule scheme, for each choice
of object a in the rule. We will rely on context to determine whether a rule
is stated for a specific syntactic object, a, or is instead intended as a rule
scheme specifying a rule for each choice of syntactic objects in the rule.

A collection of rules is considered to define the strongest judgement that
is closed under, or respects, those rules. To be closed under the rules simply
means that the rules are sufficient to show the validity of a judgement: J
holds if there is a way to obtain it using the given rules. To be the strongest
judgement closed under the rules means that the rules are also necessary:
J holds only if there is a way to obtain it by applying the rules. The suffi-
ciency of the rules means that we may show that J holds by deriving it by
composing rules. Their necessity means that we may reason about it using
rule induction.

1.3 Derivations

To show that an inductively defined judgement holds, it is enough to ex-
hibit a derivation of it. A derivation of a judgement is a finite composition
of rules, starting with axioms and ending with that judgement. It may be
thought of as a tree in which each node is a rule whose children are deriva-
tions of its premises. We sometimes say that a derivation of J is evidence for
the validity of an inductively defined judgement J.

We usually depict derivations as trees with the conclusion at the bot-
tom, and with the children of a node corresponding to a rule appearing

AUGUST 24, 2010 DRAFT 14:43



6 1.3 Derivations

above it as evidence for the premises of that rule. Thus, if

J1 . . . Jk
J

is an inference rule and ∇1, . . . ,∇k are derivations of its premises, then

∇1 . . . ∇k
J (1.5)

is a derivation of its conclusion. In particular, if k = 0, then the node has no
children.

For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.

(1.6)

Similarly, here is a derivation of node(node(empty; empty); empty) tree:

empty tree empty tree

node(empty; empty) tree empty tree

node(node(empty; empty); empty) tree
.

(1.7)

To show that an inductively defined judgement is derivable we need
only find a derivation for it. There are two main methods for finding
derivations, called forward chaining, or bottom-up construction, and backward
chaining, or top-down construction. Forward chaining starts with the axioms
and works forward towards the desired conclusion, whereas backward
chaining starts with the desired conclusion and works backwards towards
the axioms.

More precisely, forward chaining search maintains a set of derivable
judgements, and continually extends this set by adding to it the conclusion
of any rule all of whose premises are in that set. Initially, the set is empty;
the process terminates when the desired judgement occurs in the set. As-
suming that all rules are considered at every stage, forward chaining will
eventually find a derivation of any derivable judgement, but it is impos-
sible (in general) to decide algorithmically when to stop extending the set
and conclude that the desired judgement is not derivable. We may go on

14:43 DRAFT AUGUST 24, 2010



1.4 Rule Induction 7

and on adding more judgements to the derivable set without ever achiev-
ing the intended goal. It is a matter of understanding the global properties
of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take ac-
count of the end goal when deciding how to proceed at each step. In
contrast, backward chaining is goal-directed. Backward chaining search
maintains a queue of current goals, judgements whose derivations are to
be sought. Initially, this set consists solely of the judgement we wish to de-
rive. At each stage, we remove a judgement from the queue, and consider
all rules whose conclusion is that judgement. For each such rule, we add
the premises of that rule to the back of the queue, and continue. If there is
more than one such rule, this process must be repeated, with the same start-
ing queue, for each candidate rule. The process terminates whenever the
queue is empty, all goals having been achieved; any pending consideration
of candidate rules along the way may be discarded. As with forward chain-
ing, backward chaining will eventually find a derivation of any derivable
judgement, but there is, in general, no algorithmic method for determining
in general whether the current goal is derivable. If it is not, we may futilely
add more and more judgements to the goal set, never reaching a point at
which all goals have been satisfied.

1.4 Rule Induction

Since an inductive definition specifies the strongest judgement closed un-
der a collection of rules, we may reason about them by rule induction. The
principle of rule induction states that to show that a property P holds of a
judgement J whenever J is derivable, it is enough to show that P is closed
under, or respects, the rules defining J. Writing P(J) to mean that the prop-
erty P holds of the judgement J, we say that P respects the rule

J1 . . . Jk
J

if P(J) holds whenever P(J1), . . . , P(Jk). The assumptionsP(J1), . . . , P(Jk)
are called the inductive hypotheses, andP(J) is called the inductive conclusion,
of the inference.

The principle of rule induction is simply the expression of the defini-
tion of an inductively defined judgement form as the strongest judgement
form closed under the rules comprising the definition. This means that
the judgement form is both (a) closed under those rules, and (b) sufficient

AUGUST 24, 2010 DRAFT 14:43



8 1.4 Rule Induction

for any other property also closed under those rules. The former property
means that a derivation is evidence for the validity of a judgement; the
latter means that we may reason about an inductively defined judgement
form by rule induction.

If P(J) is closed under a set of rules defining a judgement form, then
so is the conjunction of P with the judgement itself. This means that when
showing P to be closed under a rule, we may inductively assume not only
that P(Ji) holds for each of the premises Ji, but also that Ji itself holds as
well. We shall generally take advantage of this without explicit mentioning
that we are doing so.

When specialized to Rules (1.2), the principle of rule induction states
that to show P(a nat) whenever a nat, it is enough to show:

1. P(zero nat).

2. for every a, if P(a nat), then P(succ(a) nat).

This is just the familiar principle of mathematical induction arising as a spe-
cial case of rule induction. The first condition is called the basis of the in-
duction, and the second is called the inductive step.

Similarly, rule induction for Rules (1.3) states that to show P(a tree)
whenever a tree, it is enough to show

1. P(empty tree).

2. for every a1 and a2, ifP(a1 tree) andP(a2 tree), thenP(node(a1; a2) tree).

This is called the principle of tree induction, and is once again an instance of
rule induction.

As a simple example of a proof by rule induction, let us prove that nat-
ural number equality as defined by Rules (1.4) is reflexive:

Lemma 1.1. If a nat, then a = a nat.

Proof. By rule induction on Rules (1.2):

Rule (1.2a) Applying Rule (1.4a) we obtain zero= zero nat.

Rule (1.2b) Assume that a = a nat. It follows that succ(a)= succ(a) nat
by an application of Rule (1.4b).

14:43 DRAFT AUGUST 24, 2010



1.5 Iterated and Simultaneous Inductive Definitions 9

As another example of the use of rule induction, we may show that the
predecessor of a natural number is also a natural number. While this may
seem self-evident, the point of the example is to show how to derive this
from first principles.

Lemma 1.2. If succ(a) nat, then a nat.

Proof. It is instructive to re-state the lemma in a form more suitable for
inductive proof: if b nat and b is succ(a) for some a, then a nat. We proceed
by rule induction on Rules (1.2).

Rule (1.2a) Vacuously true, since zero is not of the form succ(−).

Rule (1.2b) We have that b is succ(b′), and we may assume both that the
lemma holds for b′ and that b′ nat. The result follows directly, since if
succ(b′) = succ(a) for some a, then a is b′.

Similarly, let us show that the successor operation is injective.

Lemma 1.3. If succ(a1)= succ(a2) nat, then a1 = a2 nat.

Proof. It is instructive to re-state the lemma in a form more directly amenable
to proof by rule induction. We are to show that if b1 = b2 nat then if b1 is
succ(a1) and b2 is succ(a2), then a1 = a2 nat. We proceed by rule induction
on Rules (1.4):

Rule (1.4a) Vacuously true, since zero is not of the form succ(−).

Rule (1.4b) Assuming the result for b1 = b2 nat, and hence that the premise
b1 = b2 nat holds as well, we are to show that if succ(b1) is succ(a1)

and succ(b2) is succ(a2), then a1 = a2 nat. Under these assumptions
we have b1 is a1 and b2 is a2, and so a1 = a2 nat is just the premise of
the rule. (We make no use of the inductive hypothesis to complete
this step of the proof.)

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive defi-
nition builds on top of another. In an iterated inductive definition the
premises of a rule

J1 . . . Jk
J

AUGUST 24, 2010 DRAFT 14:43



10 1.5 Iterated and Simultaneous Inductive Definitions

may be instances of either a previously defined judgement form, or the
judgement form being defined. For example, the following rules, define
the judgement a list stating that a is a list of natural numbers.

nil list
(1.8a)

a nat b list
cons(a; b) list

(1.8b)

The first premise of Rule (1.8b) is an instance of the judgement form a nat,
which was defined previously, whereas the premise b list is an instance of
the judgement form being defined by these rules.

Frequently two or more judgements are defined at once by a simulta-
neous inductive definition. A simultaneous inductive definition consists of a
set of rules for deriving instances of several different judgement forms, any
of which may appear as the premise of any rule. Since the rules defining
each judgement form may involve any of the others, none of the judgement
forms may be taken to be defined prior to the others. Instead one must un-
derstand that all of the judgement forms are being defined at once by the
entire collection of rules. The judgement forms defined by these rules are,
as before, the strongest judgement forms that are closed under the rules.
Therefore the principle of proof by rule induction continues to apply, albeit
in a form that allows us to prove a property of each of the defined judge-
ment forms simultaneously.

For example, consider the following rules, which constitute a simulta-
neous inductive definition of the judgements a even, stating that a is an
even natural number, and a odd, stating that a is an odd natural number:

zero even
(1.9a)

a odd
succ(a) even

(1.9b)

a even
succ(a) odd (1.9c)

The principle of rule induction for these rules states that to show simul-
taneously that P(a even) whenever a even and P(a odd) whenever a odd, it
is enough to show the following:

1. P(zero even);

14:43 DRAFT AUGUST 24, 2010



1.6 Defining Functions by Rules 11

2. if P(a odd), then P(succ(a) even);

3. if P(a even), then P(succ(a) odd).

As a simple example, we may use simultaneous rule induction to prove
that (1) if a even, then a nat, and (2) if a odd, then a nat. That is, we define
the property P by (1) P(a even) iff a nat, and (2) P(a odd) iff a nat. The
principle of rule induction for Rules (1.9) states that it is sufficient to show
the following facts:

1. zero nat, which is derivable by Rule (1.2a).

2. If a nat, then succ(a) nat, which is derivable by Rule (1.2b).

3. If a nat, then succ(a) nat, which is also derivable by Rule (1.2b).

1.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an
inductive definition of its graph relating inputs to outputs, and then show-
ing that the relation uniquely determines the outputs for given inputs. For
example, we may define the addition function on natural numbers as the
relation sum(a; b; c), with the intended meaning that c is the sum of a and b,
as follows:

b nat
sum(zero; b; b) (1.10a)

sum(a; b; c)
sum(succ(a); b; succ(c))

(1.10b)

The rules define a ternary (three-place) relation, sum(a; b; c), among natural
numbers a, b, and c. We may show that c is determined by a and b in this
relation.

Theorem 1.4. For every a nat and b nat, there exists a unique c nat such that
sum(a; b; c).

Proof. The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a; b; c).

2. (Uniqueness) If a nat, b nat, c nat, c′ nat, sum(a; b; c), and sum(a; b; c′),
then c = c′ nat.

AUGUST 24, 2010 DRAFT 14:43



12 1.7 Modes

For existence, let P(a nat) be the proposition if b nat then there exists c nat
such that sum(a; b; c). We prove that if a nat then P(a nat) by rule induction
on Rules (1.2). We have two cases to consider:

Rule (1.2a) We are to show P(zero nat). Assuming b nat and taking c to
be b, we obtain sum(zero; b; c) by Rule (1.10a).

Rule (1.2b) Assuming P(a nat), we are to show P(succ(a) nat). That is,
we assume that if b nat then there exists c such that sum(a; b; c), and
are to show that if b′ nat, then there exists c′ such that sum(succ(a); b′; c′).
To this end, suppose that b′ nat. Then by induction there exists c such
that sum(a; b′; c). Taking c′ = succ(c), and applying Rule (1.10b), we
obtain sum(succ(a); b′; c′), as required.

For uniqueness, we prove that if sum(a; b; c1), then if sum(a; b; c2), then c1 = c2 nat
by rule induction based on Rules (1.10).

Rule (1.10a) We have a = zero and c1 = b. By an inner induction on
the same rules, we may show that if sum(zero; b; c2), then c2 is b. By
Lemma 1.1 on page 8 we obtain b = b nat.

Rule (1.10b) We have that a = succ(a′) and c1 = succ(c′1), where sum(a′; b; c′1).
By an inner induction on the same rules, we may show that if sum(a; b; c2),
then c2 = succ(c′2) nat where sum(a′; b; c′2). By the outer inductive hy-
pothesis c′1 = c′2 nat and so c1 = c2 nat.

1.7 Modes

The statement that one or more arguments of a judgement is (perhaps uniquely)
determined by its other arguments is called a mode specification for that
judgement. For example, we have shown that every two natural numbers
have a sum according to Rules (1.10). This fact may be restated as a mode
specification by saying that the judgement sum(a; b; c) has mode (∀, ∀, ∃).
The notation arises from the form of the proposition it expresses: for all
a nat and for all b nat, there exists c nat such that sum(a; b; c). If we wish
to further specify that c is uniquely determined by a and b, we would say
that the judgement sum(a; b; c) has mode (∀, ∀, ∃!), corresponding to the
proposition for all a nat and for all b nat, there exists a unique c nat such that
sum(a; b; c). If we wish only to specify that the sum is unique, if it exists,

14:43 DRAFT AUGUST 24, 2010



1.8 Exercises 13

then we would say that the addition judgement has mode (∀, ∀, ∃≤1), cor-
responding to the proposition for all a nat and for all b nat there exists at most
one c nat such that sum(a; b; c).

As these examples illustrate, a given judgement may satisfy several dif-
ferent mode specifications. In general the universally quantified arguments
are to be thought of as the inputs of the judgement, and the existentially
quantified arguments are to be thought of as its outputs. We usually try to
arrange things so that the outputs come after the inputs, but it is not es-
sential that we do so. For example, addition also has the mode (∀, ∃≤1, ∀),
stating that the sum and the first addend uniquely determine the second
addend, if there is any such addend at all. Put in other terms, this says that
addition of natural numbers has a (partial) inverse, namely subtraction.
We could equally well show that addition has mode (∃≤1, ∀, ∀), which is
just another way of stating that addition of natural numbers has a partial
inverse.

Often there is an intended, or principal, mode of a given judgement,
which we often foreshadow by our choice of notation. For example, when
giving an inductive definition of a function, we often use equations to in-
dicate the intended input and output relationships. For example, we may
re-state the inductive definition of addition (given by Rules (1.10)) using
equations:

a nat
a + zero= a nat (1.11a)

a + b = c nat
a + succ(b)= succ(c) nat

(1.11b)

When using this notation we tacitly incur the obligation to prove that the
mode of the judgement is such that the object on the right-hand side of the
equations is determined as a function of those on the left. Having done so,
we abuse notation, writing a + b for the unique c such that a + b = c nat.

1.8 Exercises

1. Give an inductive definition of the judgement max(a; b; c), where a nat,
b nat, and c nat, with the meaning that c is the larger of a and b. Prove
that this judgement has the mode (∀, ∀, ∃!).

2. Consider the following rules, which define the height of a binary tree
as the judgement hgt(a; b).

hgt(empty; zero)
(1.12a)

AUGUST 24, 2010 DRAFT 14:43



14 1.8 Exercises

hgt(a1; b1) hgt(a2; b2) max(b1; b2; b)
hgt(node(a1; a2); succ(b))

(1.12b)

Prove by tree induction that the judgement hgt has the mode (∀, ∃),
with inputs being binary trees and outputs being natural numbers.

3. Give an inductive definition of the judgement “∇ is a derivation of J”
for an inductively defined judgement J of your choice.

4. Give an inductive definition of the forward-chaining and backward-
chaining search strategies.

14:43 DRAFT AUGUST 24, 2010



Chapter 2

Hypothetical Judgements

A hypothetical judgement expresses an entailment between one or more hy-
potheses and a conclusion. We will consider two notions of entailment, called
derivability and admissibility. Derivability expresses the stronger of the two
forms of entailment, namely that the conclusion may be deduced directly
from the hypotheses by composing rules. Admissibility expresses the weaker
form, that the conclusion is derivable from the rules whenever the hypothe-
ses are also derivable. Both forms of entailment enjoy the same structural
properties that characterize conditional reasoning. One consequence of
these properties is that derivability is stronger than admissibility (but the
converse fails, in general). We then generalize the concept of an inductive
definition to admit rules that have hypothetical judgements as premises.
Using these we may enrich the rules with new axioms that are available for
use within a specified premise of a rule.

2.1 Derivability

For a given set, R, of rules, we define the derivability judgement, written
J1, . . . , Jk `R K, where each Ji and K are basic judgements, to mean that
we may derive K from the expansion R[J1, . . . , Jk] of the rules R with the
additional axioms

J1
. . .

Jk
.

That is, we treat the hypotheses, or antecedents, of the judgement, J1, . . . , Jn
as temporary axioms, and derive the conclusion, or consequent, by composing
rules in R. That is, evidence for a hypothetical judgement consists of a
derivation of the conclusion from the hypotheses using the rules inR.



16 2.1 Derivability

We use capital Greek letters, frequently Γ or ∆, to stand for a finite col-
lection of basic judgements, and write R[Γ] for the expansion of R with
an axiom corresponding to each judgement in Γ. The judgement Γ `R K
means that K is derivable from rules R[Γ]. We sometimes write `R Γ to
mean that `R J for each judgement J in Γ. The derivability judgement
J1, . . . , Jn `R J is sometimes expressed by saying that the rule

J1 . . . Jn

J
(2.1)

is derivable from the rulesR.
For example, consider the derivability judgement

a nat `(1.2) succ(succ(a)) nat (2.2)

relative to Rules (1.2). This judgement is valid for any choice of object a, as
evidenced by the derivation

a nat
succ(a) nat

succ(succ(a)) nat
, (2.3)

which composes Rules (1.2), starting with a nat as an axiom, and ending
with succ(succ(a)) nat. Equivalently, the validity of (2.2) may also be
expressed by stating that the rule

a nat
succ(succ(a)) nat

(2.4)

is derivable from Rules (1.2).
It follows directly from the definition of derivability that it is stable un-

der extension with new rules.

Theorem 2.1 (Stability). If Γ `R J, then Γ `R∪R′ J.

Proof. Any derivation of J fromR[Γ] is also a derivation from (R∪R′)[Γ],
since the presence of additional rules does not influence the validity of the
derivation.

Derivability enjoys a number of structural properties that follow from its
definition, independently of the rules,R, in question.

Reflexivity Every judgement is a consequence of itself: Γ, J `R J. Each
hypothesis justifies itself as conclusion.

14:43 DRAFT AUGUST 24, 2010



2.2 Admissibility 17

Weakening If Γ `R J, then Γ, K `R J. Entailment is not influenced by
unexercised options.

Exchange If Γ1, J1, J2, Γ2 `R J, then Γ1, J2, J1, Γ2 `R J. The relative ordering
of the axioms is immaterial.

Contraction If Γ, J, J `R K, then Γ, J `R K. We may use a hypothesis as
many times as we like in a derivation.

Transitivity If Γ, K `R J and Γ `R K, then Γ `R J. If we replace an ax-
iom by a derivation of it, the result is a derivation of its consequent
without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening
follows directly from uniformity. Exchange and contraction follow from
the treatment of the rules,R, as a finite set, for which order does not matter
and replication is immaterial. Transitivity is proved by rule induction on
the first premise.

In view of the structural properties of exchange and contraction, we re-
gard the hypotheses, Γ, of a derivability judgement as a finite set of assump-
tions, so that the order and multiplicity of hypotheses does not matter. In
particular, when writing Γ as the union Γ1 Γ2 of two sets of hypotheses, a
hypothesis may occur in both Γ1 and Γ2. This is obvious when Γ1 and Γ2 are
given, but when decomposing a given Γ into two parts, it is well to remem-
ber that the same hypothesis may occur in both parts of the decomposition.

2.2 Admissibility

Admissibility, written Γ |=R J, is a weaker form of hypothetical judgement
stating that `R Γ implies `R J. That is, the conclusion J is derivable from
rules R whenever the assumptions Γ are all derivable from rules R. In
particular if any of the hypotheses are not derivable relative to R, then the
judgement is vacuously true. The admissibility judgement J1, . . . , Jn |=R J
is sometimes expressed by stating that the rule,

J1 . . . Jn

J
,

(2.5)

is admissible relative to the rules inR.
For example, the admissibility judgement

succ(a) nat |=(1.2) a nat (2.6)

AUGUST 24, 2010 DRAFT 14:43



18 2.2 Admissibility

is valid, because any derivation of succ(a) nat from Rules (1.2) must con-
tain a sub-derivation of a nat from the same rules, which justifies the con-
clusion. The validity of (2.6) may equivalently be expressed by stating that
the rule

succ(a) nat
a nat (2.7)

is admissible for Rules (1.2).
In contrast to derivability the admissibility judgement is not stable un-

der extension to the rules. For example, if we enrich Rules (1.2) with the
axiom

succ(junk) nat
(2.8)

(where junk is some object for which junk nat is not derivable), then the
admissibility (2.6) is invalid. This is because Rule (2.8) has no premises,
and there is no composition of rules deriving junk nat. Admissibility is as
sensitive to which rules are absent from an inductive definition as it is to
which rules are present in it.

The structural properties of derivability ensure that derivability is stronger
than admissibility.

Theorem 2.2. If Γ `R J, then Γ |=R J.

Proof. Repeated application of the transitivity of derivability shows that if
Γ `R J and `R Γ, then `R J.

To see that the converse fails, observe that there is no composition of
rules such that

succ(junk) nat `(1.2) junk nat,

yet the admissibility judgement

succ(junk) nat |=(1.2) junk nat

holds vacuously.
Evidence for admissibility may be thought of as a mathematical func-

tion transforming derivations ∇1, . . . ,∇n of the hypotheses into a deriva-
tion ∇ of the consequent. Therefore, the admissibility judgement enjoys
the same structural properties as derivability, and hence is a form of hypo-
thetical judgement:

Reflexivity If J is derivable from the original rules, then J is derivable from
the original rules: J |=R J.

14:43 DRAFT AUGUST 24, 2010



2.3 Hypothetical Inductive Definitions 19

Weakening If J is derivable from the original rules assuming that each of
the judgements in Γ are derivable from these rules, then J must also be
derivable assuming that Γ and also K are derivable from the original
rules: if Γ |=R J, then Γ, K |=R J.

Exchange The order of assumptions in an iterated implication does not
matter.

Contraction Assuming the same thing twice is the same as assuming it
once.

Transitivity If Γ, K |=R J and Γ |=R K, then Γ |=R J. If the assumption K is
used, then we may instead appeal to the assumed derivability of K.

Theorem 2.3. The admissibility judgement Γ |=R J is structural.

Proof. Follows immediately from the definition of admissibility as stating
that if the hypotheses are derivable relative toR, then so is the conclusion.

Just as with derivability, we may, in view of the properties of exchange
and contraction, regard the hypotheses, Γ, of an admissibility judgement as
a finite set, for which order and multiplicity does not matter.

2.3 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to permit rules
with derivability judgements as premises and conclusions. Doing so per-
mits us to introduce local hypotheses that apply only in the derivation of a
particular premise, and also allows us to constrain inferences based on the
global hypotheses in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a collection of hypothetical
rules of the form

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
. (2.9)

The hypotheses Γ are the global hypotheses of the rule, and the hypotheses
Γi are the local hypotheses of the ith premise of the rule. Informally, this rule
states that J is a derivable consequence of Γ whenever each Ji is a derivable
consequence of Γ, augmented with the additional hypotheses Γi. Thus, one
way to show that J is derivable from Γ is to show, in turn, that each Ji is
derivable from Γ Γi. The derivation of each premise involves a “context

AUGUST 24, 2010 DRAFT 14:43



20 2.3 Hypothetical Inductive Definitions

switch” in which we extend the global hypotheses with the local hypothe-
ses of that premise, establishing a new set of global hypotheses for use
within that derivation.

In most cases a rule is stated for all choices of global context, in which
case it is said to be uniform. A uniform rule may be given in the implicit
form

Γ1 ` J1 . . . Γn ` Jn

J
, (2.10)

which stands for the collection of all rules of the form (2.9) in which the
global hypotheses have been made explicit.

A hypothetical inductive definition is to be regarded as an ordinary in-
ductive definition of a formal derivability judgement Γ ` J consisting of a
finite set of basic judgements, Γ, and a basic judgement, J. A collection of
hypothetical rules, R, defines the strongest formal derivability judgement
closed under rulesR, which, by an abuse of notation, we write as Γ `R J.

Since Γ `R J is the strongest judgement closed under R, the princi-
ple of hypothetical rule induction is valid for reasoning about it. Specifically,
to show that P(Γ ` J) whenever Γ `R J, it is enough to show, for each
rule (2.9) inR,

if P(Γ Γ1 ` J1) and . . . and P(Γ Γn ` Jn), then P(Γ ` J).

This is just a restatement of the principle of rule induction given in Chap-
ter 1, specialized to the formal derivability judgement Γ ` J.

It is important to ensure that the formal derivability relation defined by
a collection of hypothetical rules is structural. This amounts to showing
that the following structural rules are admissible:

Γ, J ` J
(2.11a)

Γ ` J
Γ, K ` J

(2.11b)

Γ ` K Γ, K ` J
Γ ` J

(2.11c)

If all of the rules of a hypothetical inductive definition are uniform, it is au-
tomatically the case that the structural rules (2.11b) and (2.11c) are admis-
sible. However, it is typically necessary to include Rule (2.11a) explicitly to
ensure reflexivity.

14:43 DRAFT AUGUST 24, 2010



2.4 Exercises 21

2.4 Exercises

1. Define Γ′ ` Γ to mean that Γ′ ` Ji for each Ji in Γ. Show that Γ ` J iff
whenever Γ′ ` Γ, it follows that Γ′ ` J. Hint: from left to right, appeal
to transitivity of entailment; from right to left, consider the case of
Γ′ = Γ.

2. Show that it is dangerous to permit admissibility judgements in the
premise of a rule. Hint: show that using such rules one may “define”
an inconsistent judgement form J for which we have a J iff it is not
the case that a J.

AUGUST 24, 2010 DRAFT 14:43



22 2.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 3

Syntactic Objects

Throughout this book we shall have need of a variety of syntactic objects
with which to model programming language concepts. We will use a very
general framework for specifying syntactic objects that accounts for three
crucial concepts: (1) hierarchical structure, (2) binding and scope, and (3)
parameterization. Abstract syntax trees account for hierarchical structure;
these form the foundation of the framework. Abstract binding trees enrich
abstract syntax trees with variable binding and scope. Parameterized abstract
binding trees support two forms of indexed families of objects.

3.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is a finitary ordered tree whose leaves
are variables and each of whose nodes are operators, or constructors. The
children of a node are the arguments of the operator at that node. Abstract
syntax trees are classified into sorts. Variables are assigned sorts. Operators
are assigned both a sort and an arity, a sequence of sorts specifying the
number and sort of each argument.

To make this precise, fix a set, S , of sorts. Let {Os }s∈S be a family of
sets Os whose elements are the operators of sort s. Let the arity of each
operator, o, be given by ar(o) = (s1, . . . , sn). For each S-indexed family of
sets { Xs }s∈S of variables of sort s, the family of sets A[X ] = {A[X ]s }s∈S
is the smallest family of sets satisfying the following two conditions:

1. A variable of sort s is an ast of sort s: Xs ⊆ A[X ]s for each s ∈ S .

2. Abstract syntax trees are closed under each of the operators: if o ∈
Os, ar(o) = (s1, . . . , sn), and a1 ∈ A[X ]s1 , . . . , an ∈ A[X ]sn , then



24 3.1 Abstract Syntax Trees

o(a1; . . . ;an) ∈ A[X ]s.

For example, let Expr be the sort of expressions, let zero be an opera-
tor of sort Expr and arity (), and let succ be an operator of sort Expr and
arity (Expr). Then succ(succ(zero())) ∈ A[∅]Expr and if x ∈ XExpr, then
succ(succ(x)) ∈ A[X ]Expr.

We will often use notational conventions to identify the variables of a
sort, and speak loosely of an “ast of sort s” without precisely specifying the
sets of variables of each sort. When specifying the variables, we often write
X , x, where x is a variable of sort s such that x /∈ Xs, to mean the family of
sets Y such that Ys = Xs ∪ { x } and Ys′ = Xs′ for all s′ 6= s. The family
X , x, where x is of sort s, is said to be the family obtained by adjoining the
variable x to the family X .

It follows immediately from the definition of abstract syntax trees that
if X ⊆ Y , then A[X ] ⊆ A[Y ].1 A family of bijections π : X ↔ Y between
sets of variables of each sort induces a renaming, π · a, on a ∈ A[X ] yield-
ing an ast in A[Y ] obtained by replacing x ∈ Xs by πs(x) everywhere in
a. (Renamings will play an important role in the generalization of ast’s to
account for binding and scope to be developed in Section 3.2 on the next
page.)

Variables are so-called because they are given meaning by substitution.
Specifically, if a ∈ A[X , x] and b ∈ A[X ], then [b/x]a ∈ A[X ], where
[b/x]a is the result of substituting b for every occurrence of x in a. The ast a
is sometimes called the target, and x is called the subject, of the substitution.
Substitution is defined by the following conditions:

1. [b/x]x = b and [b/x]y = y if x 6= y.

2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may readily check that

[succ(zero())/x]succ(succ(x)) = succ(succ(succ(zero()))).

That is, we simply “plug in” the given ast for the variable x in the target of
the substitution.

The fact that substitution is properly defined by these equations may be
justified using the principle of structural induction. Let P be a sort-indexed
family of subsets of A[X ], to be thought of as a property of the ast’s of each
sort s ∈ S . To show that A[X ] ⊆ P , it is enough to show:

1As usual we extend relations on sets to relations on families of sets element-wise, so that
the inclusion X ⊆ Y means that for every s ∈ S , Xs ⊆ Ys, and similarly for the inclusion of
the families of sets of ast’s.

14:43 DRAFT AUGUST 24, 2010



3.2 Abstract Binding Trees 25

1. X ⊆ P .

2. for every operator o of sort s such that ar(o) = (s1, . . . , sn), if a1 ∈ Ps1

and . . . and an ∈ Psn , then o(a1; . . . ;an) ∈ Ps.

That is, to show that every ast of sort s has property Ps, it is enough to
show that every variable of sort s has the property Ps and that for every
operator o of sort s whose arguments have sorts s1, . . . , sn, respectively, if a1
has property Ps1 , and . . . and an has property Psn , then o(a1; . . . ;an) has
property Ps.

For example, we may show by structural induction on a ∈ A[X , x] that
if b ∈ A[X ], then there exists a unique c ∈ A[X ] such that [b/x]a = c. For
if y ∈ X , x, then either y = x, in which case c = b, or y 6= x, in which case
c = y. And if [b/x]a1 = c1 and . . . [b/x]an = cn, then c = o(c1; . . . ;cn).

3.2 Abstract Binding Trees

Abstract syntax goes a long way towards separating objective issues of syn-
tax (the hierarchical structure of expressions) from subjective issues (their
layout on the page). This can be usefully pushed a bit further by enriching
abstract syntax to account for binding and scope.

All languages have facilities for introducing an identifier with a spec-
ified range of significance. For example, we may define a variable, x, to
stand for an expression, e1, so that we may conveniently refer to it within
another expression, e2, by writing let x be e1 in e2. The intention is that x
stands for e1 inside of the expression e2, but has no meaning whatsoever
outside of that expression. The variable x is said to be bound within e2 by the
definition; equivalently, the scope of the variable x is the expression e2.

Moreover, the name x has no intrinsic significance; we may just as well
use any variable y for the same purpose, provided that we rename x to y
within e2. Such a renaming is always possible, provided only that there can
be no confusion between two different definitions. So, for example, there is
no difference between the expressions

let x be succ(succ(zero)) in succ(succ(x))

and
let y be succ(succ(zero)) in succ(succ(y)).

But we must be careful when nesting definitions, since

let x be succ(succ(zero)) in let y be succ(zero) in succ(x)

AUGUST 24, 2010 DRAFT 14:43



26 3.2 Abstract Binding Trees

is entirely different from

let y be succ(succ(zero)) in let y be succ(zero) in succ(y).

In this case we cannot rename x to y, nor can we rename y to x, because to
do so would confuse two different definitions. The guiding principle is that
bound variables are pointers to their binding sites, and that any renaming
must preserve the pointer structure of the expression. Put in other terms,
bound variables function as pronouns, which refer to objects separately in-
troduced by a noun phrase (here, an expression). Renaming must preserve
the pronoun structure, so that we cannot get confusions such as “which he
do you mean?” that arise in less formal languages.

The concepts of binding and scope can be accounted by enriching ab-
stract syntax trees with some additional structure. Such enriched abstract
syntax trees are called abstract binding trees, or abt’s for short. An opera-
tor on abt’s may bind zero or more variables in each of its arguments in-
dependently of one another. Each argument is an abstractor of the form
x1, . . . , xk.a, where x1, . . . , xk are variables and a is an abt possibly mention-
ing those variables. Such an abstractor specifies that the variables x1, . . . , xk
are bound within e2. When k is zero, we usually elide the distinction be-
tween .a and a itself. Thus, when written in the form of an abt, a definition
has the form let(e1; x.e2). The abstractor x.e2 in the second argument
position makes clear that x is bound within e2, and not within e1.

Since an operator may bind variables in each of its arguments, the ar-
ity of an operator is generalized to be a finite sequence of valences of the
form (s1, . . . , sk)s consisting of a finite sequence of sorts together with a
sort. Such a valence specifies the overall sort of the argument, s, and the
sorts s1, . . . , sk of the variables bound within that argument. Thus, for ex-
ample, the arity of the operator let is (Expr, (Expr)Expr), which indicates
that it takes two arguments described as follows:

1. The first argument is of sort Expr, and binds no variables.

2. The second argument is also of sort Expr, and binds one variable of
sort Expr.

A precise definition of abt’s requires some care. As a first approxima-
tion let us naı̈vely define the S-indexed family B[X ] of abt’s over the S-
indexed variables X and S-indexed family O of operators o of arity ar(o).
To lighten the notation let us write~x for a finite sequence x1, . . . , xn of n dis-
tinct variables, and~s for a finite sequence s1, . . . , sn of n sorts. We say that

14:43 DRAFT AUGUST 24, 2010



3.2 Abstract Binding Trees 27

~x is a sequence of variables of sort ~s iff the two sequences have the same
length, n, and for each 1 ≤ i ≤ n the variable xi is of sort si. The following
conditions would appear to suffice as the definition of the abt’s of each sort:

1. Every variable is an abt: X ⊆ B[X ].

2. Abt’s are closed under combination by operators: for every oper-
ator o of sort s and arity ((~s1)s1, . . . , (~sn)sn), if ~x1 is of sort ~s1 and
a1 ∈ B[X ,~x1]s1 and . . . and ~xn is of sort~sn and an ∈ B[X ,~xn]sn , then
o(~x1.a1; . . . ;~xn.an) ∈ B[X ]s.

The bound variables are adjoined to the set of active variables within each
argument, with the sort of each variable determined by the valence of the
operator.

This definition is almost correct. The problem is that it takes too literally
the names of the bound variables in an ast. In particular an abt of the form
let(e1; x.let(e2; x.e3)) is always ill-formed according to this definition,
because the first binding adjoins x to X , which implies that the second
cannot adjoin x to X , x because it is already present.

To ensure that the names of bound variables do not matter, the second
condition on formation of abt’s is strengthened as follows:2

if for every 1 ≤ i ≤ n and for every renaming πi : ~xi ↔ ~x′i such
that ~x′i /∈ X we have πi · ai ∈ B[X ,~x′i ], then

o(~x1.a1; . . . ;~xn.an) ∈ B[X ].

That is, we demand that an abstractor be well-formed with respect to every
choice of variables that are not already active. This ensures, for example,
that when nesting binders we rename bound variables to avoid collisions.
This is called the freshness condition on binders, since it chooses the bound
variable names to be “fresh” relative to any variables already in use in a
given context.

The principle of structural induction extends to abt’s, and is called struc-
tural induction modulo renaming. It states that to show that B[X ] ⊆ P [X ], it
is enough to show the following conditions:

1. X ⊆ P [X ].

2The action of a renaming extends to abt’s in the obvious way by replacing every occur-
rence of x by π(x), including any occurrences in the variable list of an abstractor as well as
within its body.

AUGUST 24, 2010 DRAFT 14:43



28 3.2 Abstract Binding Trees

2. For every o of sort s and arity ((~s1)s1, . . . , (~sn)sn), if for every 1 ≤ i ≤
n and for every renaming πi : ~xi ↔ ~x′i we have πi · ai ∈ P [X ,~x′i ], then
o(~x1.a1; . . . ;~xn.an) ∈ P [X ].

This means that in the inductive hypothesis we may assume that the prop-
erty P holds for all renamings of the bound variables, provided only that
no confusion arises by re-using varaible names.

As an example let us define by structural induction modulo renaming
the relation x ∈ a, where a ∈ B[X , x], to mean that x occurs free in a.
Speaking somewhat loosely, we may say that this judgement is defined by
the following conditions:

1. x ∈ y if x = y.

2. x ∈ o(~x1.a1; . . . ;~xn.an) if x ∈ ai for some 1 ≤ i ≤ n.

More precisely, we are defining a family of relations x ∈ a for each family
X of variables such that a ∈ B[X , x]. The first condition condition states
that x is free in x, and the second states that if x is free in any argument for
any fresh choice of bound variables, then it is free in the abt constructed by
an operator. We need not concern ourselves with the case that x may occur
in some ~xi, because the principle of structural induction will rename any
such variable away from x before checking whether x occurs in the body.
This implies, in particular, that x is not free in let(zero; x.x), since x is not
free in x′ for any choice of x′ distinct from x.

The relation a =α b of α-equivalence (so-called for historical reasons), is
defined to mean that a and b are identical up to the choice of bound variable
names. This relation is defined to be the strongest congruence containing
the following two conditions:

1. x =α x.

2. o(~x1.a1; . . . ;~xn.an) =α o(~x′1.a′1; . . . ;~x′n.a′n) if for every 1 ≤ i ≤ n,
πi · ai =α π′i · a′i for all renamings πi : ~xi ↔ ~zi and π′i : ~x′i ↔ ~zi with~zi
fresh.

The idea is that we rename ~xi and ~x′i consistently, avoiding confusion, and
check that ai and a′i are α-equivalent. As a matter of terminology, if a =α b,
then b is said to be an α-variant of a (and vice-versa).

Some care is required in the definition of substitution of an abt b of sort
s for free occurrences of a variable x of sort s in some abt a of some sort,
written [b/x]a. Substitution is partially defined by the following conditions:

14:43 DRAFT AUGUST 24, 2010



3.2 Abstract Binding Trees 29

1. [b/x]x = b, and [b/x]y = y if x 6= y.

2. [b/x]o(~x1.a1; . . . ;~xn.an) = o(~x1.a′1; . . . ;~xn.a′n), where, for each 1 ≤
i ≤ n, we require that ~xi 6∈ b, and we set a′i = [b/x]ai if x /∈ ~xi, and
a′i = ai otherwise.

If x is bound in some argument to an operator, then substitution does not
descend into its scope, for to do so would be to confuse two distinct vari-
ables. For this reason we must take care to define a′i in the second equation
according to whether or not x ∈ ~xi. The requirement that ~xi 6∈ b in the
second equation is called capture avoidance. If some xi,j occurred free in b,
then the result of the substitution [b/x]ai would in general contain xi,j free
as well, but then forming ~xi.[b/x]ai would incur capture by changing the
referent of xi,j to be the jth bound variable of the ith argument. In such
cases substitution is undefined since we cannot replace x by b in ai without
incurring capture.

One way around this is to alter the definition of substitution so that the
bound variables in the result are chosen fresh by substitution. By the prin-
ciple of structural induction we know inductively that, for any renaming
πi : ~xi ↔ ~x′i with ~x′i fresh, the substitution [b/x](πi · ai) is well-defined.
Hence we may define

[b/x]o(~x1.a1; . . . ;~xn.an) = o(~x′1.[b/x](π1 · a1); . . . ;~x′n.[b/x](πn · an))

for some particular choice of fresh bound variable names (any choice will
do). There is no longer any need to take care that x /∈ ~xi in each argument,
because the freshness condition on binders ensures that this cannot occur,
the variable x already being active. Noting that

o(~x1.a1; . . . ;~xn.an) =α o(~x′1.π1 · a1; . . . ;~x′n.πn · an),

another way to avoid undefined substitutions is to first choose an α-variant
of the target of the substitution whose binders avoid any free variables in
the substituting abt, and then perform substitution without fear of incur-
ring capture. In other words substitution is totally defined on α-equivalence
classes of abt’s.

This motivates the following general policy:

Abstract binding trees are always to be identified up to α-equivalence.

That is, we henceforth work with equivalence classes of abt’s modulo α-
equivalence. Whenever a particular abt is considered, we choose a conve-
nient representative of its α-equivalence class so that its bound variables are

AUGUST 24, 2010 DRAFT 14:43



30 3.3 Parameterization

disjoint from the finite set of active variables in a particular context. We tac-
itly assert that all operations and relations on abt’s respect α-equivalence,
so that they are properly defined on α-equivalence classes of abt’s. Thus, in
particular, it makes no sense to speak of a particular bound variable within
an abt, because bound variables have no fixed identity. Whenever we ex-
amine an abt, we are choosing a representative of its α-equivalence class,
and we have no control over how the bound variable names are chosen.
On the other hand experience shows that any operation or property of in-
terest respects α-equivalence, so there is no obstacle to achieving it. Indeed,
we might say that a property or operation is legitimate exactly insofar as it
respects α-equivalence!

3.3 Parameterization

It is often useful to consider indexed families of operators of the same sort
and arity. We will consider two different forms of families of operators,
the closed families, which are indexed by a fixed set, and the open families,
which are indexed by an evolving set of scoped parameters, or names.

As an example of closed indexing, suppose that we wish to enrich the
sort of expressions with boolean constants. The obvious way would be to
introduce two different operators, true and false, of sort Expr, each with
arity (), so that the booleans are given by the abt’s true() and false() of
sort Expr. However, it is sometimes preferable to consider constructors such
as these to be instances of a single family of operators of the same sort in
order to stress their uniformity. We might then represent the booleans as in-
stances of the family bool[b], indexed by b ∈ { tt, ff }, so that the boolean
constants are represented by the abt’s bool[tt]() and bool[ff]().

In this case such a representation seems strained, but in more general
situations it is useful to consider families of operators { o[i] }i∈I , where I is
some index set and each o[i] has the same sort and arity. Various choices
of index set, I, arise. Examples include the set N of natural numbers, and
any set isomorphic to a finite set Nk with k ≥ 0 elements. For example,
supose that we wish to consider a finite sequence of expressions to be a
form of expression. One way to do this is to introduce a family of operators
{ seq[n] }n∈N such that for each n ∈ N the operator seq[n] has sort Expr
and arity (Expr, . . . , Expr) specifying n arguments of sort Expr.

More important are the open families of operators, which are indexed
by varying finite sets of symbols, or names, or atoms. Symbolic parameters
behave, in some respects, like variables, with the crucial difference that pa-

14:43 DRAFT AUGUST 24, 2010



3.3 Parameterization 31

rameters are not forms of abt. As with variables, new parameters may be
introduced within a scope, and the names of bound parameters are not sig-
nificant. In contrast to variables, however, parameters serve only as indices
for families of operators; there is no notion of substitution for parameters.

Making this precise requires some additional machinery. We assume
given a setR of parameter sorts, r, and we let U range overR-indexed fam-
ilies of finite sets of parameters of sort r. The family of sets of operators
{Os }s∈S is generalized to the family of sets of operators {Or,s }r∈R,s∈S of
sort s parameterized by parameters of sort r. Given a R-indexed family U
of parameters and a S-indexed family X of variables, we define the set of
parameterized abt’s B[U ;X ] by the following two clauses:

1. X ⊆ B[U ;X ].

2. For each o ∈ Or,s such that ar(o) = ((~r1;~s1)s1, . . . , (~rn;~sn)sn) and for
each u ∈ Ur, if a1 ∈ B[U ,~u1;X ,~x1] and . . . and an ∈ B[U ,~un;X ,~xn],
then o[u](~u1.~x1.a1; . . . ;~un.~xn.an) ∈ B[U ;X ].3

Observe that each argument binds a sequence of parameters, as well as
a sequence of variables, and that arities are correspondingly generalized
to specify the sorts of the bound parameters, as well as bound variables, in
each argument to an operator. The principle of structural induction modulo
renaming extends to parameterized abt’s in such a way that the names of
bound parameters may be chosen arbitrarily to be fresh, just as may the
names of bound variables be chosen arbitrarily in the induction principle
for abt’s.

The relation of α-equivalence extends to parameterized abt’s in the evi-
dent manner, relating any two abt’s that differ only in their choice of bound
parameter names. As with abt’s, we tacitly identify parameterized abt’s up
to this extended notion of α-equivalence, and demand that all properties
and operations on parameterized abt’s respect α-equivalence.

3More precisely, we must consider all possible fresh renamings of the bound parameters
in a parameterized abt, just as we considered all possible fresh renamings of the bound
variables in the definition of an abt. We omit specifying this explicitly for the sake of clarity.

AUGUST 24, 2010 DRAFT 14:43



32 3.3 Parameterization

14:43 DRAFT AUGUST 24, 2010



Chapter 4

Generic Judgements

Basic judgements express properties of objects of the universe of discourse.
Hypothetical judgements express entailments between judgements, or rea-
soning under hypotheses. Generic and parametric judgements express gen-
erality with respect to variables and parameters, respectively. Generic judge-
ments are given meaning by substitution, whereas parametric judgements
express uniform dependence on parameters.

4.1 Rule Schemes

An inductive definition consists of a set, R, of rules whose premises and
conclusion are judgements involving syntactic objects generated by given
sets of parameters and variables. We write Γ `U ;X

R J to indicate that J is
derivable from rulesR and hypotheses Γ over the universe B[U ;X ]. Thus,
for example, if a ∈ B[U ;X ], then the judgment a nat ` succ(a) nat is
derivable from Rules (1.2) by applying Rule (1.2b) to the hypothesis a nat.

This definition hides a subtle issue of the interpretation of rules. When
working over a fixed universe of syntactic objects, one may understand a
rule of the form

a nat
succ(a) nat

(4.1)

as standing for an infinite set of rules, one for each choice of object a in the
universe. However, when considering the same rule over many different
universes (for example, by expanding the set of variables), this rough-and-
ready interpretation must be refined.

To allow for variation in the universe we regard (4.1) as a rule scheme
in which the meta-variable, a, stands for a syntactic object in any expansion



34 4.2 Generic Derivability

of the universe. So, for example, if the variable x is adjoined to the set of
active variables, then (4.1) has as an instance the rule

x nat
succ(x) nat

(4.2)

in which we have taken a to be the parameter, x. If we further adjoin an-
other variable, y, then more instances of the rule are possible.

4.2 Generic Derivability

A generic derivability judgement expresses the uniform derivability of a judge-
ment with respect to specified parameters and variables. Let us consider
first variables, and expand out to accomodate parameters later. The generic
derivability judgement ~x | Γ `XR J states that for every fresh renaming
π : ~x ↔ ~x′, the judgement π · Γ `X ,~x′

R π · J holds. The renaming ensures
that the choice of variables, ~x, does not affect the meaning of the judge-
ment; variables are simply placeholders that have no intrinsic meaning of
their own.

Evidence for a generic derivability judgement ~x | Γ `XR J consists of a
generic derivation, ∇~x, such that for every fresh renaming π : ~x ↔ ~x′, the
derivation ∇~x′ is evidence for π · Γ `X ,~x′

R π · J. For example, the derivation
∇x given by

x nat
succ(x) nat

succ(succ(x)) nat

is evidence for the generic judgement

x | x nat `X(1.2) succ(succ(x)) nat.

As long as the rule schemes,R, are pure, the generic derivability judge-
ment enjoys the following structural properties:

Proliferation If ~x | Γ `XR J, then ~x, x | Γ `XR J.

Renaming If ~x, x | Γ `XR J, then ~x, x′ | [x ↔ x′] · Γ `XR [x ↔ x′] · J for any
x′ /∈ X ,~x.

Substitution If ~x, x | Γ `XR J and a ∈ B[X ,~x], then ~x | [a/x]Γ `XR [a/x]J.

Proliferation is guaranteed by the interpretation of rule schemes as ranging
over all expansions of the universe. Renaming is built into the meaning of
the generic judgement. Substitution follows from purity, since a substitu-
tion instance of a rule instance is itself a rule instance.

14:43 DRAFT AUGUST 24, 2010



4.3 Generic Inductive Definitions 35

4.3 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgements in the
premises of rules, with the effect of augmenting the variables, as well as the
rules, within those premises. A generic rule has the form

~x~x1 | Γ Γ1 ` J1 . . . ~x~xn | Γ Γn ` Jn

~x | Γ ` J
. (4.3)

The variables~x are the global variables of the inference, and, for each 1 ≤ i ≤
n, the variables ~xi are the local variables of the ith premise. In most cases a
rule is stated for all choices of global variables and global hypotheses. Such
rules may be given in implicit form,

~x1 | Γ1 ` J1 . . . ~xn | Γn ` Jn

J
. (4.4)

A generic inductive definition is just an ordinary inductive definition of
a family of formal generic judgements of the form ~x | Γ ` J. Formal generic
judgements are identified up to renaming of variables, so that the latter
judgement is treated as identical to the judgement ~x′ | π · Γ ` π · J for
any renaming π : ~x ↔ ~x′. If R is a collection of generic rules, we write
~x | Γ `R J to mean that the formal generic judgement ~x | Γ ` J is derivable
from rulesR.

When specialized to a collection of generic rules, the principle of rule
induction states that to show P(~x | Γ ` J) whenever~x | Γ `R J, it is enough
to show that P is closed under the rules R. Specifically, for each rule in R
of the form (4.3), we must show that

if P(~x~x1 | Γ Γ1 ` J1) . . . P(~x~xn | Γ Γn ` Jn) then P(~x | Γ ` J).

Because of the identification convention the property P must respect re-
namings of the variables in a formal generic judgement. It is common to
use notations such as P~x(Γ ` J) or PΓ

~x (J) or similar variations to indicate
that P holds of the judgement ~x | Γ ` J.

To ensure that the formal generic judgement behaves like a generic
judgement, we must always ensure that the following structural rules are
admissible in any generic inductive definition:

~x | Γ, J ` J
(4.5a)

AUGUST 24, 2010 DRAFT 14:43



36 4.4 Parametric Derivability

~x | Γ ` J
~x | Γ, J′ ` J

(4.5b)

~x | Γ ` J
~x, x | Γ ` J

(4.5c)

~x, x′ | [x ↔ x′] · Γ ` [x ↔ x′] · J
~x, x | Γ ` J

(4.5d)

~x | Γ ` J ~x | Γ, J ` J′

~x | Γ ` J′
(4.5e)

~x, x | Γ ` J a ∈ B[~x]
~x | [a/x]Γ ` [a/x]J

(4.5f)

The admissibility of Rule (4.5a) is, in practice, ensured by explicitly includ-
ing it. The admissibility of Rules (4.5b) and (4.5c) is assured if each of the
generic rules is uniform, since we may assimilate the additional parameter,
x, to the global parameters, and the additional hypothesis, J, to the global
hypotheses. The admissibility of Rule (4.5d) is ensured by the identifica-
tion convention for the formal generic judgement. The second premise of
Rule (4.5f) is the local form of the requirement that a ∈ B[X ,~x], in which
the global variables are made explicit.

4.4 Parametric Derivability

The parametric derivability judgement ~u ‖ ~x | Γ `U ;X
R J states that the generic

judgement holds uniformly for all choices of parameters ~u. That is, for all
π : ~u↔ ~u′ such that~u′ ∩U = ∅, the generic judgement~x | π · Γ `U ,~u′;X

R π · J
is derivable.

The parametric judgement satisfies the following structural properties:

Proliferation If ~u ‖ ~x | Γ `U ;X
R J, then ~u, u ‖ ~x | Γ `U ;X

R J.

Renaming If ~u ‖ ~x | Γ `U ;X
R J and π : ~u↔ ~u′, then ~u′ ‖ ~x | π · Γ `U ;X

R π · J.

Proliferation states that parametric derivability is sensitive only to the pres-
ence, but not the absence, of parameters. Renaming states that parametric
derivability is independent of the choice of parameters. (There is no ana-
logue of the structural property of substitution for parameters, since pa-
rameters are not themselves forms of syntactic object, but rather are just
indices of operators.)

14:43 DRAFT AUGUST 24, 2010



4.5 Exercises 37

We may also extend the concept of a generic inductive definition to
allow for local parameters, as well as local variables, following the same
pattern as for the generic case. In particular rules are defined for formal
parametric judgements of the form ~u ‖ ~x | Γ ` J, identified up to renaming
of parameters, as well as variables.

It is often convenient to segregate the hypotheses of a parametric, generic
judgement into two zones, written ~u ‖ ~x | Σ Γ ` J, where the hypotheses
Σ govern only the parameters. To avoid notational clutter, we often write
such a judgement in the form ~x | Γ `~u‖Σ J, or even just Γ `Σ J, wherein we
rely on naming conventions to distinguish variables from parameters.

4.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



38 4.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part II

Levels of Syntax





Chapter 5

Concrete Syntax

The concrete syntax of a language is a means of representing expressions as
strings that may be written on a page or entered using a keyboard. The
concrete syntax usually is designed to enhance readability and to eliminate
ambiguity. While there are good methods for eliminating ambiguity, im-
proving readability is, to a large extent, a matter of taste.

In this chapter we introduce the main methods for specifying concrete
syntax, using as an example an illustrative expression language, called
L{num str}, that supports elementary arithmetic on the natural numbers
and simple computations on strings. In addition, L{num str} includes a
construct for binding the value of an expression to a variable within a spec-
ified scope.

5.1 Strings Over An Alphabet

An alphabet is a (finite or infinite) collection of characters. We write c char to
indicate that c is a character, and let Σ stand for a finite set of such judge-
ments, which is sometimes called an alphabet. The judgement Σ ` s str,
defining the strings over the alphabet Σ, is inductively defined by the fol-
lowing rules:

Σ ` ε str (5.1a)

Σ ` c char Σ ` s str
Σ ` c · s str

(5.1b)

Thus a string is essentially a list of characters, with the null string being the
empty list. We often suppress explicit mention of Σ when it is clear from
context.



42 5.2 Lexical Structure

When specialized to Rules (5.1), the principle of rule induction states
that to show s P holds whenever s str, it is enough to show

1. ε P , and

2. if s P and c char, then c · s P .

This is sometimes called the principle of string induction. It is essentially
equivalent to induction over the length of a string, except that there is no
need to define the length of a string in order to use it.

The following rules constitute an inductive definition of the judgement
s1 ˆ s2 = s str, stating that s is the result of concatenating the strings s1 and
s2.

ε ˆ s = s str (5.2a)

s1 ˆ s2 = s str

(c · s1) ˆ s2 = c · s str
(5.2b)

It is easy to prove by string induction on the first argument that this judge-
ment has mode (∀, ∀, ∃!). Thus, it determines a total function of its first two
arguments.

String concatenation is associative.

Lemma 5.1. If s1 ˆ s2 = s12 str and s2 ˆ s3 = s23 str, then s1 ˆ s23 = s str and
s12 ˆ s3 = s str for some (uniquely determined) string s.

In Section 5.5 on page 48 we will see that this innocuous-seeming fact
is responsible for most of the complications in defining the concrete syntax
of a language.

Strings are usually written as juxtapositions of characters, writing just
abcd for the four-letter string a · (b · (c · (d · ε))), for example. Concaten-
tation is also written as juxtaposition, and individual characters are often
identified with the corresponding unit-length string. This means that abcd
can be thought of in many ways, for example as the concatenations ab cd,
a bcd, or abc d, or even ε abcd or abcd ε, as may be convenient in a given
situation.

5.2 Lexical Structure

The first phase of syntactic processing is to convert from a character-based
representation to a symbol-based representation of the input. This is called
lexical analysis, or lexing. The main idea is to aggregate characters into sym-
bols that serve as tokens for subsequent phases of analysis. For example,

14:43 DRAFT AUGUST 24, 2010



5.2 Lexical Structure 43

the numeral 467 is written as a sequence of three consecutive characters,
one for each digit, but is regarded as a single token, namely the number 467.
Similarly, an identifier such as temp comprises four letters, but is treated as
a single symbol representing the entire word. Moreover, many character-
based representations include empty “white space” (spaces, tabs, newlines,
and, perhaps, comments) that are discarded by the lexical analyzer.1

The lexical structure of a language is usually described using regular ex-
pressions. For example, the lexical structure of L{num str}may be specified
as follows:

Item itm ::= kwd | id | num | lit | spl
Keyword kwd ::= l · e · t · ε | b · e · ε | i · n · ε
Identifier id ::= ltr (ltr | dig)∗

Numeral num ::= dig dig∗

Literal lit ::= qum (ltr | dig)∗qum
Special spl ::= + | * | ˆ | ( | ) | |
Letter ltr ::= a | b | . . .
Digit dig ::= 0 | 1 | . . .
Quote qum ::= "

A lexical item is either a keyword, an identifier, a numeral, a string literal,
or a special symbol. There are three keywords, specified as sequences of
characters, for emphasis. Identifiers start with a letter and may involve
subsequent letters or digits. Numerals are non-empty sequences of digits.
String literals are sequences of letters or digits surrounded by quotes. The
special symbols, letters, digits, and quote marks are as enumerated. (Ob-
serve that we tacitly identify a character with the unit-length string consist-
ing of that character.)

The job of the lexical analyzer is to translate character strings into token
strings using the above definitions as a guide. An input string is scanned,
ignoring white space, and translating lexical items into tokens, which are
specified by the following rules:

s str
ID[s] tok

(5.3a)

n nat
NUM[n] tok

(5.3b)

s str
LIT[s] tok

(5.3c)

1In some languages white space is significant, in which case it must be converted to
symbolic form for subsequent processing.

AUGUST 24, 2010 DRAFT 14:43



44 5.2 Lexical Structure

LET tok (5.3d)

BE tok (5.3e)

IN tok (5.3f)

ADD tok (5.3g)

MUL tok (5.3h)

CAT tok (5.3i)

LP tok (5.3j)

RP tok (5.3k)

VB tok (5.3l)

Rule (5.3a) admits any string as an identifier, even though only certain
strings will be treated as identifiers by the lexical analyzer.

Lexical analysis is inductively defined by the following judgement forms:

s charstr←→ t tokstr Scan input
s itm←→ t tok Scan an item

s kwd←→ t tok Scan a keyword
s id←→ t tok Scan an identifier

s num←→ t tok Scan a number
s spl←→ t tok Scan a symbol
s lit←→ t tok Scan a string literal

The definition of these forms, which follows, makes use of several auxiliary
judgements corresponding to the classifications of characters in the lexical
structure of the language. For example, s whs states that the string s consists
only of “white space”, s lord states that s is either an alphabetic letter or a
digit, and s non-lord states that s does not begin with a letter or digit, and
so forth.

ε charstr←→ ε tokstr (5.4a)

s = s1 ˆ s2 ˆ s3 str s1 whs s2 itm←→ t tok s3 charstr←→ ts tokstr

s charstr←→ t · ts tokstr
(5.4b)

s kwd←→ t tok
s itm←→ t tok

(5.4c)

s id←→ t tok
s itm←→ t tok

(5.4d)

14:43 DRAFT AUGUST 24, 2010



5.2 Lexical Structure 45

s num←→ t tok
s itm←→ t tok

(5.4e)

s lit←→ t tok
s itm←→ t tok

(5.4f)

s spl←→ t tok

s itm←→ t tok
(5.4g)

s = l · e · t · ε str
s kwd←→ LET tok

(5.4h)

s = b · e · ε str
s kwd←→ BE tok

(5.4i)

s = i · n · ε str
s kwd←→ IN tok

(5.4j)

s = a · s′ str a ltr s′ lds
s id←→ ID[s] tok

(5.4k)

s = s1 ˆ s2 str s1 dig s2 dgs s num←→ n nat

s num←→ NUM[n] tok
(5.4l)

s = s1 ˆ s2 ˆ s3 str s1 qum s2 lord s3 qum

s lit←→ LIT[s2] tok
(5.4m)

s = + · ε str
s spl←→ ADD tok (5.4n)

s = * · ε str
s spl←→ MUL tok (5.4o)

s = ˆ · ε str
s spl←→ CAT tok

(5.4p)

s = ( · ε str
s spl←→ LP tok

(5.4q)

s = ) · ε str
s spl←→ RP tok

(5.4r)

s = | · ε str
s spl←→ VB tok

(5.4s)

Rules (5.4) do not specify a deterministic algorithm. Rather, Rule (5.4b) ap-
plies whenever the input string may be partitioned into three parts, con-
sisting of white space, a lexical item, and the rest of the input. However,
the associativity of string concatenation implies that the partititioning is
not unique. For example, the string insert may be partitioned as in ˆsert
or insert ˆ ε, and hence tokenized as either IN followed by ID[sert], or as
ID[insert] (or, indeed, as two consecutive identifiers in several ways).

One solution to this problem is to impose some extrinsic control criteria
on the rules to ensure that they have a unique interpretation. For example,

AUGUST 24, 2010 DRAFT 14:43



46 5.3 Context-Free Grammars

one may insist that Rule (5.4b) apply only when the string s2 is chosen to
be as long as possible so as to ensure that the string insert is analyzed as
the identifier ID[insert], rather than as two consecutive identifiers, say
ID[ins] and ID[ert]. Moreover, we may impose an ordering on the rules,
so that so that Rule (5.4j) takes priority over Rule (5.4k) so as to avoid inter-
preting in as an identifier, rather than as a keyword. Another solution is to
reformulate the rules so that they are completely deterministic, a technique
that will be used in the next section to resolve a similar ambiguity at the
level of the concrete syntax.

5.3 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free
grammar for the language. A grammar consists of three components:

1. The tokens, or terminals, over which the grammar is defined.

2. The syntactic classes, or non-terminals, which are disjoint from the ter-
minals.

3. The rules, or productions, which have the form A ::= α, where A is a
non-terminal and α is a string of terminals and non-terminals.

Each syntactic class is a collection of token strings. The rules determine
which strings belong to which syntactic classes.

When defining a grammar, we often abbreviate a set of productions,

A ::= α1

...
A ::= αn,

each with the same left-hand side, by the compound production

A ::= α1 | . . . | αn,

which specifies a set of alternatives for the syntactic class A.
A context-free grammar determines a simultaneous inductive defini-

tion of its syntactic classes. Specifically, we regard each non-terminal, A, as
a judgement form, s A, over strings of terminals. To each production of the
form

A ::= s1 A1 s2 . . . sn An sn+1 (5.5)

14:43 DRAFT AUGUST 24, 2010



5.4 Grammatical Structure 47

we associate an inference rule

s′1 A1 . . . s′n An

s1 s′1 s2 . . . sn s′n sn+1 A
. (5.6)

The collection of all such rules constitutes an inductive definition of the
syntactic classes of the grammar.

Recalling that juxtaposition of strings is short-hand for their concatena-
tion, we may re-write the preceding rule as follows:

s′1 A1 . . . s′n An s = s1 ˆ s′1 ˆ s2 ˆ . . . sn ˆ s′n ˆ sn+1

s A
. (5.7)

This formulation makes clear that s A holds whenever s can be partitioned
as described so that s′i A for each 1 ≤ i ≤ n. Since string concatenation
is associative, the decomposition is not unique, and so there may be many
different ways in which the rule applies.

5.4 Grammatical Structure

The concrete syntax ofL{num str}may be specified by a context-free gram-
mar over the tokens defined in Section 5.2 on page 42. The grammar has
only one syntactic class, exp, which is defined by the following compound
production:

Expression exp ::= num | lit | id | LP exp RP | exp ADD exp |
exp MUL exp | exp CAT exp | VB exp VB |
LET id BE exp IN exp

Number num ::= NUM[n] (n nat)
String lit ::= LIT[s] (s str)
Identifier id ::= ID[s] (s str)

This grammar makes use of some standard notational conventions to im-
prove readability: we identify a token with the corresponding unit-length
string, and we use juxtaposition to denote string concatenation.

Applying the interpretation of a grammar as an inductive definition,
we obtain the following rules:

s num
s exp (5.8a)

s lit
s exp (5.8b)

AUGUST 24, 2010 DRAFT 14:43



48 5.5 Ambiguity

s id
s exp (5.8c)

s1 exp s2 exp
s1 ADD s2 exp (5.8d)

s1 exp s2 exp
s1 MUL s2 exp (5.8e)

s1 exp s2 exp
s1 CAT s2 exp (5.8f)

s exp
VB s VB exp (5.8g)

s exp
LP s RP exp (5.8h)

s1 id s2 exp s3 exp
LET s1 BE s2 IN s3 exp

(5.8i)

n nat
NUM[n] num

(5.8j)

s str
LIT[s] lit

(5.8k)

s str
ID[s] id

(5.8l)

To emphasize the role of string concatentation, we may rewrite Rule (5.8e),
for example, as follows:

s = s1 MUL s2 str s1 exp s2 exp
s exp

. (5.9)

That is, s exp is derivable if s is the concatentation of s1, the multiplication
sign, and s2, where s1 exp and s2 exp.

5.5 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to avoid ambiguity. The grammar of arithmetic expres-
sions given above is ambiguous in the sense that some token strings may be
thought of as arising in several different ways. More precisely, there are to-
ken strings s for which there is more than one derivation ending with s exp
according to Rules (5.8).

For example, consider the character string 1+2*3, which, after lexical
analysis, is translated to the token string

NUM[1] ADD NUM[2] MUL NUM[3].

14:43 DRAFT AUGUST 24, 2010



5.5 Ambiguity 49

Since string concatenation is associative, this token string can be thought of
as arising in several ways, including

NUM[1] ADD ∧NUM[2] MUL NUM[3]

and
NUM[1] ADD NUM[2]∧ MUL NUM[3],

where the caret indicates the concatenation point.
One consequence of this observation is that the same token string may

be seen to be grammatical according to the rules given in Section 5.4 on
page 47 in two different ways. According to the first reading, the expres-
sion is principally an addition, with the first argument being a number, and
the second being a multiplication of two numbers. According to the second
reading, the expression is principally a multiplication, with the first argu-
ment being the addition of two numbers, and the second being a number.

Ambiguity is a purely syntactic property of grammars; it has nothing to
do with the “meaning” of a string. For example, the token string

NUM[1] ADD NUM[2] ADD NUM[3],

also admits two readings. It is immaterial that both readings have the same
meaning under the usual interpretation of arithmetic expressions. More-
over, nothing prevents us from interpreting the token ADD to mean “divi-
sion,” in which case the two readings would hardly coincide! Nothing in
the syntax itself precludes this interpretation, so we do not regard it as rel-
evant to whether the grammar is ambiguous.

To avoid ambiguity the grammar of L{num str} given in Section 5.4
on page 47 must be re-structured to ensure that every grammatical string
has at most one derivation according to the rules of the grammar. The
main method for achieving this is to introduce precedence and associativ-
ity conventions that ensure there is only one reading of any token string.
Parenthesization may be used to override these conventions, so there is no
fundamental loss of expressive power in doing so.

Precedence relationships are introduced by layering the grammar, which
is achieved by splitting syntactic classes into several subclasses.

Factor fct ::= num | lit | id | LP prg RP
Term trm ::= fct | fct MUL trm | VB fct VB
Expression exp ::= trm | trm ADD exp | trm CAT exp
Program prg ::= exp | LET id BE exp IN prg

AUGUST 24, 2010 DRAFT 14:43



50 5.6 Exercises

The effect of this grammar is to ensure that let has the lowest precedence,
addition and concatenation intermediate precedence, and multiplication
and length the highest precedence. Moreover, all forms are right-associative.
Other choices of rules are possible, according to taste; this grammar illus-
trates one way to resolve the ambiguities of the original expression gram-
mar.

5.6 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 6

Abstract Syntax

The concrete syntax of a language is concerned with the linear representa-
tion of the phrases of a language as strings of symbols—the form in which
we write them on paper, type them into a computer, and read them from
a page. But languages are also the subjects of study, as well as the instru-
ments of expression. As such the concrete syntax of a language is just a nui-
sance. When analyzing a language mathematically we are only interested
in the deep structure of its phrases, not their surface representation. The ab-
stract syntax of a language exposes the hierarchical and binding structure
of the language. Parsing is the process of translation from concrete to ab-
stract syntax. It consists of analyzing the linear representation of a phrase
in terms of the grammar of the language and transforming it into an ab-
stract syntax tree or an abstract binding tree that reveals the deep structure
of the phrase. Formatting is the inverse process of generating a linear repre-
sentation of a given piece of abstract syntax.

6.1 Hierarchical and Binding Structure

For the purposes of analysis the most important elements of the syntax of
a language are its hierarchical and binding structure. Ignoring binding and
scope, the hierarchical structure of a language may be expressed using ab-
stract syntax trees. Accounting for these requires the additional structure
of abstract binding trees. We will define both an ast and an abt representa-
tion of L{num str} in order to compare the two and show how they relate
to the concrete syntax described in Chapter 5.

The purely hierarchical abstract syntax of L{num str} is generated by



52 6.1 Hierarchical and Binding Structure

the following operators and their arities:

num[n] () (n nat)
str[s] () (s str)
id[s] () (s str)
times (Expr, Expr)
plus (Expr, Expr)
len (Expr)
cat (Expr, Expr)
let[s] (Expr, Expr) (s str)

There is one sort, Expr, generated by the above operators. For each n nat
there is an operator num[n] of arity () representing the number n. Similarly,
for each s str there is an operator str[s] of arity (), representing a string
literal. There are several operators corresponding to functions on numbers
and strings.

Most importantly, there are two operators related to identifiers. The
first, id[s], where s str, represents the identifier with name s thought of
as an operator of arity (). The second, let[s], is a family of operators in-
dexed by s str with two arguments, the binding of the identifier id[s] and
the scope of that binding. These characterizations, however, are purely in-
formal in that there is nothing in the “plain” abstract syntax of the language
that supports these interpretations. In particular, there is no connection be-
tween any occurrences of id[s] and any occurrence of let[s] within an
expression.

To account for the binding and scope of identifiers requires the greater
expressive power of abstract binding trees. An abt representation ofL{num str}
is defined by the following operators and their arities:

num[n] () (n nat)
str[s] () (s str)
times (Expr, Expr)
plus (Expr, Expr)
len (Expr)
cat (Expr, Expr)
let (Expr, (Expr)Expr)

There is no longer an operator id[s]; we instead use a variable to refer to
a binding site. Correspondingly, the family of operators let[s] is repalced
replaced by a single operator, let, of arity (Expr, (Expr)Expr), which binds
a variable in its second argument.

14:43 DRAFT AUGUST 24, 2010



6.2 Parsing Into Abstract Syntax Trees 53

To illustrate the relationship between these two representations of the
abstract syntax of L{num str}, we will first describe the translation from
the concrete syntax, given in Chapter 5, to an abstract syntax tree. We will
then alter this translation to account for binding and scope, yielding an
abstract binding tree.

6.2 Parsing Into Abstract Syntax Trees

We will simultaneously define parsing and formatting as a binary judge-
ment relating the concrete to the abstract syntax. This judgement will have
the mode (∀, ∃≤1), which states that the parser is a partial function of its
input, being undefined for ungrammatical token strings, but otherwise
uniquely determining the abstract syntax tree representation of each well-
formed input. It will also have the mode (∃, ∀), which states that each piece
of abstract syntax has a (not necessarily unique) representation as a token
string in the concrete syntax.

The parsing judgements for L{num str} follow the unambiguous gram-
mar given in Chapter 5:

s prg←→ e expr Parse/format as a program
s exp←→ e expr Parse/format as an expression
s trm←→ e expr Parse/format as a term
s fct←→ e expr Parse/format as a factor

s num←→ e expr Parse/format as a number
s lit←→ e expr Parse/format as a literal
s id←→ e expr Parse/format as an identifier

These judgements relate a token string, s, to an expression, e, viewed as an
abstract syntax tree.

These judgements are inductively defined simultaneously by the fol-
lowing rules:

n nat
NUM[n] num←→ num[n] expr (6.1a)

s str
LIT[s] lit←→ str[s] expr (6.1b)

s str
ID[s] id←→ id[s] expr (6.1c)

s num←→ e expr

s fct←→ e expr
(6.1d)

AUGUST 24, 2010 DRAFT 14:43



54 6.2 Parsing Into Abstract Syntax Trees

s lit←→ e expr

s fct←→ e expr
(6.1e)

s id←→ e expr

s fct←→ e expr
(6.1f)

s prg←→ e expr

LP s RP fct←→ e expr
(6.1g)

s fct←→ e expr
s trm←→ e expr

(6.1h)

s1 fct←→ e1 expr s2 trm←→ e2 expr

s1 MUL s2 trm←→ times(e1; e2) expr
(6.1i)

s fct←→ e expr

VB s VB trm←→ len(e) expr
(6.1j)

s trm←→ e expr
s exp←→ e expr (6.1k)

s1 trm←→ e1 expr s2 exp←→ e2 expr

s1 ADD s2 exp←→ plus(e1; e2) expr
(6.1l)

s1 trm←→ e1 expr s2 exp←→ e2 expr

s1 CAT s2 exp←→ cat(e1; e2) expr
(6.1m)

s exp←→ e expr
s prg←→ e expr (6.1n)

s1 id←→ id[s] expr s2 exp←→ e2 expr s3 prg←→ e3 expr

LET s1 BE s2 IN s3 prg←→ let[s](e2; e3) expr
(6.1o)

A successful parse implies that the token string must have been derived
according to the rules of the unambiguous grammar and that the result is a
well-formed abstract syntax tree.

Theorem 6.1. If s prg ←→ e expr, then s prg and e expr, and similarly for the
other parsing judgements.

Proof. By a straightforward induction on Rules (6.1).

Moreover, if a string is generated according to the rules of the grammar,
then it has a parse as an ast.

Theorem 6.2. If s prg, then there is a unique e such that s prg ←→ e expr, and
similarly for the other parsing judgements. That is, the parsing judgements have
mode (∀, ∃!) over well-formed strings and abstract syntax trees.

Proof. By rule induction on the rules determined by reading Grammar (5.5)
as an inductive definition.

14:43 DRAFT AUGUST 24, 2010



6.3 Parsing Into Abstract Binding Trees 55

Finally, any piece of abstract syntax may be formatted as a string that
parses as the given ast.

Theorem 6.3. If e expr, then there exists a (not necessarily unique) string s such
that s prg and s prg←→ e expr. That is, the parsing judgement has mode (∃, ∀).

Proof. By rule induction on Grammar (5.5).

The string representation of an abstract syntax tree is not unique, since
we may introduce parentheses at will around any sub-expression.

6.3 Parsing Into Abstract Binding Trees

In this section we revise the parser given in Section 6.2 on page 53 to trans-
late from token strings to abstract binding trees to make explicit the bind-
ing and scope of identifiers in a program. The revised parsing judgement,
s prg ←→ e expr, between strings s and abt’s e, is defined by a collection of
rules similar to those given in Section 6.2 on page 53. These rules take the
form of a generic inductive definition (see Chapter 2) in which the premises
and conclusions of the rules involve hypothetical judgments of the form

ID[s1] id←→ x1 expr, . . . , ID[sn] id←→ xn expr ` s prg←→ e expr,

where the xi’s are pairwise distinct variable names. The hypotheses of the
judgement dictate how identifiers are to be parsed as variables, for it fol-
lows from the reflexivity of the hypothetical judgement that

Γ, ID[s] id←→ x expr ` ID[s] id←→ x expr.

To maintain the association between identifiers and variables when pars-
ing a let expression, we update the hypotheses to record the association
between the bound identifier and a corresponding variable:

Γ ` s1 id←→ x expr Γ ` s2 exp←→ e2 expr

Γ, s1 id←→ x expr ` s3 prg←→ e3 expr

Γ ` LET s1 BE s2 IN s3 prg←→ let(e2; x.e3) expr

(6.2a)

Unfortunately, this approach does not quite work properly! If an inner let
expression binds the same identifier as an outer let expression, there is
an ambiguity in how to parse occurrences of that identifier. Parsing such
nested let’s will introduce two hypotheses, say ID[s] id ←→ x1 expr and

AUGUST 24, 2010 DRAFT 14:43



56 6.3 Parsing Into Abstract Binding Trees

ID[s] id←→ x2 expr, for the same identifier ID[s]. By the structural prop-
erty of exchange, we may choose arbitrarily which to apply to any partic-
ular occurrence of ID[s], and hence we may parse different occurrences
differently.

To rectify this we resort to less elegant methods. Rather than use hy-
potheses, we instead maintain an explicit symbol table to record the associa-
tion between identifiers and variables. We must define explicitly the proce-
dures for creating and extending symbol tables, and for looking up an iden-
tifier in the symbol table to determine its associated variable. This gives us
the freedom to implement a shadowing policy for re-used identifiers, ac-
cording to which the most recent binding of an identifier determines the
corresponding variable.

The main change to the parsing judgement is that the hypothetical judge-
ment

Γ ` s prg←→ e expr

is reduced to the basic judgement

s prg←→ e expr [σ],

where σ is a symbol table. (Analogous changes must be made to the other
parsing judgements.) The symbol table is now an argument to the judge-
ment form, rather than an implicit mechanism for performing inference
under hypotheses.

The rule for parsing let expressions is then formulated as follows:

s1 id←→ x [σ] s2 exp←→ e2 expr [σ]

σ′ = σ[s1 7→ x] s3 prg←→ e3 expr [σ′]

LET s1 BE s2 IN s3 prg←→ let(e2; x.e3) expr [σ]

(6.3)

This rule is quite similar to the hypothetical form, the difference being that
we must manage the symbol table explicitly. In particular, we must include
a rule for parsing identifiers, rather than relying on the reflexivity of the
hypothetical judgement to do it for us.

σ(ID[s]) = x
ID[s] id←→ x [σ]

(6.4)

The premise of this rule states that σ maps the identifier ID[s] to the vari-
able x.

Symbol tables may be defined to be finite sequences of ordered pairs
of the form (ID[s], x), where ID[s] is an identifier and x is a variable

14:43 DRAFT AUGUST 24, 2010



6.4 Exercises 57

name. Using this representation it is straightforward to define the follow-
ing judgement forms:

σ symtab well-formed symbol table
σ′ = σ[ID[s] 7→ x] add new association

σ(ID[s]) = x lookup identifier

We leave the precise definitions of these judgements as an exercise for the
reader.

6.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



58 6.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Part III

Statics and Dynamics





Chapter 7

Statics

Most programming languages exhibit a phase distinction between the static
and dynamic phases of processing. The static phase consists of parsing
and type checking to ensure that the program is well-formed; the dynamic
phase consists of execution of well-formed programs. A language is said
to be safe exactly when well-formed programs are well-behaved when exe-
cuted.

The static phase is specified by a statics comprising a collection of rules
for deriving typing judgements stating that an expression is well-formed of
a certain type. Types mediate the interaction between the constituent parts
of a program by “predicting” some aspects of the execution behavior of the
parts so that we may ensure they fit together properly at run-time. Type
safety tells us that these predictions are accurate; if not, the statics is con-
sidered to be improperly defined, and the language is deemed unsafe for
execution.

In this chapter we present the statics of the language L{num str} as an
illustration of the methodology that we shall employ throughout this book.

7.1 Syntax

When defining a language we shall be primarily concerned with its abstract
syntax, specified by a collection of operators and their arities. The abstract
syntax provides a systematic, unambiguous account of the hierarchical and
binding structure of the language, and is therefore to be considered the
official presentation of the language. However, for the sake perspicuity of
examples, it is also useful to specify minimal concrete syntax conventions,
without going through the trouble to set up a fully precise grammar for it.



62 7.2 Type System

We will accomplish both of these purposes with a syntax chart, whose
meaning is best illustrated by example. The following chart summarizes
the abstract and concrete syntax of L{num str}, which was analyzed in de-
tail in Chapters 5 and 6.

Type τ ::= num num numbers
str str strings

Expr e ::= x x variable
num[n] n numeral
str[s] ”s” literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

There are two sorts, Type ranged over by the meta-variable τ, and Expr,
ranged over by the meta-variable e. The meta-variable x ranges over vari-
ables of sort Expr. The chart defines a number of operators and their arities.
For example, the operator let has arity (Expr, (Expr)Expr), which specifies
that it has two arguments of sort Expr, and binds a variable of sort Expr in
the second argument.

7.2 Type System

The role of a type system is to impose constraints on the formations of
phrases that are sensitive to the context in which they occur. For exam-
ple, whether or not the expression plus(x; num[n]) is sensible depends on
whether or not the variable x is declared to have type num in the surround-
ing context of the expression. This example is, in fact, illustrative of the
general case, in that the only information required about the context of an
expression is the type of the variables within whose scope the expression
lies. Consequently, the statics of L{num str} consists of an inductive defi-
nition of generic hypothetical judgements of the form

~x | Γ ` e : τ,

where ~x is a finite set of variables, and Γ is a typing context consisting of
hypotheses of the form x : τ, one for each x ∈ X . We rely on typographical
conventions to determine the set of variables, using the letters x and y for

14:43 DRAFT AUGUST 24, 2010



7.2 Type System 63

variables that serve as parameters of the typing judgement. We write x /∈
dom(Γ) to indicate that there is no assumption in Γ of the form x : τ for any
type τ, in which case we say that the variable x is fresh for Γ.

The rules defining the statics of L{num str} are as follows:

Γ, x : τ ` x : τ (7.1a)

Γ ` str[s] : str (7.1b)

Γ ` num[n] : num (7.1c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(7.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(7.1e)

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1; e2) : str

(7.1f)

Γ ` e : str
Γ ` len(e) : num

(7.1g)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1; x.e2) : τ2
(7.1h)

In Rule (7.1h) we tacitly assume that the variable, x, is not already declared
in Γ. This condition may always be met by choosing a suitable representa-
tive of the α-equivalence class of the let expression.

Rules (7.1) illustrate an important organizational principle, called the
principle of introduction and elimination, for a type system. The constructs of
the language may be classified into one of two forms associated with each
type. The introductory forms of a type are the means by which values of that
type are created, or introduced. In the case of L{num str}, the introductory
forms for the type num are the numerals, num[n], and for the type str are
the literals, str[s]. The eliminatory forms of a type are the means by which
we may compute with values of that type to obtain values of some (possi-
bly different) type. In the present case the eliminatory forms for the type
num are addition and multiplication, and for the type str are concatenation
and length. Each eliminatory form has one or more principal arguments of
associated type, and zero or more non-principal arguments. In the present
case all arguments for each of the eliminatory forms is principal, but we
shall later see examples in which there are also non-principal arguments
for eliminatory forms.

It is easy to check that every expression has at most one type.

AUGUST 24, 2010 DRAFT 14:43



64 7.3 Structural Properties

Lemma 7.1 (Unicity of Typing). For every typing context Γ and expression e,
there exists at most one τ such that Γ ` e : τ.

Proof. By rule induction on Rules (7.1).

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently it is easy to give necessary
conditions for typing an expression that invert the sufficient conditions ex-
pressed by the corresponding typing rule.

Lemma 7.2 (Inversion for Typing). Suppose that Γ ` e : τ. If e = plus(e1; e2),
then τ = num, Γ ` e1 : num, and Γ ` e2 : num, and similarly for the other
constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing
judgement Γ ` e : τ.

In richer languages such inversion principles are more difficult to state
and to prove.

7.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judge-
ment.

Lemma 7.3 (Weakening). If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′ for any x /∈
dom(Γ) and any type τ.

Proof. By induction on the derivation of Γ ` e′ : τ′. We will give one case
here, for rule (7.1h). We have that e′ = let(e1; z.e2), where by the conven-
tions on parameters we may assume z is chosen such that z /∈ dom(Γ) and
z 6= x. By induction we have

1. Γ, x : τ ` e1 : τ1,

2. Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by Rule (7.1h).

Lemma 7.4 (Substitution). If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [e/x]e′ :
τ′.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We again consider
only rule (7.1h). As in the preceding case, e′ = let(e1; z.e2), where z may
be chosen so that z 6= x and z /∈ dom(Γ). We have by induction

14:43 DRAFT AUGUST 24, 2010



7.3 Structural Properties 65

1. Γ ` [e/x]e1 : τ1,

2. Γ, z : τ1 ` [e/x]e2 : τ′.

By the choice of z we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by Rule (7.1h) that Γ ` [e/x]let(e1; z.e2) : τ, as desired.

From a programming point of view, Lemma 7.3 on the facing page al-
lows us to use an expression in any context that binds its free variables: if
e is well-typed in a context Γ, then we may “import” it into any context
that includes the assumptions Γ. In other words the introduction of new
variables beyond those required by an expression, e, does not invalidate
e itself; it remains well-formed, with the same type.1 More significantly,
Lemma 7.4 on the preceding page expresses the concepts of modularity and
linking. We may think of the expressions e and e′ as two components of a
larger system in which the component e′ is to be thought of as a client of
the implementation e. The client declares a variable specifying the type of
the implementation, and is type checked knowing only this information.
The implementation must be of the specified type in order to satisfy the as-
sumptions of the client. If so, then we may link them to form the composite
system, [e/x]e′. This may itself be the client of another component, repre-
sented by a variable, y, that is replaced by that component during linking.
When all such variables have been implemented, the result is a closed ex-
pression that is ready for execution (evaluation).

The converse of Lemma 7.4 on the facing page is called decomposition.
It states that any (large) expression may be decomposed into a client and
implementor by introducing a variable to mediate their interaction.

Lemma 7.5 (Decomposition). If Γ ` [e/x]e′ : τ′, then for every type τ such
that Γ ` e : τ, we have Γ, x : τ ` e′ : τ′.

Proof. The typing of [e/x]e′ depends only on the type of e wherever it oc-
curs, if at all.

This lemma tells us that any sub-expression may be isolated as a sepa-
rate module of a larger system. This is especially useful when the variable
x occurs more than once in e′, because then one copy of e suffices for all
occurrences of x in e′.

1This may seem so obvious as to be not worthy of mention, but, suprisingly, there are
useful type systems that lack this property. Since they do not validate the structural princi-
ple of weakening, they are called sub-structural type systems.

AUGUST 24, 2010 DRAFT 14:43



66 7.4 Exercises

7.4 Exercises

1. Show that the expression e = plus(num[7]; str[abc]) is ill-typed in
that there is no τ such that e : τ.

14:43 DRAFT AUGUST 24, 2010



Chapter 8

Dynamics

The dynamics of a language is a description of how programs are to be ex-
ecuted. The most important way to define the dynamics of a language is
by the method of structural dynamics, which defines a transition system that
inductively specifies the step-by-step process of executing a program. An-
other method for presenting dynamics, called contextual dynamics, is a vari-
ation of structural dynamics in which the transition rules are specified in
a slightly different manner. An equational dynamics presents the dynamics
of a language equationally by a collection of rules for deducing when one
program is definitionally equivalent to another.

8.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s 7→ s′, where s state and s′ state, asserting that state s may transition
to state s′.

In practice we always arrange things so that no transition is possible from
a final state: if s final, then there is no s′ state such that s 7→ s′. A state from
which no transition is possible is sometimes said to be stuck. Whereas all
final states are, by convention, stuck, there may be stuck states in a tran-
sition system that are not final. A transition system is deterministic iff for



68 8.2 Structural Dynamics

every state s there exists at most one state s′ such that s 7→ s′, otherwise it
is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial,
and si 7→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff
there is no s such that sn 7→ s, and it is complete iff it is maximal and, in
addition, sn final. Thus every complete transition sequence is maximal, but
maximal sequences are not necessarily complete. The judgement s ↓means
that there is a complete transition sequence starting from s, which is to say
that there exists s′ final such that s 7→∗ s′.

The iteration of transition judgement, s 7→∗ s′, is inductively defined by
the following rules:

s 7→∗ s (8.1a)

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
(8.1b)

It is easy to show that iterated transition is transitive: if s 7→∗ s′ and s′ 7→∗
s′′, then s 7→∗ s′′.

When applied to the definition of iterated transition, the principle of
rule induction states that to show that P(s, s′) holds whenever s 7→∗ s′, it is
enough to show these two properties of P:

1. P(s, s).

2. if s 7→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show
that P is closed under head expansion, or converse evaluation. Using this prin-
ciple, it is easy to prove that 7→∗ is reflexive and transitive.

The n-times iterated transition judgement, s 7→n s′, where n ≥ 0, is in-
ductively defined by the following rules.

s 7→0 s (8.2a)

s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′
(8.2b)

Theorem 8.1. For all states s and s′, s 7→∗ s′ iff s 7→k s′ for some k ≥ 0.

8.2 Structural Dynamics

A structural dynamics forL{num str} consists of a transition system whose
states are closed expressions. All states are initial, but the final states are the

14:43 DRAFT AUGUST 24, 2010



8.2 Structural Dynamics 69

(closed) values, which are inductively defined by the following rules:

num[n] val (8.3a)

str[s] val (8.3b)

The transition judgement, e 7→ e′, between states is inductively defined
by the following rules:

n1 + n2 = n nat

plus(num[n1]; num[n2]) 7→ num[n] (8.4a)

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

(8.4b)

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e′2)

(8.4c)

s1 ˆ s2 = s str

cat(str[s1]; str[s2]) 7→ str[s]
(8.4d)

e1 7→ e′1
cat(e1; e2) 7→ cat(e′1; e2)

(8.4e)

e1 val e2 7→ e′2
cat(e1; e2) 7→ cat(e1; e′2)

(8.4f)

let(e1; x.e2) 7→ [e1/x]e2 (8.4g)

We have omitted rules for multiplication and computing the length of a
string, which follow a similar pattern. Rules (8.4a), (8.4d), and (8.4g) are
instruction transitions, since they correspond to the primitive steps of eval-
uation. The remaining rules are search transitions that determine the order
in which instructions are executed.

Rules (8.4) exhibit structure arising from the principle of introduction
and elimination discussed in Chapter 7. The instruction transitions express
the inversion principle, which states that eliminatory forms are inverse to intro-
ductory forms. For example, Rule (8.4a) extracts the natural number from the
introductory forms of its arguments, adds these two numbers, and yields
the corresponding numeral as result. The search transitions specify that the
principal arguments of each eliminatory form are to be evaluated. (When
non-principal arguments are present, which is not the case here, there is dis-
cretion about whether to evaluate them or not.) This is essential, because it
prepares for the instruction transitions, which expect their principal argu-
ments to be introductory forms.

AUGUST 24, 2010 DRAFT 14:43



70 8.2 Structural Dynamics

Rule (8.4g) specifies a by-name interpretation, in which the bound vari-
able stands for the expression e1 itself.1 If x does not occur in e2, the expres-
sion e1 is never evaluated. If, on the other hand, it occurs more than once,
then e1 will be re-evaluated at each occurence. To avoid repeated work in
the latter case, we may instead specify a by-value interpretation of binding
by the following rules:

e1 val

let(e1; x.e2) 7→ [e1/x]e2
(8.5a)

e1 7→ e′1
let(e1; x.e2) 7→ let(e′1; x.e2)

(8.5b)

Rule (8.5b) is an additional search rule specifying that we may evaluate e1
before e2. Rule (8.5a) ensures that e2 is not evaluated until evaluation of e1
is complete.

A derivation sequence in a structural dynamics has a two-dimensional
structure, with the number of steps in the sequence being its “width” and
the derivation tree for each step being its “height.” For example, consider
the following evaluation sequence.

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
7→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
7→ plus(plus(num[3]; num[3]); num[4])
7→ plus(num[6]; num[4])
7→ num[10]

Each step in this sequence of transitions is justified by a derivation accord-
ing to Rules (8.4). For example, the third transition in the preceding exam-
ple is justified by the following derivation:

plus(num[3]; num[3]) 7→ num[6]
(8.4a)

plus(plus(num[3]; num[3]); num[4]) 7→ plus(num[6]; num[4])
(8.4b)

The other steps are similarly justified by a composition of rules.
The principle of rule induction for the structural dynamics ofL{num str}

states that to show P(e 7→ e′) whenever e 7→ e′, it is sufficient to show that
P is closed under Rules (8.4). For example, we may show by rule induction
that structural dynamics of L{num str} is determinate.

1The justification for the terminology “by name” is obscure, but as it is very well-
established we will stick with it.

14:43 DRAFT AUGUST 24, 2010



8.3 Contextual Dynamics 71

Lemma 8.2 (Determinacy). If e 7→ e′ and e 7→ e′′, then e′ and e′′ are α-
equivalent.

Proof. By rule induction on the premises e 7→ e′ and e 7→ e′′, carried out
either simultaneously or in either order. Since only one rule applies to each
form of expression, e, the result follows directly in each case.

8.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes
useful. There is no fundamental difference between the two approaches,
only a difference in the style of presentation. The main idea is to isolate
instruction steps as a special form of judgement, called instruction transi-
tion, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgement, e val, defining whether
an expression is a value, remains unchanged.

The instruction transition judgement, e1  e2, for L{num str} is de-
fined by the following rules, together with similar rules for multiplication
of numbers and the length of a string.

m + n = p nat

plus(num[m]; num[n]) num[p] (8.6a)

s ˆ t = u str
cat(str[s]; str[t]) str[u] (8.6b)

let(e1; x.e2) [e1/x]e2 (8.6c)

The judgement E ectxt determines the location of the next instruction to
execute in a larger expression. The position of the next instruction step is
specified by a “hole”, written ◦, into which the next instruction is placed, as
we shall detail shortly. (The rules for multiplication and length are omitted
for concision, as they are handled similarly.)

◦ ectxt (8.7a)

E1 ectxt

plus(E1; e2) ectxt
(8.7b)

e1 val E2 ectxt

plus(e1; E2) ectxt
(8.7c)

The first rule for evaluation contexts specifies that the next instruction may
occur “here”, at the point of the occurrence of the hole. The remaining rules

AUGUST 24, 2010 DRAFT 14:43



72 8.3 Contextual Dynamics

correspond one-for-one to the search rules of the structural dynamics. For
example, Rule (8.7c) states that in an expression plus(e1; e2), if the first
principal argument, e1, is a value, then the next instruction step, if any, lies
at or within the second principal argument, e2.

An evaluation context is to be thought of as a template that is instanti-
ated by replacing the hole with an instruction to be executed. The judge-
ment e′ = E{e} states that the expression e′ is the result of filling the hole
in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (8.8a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e}

(8.8b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e}

(8.8c)

There is one rule for each form of evaluation context. Filling the hole with
e results in e; otherwise we proceed inductively over the structure of the
evaluation context.

Finally, the contextual dynamics for L{num str} is defined by a single
rule:

e = E{e0} e0  e′0 e′ = E{e′0}
e 7→ e′

(8.9)

Thus, a transition from e to e′ consists of (1) decomposing e into an evalua-
tion context and an instruction, (2) execution of that instruction, and (3) re-
placing the instruction by the result of its execution in the same spot within
e to obtain e′.

The structural and contextual dynamics define the same transition re-
lation. For the sake of the proof, let us write e 7→s e′ for the transition
relation defined by the structural dynamics (Rules (8.4)), and e 7→c e′ for
the transition relation defined by the contextual dynamics (Rules (8.9)).

Theorem 8.3. e 7→s e′ if, and only if, e 7→c e′.

Proof. From left to right, proceed by rule induction on Rules (8.4). It is
enough in each case to exhibit an evaluation context E such that e = E{e0},
e′ = E{e′0}, and e0  e′0. For example, for Rule (8.4a), take E = ◦, and
observe that e e′. For Rule (8.4b), we have by induction that there exists
an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and e0  e′0.
Take E = plus(E1; e2), and observe that e = plus(E1; e2){e0} and e′ =
plus(E1; e2){e′0} with e0  e′0.

14:43 DRAFT AUGUST 24, 2010



8.4 Equational Dynamics 73

From right to left, observe that if e 7→c e′, then there exists an evaluation
context E such that e = E{e0}, e′ = E{e′0}, and e0  e′0. We prove by induc-
tion on Rules (8.8) that e 7→s e′. For example, for Rule (8.8a), e0 is e, e′0 is e′,
and e  e′. Hence e 7→s e′. For Rule (8.8b), we have that E = plus(E1; e2),
e1 = E1{e0}, e′1 = E1{e′0}, and e1 7→s e′1. Therefore e is plus(e1; e2), e′ is
plus(e′1; e2), and therefore by Rule (8.4b), e 7→s e′.

Since the two transition judgements coincide, contextual dynamics may
be seen as an alternative way of presenting a structural dynamics. It has
two advantages over structural dynamics, one relatively superficial, one
rather less so. The superficial advantage stems from writing Rule (8.9) in
the simpler form

e0  e′0
E{e0} 7→ E{e′0}

. (8.10)

This formulation is simpler insofar as it leaves implicit the definition of
the decomposition of the left- and right-hand sides. The deeper advantage,
which we will exploit in Chapter 13, is that the transition judgement in con-
textual dynamics applies only to closed expressions of a fixed type, whereas
structural dynamics transitions are necessarily defined over expressions of
every type.

8.4 Equational Dynamics

Another formulation of the dynamics of a language is based on regard-
ing computation as a form of equational deduction, much in the style of
elementary algebra. For example, in algebra we may show that the polyno-
mials x2 + 2 x + 1 and (x + 1)2 are equivalent by a simple process of calcu-
lation and re-organization using the familiar laws of addition and multipli-
cation. The same laws are sufficient to determine the value of any polyno-
mial, given the values of its variables. So, for example, we may plug in 2 for
x in the polynomial x2 + 2 x + 1 and calculate that 22 + 2 2 + 1 = 9, which
is indeed (2 + 1)2. This gives rise to a model of computation in which we
may determine the value of a polynomial for a given value of its variable by
substituting the given value for the variable and proving that the resulting
expression is equal to its value.

Very similar ideas give rise to the concept of definitional, or computa-
tional, equivalence of expressions in L{num str}, which we write as X | Γ `
e ≡ e′ : τ, where Γ consists of one assumption of the form x : τ for each

AUGUST 24, 2010 DRAFT 14:43



74 8.4 Equational Dynamics

x ∈ X . We only consider definitional equality of well-typed expressions,
so that when considering the judgement Γ ` e ≡ e′ : τ, we tacitly assume
that Γ ` e : τ and Γ ` e′ : τ. Here, as usual, we omit explicit mention
of the parameters, X , when they can be determined from the forms of the
assumptions Γ.

Definitional equivalence of expressons in L{num str} is inductively de-
fined by the following rules:

Γ ` e ≡ e : τ (8.11a)

Γ ` e′ ≡ e : τ
Γ ` e ≡ e′ : τ

(8.11b)

Γ ` e ≡ e′ : τ Γ ` e′ ≡ e′′ : τ
Γ ` e ≡ e′′ : τ

(8.11c)

Γ ` e1 ≡ e′1 : num Γ ` e2 ≡ e′2 : num
Γ ` plus(e1; e2) ≡ plus(e′1; e′2) : num

(8.11d)

Γ ` e1 ≡ e′1 : str Γ ` e2 ≡ e′2 : str
Γ ` cat(e1; e2) ≡ cat(e′1; e′2) : str

(8.11e)

Γ ` e1 ≡ e′1 : τ1 Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(8.11f)

n1 + n2 = n nat

Γ ` plus(num[n1]; num[n2]) ≡ num[n] : num (8.11g)

s1 ˆ s2 = s str

Γ ` cat(str[s1]; str[s2]) ≡ str[s] : str
(8.11h)

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ (8.11i)

Rules (8.11a) through (8.11c) state that definitional equivalence is an equiv-
alence relation. Rules (8.11d) through (8.11f) state that it is a congruence re-
lation, which means that it is compatible with all expression-forming con-
structs in the language. Rules (8.11g) through (8.11i) specify the mean-
ings of the primitive constructs of L{num str}. For the sake of concision,
Rules (8.11) may be characterized as defining the strongest congruence closed
under Rules (8.11g), (8.11h), and (8.11i).

Rules (8.11) are sufficient to allow us to calculate the value of an expres-
sion by an equational deduction similar to that used in high school algebra.
For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

14:43 DRAFT AUGUST 24, 2010



8.4 Equational Dynamics 75

by applying Rules (8.11). Here, as in general, there may be many different
ways to derive the same equation, but we need find only one derivation in
order to carry out an evaluation.

Definitional equivalence is rather weak in that many equivalences that
one might intuitively think are true are not derivable from Rules (8.11). A
prototypical example is the putative equivalence

x : num, y : num ` x1 + x2 ≡ x2 + x1 : num, (8.12)

which, intuitively, expresses the commutativity of addition. Although we
shall not prove this here, this equivalence is not derivable from Rules (8.11).
And yet we may derive all of its closed instances,

n1 + n2 ≡ n2 + n1 : num, (8.13)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (8.12), and all of its

instances, given by Equation (8.13), may be filled by enriching the notion
of equivalence to include a principle of proof by mathematical induction.
Such a notion of equivalence is sometimes called semantic, or observational,
equivalence, since it expresses relationships that hold by virtue of the dy-
namics of the expressions involved.2 Semantic equivalence is a synthetic
judgement, one that requires proof. It is to be distinguished from defini-
tional equivalence, which expresses an analytic judgement, one that is self-
evident based solely on the dynamics of the operations involved. As such
definitional equivalence may be thought of as symbolic evaluation, which
permits simplification according to the evaluation rules of a language, but
which does not permit reasoning by induction.

Definitional equivalence is adequate for evaluation in that it permits the
calculation of the value of any closed expression.

Theorem 8.4. e ≡ e′ : τ iff there exists e0 val such that e 7→∗ e0 and e′ 7→∗ e0.

Proof. The proof from right to left is direct, since every transition step is
a valid equation. The converse follows from the following, more general,
proposition. If x1 : τ1, . . . , xn : τn ` e ≡ e′ : τ, then whenever e1 : τ1, . . . , en :
τn, if

[e1, . . . , en/x1, . . . , xn]e ≡ [e1, . . . , en/x1, . . . , xn]e′ : τ,

then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e 7→∗ e0

2This concept of equivalence is developed rigorously in Chapter 50.

AUGUST 24, 2010 DRAFT 14:43



76 8.5 Exercises

and
[e1, . . . , en/x1, . . . , xn]e′ 7→∗ e0.

This is proved by rule induction on Rules (8.11).

The formulation of definitional equivalence for the by-value dynamics
of binding requires a bit of additional machinery. The key idea is motivated
by the modifications required to Rule (8.11i) to express the requirement that
e1 be a value. As a first cut one might consider simply adding an additional
premise to the rule:

e1 val

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ
(8.14)

This is almost correct, except that the judgement e val is defined only for
closed expressions, whereas e1 might well involve free variables in Γ. What
is required is to extend the judgement e val to the hypothetical judgement

x1 val, . . . , xn val ` e val

in which the hypotheses express the assumption that variables are only
ever bound to values, and hence can be regarded as values. To maintain
this invariant, we must maintain a set, Ξ, of such hypotheses as part of def-
initional equivalence, writing Ξ Γ ` e ≡ e′ : τ, and modifying Rule (8.11f)
as follows:

Ξ Γ ` e1 ≡ e′1 : τ1 Ξ, x val Γ, x : τ1 ` e2 ≡ e′2 : τ2

Ξ Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(8.15)

The other rules are correspondingly modified to simply carry along Ξ is an
additional set of hypotheses of the inference.

8.5 Exercises

1. For the structural dynamics of L{num str}, prove that if e 7→ e1 and
e 7→ e2, then e1 =α e2.

2. Formulate a variation of L{num str} with both a by-name and a by-
value let construct.

14:43 DRAFT AUGUST 24, 2010



Chapter 9

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly
typed). Informally, this means that certain kinds of mismatches cannot arise
during execution. For example, type safety forL{num str} states that it will
never arise that a number is to be added to a string, or that two numbers
are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the statics and
the dynamics. The statics may be seen as predicting that the value of an
expression will have a certain form so that the dynamics of that expression
is well-defined. Consequently, evaluation cannot “get stuck” in a state for
which no transition is possible, corresponding in implementation terms to
the absence of “illegal instruction” errors at execution time. This is proved
by showing that each step of transition preserves typability and by showing
that typable states are well-defined. Consequently, evaluation can never
“go off into the weeds,” and hence can never encounter an illegal instruc-
tion.

More precisely, type safety for L{num str}may be stated as follows:

Theorem 9.1 (Type Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

The first part, called preservation, says that the steps of evaluation pre-
serve typing; the second, called progress, ensures that well-typed expres-
sions are either values or can be further evaluated. Safety is the conjunction
of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no
e′ such that e 7→ e′. It follows from the safety theorem that a stuck state is



78 9.1 Preservation

necessarily ill-typed. Or, putting it the other way around, that well-typed
states do not get stuck.

9.1 Preservation

The preservation theorem for L{num str} defined in Chapters 7 and 8 is
proved by rule induction on the transition system (rules (8.4)).

Theorem 9.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. We will consider two cases, leaving the rest to the reader. Consider
rule (8.4b),

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

.

Assume that plus(e1; e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1; e2) : num. The case for concatenation is handled similarly.

Now consider rule (8.4g),

e1 val

let(e1; x.e2) 7→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion lemma 7.2 on page 64,
e1 : τ1 for some τ1 such that x : τ1 ` e2 : τ2. By the substitution lemma 7.4
on page 64 [e1/x]e2 : τ2, as desired.

The proof of preservation is naturally structured as an induction on the
transition judgement, since the argument hinges on examining all possible
transitions from a given expression. In some cases one may manage to
carry out a proof by structural induction on e, or by an induction on typing,
but experience shows that this often leads to awkward arguments, or, in
some cases, cannot be made to work at all.

9.2 Progress

The progress theorem captures the idea that well-typed programs cannot
“get stuck”. The proof depends crucially on the following lemma, which
characterizes the values of each type.

Lemma 9.3 (Canonical Forms). If e val and e : τ, then

14:43 DRAFT AUGUST 24, 2010



9.2 Progress 79

1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (7.1) and (8.3).

Progress is proved by rule induction on rules (7.1) defining the statics
of the language.

Theorem 9.4 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will
consider only one case, for rule (7.1d),

e1 : num e2 : num
plus(e1; e2) : num

,

where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that

e1 7→ e′1. In the latter case it follows that plus(e1; e2) 7→ plus(e′1; e2), as
required. In the former we also have by induction that either e2 val, or there
exists e′2 such that e2 7→ e′2. In the latter case we have that plus(e1; e2) 7→
plus(e1; e′2), as required. In the former, we have, by the Canonical Forms
Lemma 9.3 on the preceding page, e1 = num[n1] and e2 = num[n2], and
hence

plus(num[n1]; num[n2]) 7→ num[n1 + n2].

Since the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types of
the parts of e. But this approach breaks down when the typing rules are not
syntax-directed, that is, when there may be more than one rule for a given
expression form. No difficulty arises if the proof proceeds by induction on
the typing rules.

Summing up, the combination of preservation and progress together
constitute the proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
statics and dynamics are coherent, and that no ill-defined states can ever be
encountered while evaluating a well-typed expression.

AUGUST 24, 2010 DRAFT 14:43



80 9.3 Run-Time Errors

9.3 Run-Time Errors

Suppose that we wish to extend L{num str}with, say, a quotient operation
that is undefined for a zero divisor. The natural typing rule for quotients is
given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have
two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide
by zero.

2. Add dynamic checks, so that division by zero signals an error as the
outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs as ill-formed.
This is because one cannot reliably predict statically whether an expression
will turn out to be non-zero when executed (because this is an undecidable
property). We therefore consider the second approach, which is typical of
current practice.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the
dynamics need not check, when performing an addition, that its two argu-
ments are, in fact, numbers, as opposed to strings, because the type system
ensures that this is the case. On the other hand the dynamics for quotient
must check for a zero divisor, because the type system does not rule out the
possibility.

One approach to modelling checked errors is to give an inductive def-
inition of the judgment e err stating that the expression e incurs a checked
run-time error, such as division by zero. Here are some representative rules
that would appear in a full inductive definition of this judgement:

e1 val

div(e1; num[0]) err
(9.1a)

14:43 DRAFT AUGUST 24, 2010



9.4 Exercises 81

e1 err

plus(e1; e2) err
(9.1b)

e1 val e2 err

plus(e1; e2) err
(9.1c)

Rule (9.1a) signals an error condition for division by zero. The other rules
propagate this error upwards: if an evaluated sub-expression is a checked
error, then so is the overall expression.

Once the error judgement is available, we may also consider an expres-
sion, error, which forcibly induces an error, with the following static and
dynamic semantics:

Γ ` error : τ
(9.2a)

error err
(9.2b)

The preservation theorem is not affected by the presence of checked er-
rors. However, the statement (and proof) of progress is modified to account
for checked errors.

Theorem 9.5 (Progress With Error). If e : τ, then either e err, or e val, or there
exists e′ such that e 7→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at each
point in the proof.

9.4 Exercises

1. Complete the proof of preservation.

2. Complete the proof of progress.

AUGUST 24, 2010 DRAFT 14:43



82 9.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 10

Evaluation Dynamics

In Chapter 8 we defined the evaluation of L{num str} expression using the
method of structural dynamics. This approach is useful as a foundation for
proving properties of a language, but other methods are often more appro-
priate for other purposes, such as writing user manuals. Another method,
called evaluation dynamics presents the dynamics as a relation between a
phrase and its value, without detailing how it is to be determined in a step-
by-step manner. Evaluation dynamics suppresses the step-by-step details
of determining the value of an expression, and hence does not provide any
useful notion of the time complexity of a program. Cost dynamics rectifies
this by augmenting evaluation dynamics with a cost measure. Various cost
measures may be assigned to an expression. One example is the number of
steps in the structural dynamics required for an expression to reach a value.

10.1 Evaluation Dynamics

Another method for defining the dynamics of L{num str}, called evaluation
dynamics, consists of an inductive definition of the evaluation judgement,
e ⇓ v, stating that the closed expression, e, evaluates to the value, v.

num[n] ⇓ num[n] (10.1a)

str[s] ⇓ str[s] (10.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n nat

plus(e1; e2) ⇓ num[n]
(10.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1; e2) ⇓ str[s]
(10.1d)



84 10.2 Relating Structural and Evaluation Dynamics

e ⇓ str[s] |s| = n str

len(e) ⇓ num[n]
(10.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(10.1f)

The value of a let expression is determined by substitution of the binding
into the body. The rules are therefore not syntax-directed, since the premise
of Rule (10.1f) is not a sub-expression of the expression in the conclusion of
that rule.

The evaluation judgement is inductively defined, we prove properties
of it by rule induction. Specifically, to show that the property P(e ⇓ v)
holds, it is enough to show that P is closed under Rules (10.1):

1. Show that P(num[n] ⇓ num[n]).

2. Show that P(str[s] ⇓ str[s]).

3. Show thatP(plus(e1; e2) ⇓ num[n]), ifP(e1 ⇓ num[n1]),P(e2 ⇓ num[n2]),
and n1 + n2 = n nat.

4. Show thatP(cat(e1; e2) ⇓ str[s]), ifP(e1 ⇓ str[s1]),P(e2 ⇓ str[s2]),
and s1 ˆ s2 = s str.

5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e exp,
because the evaluation rules are not syntax-directed!

Lemma 10.1. If e ⇓ v, then v val.

Proof. By induction on Rules (10.1). All cases except Rule (10.1f) are im-
mediate. For the latter case, the result follows directly by an appeal to the
inductive hypothesis for the second premise of the evaluation rule.

10.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for L{num str}. It is nat-
ural to ask whether they are equivalent, but to do so first requires that we
consider carefully what we mean by equivalence. The structural dynamics
describes a step-by-step process of execution, whereas the evaluation dy-
namics suppresses the intermediate states, focussing attention on the initial
and final states alone. This suggests that the appropriate correspondence

14:43 DRAFT AUGUST 24, 2010



10.3 Type Safety, Revisited 85

is between complete execution sequences in the structural dynamics and the
evaluation judgement in the evaluation dynamics. (We will consider only
numeric expressions, but analogous results hold also for string-valued ex-
pressions.)

Theorem 10.2. For all closed expressions e and values v, e 7→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 10.3. If e ⇓ v, then e 7→∗ v.

Proof. By induction on the definition of the evaluation judgement. For ex-
ample, suppose that plus(e1; e2) ⇓ num[n] by the rule for evaluating addi-
tions. By induction we know that e1 7→∗ num[n1] and e2 7→∗ num[n2]. We
reason as follows:

plus(e1; e2) 7→∗ plus(num[n1]; e2)

7→∗ plus(num[n1]; num[n2])

7→ num[n1 + n2]

Therefore plus(e1; e2) 7→∗ num[n1 + n2], as required. The other cases are
handled similarly.

For the converse, recall from Chapter 8 the definitions of multi-step
evaluation and complete evaluation. Since v ⇓ v whenever v val, it suf-
fices to show that evaluation is closed under reverse execution.

Lemma 10.4. If e 7→ e′ and e′ ⇓ v, then e ⇓ v.

Proof. By induction on the definition of the transition judgement. For ex-
ample, suppose that plus(e1; e2) 7→ plus(e′1; e2), where e1 7→ e′1. Sup-
pose further that plus(e′1; e2) ⇓ v, so that e′1 ⇓ num[n1], e2 ⇓ num[n2],
n1 + n2 = n nat, and v is num[n]. By induction e1 ⇓ num[n1], and hence
plus(e1; e2) ⇓ num[n], as required.

10.3 Type Safety, Revisited

The type safety theorem for L{num str} (Theorem 9.1 on page 77) states
that a language is safe iff it satisfies both preservation and progress. This
formulation depends critically on the use of a transition system to specify
the dynamics. But what if we had instead specified the dynamics as an

AUGUST 24, 2010 DRAFT 14:43



86 10.3 Type Safety, Revisited

evaluation relation, instead of using a transition system? Can we state and
prove safety in such a setting?

The answer, unfortunately, is that we cannot. While there is an analogue
of the preservation property for an evaluation dynamics, there is no clear
analogue of the progress property. Preservation may be stated as saying
that if e ⇓ v and e : τ, then v : τ. This can be readily proved by induc-
tion on the evaluation rules. But what is the analogue of progress? One
might be tempted to phrase progress as saying that if e : τ, then e ⇓ v for
some v. While this property is true for L{num str}, it demands much more
than just progress — it requires that every expression evaluate to a value!
If L{num str} were extended to admit operations that may result in an er-
ror (as discussed in Section 9.3 on page 80), or to admit non-terminating
expressions, then this property would fail, even though progress would
remain valid.

One possible attitude towards this situation is to simply conclude that
type safety cannot be properly discussed in the context of an evaluation
dynamics, but only by reference to a structural dynamics. Another point of
view is to instrument the dynamics with explicit checks for run-time type
errors, and to show that any expression with a type fault must be ill-typed.
Re-stated in the contrapositive, this means that a well-typed program can-
not incur a type error. A difficulty with this point of view is that one must
explicitly account for a form of error solely to prove that it cannot arise!
Nevertheless, we will press on to show how a semblance of type safety can
be established using evaluation dynamics.

The main idea is to define a judgement e⇑ stating, in the jargon of the
literature, that the expression e goes wrong when executed. The exact defi-
nition of “going wrong” is given by a set of rules, but the intention is that
it should cover all situations that correspond to type errors. The following
rules are representative of the general case:

plus(str[s]; e2)⇑ (10.2a)

e1 val

plus(e1; str[s])⇑ (10.2b)

These rules explicitly check for the misapplication of addition to a string;
similar rules govern each of the primitive constructs of the language.

Theorem 10.5. If e⇑, then there is no τ such that e : τ.

Proof. By rule induction on Rules (10.2). For example, for Rule (10.2a), we
observe that str[s] : str, and hence plus(str[s]; e2) is ill-typed.

14:43 DRAFT AUGUST 24, 2010



10.4 Cost Dynamics 87

Corollary 10.6. If e : τ, then ¬(e⇑).

Apart from the inconvenience of having to define the judgement e⇑
only to show that it is irrelevant for well-typed programs, this approach
suffers a very significant methodological weakness. If we should omit one
or more rules defining the judgement e⇑, the proof of Theorem 10.5 on the
facing page remains valid; there is nothing to ensure that we have included
sufficiently many checks for run-time type errors. We can prove that the
ones we define cannot arise in a well-typed program, but we cannot prove
that we have covered all possible cases. By contrast the structural dynam-
ics does not specify any behavior for ill-typed expressions. Consequently,
any ill-typed expression will “get stuck” without our explicit intervention,
and the progress theorem rules out all such cases. Moreover, the transi-
tion system corresponds more closely to implementation—a compiler need
not make any provisions for checking for run-time type errors. Instead, it
relies on the statics to ensure that these cannot arise, and assigns no mean-
ing to any ill-typed program. Execution is therefore more efficient, and the
language definition is simpler, an elegant win-win situation for both the
dynamics and the implementation.

10.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for pro-
grams, namely the number of steps required to reach a final state. An evalu-
ation dynamics, on the other hand, does not provide such a direct notion of
complexity. Since the individual steps required to complete an evaluation
are suppressed, we cannot directly read off the number of steps required to
evaluate to a value. Instead we must augment the evaluation relation with
a cost measure, resulting in a cost dynamics.

Evaluation judgements have the form e ⇓k v, with the meaning that e
evaluates to v in k steps.

num[n] ⇓0 num[n] (10.3a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]
(10.3b)

str[s] ⇓0 str[s] (10.3c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(10.3d)

AUGUST 24, 2010 DRAFT 14:43



88 10.5 Exercises

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(10.3e)

Theorem 10.7. For any closed expression e and closed value v of the same type,
e ⇓k v iff e 7→k v.

Proof. From left to right proceed by rule induction on the definition of the
cost dynamics. From right to left proceed by induction on k, with an inner
rule induction on the definition of the structural dynamics.

10.5 Exercises

1. Prove that if e ⇓ v, then v val.

2. Prove that if e ⇓ v1 and e ⇓ v2, then v1 = v2.

3. Complete the proof of equivalence of evaluation and structural dy-
namics.

4. Prove preservation for the instrumented evaluation dynamics, and
conclude that well-typed programs cannot go wrong.

5. Is it possible to use environments in a structural dynamics? What
difficulties do you encounter?

14:43 DRAFT AUGUST 24, 2010



Part IV

Function Types





Chapter 11

Function Definitions and
Values

In the language L{num str} we may perform calculations such as the dou-
bling of a given expression, but we cannot express doubling as a concept
in itself. To capture the general pattern of doubling, we abstract away from
the particular number being doubled using a variable to stand for a fixed,
but unspecified, number, to express the doubling of an arbitrary number.
Any particular instance of doubling may then be obtained by substituting a
numeric expression for that variable. In general an expression may involve
many distinct variables, necessitating that we specify which of several pos-
sible variables is varying in a particular context, giving rise to a function of
that variable.

In this chapter we will consider two extensions of L{num str} with
functions. The first, and perhaps most obvious, extension is by adding func-
tion definitions to the language. A function is defined by binding a name to
an abt with a bound variable that serves as the argument of that function. A
function is applied by substituting a particular expression (of suitable type)
for the bound variable, obtaining an expression.

The domain and range of defined functions are limited to the types nat
and str, since these are the only types of expression. Such functions are
called first-order functions, in contrast to higher-order functions, which permit
functions as arguments and results of other functions. Since the domain
and range of a function are types, this requires that we introduce function
types whose elements are functions. Consequently, we may form functions
of higher type, those whose domain and range may themselves be function
types.



92 11.1 First-Order Functions

Historically the introduction of higher-order functions was responsible
for a mistake in language design that subsequently was re-characterized as
a feature, called dynamic binding. Dynamic binding arises from getting the
definition of substitution wrong by failing to avoid capture. This makes the
names of bound variables important, in violation of the fundamental prin-
ciple of binding stating that the names of bound variables are unimportant.

11.1 First-Order Functions

The language L{num str fun} is the extension of L{num str} with function
definitions and function applications as described by the following gram-
mar:

Expr e ::= call[ f](e) f(e) call
fun[τ1; τ2](x1.e2; f.e) fun f(x1:τ1):τ2 = e2 in e definition

The expression fun[τ1; τ2](x1.e2; f.e) binds the function name f within
e to the pattern x1.e2, which has parameter x1 and definition e2. The do-
main and range of the function are, respectively, the types τ1 and τ2. The
expression call[ f](e) instantiates the binding of f with the argument e.

The statics of L{num str fun} defines two forms of judgement:

1. Expression typing, e : τ, stating that e has type τ;

2. Function typing, f(τ1) : τ2, stating that f is a function with argument
type τ1 and result type τ2.

The judgment f(τ1) : τ2 is called the function header of f ; it specifies the
domain type and the range type of a function.

The statics of L{num str fun} is defined by the following rules:

Γ, x1 : τ1 ` e2 : τ2 Γ, f(τ1) : τ2 ` e : τ

Γ ` fun[τ1; τ2](x1.e2; f.e) : τ
(11.1a)

Γ ` f(τ1) : τ2 Γ ` e : τ1

Γ ` call[ f](e) : τ2
(11.1b)

Function substitution, written [[x.e/ f ]]e′, is defined by induction on the
structure of e′ much like the definition of ordinary substitution. However,
a function name, f , is not a form of expression, but rather can only occur in

14:43 DRAFT AUGUST 24, 2010



11.2 Higher-Order Functions 93

a call of the form call[ f](e). Function substitution for such expressions is
defined by the following rule:

[[x.e/ f ]]call[ f](e′) = let(e′; x.e)
(11.2)

At call sites to f with argument e′, function substitution yields a let ex-
pression that binds x to e′ within e.

Lemma 11.1. If Γ, f(τ1) : τ2 ` e : τ and Γ, x1 : τ2 ` e2 : τ2, then Γ `
[[x1.e2/ f ]]e : τ.

Proof. By induction on the structure of e′.

The dynamics of L{num str fun} is defined using function substitution:

fun[τ1; τ2](x1.e2; f.e) 7→ [[x1.e2/ f ]]e
(11.3)

Since function substitution replaces all calls to f by appropriate let expres-
sions, there is no need to give a rule for function calls.

The safety of L{num str fun} may be obtained as an immediate corol-
lary of the safety theorem for higher-order functions, which we discuss
next.

11.2 Higher-Order Functions

The syntactic and semantic similarity between variable definitions and func-
tion definitions in L{num str fun} is striking. This suggests that it may be
possible to consolidate the two concepts into a single definition mechanism.
The gap that must be bridged is the segregation of functions from expres-
sions. A function name f is bound to an abstractor x.e specifying a pattern
that is instantiated when f is applied. To consolidate function definitions
with expression definitions it is sufficient to reify the abstractor into a form
of expression, called a λ-abstraction, written lam[τ1](x.e). Correspond-
ingly, we must generalize application to have the form ap(e1; e2), where e1
is any expression, and not just a function name. These are, respectively, the
introduction and elimination forms for the function type, arr(τ1; τ2), whose
elements are functions with domain τ1 and range τ2.

AUGUST 24, 2010 DRAFT 14:43



94 11.2 Higher-Order Functions

The languageL{num str→} is the enrichment ofL{num str}with func-
tion types, as specified by the following grammar:

Type τ ::= arr(τ1; τ2) τ1 → τ2 function
Expr e ::= lam[τ](x.e) λ (x:τ. e) abstraction

ap(e1; e2) e1(e2) application

Functions are now “first class” in the sense that a function is an expression
of function type.

The statics of L{num str→} is given by extending Rules (7.1) with the
following rules:

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(11.4a)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(11.4b)

Lemma 11.2 (Inversion). Suppose that Γ ` e : τ.

1. If e = lam[τ1](x.e), then τ = arr(τ1; τ2) and Γ, x : τ1 ` e : τ2.

2. If e = ap(e1; e2), then there exists τ2 such that Γ ` e1 : arr(τ2; τ) and
Γ ` e2 : τ2.

Proof. The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the rule
in question provide the required result.

Lemma 11.3 (Substitution). If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ `
[e/x]e′ : τ′.

Proof. By rule induction on the derivation of the first judgement.

The dynamics of L{num str→} extends that of L{num str} with the
following additional rules:

lam[τ](x.e) val
(11.5a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(11.5b)

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
(11.5c)

These rules specify a call-by-name discipline for function application. It is
a good exercise to formulate a call-by-value discipline as well.

14:43 DRAFT AUGUST 24, 2010



11.3 Evaluation Dynamics and Definitional . . . 95

Theorem 11.4 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. The proof is by induction on rules (11.5), which define the dynamics
of the language.

Consider rule (11.5c),

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
.

Suppose that ap(lam[τ2](x.e1); e2) : τ1. By Lemma 11.2 on the preceding
page e2 : τ2 and x : τ2 ` e1 : τ1, so by Lemma 11.3 on the facing page
[e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 11.5 (Canonical Forms). If e val and e : arr(τ1; τ2), then e = lam[τ1](x.e2)

for some x and e2 such that x : τ1 ` e2 : τ2.

Proof. By induction on the typing rules, using the assumption e val.

Theorem 11.6 (Progress). If e : τ, then either e is a value, or there exists e′ such
that e 7→ e′.

Proof. The proof is by induction on rules (11.4). Note that since we consider
only closed terms, there are no hypotheses on typing derivations.

Consider rule (11.4b). By induction either e1 val or e1 7→ e′1. In the
latter case we have ap(e1; e2) 7→ ap(e′1; e2). In the former case, we have by
Lemma 11.5 that e1 = lam[τ2](x.e) for some x and e. But then ap(e1; e2) 7→
[e2/x]e.

11.3 Evaluation Dynamics and Definitional Equivalence

An inductive definition of the evaluation judgement e ⇓ v forL{num str→}
is given by the following rules:

lam[τ](x.e) ⇓ lam[τ](x.e)
(11.6a)

e1 ⇓ lam[τ](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(11.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 11.7. e ⇓ v iff e 7→∗ v and v val.

AUGUST 24, 2010 DRAFT 14:43



96 11.3 Evaluation Dynamics and Definitional . . .

Proof. In the forward direction we proceed by rule induction on Rules (11.6).
The proof makes use of a pasting lemma stating that, for example, if e1 7→∗ e′1,
then ap(e1; e2) 7→∗ ap(e′1; e2), and similarly for the other constructs of the
language.

In the reverse direction we proceed by rule induction on Rules (8.1).
The proof relies on a converse evaluation lemma, which states that if e 7→ e′

and e′ ⇓ v, then e ⇓ v. This is proved by rule induction on Rules (11.5).

Definitional equivalence for the call-by-name dynamics ofL{num str→}
is defined by a straightforward extension to Rules (8.11).

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ2
(11.7a)

Γ ` e1 ≡ e′1 : τ2 → τ Γ ` e2 ≡ e′2 : τ2

Γ ` ap(e1; e2) ≡ ap(e′1; e′2) : τ
(11.7b)

Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` lam[τ1](x.e2) ≡ lam[τ1](x.e′2) : τ1 → τ2
(11.7c)

Definitional equivalence for call-by-value requires a small bit of addi-
tional machinery. The main idea is to restrict Rule (11.7a) to require that the
argument be a value. However, to be fully expressive, we must also widen
the concept of a value to include all variables that are in scope, so that
Rule (11.7a) would apply even when the argument is a variable. The justi-
fication for this is that in call-by-value, the parameter of a function stands
for the value of its argument, and not for the argument itself. The call-by-
value definitional equivalence judgement has the form

Ξ Γ ` e1 ≡ e2 : τ,

where Ξ is the finite set of hypotheses x1 val, . . . , xk val governing the vari-
ables in scope at that point. We write Ξ ` e val to indicate that e is a value
under these hypotheses, so that, for example, Ξ, x val ` x val.

The rule of definitional equivalence for call-by-value are similar to those
for call-by-name, modified to take account of the scopes of value variables.
Two illustrative rules are as follows:

Ξ, x val Γ, x : τ1 ` e2 ≡ e′2 : τ2

Ξ Γ ` lam[τ1](x.e2) ≡ lam[τ1](x.e′2) : τ1 → τ2
(11.8a)

Ξ ` e1 val

Ξ Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ
. (11.8b)

14:43 DRAFT AUGUST 24, 2010



11.4 Dynamic Scope 97

11.4 Dynamic Scope

The dynamics of function application given by Rules (11.5) is defined only
for expressions without free variables. When a function is called, the argu-
ment is substituted for the function parameter, ensuring that the result re-
mains closed. Moreover, since substitution of closed expressions can never
incur capture, the scopes of variables are not disturbed by the dynamics,
ensuring that the principles of binding and scope described in Chapter 3
are respected. This treatment of variables is called static scoping, or static
binding, to contrast it with an alternative approach that we now describe.

Another approach, called dynamic scoping, or dynamic binding, is some-
times advocated as an alternative to static binding. Evaluation is defined
for expressions that may contain free variables. Evaluation of a variable
is undefined; it is an error to ask for the value of an unbound variable.
Function call is defined similarly to dynamic binding, except that when a
function is called, the argument replaces the parameter in the body, possibly
incurring, rather than avoiding, capture of free variables in the argument.
(As we will explain shortly, this behavior is considered to be a feature, not
a bug!)

The difference between replacement and substitution may be illustrated
by example. Let e be the expression λ (x:str. y + |x|) in which the vari-
able y occurs free, and let e′ be the expression λ (y:str. f(y)) with free
variable f . If we substitute e for f in e′ we obtain an expression of the form

λ (y′:str. λ (x:str. y + |x|)(y′)),

where the bound variable, y, in e has been renamed to some fresh variable
y′ so as to avoid capture. If we instead replace f by e in e′ we obtain

λ (y:str. λ (x:str. y + |x|)(y))

in which y is no longer free: it has been captured during replacement.
The implications of this seemingly small change to the dynamics of

L{→} are far-reaching. The most obvious implication is that the language
is not type safe. In the above example we have that y : nat ` e : str→ nat,
and that f : str→ nat ` e′ : str→ nat. It follows that y : nat ` [e/ f ]e′ :
str→ nat, but it is easy to see that the result of replacing f by e in e′ is
ill-typed, regardless of what assumption we make about y. The difficulty,
of course, is that the bound occurrence of y in e′ has type str, whereas the
free occurrence in e must have type nat in order for e to be well-formed.

One way around this difficulty is to ignore types altogether, and rely
on run-time checks to ensure that bad things do not happen, despite the

AUGUST 24, 2010 DRAFT 14:43



98 11.5 Exercises

evident failure of safety. (See Chapter 21 for a full exploration of this ap-
proach.) But even if ignore the safety issues, we are still left with the serious
problem that the names of bound variables matter, and cannot be altered
without changing the meaning of a program. So, for example, to use ex-
pression e′, one must bear in mind that the parameter, f , occurs within the
scope of a binder for y, a fact that is not revealed by the type of e′ (and cer-
tainly not if one disregards types entirely!) If we change e′ so that it binds a
different variable, say z, then we must correspondingly change e to ensure
that it refers to z, and not y, in order to preserve the overall behavior of the
system of two expressions. This means that e and e′ must be developed in
tandem, violating a basic principle of modular decomposition. (For more
on dynamic scope, please see Chapter 37.)

11.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 12

Gödel’s System T

The language L{nat→}, better known as Gödel’s System T, is the combi-
nation of function types with the type of natural numbers. In contrast
to L{num str}, which equips the naturals with some arbitrarily chosen
arithmetic primitives, the language L{nat→} provides a general mech-
anism, called primitive recursion, from which these primitives may be de-
fined. Primitive recursion captures the essential inductive character of the
natural numbers, and hence may be seen as an intrinsic termination proof
for each program in the language. Consequently, we may only define total
functions in the language, those that always return a value for each argu-
ment. In essence every program in L{nat→} “comes equipped” with a
proof of its termination. While this may seem like a shield against infinite
loops, it is also a weapon that can be used to show that some programs can-
not be written in L{nat→}. To do so would require a master termination
proof for every possible program in the language, something that we shall
prove does not exist.



100 12.1 Statics

12.1 Statics

The syntax of L{nat→} is given by the following grammar:

Type τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Expr e ::= x x variable
z z zero
s(e) s(e) successor
natrec(e; e0; x.y.e1) natrec e {z⇒ e0 | s(x) with y⇒ e1}

recursion
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is applied
n ≥ 0 times to zero. The expression natrec(e; e0; x.y.e1) is called primi-
tive recursion. It represents the e-fold iteration of the transformation x.y.e1
starting from e0. The bound variable x represents the predecessor and the
bound variable y represents the result of the x-fold iteration. The “with”
clause in the concrete syntax for the recursor binds the variable y to the
result of the recursive call, as will become apparent shortly.

Sometimes iteration, written natiter(e; e0; y.e1), is considered as an al-
ternative to primitive recursion. It has essentially the same meaning as
primitive recursion, except that only the result of the recursive call is bound
to y in e1, and no binding is made for the predecessor. Clearly iteration is
a special case of primitive recursion, since we can always ignore the pre-
decessor binding. Conversely, primitive recursion is definable from itera-
tion, provided that we have product types (Chapter 14) at our disposal. To
define primitive recursion from iteration we simultaneously compute the
predecessor while iterating the specified computation.

The statics of L{nat→} is given by the following typing rules:

Γ, x : nat ` x : nat (12.1a)

Γ ` z : nat (12.1b)

Γ ` e : nat
Γ ` s(e) : nat

(12.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` natrec(e; e0; x.y.e1) : τ
(12.1d)

Γ, x : σ ` e : τ

Γ ` lam[σ](x.e) : arr(σ; τ)
(12.1e)

14:43 DRAFT AUGUST 24, 2010



12.2 Dynamics 101

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(12.1f)

As usual, admissibility of the structural rule of substitution is crucially
important.

Lemma 12.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

12.2 Dynamics

The dynamics of L{nat→} adopts a call-by-name interpretation of func-
tion application, and requires that the successor operation evaluate its ar-
gument (so that values of type nat are numerals).

The closed values of L{nat→} are determined by the following rules:

z val (12.2a)

e val
s(e) val

(12.2b)

lam[τ](x.e) val (12.2c)

The dynamics of L{nat→} is given by the following rules:

e 7→ e′

s(e) 7→ s(e′)
(12.3a)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(12.3b)

ap(lam[τ](x.e); e2) 7→ [e2/x]e
(12.3c)

e 7→ e′

natrec(e; e0; x.y.e1) 7→ natrec(e′; e0; x.y.e1)
(12.3d)

natrec(z; e0; x.y.e1) 7→ e0
(12.3e)

s(e) val

natrec(s(e); e0; x.y.e1) 7→ [e, natrec(e; e0; x.y.e1)/x, y]e1
(12.3f)

Rules (12.3e) and (12.3f) specify the behavior of the recursor on z and s(e).
In the former case the recursor evaluates e0, and in the latter case the vari-
able x is bound to the predecessor, e, and y is bound to the (unevaluated)
recursion on e. If the value of y is not required in the rest of the computa-
tion, the recursive call will not be evaluated.

AUGUST 24, 2010 DRAFT 14:43



102 12.3 Definability

Lemma 12.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then e = s(s(. . . z)) for some number n ≥ 0 occurrences of
the successor starting with zero.

2. If τ = τ1 → τ2, then e = λ (x:τ1. e2) for some e2.

Theorem 12.3 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′

12.3 Definability

A mathematical function f : N→ N on the natural numbers is definable in
L{nat→} iff there exists an expression e f of type nat → nat such that for
every n ∈N,

e f(n) ≡ f (n) : nat. (12.4)

That is, the numeric function f : N → N is definable iff there is a expres-
sion e f of type nat → nat such that, when applied to the numeral repre-
senting the argument n ∈ N, is definitionally equivalent to the numeral
corresponding to f (n) ∈N.

Definitional equivalence for L{nat→}, written Γ ` e ≡ e′ : τ, is the
strongest congruence containing these axioms:

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ
(12.5a)

Γ ` natrec(z; e0; x.y.e1) ≡ e0 : τ
(12.5b)

Γ ` natrec(s(e); e0; x.y.e1) ≡ [e, natrec(e; e0; x.y.e1)/x, y]e1 : τ
(12.5c)

For example, the doubling function, d(n) = 2×n, is definable inL{nat→}
by the expression ed : nat→ nat given by

λ (x:nat. natrec x {z⇒ z | s(u) with v⇒ s(s(v))}).

To check that this defines the doubling function, we proceed by induction
on n ∈N. For the basis, it is easy to check that

ed(0) ≡ 0 : nat.

14:43 DRAFT AUGUST 24, 2010



12.3 Definability 103

For the induction, assume that

ed(n) ≡ d(n) : nat.

Then calculate using the rules of definitional equivalence:

ed(n + 1) ≡ s(s(ed(n)))

≡ s(s(2× n))

= 2× (n + 1)

= d(n + 1).

As another example, consider the following function, called Ackermann’s
function, defined by the following equations:

A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m, A(m + 1, n)).

This function grows very quickly. For example, A(4, 2) ≈ 265,536, which is
often cited as being much larger than the number of atoms in the universe!
Yet we can show that the Ackermann function is total by a lexicographic
induction on the pair of argument (m, n). On each recursive call, either m
decreases, or else m remains the same, and n decreases, so inductively the
recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat → nat

that is defined using primitive recursion, but without using any higher or-
der functions. Ackermann’s function is defined so that it is not first-order
primitive recursive, but is higher-order primitive recursive. The key is to
showing that it is definable in L{nat→} is to observe that A(m + 1, n) iter-
ates the function A(m,−) for n times, starting with A(m, 1). As an auxiliary,
let us define the higher-order function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ ( f:nat→ nat. λ (n:nat. natrec n {z⇒ id | s( ) with g⇒ f ◦ g})),

where id = λ (x:nat. x) is the identity, and f ◦ g = λ (x:nat. f(g(x))) is
the composition of f and g. It is easy to check that

it( f)(n)(m) ≡ f (n)(m) : nat,

AUGUST 24, 2010 DRAFT 14:43



104 12.4 Non-Definability

where the latter expression is the n-fold composition of f starting with m.
We may then define the Ackermann function

ea : nat→ nat→ nat

to be the expression

λ (m:nat. natrecm {z⇒ succ | s( ) with f ⇒ λ (n:nat. it( f)(n)( f(1)))}).

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (12.6)

ea(m + 1)(0) ≡ ea(m)(1) (12.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (12.8)

That is, the Ackermann function is definable in L{nat→}.

12.4 Non-Definability

It is impossible to define an infinite loop in L{nat→}.

Theorem 12.4. If e : τ, then there exists v val such that e ≡ v : τ.

Proof. See Corollary 50.9 on page 466.

Consequently, values of function type in L{nat→} behave like mathe-
matical functions: if f : σ→ τ and e : σ, then f(e) evaluates to a value of
type τ. Moreover, if e : nat, then there exists a natural number n such that
e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that
there are functions on the natural numbers that are not definable in the
L{nat→}. We make use of a technique, called Gödel-numbering, that as-
signs a unique natural number to each closed expression ofL{nat→}. This
allows us to manipulate expressions as data values inL{nat→}, and hence
permits L{nat→} to compute with its own programs.1

The essence of Gödel-numbering is captured by the following simple
construction on abstract syntax trees. (The generalization to abstract bind-
ing trees is slightly more difficult, the main complication being to ensure

1The same technique lies at the heart of the proof of Gödel’s celebrated incomplete-
ness theorem. The non-definability of certain functions on the natural numbers within
L{nat→}may be seen as a form of incompleteness similar to that considered by Gödel.

14:43 DRAFT AUGUST 24, 2010



12.4 Non-Definability 105

that α-equivalent expressions are assigned the same Gödel number.) Recall
that a general ast, a, has the form o(a1, . . . , ak), where o is an operator of
arity k. Fix an enumeration of the operators so that every operator has an
index i ∈ N, and let m be the index of o in this enumeration. Define the
Gödel number paq of a to be the number

2m 3n1 5n2 . . . pnk
k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and
n1, . . . , nk are the Gödel numbers of a1, . . . , ak, respectively. This obviously
assigns a natural number to each ast. Conversely, given a natural number,
n, we may apply the prime factorization theorem to “parse” n as a unique
abstract syntax tree. (If the factorization is not of the appropriate form,
which can only be because the arity of the operator does not match the
number of factors, then n does not code any ast.)

Now, using this representation, we may define a (mathematical) func-
tion funiv : N → N → N such that, for any e : nat→ nat, funiv(peq)(m) =
n iff e(m) ≡ n : nat.2 The determinacy of the dynamics, together with The-
orem 12.4 on the preceding page, ensure that funiv is a well-defined func-
tion. It is called the universal function for L{nat→} because it specifies the
behavior of any expression e of type nat→ nat. Using the universal func-
tion, let us define an auxiliary mathematical function, called the diagonal
function, d : N → N, by the equation d(m) = funiv(m)(m). This function
is chosen so that d(peq) = n iff e(peq) ≡ n : nat. (The motivation for this
definition will be apparent in a moment.)

The function d is not definable in L{nat→}. Suppose that d were de-
fined by the expression ed, so that we have

ed(peq) ≡ e(peq) : nat.

Let eD be the expression

λ (x:nat. s(ed(x)))

of type nat→ nat. We then have

eD(peDq) ≡ s(ed(peDq))

≡ s(eD(peDq)).

2The value of funiv(k)(m) may be chosen arbitrarily to be zero when k is not the code of
any expression e.

AUGUST 24, 2010 DRAFT 14:43



106 12.5 Exercises

But the termination theorem implies that there exists n such that eD(peDq) ≡
n, and hence we have n ≡ s(n), which is impossible.

The function funiv is computable (that is, one can write an interpreter for
L{nat→}), but it is not programmable inL{nat→} itself. In general a lan-
guage L is universal if we can write an interpreter for L in the language L
itself. The foregoing argument shows that L{nat→} is not universal. Con-
sequently, there are computable numeric functions, such as the diagonal
function, that cannot be programmed in L{nat→}. Consequently, the uni-
versal function for L{nat→} cannot be programmed in the language. In
other words, one cannot write an interpreter for L{nat→} in the language
itself!

12.5 Exercises

1. Explore variant dynamics for L{nat→}, both separately and in com-
bination, in which the successor does not evaluate its argument, and
in which functions are called by value.

14:43 DRAFT AUGUST 24, 2010



Chapter 13

Plotkin’s PCF

The language L{nat⇀}, also known as Plotkin’s PCF, integrates functions
and natural numbers using general recursion, a means of defining self-referential
expressions. In contrast to L{nat→} expressions in L{nat⇀} may not
terminate when evaluated; consequently, functions are partial (may be un-
defined for some arguments), rather than total (which explains the “partial
arrow” notation for function types). Compared to L{nat→}, the language
L{nat⇀} moves the termination proof from the expression itself to the
mind of the programmer. The type system no longer ensures termination,
which permits a wider range of functions to be defined in the system, but
at the cost of admitting infinite loops when the termination proof is either
incorrect or absent.

The crucial concept embodied in L{nat⇀} is the fixed point characteri-
zation of recursive definitions. In ordinary mathematical practice one may
define a function f by recursion equations such as these:

f (0) = 1
f (n + 1) = (n + 1)× f (n)

These may be viewed as simultaneous equations in the variable, f , ranging
over functions on the natural numbers. The function we seek is a solution to
these equations—a function f : N→ N such that the above conditions are
satisfied. We must, of course, show that these equations have a unique so-
lution, which is easily shown by mathematical induction on the argument
to f .

The solution to such a system of equations may be characterized as
the fixed point of an associated functional (operator mapping functions to



108

functions). To see this, let us re-write these equations in another form:

f (n) =

{
1 if n = 0
n× f (n′) if n = n′ + 1

Re-writing yet again, we seek f such that

f : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Now define the functional F by the equation F( f ) = f ′, where

f ′ : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Note well that the condition on f ′ is expressed in terms of the argument, f ,
to the functional F, and not in terms of f ′ itself! The function f we seek is
then a fixed point of F, which is a function f : N→N such that f = F( f ). In
other words f is defined to the fix(F), where fix is an operator on functionals
yielding a fixed point of F.

Why does an operator such as F have a fixed point? Informally, a fixed
point may be obtained as the limit of series of approximations to the desired
solution obtained by iterating the functional F. This is where partial func-
tions come into the picture. Let us say that a partial function, φ on the nat-
ural numbers, is an approximation to a total function, f , if φ(m) = n implies
that f (m) = n. Let ⊥: N ⇀ N be the totally undefined partial function—
⊥ (n) is undefined for every n ∈N. Intuitively, this is the “worst” approx-
imation to the desired solution, f , of the recursion equations given above.
Given any approximation, φ, of f , we may “improve” it by considering
φ′ = F(φ). Intuitively, φ′ is defined on 0 and on m + 1 for every m ≥ 0 on
which φ is defined. Continuing in this manner, φ′′ = F(φ′) = F(F(φ)) is
an improvement on φ′, and hence a further improvement on φ. If we start
with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F(i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈N,
and hence is the function f itself. Turning this around, if the limit exists, it
must be the solution we seek.

This fixed point characterization of recursion equations is taken as a
primitive concept in L{nat⇀}—we may obtain the least fixed point of any

14:43 DRAFT AUGUST 24, 2010



13.1 Statics 109

functional definable in the language. Using this we may solve any set of
recursion equations we like, with the proviso that there is no guarantee
that the solution is a total function. Rather, it is guaranteed to be a partial
function that may be undefined on some, all, or no inputs. This is the price
we may for expressive power—we may solve all systems of equations, but
the solution may not be as well-behaved as we might like it to be. It is our
task as programmer’s to ensure that the functions defined by recursion are
total—all of our loops terminate.

13.1 Statics

The abstract binding syntax of L{nat⇀} is given by the following gram-
mar:

Type τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Expr e ::= x x variable
z z zero
s(e) s(e) successor
ifz(e; e0; x.e1) ifz e {z⇒ e0 | s(x)⇒ e1} zero test
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application
fix[τ](x.e) fix x:τ is e recursion

The expression fix[τ](x.e) is called general recursion; it is discussed in
more detail below. The expression ifz(e; e0; x.e1) branches according to
whether e evaluates to z or not, binding the predecessor to x in the case
that it is not.

The statics of L{nat⇀} is inductively defined by the following rules:

Γ, x : τ ` x : τ (13.1a)

Γ ` z : nat (13.1b)

Γ ` e : nat
Γ ` s(e) : nat

(13.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz(e; e0; x.e1) : τ
(13.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : parr(τ1; τ2)
(13.1e)

AUGUST 24, 2010 DRAFT 14:43



110 13.2 Dynamics

Γ ` e1 : parr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(13.1f)

Γ, x : τ ` e : τ

Γ ` fix[τ](x.e) : τ
(13.1g)

Rule (13.1g) reflects the self-referential nature of general recursion. To show
that fix[τ](x.e) has type τ, we assume that it is the case by assigning that
type to the variable, x, which stands for the recursive expression itself, and
checking that the body, e, has type τ under this very assumption.

The structural rules, including in particular substitution, are admissible
for the static semantics.

Lemma 13.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

13.2 Dynamics

The dynamic semantics of L{nat⇀} is defined by the judgements e val,
specifying the closed values, and e 7→ e′, specifying the steps of evaluation.
We will consider a call-by-name dynamics for function application, and
require that the successor evaluate its argument.

The judgement e val is defined by the following rules:

z val (13.2a)

e val
s(e) val

(13.2b)

lam[τ](x.e) val (13.2c)

The transition judgement e 7→ e′ is defined by the following rules:

e 7→ e′

s(e) 7→ s(e′)
(13.3a)

e 7→ e′

ifz(e; e0; x.e1) 7→ ifz(e′; e0; x.e1)
(13.3b)

ifz(z; e0; x.e1) 7→ e0 (13.3c)

s(e) val

ifz(s(e); e0; x.e1) 7→ [e/x]e1
(13.3d)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(13.3e)

14:43 DRAFT AUGUST 24, 2010



13.3 Definability 111

ap(lam[τ](x.e); e2) 7→ [e2/x]e (13.3f)

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e (13.3g)

Rule (13.3g) implements self-reference by substituting the recursive expres-
sion itself for the variable x in its body. This is called unwinding the recur-
sion.

Theorem 13.2 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The proof of preservation is by induction on the derivation of the
transition judgement. Consider Rule (13.3g). Suppose that fix[τ](x.e) :
τ. By inversion of typing we have fix[τ](x.e) : τ ` [fix[τ](x.e)/x]e : τ,
from which the result follows directly by transitivity of the hypothetical
judgement. The proof of progress proceeds by induction on the derivation
of the typing judgement. For example, for Rule (13.1g) the result follows
immediately since we may make progress by unwinding the recursion.

Definitional equivalence for L{nat⇀}, written Γ ` e1 ≡ e2 : τ, is de-
fined to be the strongest congruence containing the following axioms:

Γ ` ifz(z; e0; x.e1) ≡ e0 : τ (13.4a)

Γ ` ifz(s(e); e0; x.e1) ≡ [e/x]e1 : τ (13.4b)

Γ ` fix[τ](x.e) ≡ [fix[τ](x.e)/x]e : τ (13.4c)

Γ ` ap(lam[τ](x.e2); e1) ≡ [e1/x]e2 : τ (13.4d)

These rules are sufficient to calculate the value of any closed expression of
type nat: if e : nat, then e ≡ n : nat iff e 7→∗ n.

13.3 Definability

General recursion is a very flexible programming technique that permits a
wide variety of functions to be defined within L{nat⇀}. The drawback
is that, in contrast to primitive recursion, the termination of a recursively
defined function is not intrinsic to the program itself, but rather must be
proved extrinsically by the programmer. The benefit is a much greater free-
dom in writing programs.

AUGUST 24, 2010 DRAFT 14:43



112 13.3 Definability

General recursive functions are definable from general recursion and
non-recursive functions. Let us write fun x(y:τ1):τ2 is e for a recursive
function within whose body, e : τ2, are bound two variables, y : τ1 stand-
ing for the argument and x : τ1 → τ2 standing for the function itself. The
dynamic semantics of this construct is given by the axiom

fun x(y:τ1):τ2 is e(e1) 7→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function
itself for x and the argument for y in its body.

Recursive functions may be defined in L{nat⇀} using a combination
of recursion and functions, writing

fix x:τ1 ⇀ τ2 isλ (y:τ1. e)

for fun x(y:τ1):τ2 is e. It is a good exercise to check that the static and
dynamic semantics of recursive functions are derivable from this definition.

The primitive recursion construct of L{nat→} is defined in L{nat⇀}
using recursive functions by taking the expression

natrec e {z⇒ e0 | s(x) with y⇒ e1}

to stand for the application, e′(e), where e′ is the general recursive function

fun f(u:nat):τ is ifz u {z⇒ e0 | s(x)⇒ [ f(x)/y]e1}.

The static and dynamic semantics of primitive recursion are derivable in
L{nat⇀} using this expansion.

In general, functions definable in L{nat⇀} are partial in that they may
be undefined for some arguments. A partial (mathematical) function, φ :
N ⇀ N, is definable in L{nat⇀} iff there is an expression eφ : nat⇀ nat

such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example, if φ is the totally
undefined function, then eφ is any function that loops without returning
whenever it is called.

It is informative to classify those partial functions φ that are definable
in L{nat⇀}. These are the so-called partial recursive functions, which are
defined to be the primitive recursive functions augmented by the minimiza-
tion operation: given φ, define ψ(m) to be the least n ≥ 0 such that (1) for
m < n, φ(m) is defined and non-zero, and (2) φ(n) = 0. If no such n exists,
then ψ(m) is undefined.

Theorem 13.3. A partial function φ on the natural numbers is definable inL{nat⇀}
iff it is partial recursive.

14:43 DRAFT AUGUST 24, 2010



13.4 Co-Natural Numbers 113

Proof sketch. Minimization is readily definable in L{nat⇀}, so it is at least
as powerful as the set of partial recursive functions. Conversely, we may,
with considerable tedium, define an evaluator for expressions ofL{nat⇀}
as a partial recursive function, using Gödel-numbering to represent expres-
sions as numbers. Consequently, L{nat⇀} does not exceed the power of
the set of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with
the set of effectively computable functions on the natural numbers—those
that can be carried out by a program written in any programming language
currently available or that will ever be available.1 Therefore L{nat⇀} is
as powerful as any other programming language with respect to the set of
definable functions on the natural numbers.

The universal function, φuniv, for L{nat⇀} is the partial function on
the natural numbers defined by

φuniv(peq)(m) = n iff e(m) ≡ n : nat.

In contrast to L{nat→}, the universal function φuniv for L{nat⇀} is par-
tial (may be undefined for some inputs). It is, in essence, an interpreter
that, given the code peq of a closed expression of type nat⇀ nat, simulates
the dynamic semantics to calculate the result, if any, of applying it to the m,
obtaining n. Since this process may not terminate, the universal function is
not defined for all inputs.

By Church’s Law the universal function is definable in L{nat⇀}. In
contrast, we proved in Chapter 12 that the analogous function is not defin-
able in L{nat→} using the technique of diagonalization. It is instructive
to examine why that argument does not apply in the present setting. As in
Section 12.4 on page 104, we may derive the equivalence

eD(peDq) ≡ s(eD(peDq))

for L{nat⇀}. The difference, however, is that this equation is not incon-
sistent! Rather than being contradictory, it is merely a proof that the expres-
sion eD(peDq) does not terminate when evaluated, for if it did, the result
would be a number equal to its own successor, which is impossible.

13.4 Co-Natural Numbers

The evaluation strategy for the successor operation specified by Rules (13.3)
ensures that the type nat is interpreted standardly as the type of natural

1See Chapter 20 for further discussion of Church’s Law.

AUGUST 24, 2010 DRAFT 14:43



114 13.5 Exercises

numbers. This means that if e : nat and e val, then e is definitionally equiv-
alent to a numeral. In contrast the lazy interpretation of successor, obtained
by omitting Rule (13.3a), and requiring that s(e) val for any e, ruins this
correspondence. The expression

ω = fix x:nat is s(x)

evaluates to s(ω), which is a value of type nat. The “number” ω may be
thought of as an infinite stack of successors, which is therefore larger than
any finite stack of successors starting with zero. In other words ω is larger
than any (finite) natural number, and hence can be regarded as an infinite
“natural number.”

Of course it is stretching the terminology to refer to ω as a number,
much less as a natural number. Rather, we should say that the lazy inter-
pretation of the successor operation gives rise to a distinct type, called the
lazy natural numbers, or the co-natural numbers. The latter terminology arises
from considering the co-natural numbers as “dual” to the ordinary natural
numbers in the following sense. The standard natural numbers are induc-
tively defined as the least type such that if e ≡ z : nat or e ≡ s(e′) : nat
for some e′ : nat, then e : nat. Dually, the co-natural numbers may be re-
garded as the largest type such that if e : conat, then either e ≡ z : conat,
or e ≡ s(e′) : nat for some e′ : conat. The difference is that ω : conat, be-
cause ω is definitionally equivalent to its own successor, whereas it is not
the case that ω : nat, according to these definitions.

The duality between the natural numbers and the co-natural numbers
is developed further in Chapter 18, wherein we consider the concepts of
inductive and co-inductive types. Eagerness and laziness in general is dis-
cussed further in Chapter 41.

13.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part V

Finite Data Types





Chapter 14

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no val-
ues, and has no associated eliminatory form. The product type admits both
a lazy and an eager dynamics. According to the lazy dynamics, a pair is
a value without regard to whether its components are values; they are not
evaluated until (if ever) they are accessed and used in another computation.
According to the eager dynamics, a pair is a value only if its components
are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, ∏i∈I τi, indexed by
a finite set of indices, I. The elements of the finite product type are I-indexed
tuples whose ith component is an element of the type τi, for each i ∈ I.
The components are accessed by I-indexed projection operations, generaliz-
ing the binary case. Special cases of the finite product include n-tuples, in-
dexed by sets of the form I = { 0, . . . , n− 1 }, and labelled tuples, or records,
indexed by finite sets of symbols. Similarly to binary products, finite prod-
ucts admit both an eager and a lazy interpretation.



118 14.1 Nullary and Binary Products

14.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Type τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Expr e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
proj[l](e) e · l left projection
proj[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract
from the null tuple.

The statics of product types is given by the following rules.

Γ ` triv : unit
(14.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair(e1; e2) : prod(τ1; τ2)
(14.1b)

Γ ` e : prod(τ1; τ2)

Γ ` proj[l](e) : τ1
(14.1c)

Γ ` e : prod(τ1; τ2)

Γ ` proj[r](e) : τ2
(14.1d)

The dynamics of product types is specified by the following rules:

triv val
(14.2a)

{e1 val} {e2 val}
pair(e1; e2) val

(14.2b){ e1 7→ e′1
pair(e1; e2) 7→ pair(e′1; e2)

}
(14.2c)

{
e1 val e2 7→ e′2

pair(e1; e2) 7→ pair(e1; e′2)

}
(14.2d)

e 7→ e′

proj[l](e) 7→ proj[l](e′)
(14.2e)

e 7→ e′

proj[r](e) 7→ proj[r](e′)
(14.2f)

14:43 DRAFT AUGUST 24, 2010



14.2 Finite Products 119

{e1 val} {e2 val}
proj[l](pair(e1; e2)) 7→ e1

(14.2g)

{e1 val} {e2 val}
proj[r](pair(e1; e2)) 7→ e2

(14.2h)

The bracketed rules and premises are to be omitted for a lazy dynamics,
and included for an eager dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics,
with the proof proceeding along similar lines in each case.

Theorem 14.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7→ e′.

Proof. Preservation is proved by induction on transition defined by Rules (14.2).
Progress is proved by induction on typing defined by Rules (14.1).

14.2 Finite Products

The syntax of finite product types is given by the following grammar:

Type τ ::= prod[I](i 7→ τi) ∏i∈I τi product
Expr e ::= tuple[I](i 7→ ei) 〈ei〉i∈I tuple

proj[I][i](e) e · i projection

For I a finite index set of size n ≥ 0, the syntactic form prod[I](i 7→ τi)

specifies an n-argument operator of arity (0, 0, . . . , 0) whose ith argument
is the type τi. When it is useful to emphasize the tree structure, such an
abt is written in the form ∏ 〈i0 : τ0, . . . , in−1 : τn−1〉. Similarly, the syntactic
form tuple[I](i 7→ ei) specifies an abt constructed from an n-argument
operator whose i operand is ei. This may alternatively be written in the
form 〈i0 : e0, . . . , in−1 : en−1〉.

The statics of finite products is given by the following rules:

(∀i ∈ I) Γ ` ei : τi

Γ ` tuple[I](i 7→ ei) : prod[I](i 7→ τi)
(14.3a)

Γ ` e : prod[I](i 7→ ei) j ∈ I
Γ ` proj[I][j](e) : τj

(14.3b)

In Rule (14.3b) the index j ∈ I is a particular element of the index set I,
whereas in Rule (14.3a), the index i ranges over the index set I.

AUGUST 24, 2010 DRAFT 14:43



120 14.2 Finite Products

The dynamics of finite products is given by the following rules:

{(∀i ∈ I) ei val}
tuple[I](i 7→ ei) val

(14.4a)

{
ej 7→ e′j (∀i 6= j) e′i = ei

tuple[I](i 7→ ei) 7→ tuple[I](i 7→ e′i)

}
(14.4b)

e 7→ e′

proj[I][j](e) 7→ proj[I][j](e′) (14.4c)

tuple[I](i 7→ ei) val

proj[I][j](tuple[I](i 7→ ei)) 7→ ej
(14.4d)

Rule (14.4b) specifies that the components of a tuple are to be evaluated in
some sequential order, without specifying the order in which they compo-
nents are considered. It is straightforward, if a bit technically complicated,
to impose a linear ordering on index sets that determines the evaluation
order of the components of a tuple.

Theorem 14.2 (Safety). If e : τ, then either e val or there exists e′ such that e′ : τ
and e 7→ e′.

Proof. The safety theorem may be decomposed into progress and preserva-
tion lemmas, which are proved as in Section 14.1 on page 118.

We may define nullary and binary products as particular instances of
finite products by choosing an appropriate index set. The type unit may
be defined as the product ∏ ∈∅ ∅ of the empty family over the empty index
set, taking the expression 〈〉 to be the empty tuple, 〈∅〉 ∈∅. Binary products
τ1× τ2 may be defined as the product ∏i∈{ 1,2 } τi of the two-element family
of types consisting of τ1 and τ2. The pair 〈e1, e2〉 may then be defined as
the tuple 〈ei〉i∈{ 1,2 }, and the projections e · l and e · r are correspondingly
defined, respectively, to be e · 1 and e · 2.

Finite products may also be used to define labelled tuples, or records,
whose components are accessed by symbolic names. If L = { l1, . . . , ln } is
a finite set of symbols, called field names, or field labels, then the product type
∏ 〈l0 : τ0, . . . , ln−1 : τn−1〉 has as values tuples of the form 〈l0 : e0, . . . , ln−1 : en−1〉
in which ei : τi for each 0 ≤ i < n. If e is such a tuple, then e · l projects the
component of e labeled by l ∈ L.

14:43 DRAFT AUGUST 24, 2010



14.3 Primitive and Mutual Recursion 121

14.3 Primitive and Mutual Recursion

In the presence of products we may simplify the primitive recursion con-
struct defined in Chapter 12 so that only the result on the predecessor, and
not the predecessor itself, is passed to the successor branch. Writing this
as natiter e {z⇒e0 | s(x)⇒e1}, we may define primitive recursion in the
sense of Chapter 12 to be the expression e′ · r, where e′ is the expression

natiter e {z⇒〈z, e0〉 | s(x)⇒〈s(x · l), [x · l, x · r/x0, x1]e1〉}.

The idea is to compute inductively both the number, n, and the result of the
recursive call on n, from which we can compute both n + 1 and the result
of an additional recursion using e1. The base case is computed directly as
the pair of zero and e0. It is easy to check that the statics and dynamics of
the recursor are preserved by this definition.

We may also use product types to implement mutual recursion, which
allows several mutually recursive computations to be defined simultane-
ously. For example, consider the following recursion equations defining
two mathematical functions on the natural numbers:

E(0) = 1
O(0) = 0

E(n + 1) = O(n)
O(n + 1) = E(n)

Intuitively, E(n) is non-zero iff n is even, and O(n) is non-zero iff n is odd.
If we wish to define these functions in L{nat⇀}, we immediately face the
problem of how to define two functions simultaneously. There is a trick
available in this special case that takes advantage of the fact that E and O
have the same type: simply define eo of type nat → nat→ nat so that
eo(0) represents E and eo(1) represents O. (We leave the details as an
exercise for the reader.)

A more general solution is to recognize that the definition of two mutu-
ally recursive functions may be thought of as the recursive definition of a
pair of functions. In the case of the even and odd functions we will define
the labelled tuple, eEO, of type, τEO, given by

∏ 〈even : nat→ nat, odd : nat→ nat〉.

From this we will obtain the required mutually recursive functions as the
projections eEO · even and eEO · odd.

AUGUST 24, 2010 DRAFT 14:43



122 14.4 Exercises

To effect the mutual recursion the expression eEO is defined to be

fix this:τEO is 〈even : eE, odd : eO〉,

where eE is the expression

λ (x:nat. ifz x {z⇒ s(z) | s(y)⇒ this · odd(y)}),

and eO is the expression

λ (x:nat. ifz x {z⇒ z | s(y)⇒ this · even(y)}).

The functions eE and eO refer to each other by projecting the appropriate
component from the variable this standing for the object itself. The choice
of variable name with which to effect the self-reference is, of course, imma-
terial, but it is common to use this or self to emphasize its role.

In the context of object-oriented languages, labelled tuples of mutually
recursive functions defined in this manner are called objects, and their com-
ponent functions are called methods. Component projection is called mes-
sage passing, viewing the component name as a “message” sent to the object
to invoke the method by that name in the object. Internally to the object the
methods refer to one another by sending a “message” to this, the canonical
name for the object itself.

14.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 15

Sum Types

Most data structures involve alternatives such as the distinction between a
leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. Finite sums generalize nullary and binary sums to
permit an arbitrary number of cases indexed by a finite index set. As with
products, sums come in both eager and lazy variants, differing in how val-
ues of sum type are defined.

15.1 Binary and Nullary Sums

The abstract syntax of sums is given by the following grammar:

Type τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Expr e ::= abort[τ](e) abortτ e abort
in[l][τ](e) l · e left injection
in[r][τ](e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1⇒ e1 | r · x2⇒ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence ad-
mits no introductory form. The eliminatory form, abort[τ](e), aborts
the computation in the event that e evaluates to a value, which it cannot
do. The elements of the binary sum type are labelled to indicate whether



124 15.1 Binary and Nullary Sums

they are drawn from the left or the right summand, either in[l][τ](e) or
in[r][τ](e). A value of the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort[τ](e) : τ

(15.1a)

Γ ` e : τ1 τ = sum(τ1; τ2)

Γ ` in[l][τ](e) : τ
(15.1b)

Γ ` e : τ2 τ = sum(τ1; τ2)

Γ ` in[r][τ](e) : τ
(15.1c)

Γ ` e : sum(τ1; τ2) Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case(e; x1.e1; x2.e2) : τ
(15.1d)

Both branches of the case analysis must have the same type. Since a type
expresses a static “prediction” on the form of the value of an expression,
and since a value of sum type could evaluate to either form at run-time, we
must insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

e 7→ e′

abort[τ](e) 7→ abort[τ](e′)
(15.2a)

{e val}
in[l][τ](e) val

(15.2b)

{e val}
in[r][τ](e) val

(15.2c){
e 7→ e′

in[l][τ](e) 7→ in[l][τ](e′)

}
(15.2d){

e 7→ e′

in[r][τ](e) 7→ in[r][τ](e′)

}
(15.2e)

e 7→ e′

case(e; x1.e1; x2.e2) 7→ case(e′; x1.e1; x2.e2)
(15.2f)

{e val}
case(in[l][τ](e); x1.e1; x2.e2) 7→ [e/x1]e1

(15.2g)

{e val}
case(in[r][τ](e); x1.e1; x2.e2) 7→ [e/x2]e2

(15.2h)

The bracketed premises and rules are to be included for an eager dynamics,
and excluded for a lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

14:43 DRAFT AUGUST 24, 2010



15.2 Finite Sums 125

Theorem 15.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′.

Proof. The proof proceeds by induction on Rules (15.2) for preservation,
and by induction on Rules (15.1) for progress.

15.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so
may we also generalize nullary and binary sums to finite sums. The syntax
for finite sums is given by the following grammar:

Type τ ::= sum[I](i 7→ τi) ∑i∈I τi sum
Expr e ::= in[I][j](e) j · e injection

case[I](e; i 7→ xi.ei) case e {i · xi⇒ ei}i∈I case analysis

We write ∑ 〈i0 : τ0, . . . , in−1 : τn−1〉 for ∑i∈I τi, where I = { i0, . . . , in−1 }.
The statics of finite sums is defined by the following rules:

Γ ` e : τj j ∈ I
Γ ` in[I][j](e) : sum[I](i 7→ τi)

(15.3a)

Γ ` e : sum[I](i 7→ τi) (∀i ∈ I) Γ, xi : τi ` ei : τ

Γ ` case[I](e; i 7→ xi.ei) : τ
(15.3b)

These rules generalize to the finite case the statics for nullary and binary
sums given in Section 15.1 on page 123.

The dynamics of finite sums is defined by the following rules:

{e val}
in[I][j](e) val

(15.4a)

{
e 7→ e′

in[I][j](e) 7→ in[I][j](e′)

}
(15.4b)

e 7→ e′

case[I](e; i 7→ xi.ei) 7→ case[I](e′; i 7→ xi.ei)
(15.4c)

in[I][j](e) val

case[I](in[I][j](e); i 7→ xi.ei) 7→ [e/xj]ej
(15.4d)

These again generalize the dynamics of binary sums given in Section 15.1
on page 123.

AUGUST 24, 2010 DRAFT 14:43



126 15.3 Applications of Sum Types

Theorem 15.2 (Safety). If e : τ, then either e val or there exists e′ : τ such that
e 7→ e′.

Proof. The proof is similar to that for the binary case, as described in Sec-
tion 15.1 on page 123.

As with products, nullary and binary sums are special cases of the finite
form. The type voidmay be defined to be the sum type ∑ ∈∅ ∅ of the empty
family of types. The expression abort(e) may corresponding be defined as
the empty case analysis, case e {∅}. Similarly, the binary sum type τ1 + τ2
may be defined as the sum ∑i∈I τi, where I = { l, r } is the two-element
index set. The binary sum injections l · e and r · e are defined to be their
counterparts, l · e and r · e, respectively. Finally, the binary case analysis,

case e {l · xl⇒ el | r · xr⇒ er},

is defined to be the case analysis, case e {i · xi⇒ τi}i∈I . It is easy to check
that the static and dynamics of sums given in Section 15.1 on page 123 is
preserved by these definitions.

Two special cases of finite sums arise quite commonly. The n-ary sum
corresponds to the finite sum over an index set of the form { 0, . . . , n− 1 }
for some n ≥ 0. The labelled sum corresponds to the case of the index set
being a finite set of symbols serving as symbolic indices for the injections.

15.3 Applications of Sum Types

Sum types have numerous uses, several of which we outline here. More
interesting examples arise once we also have recursive types, which are
introduced in Part VI.

15.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often con-
fused with one another. The type unit has exactly one element, triv,
whereas the type void has no elements at all. Consequently, if e : unit,
then if e evaluates to a value, it must be unit — in other words, e has no
interesting value (but it could diverge). On the other hand, if e : void, then e
must not yield a value; if it were to have a value, it would have to be a value
of type void, of which there are none. This shows that what is called the
void type in many languages is really the type unit because it indicates
that an expression has no interesting value, not that it has no value at all!

14:43 DRAFT AUGUST 24, 2010



15.3 Applications of Sum Types 127

15.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans,
whose syntax is given by the following grammar:

Type τ ::= bool bool booleans
Expr e ::= tt tt truth

ff ff falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool. We leave a
precise formulation of the static and dynamics of this type as an exercise
for the reader.

The type bool is definable in terms of binary sums and nullary prod-
ucts:

bool = sum(unit; unit) (15.5a)
tt = in[l][bool](triv) (15.5b)
ff = in[r][bool](triv) (15.5c)

if(e; e1; e2) = case(e; x1.e1; x2.e2) (15.5d)

In the last equation above the variables x1 and x2 are chosen arbitrarily
such that x1 /∈ e1 and x2 /∈ e2. (We often write an underscore in place of a
variable to stand for a variable that does not occur within its scope.) It is
a simple matter to check that the evident static and dynamics of the type
bool is engendered by these definitions.

15.3.3 Enumerations

More generally, sum types may be used to define finite enumeration types,
those whose values are one of an explicitly given finite set, and whose elim-
ination form is a case analysis on the elements of that set. For example, the
type suit, whose elements are ♣, ♦, ♥, and ♠, has as elimination form the
case analysis

case e {♣⇒ e0 |♦⇒ e1 |♥⇒ e2 |♠⇒ e3},

which distinguishes among the four suits. Such finite enumerations are
easily representable as sums. For example, we may define suit = ∑ ∈I unit,
where I = {♣,♦,♥,♠} and the type family is constant over this set. The
case analysis form for a labelled sum is almost literally the desired case

AUGUST 24, 2010 DRAFT 14:43



128 15.3 Applications of Sum Types

analysis for the given enumeration, the only difference being the binding
for the uninteresting value associated with each summand, which we may
ignore.

15.3.4 Options

Another use of sums is to define the option types, which have the following
syntax:

Type τ ::= opt(τ) τ opt option
Expr e ::= null null nothing

just(e) just(e) something
ifnull[τ](e; e1; x.e2) check e {null⇒ e1 | just(x)⇒ e2}

null test

The type opt(τ) represents the type of “optional” values of type τ. The
introductory forms are null, corresponding to “no value”, and just(e),
corresponding to a specified value of type τ. The elimination form dis-
criminates between the two possibilities.

The option type is definable from sums and nullary products according
to the following equations:

opt(τ) = sum(unit; τ) (15.6a)
null = in[l][opt(τ)](triv) (15.6b)

just(e) = in[r][opt(τ)](e) (15.6c)
ifnull[τ](e; e1; x2.e2) = case(e; .e1; x2.e2) (15.6d)

We leave it to the reader to examine the statics and dynamics implied by
these definitions.

The option type is the key to understanding a common misconception,
the null pointer fallacy. This fallacy, which is particularly common in object-
oriented languages, is based on two related errors. The first error is to deem
the values of certain types to be mysterious entities called pointers, based
on suppositions about how these values might be represented at run-time,
rather than on the semantics of the type itself. The second error compounds
the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not designate a
value of that type at all, but rather rejects all attempts to use it as such.

To help avoid such failures, such languages usually include a function,
say null : τ → bool, that yields tt if its argument is null, and ff otherwise.

14:43 DRAFT AUGUST 24, 2010



15.4 Exercises 129

This allows the programmer to take steps to avoid using null as a value of
the type it purports to inhabit. Consequently, programs are riddled with
conditionals of the form

if null(e) then . . . error . . . else . . . proceed . . . . (15.7)

Despite this, “null pointer” exceptions at run-time are rampant, in part be-
cause it is quite easy to overlook the need for such a test, and in part be-
cause detection of a null pointer leaves little recourse other than abortion
of the program.

The underlying problem may be traced to the failure to distinguish the
type τ from the type opt(τ). Rather than think of the elements of type τ
as pointers, and thereby have to worry about the null pointer, one instead
distinguishes between a genuine value of type τ and an optional value of
type τ. An optional value of type τ may or may not be present, but, if it
is, the underlying value is truly a value of type τ (and cannot be null). The
elimination form for the option type,

ifnull[τ](e; eerror; x.eok) (15.8)

propagates the information that e is present into the non-null branch by
binding a genuine value of type τ to the variable x. The case analysis ef-
fects a change of type from “optional value of type τ” to “genuine value of
type τ”, so that within the non-null branch no further null checks, explicit
or implicit, are required. Observe that such a change of type is not achieved
by the simple Boolean-valued test exemplified by expression (15.7); the ad-
vantage of option types is precisely that it does so.

15.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



130 15.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 16

Pattern Matching

Pattern matching is a natural and convenient generalization of the elimina-
tion forms for product and sum types. For example, rather than write

let x be e in x · l+ x · r

to add the components of a pair, e, of natural numbers, we may instead
write

match e {〈x1, x2〉 ⇒ x1 + x2},

using pattern matching to name the components of the pair and refer to
them directly. The first argument to the match expression is called the match
value and the second argument consist of a finite sequence of rules, sepa-
rated by vertical bars. In this example there is only one rule, but as we shall
see shortly there is, in general, more than one rule in a given match expres-
sion. Each rule consists of a pattern, possibly involving variables, and an
expression that may involve those variables (as well as any others currently
in scope). The value of the match is determined by considering each rule
in the order given to determine the first rule whose pattern matches the
match value. If such a rule is found, the value of the match is the value of
the expression part of the matching rule, with the variables of the pattern
replaced by the corresponding components of the match value.

Pattern matching becomes more interesting, and useful, when com-
bined with sums. The patterns l · x and r · x match the corresponding val-
ues of sum type. These may be used in combination with other patterns
to express complex decisions about the structure of a value. For example,
the following match expresses the computation that, when given a pair of
type (unit+ unit)× nat, either doubles or squares its second component



132 16.1 A Pattern Language

depending on the form of its first component:

match e {〈l · 〈〉, x〉 ⇒ x + x | 〈r · 〈〉, y〉 ⇒ y ∗ y}. (16.1)

It is an instructive exercise to express the same computation using only the
primitives for sums and products given in Chapters 14 and 15.

In this chapter we study a simple language, L{pat}, of pattern matching
over eager product and sum types.

16.1 A Pattern Language

The abstract syntax of L{pat} is defined by the following grammar:

Expr e ::= match(e; rs) match e {rs} case analysis
Rules rs ::= rules[n](r1; . . . ; rn) r1 | . . . | rn (n nat)
Rule r ::= rule[k](p; x1, . . . , xk.e) p⇒ e (k nat)
Pat p ::= wild wild card

x x variable
triv 〈〉 unit
pair(p1; p2) 〈p1, p2〉 pair
in[l](p) l · p left injection
in[r](p) r · p right injection

The operator match has arity (0, 0), specifying that it takes two operands,
the expression to match and a series of rules. A sequence of rules is con-
structed using the operatator rules[n], which has arity (0, . . . , 0) specify-
ing that it has n ≥ 0 operands. Each rule is constructed by the operator
rule[k] of arity (0, k) which specifies that it has two operands, binding k
variables in the second.

16.2 Statics

The statics of L{pat} makes use of a special form of hypothetical judge-
ment, written

x1 : τ1, . . . , xk : τk 
 p : τ,

with almost the same meaning as

x1 : τ1, . . . , xk : τk ` p : τ,

except that each variable is required to be used at most once in p. When
reading the judgement Λ 
 p : τ it is helpful to think of Λ as an output,

14:43 DRAFT AUGUST 24, 2010



16.2 Statics 133

and p and τ as inputs. Given p and τ, the rules determine the hypotheses
Λ such that Λ 
 p : τ.

Λ, x : τ 
 x : τ (16.2a)

∅ 
 : τ (16.2b)

∅ 
 〈〉 : unit (16.2c)

Λ1 
 p1 : τ1 Λ2 
 p2 : τ2 dom(Λ1) ∩ dom(Λ2) = ∅
Λ1 Λ2 
 〈p1, p2〉 : τ1 × τ2

(16.2d)

Λ1 
 p : τ1

Λ1 
 l · p : τ1 + τ2
(16.2e)

Λ2 
 p : τ2

Λ2 
 r · p : τ1 + τ2
(16.2f)

Rule (16.2a) states that a variable is a pattern of type τ. Rule (16.2d) states
that a pair pattern consists of two patterns with disjoint variables.

The typing judgments for a rule,

p⇒ e : τ > τ′,

and for a sequence of rules,

r1 | . . . | rn : τ > τ′,

specify that rules transform a value of type τ into a value of type τ′. These
judgements are inductively defined as follows:

Λ 
 p : τ Γ Λ ` e : τ′

Γ ` p⇒ e : τ > τ′
(16.3a)

Γ ` r1 : τ > τ′ . . . Γ ` rn : τ > τ′

Γ ` r1 | . . . | rn : τ > τ′
(16.3b)

Using the typing judgements for rules, the typing rule for a match ex-
pression may be stated quite easily:

Γ ` e : τ Γ ` rs : τ > τ′

Γ ` match e {rs} : τ′
(16.4)

AUGUST 24, 2010 DRAFT 14:43



134 16.3 Dynamics

16.3 Dynamics

A substitution, θ, is a finite mapping from variables to values. If θ is the sub-
stitution 〈x1 : e1〉 ⊗ · · · ⊗ 〈xk : ek〉, we write θ̂(e) for [e1, . . . , ek/x1, . . . , xk]e.
The judgement θ : Λ is inductively defined by the following rules:

σ : ∅
(16.5a)

σ : Λ σ(x) = e e : τ

σ : Λ, x : τ
(16.5b)

The judgement θ 
 p / e states that the pattern, p, matches the value,
e, as witnessed by the substitution, θ, defined on the variables of p. This
judgement is inductively defined by the following rules:

〈x : e〉 
 x / e (16.6a)

∅ 
 / e (16.6b)

∅ 
 〈〉 / 〈〉 (16.6c)

θ1 
 p1 / e1 θ2 
 p2 / e2 dom(θ1) ∩ dom(θ2) = ∅
θ1 ⊗ θ2 
 〈p1, p2〉 / 〈e1, e2〉

(16.6d)

θ 
 p / e
θ 
 l · p / l · e (16.6e)

θ 
 p / e
θ 
 r · p / r · e (16.6f)

These rules simply collect the bindings for the pattern variables required to
form a substitution witnessing the success of the matching process.

The judgement e ⊥ p states that e does not match the pattern p. It is
inductively defined by the following rules:

e1 ⊥ p1

〈e1, e2〉 ⊥ 〈p1, p2〉
(16.7a)

e2 ⊥ p2

〈e1, e2〉 ⊥ 〈p1, p2〉
(16.7b)

l · e ⊥ r · p (16.7c)

e ⊥ p
l · e ⊥ l · p (16.7d)

14:43 DRAFT AUGUST 24, 2010



16.3 Dynamics 135

r · e ⊥ l · p (16.7e)

e ⊥ p
r · e ⊥ r · p (16.7f)

Neither a variable nor a wildcard nor a null-tuple can mismatch any value
of appropriate type. A pair can only mismatch a pair pattern due to a mis-
match in one of its components. An injection into a sum type can mismatch
the opposite injection, or it can mismatch the same injection by having its
argument mismatch the argument pattern.

Theorem 16.1. Suppose that e : τ, e val, and Λ 
 p : τ. Then either there exists
θ such that θ : Λ and θ 
 p / e, or e ⊥ p.

Proof. By rule induction on Rules (16.2), making use of the canonical forms
lemma to characterize the shape of e based on its type.

The dynamics of the match expression is given in terms of the pattern
match and mismatch judgements as follows:

e 7→ e′

match e {rs} 7→ match e′ {rs} (16.8a)

e val
match e {} err

(16.8b)

e val θ 
 p0 / e

match e {p0 ⇒ e0; rs} 7→ θ̂(e0)
(16.8c)

e val e ⊥ p0 match e {rs} 7→ e′

match e {p0 ⇒ e0; rs} 7→ e′
(16.8d)

Rule (16.8b) specifies that evaluation results in a checked error once all rules
are exhausted. Rules (16.8c) specifies that the rules are to be considered in
order. If the match value, e, matches the pattern, p0, of the initial rule in
the sequence, then the result is the corresponding instance of e0; otherwise,
matching continues by considering the remaining rules.

Theorem 16.2 (Preservation). If e 7→ e′ and e : τ, then e′ : τ.

Proof. By a straightforward induction on the derivation of e 7→ e′.

AUGUST 24, 2010 DRAFT 14:43



136 16.4 Exhaustiveness and Redundancy

16.4 Exhaustiveness and Redundancy

While it is possible to state and prove a progress theorem for L{pat} as
defined in Section 16.1 on page 132, it would not have much force, because
the statics does not rule out pattern matching failure. What is missing is
enforcement of the exhaustiveness of a sequence of rules, which ensures that
every value of the domain type of a sequence of rules must match some
rule in the sequence. In addition it would be useful to rule out redundancy of
rules, which arises when a rule can only match values that are also matched
by a preceding rule. Since pattern matching considers rules in the order in
which they are written, such a rule can never be executed, and hence can
be safely eliminated.

16.4.1 Match Constraints

To express exhaustiveness and irredundancy, we introduce a language of
match constraints that identify a subset of the closed values of a type. With
each rule we associate a constraint that classifies the values that are matched
by that rule. A sequence of rules is exhaustive if every value of the domain
type of the rule satisfies the match constraint of some rule in the sequence.
A rule in a sequence is redundant if every value that satisfies its match con-
traint also satisfies the match constraint of some preceding rule.

The language of match constraints is defined by the following grammar:

Constr ξ ::= all[τ] > truth
and(ξ1; ξ2) ξ1 ∧ ξ2 conjunction
nothing[τ] ⊥ falsity
or(ξ1; ξ2) ξ1 ∨ ξ2 disjunction
in[l](ξ1) l · ξ1 left injection
in[r](ξ2) r · ξ2 right injection
triv 〈〉 unit
pair(ξ1; ξ2) 〈ξ1, ξ2〉 pair

It is easy to define the judgement ξ : τ specifying that the constraint ξ
constrains values of type τ.

The De Morgan Dual, ξ, of a match constraint, ξ, is defined by the fol-

14:43 DRAFT AUGUST 24, 2010



16.4 Exhaustiveness and Redundancy 137

lowing rules:

> =⊥
ξ1 ∧ ξ2 = ξ1 ∨ ξ2

⊥ = >
ξ1 ∨ ξ2 = ξ1 ∧ ξ2

l · ξ1 = l · ξ1 ∨ r · >
r · ξ1 = r · ξ1 ∨ l · >
〈〉 =⊥

〈ξ1, ξ2〉 = 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉 ∨ 〈ξ1, ξ2〉

Intuitively, the dual of a match constraint expresses the negation of that
constraint. In the case of the last four rules it is important to keep in mind
that these constraints apply only to specific types.

The satisfaction judgement, e |= ξ, is defined for values e and constraints
ξ of the same type by the following rules:

e |= > (16.9a)

e |= ξ1 e |= ξ2

e |= ξ1 ∧ ξ2
(16.9b)

e |= ξ1

e |= ξ1 ∨ ξ2
(16.9c)

e |= ξ2

e |= ξ1 ∨ ξ2
(16.9d)

e1 |= ξ1

l · e1 |= l · ξ1
(16.9e)

e2 |= ξ2

r · e2 |= r · ξ2
(16.9f)

〈〉 |= 〈〉 (16.9g)

e1 |= ξ1 e2 |= ξ2

〈e1, e2〉 |= 〈ξ1, ξ2〉
(16.9h)

The De Morgan dual construction negates a constraint.

Lemma 16.3. If ξ : τ, then, for every value e : τ, e |= ξ if, and only if, e 6|= ξ.

AUGUST 24, 2010 DRAFT 14:43



138 16.4 Exhaustiveness and Redundancy

We define the entailment of two constraints, ξ1 |= ξ2 to mean that e |= ξ2
whenever e |= ξ1. By Lemma 16.3 on the previous page we have that ξ1 |=
ξ2 iff |= ξ1 ∨ ξ2. We often write ξ1, . . . , ξn |= ξ for ξ1 ∧ . . . ∧ ξn |= ξ so that
in particular |= ξ means e |= ξ for every value e : τ.

16.4.2 Enforcing Exhaustiveness and Redundancy

To enforce exhaustiveness and irredundancy the statics of pattern match-
ing is augmented with constraints that express the set of values matched
by a given set of rules. A sequence of rules is exhaustive if every value of
suitable type satisfies the associated constraint. A rule is redundant relative
to the preceding rules if every value satisfying its constraint satisfies one of
the preceding constraints. A sequence of rules is irredundant iff no rule is
redundant relative to the rules that precede it in the sequence.

The judgement Λ 
 p : τ [ξ] augments the judgement Λ 
 p : τ with a
match constraint characterizing the set of values of type τ matched by the
pattern p. It is inductively defined by the following rules:

x : τ 
 x : τ [>] (16.10a)

∅ 
 : τ [>] (16.10b)

∅ 
 〈〉 : unit [〈〉] (16.10c)

Λ1 
 p : τ1 [ξ1]

Λ1 
 l · p : τ1 + τ2 [l · ξ1]
(16.10d)

Λ2 
 p : τ2 [ξ2]

Λ2 
 r · p : τ1 + τ2 [r · ξ2]
(16.10e)

Λ1 
 p1 : τ1 [ξ1] Λ2 
 p2 : τ2 [ξ2] Λ1 # Λ2

Λ1 Λ2 
 〈p1, p2〉 : τ1 × τ2 [〈ξ1, ξ2〉]
(16.10f)

Lemma 16.4. Suppose that Λ 
 p : τ [ξ]. For every e : τ such that e val, e |= ξ
iff θ 
 p / e for some θ, and e 6|= ξ iff e ⊥ p.

The judgement Γ ` r : τ > τ′ [ξ] augments the formation judgement for
a rule with a match constraint characterizing the pattern component of the
rule. The judgement Γ ` rs : τ > τ′ [ξ] augments the formation judgement
for a sequence of rules with a match constraint characterizing the values
matched by some rule in the given rule sequence.

Λ 
 p : τ [ξ] Γ Λ ` e : τ′

Γ ` p⇒ e : τ > τ′ [ξ]
(16.11a)

14:43 DRAFT AUGUST 24, 2010



16.4 Exhaustiveness and Redundancy 139

(∀1 ≤ i ≤ n) ξi 6|= ξ1 ∨ . . . ∨ ξi−1

Γ ` r1 : τ > τ′ [ξ1] . . . Γ ` rn : τ > τ′ [ξn]

Γ ` r1 | . . . | rn : τ > τ′ [ξ1 ∨ . . . ∨ ξn]

(16.11b)

Rule (16.11b) requires that each successive rule not be redundant relative to
the preceding rules. The overall constraint associated to the rule sequence
specifies that every value of type τ satisfy the constraint associated with
some rule.

The typing rule for match expressions demands that the rules that com-
prise it be exhaustive:

Γ ` e : τ Γ ` rs : τ > τ′ [ξ] |= ξ

Γ ` match e {rs} : τ′
(16.12)

Rule (16.11b) ensures that ξ is a disjunction of the match constraints asso-
ciated to the constituent rules of the match expression. The requirement
that ξ be valid amounts to requiring that every value of type τ satisfies the
constraint of at least one rule of the match.

Theorem 16.5. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The exhaustiveness check in Rule (16.12) ensures that if e val and
e : τ, then e |= ξ. The form of ξ given by Rule (16.11b) ensures that e |= ξi
for some constraint ξi corresponding to the ith rule. By Lemma 16.4 on the
facing page the value e must match the ith rule, which is enough to ensure
progress.

16.4.3 Checking Exhaustiveness and Redundancy

Checking exhaustiveness and redundacy reduces to showing that the con-
straint validity judgement |= ξ is decidable. We will prove this by defining
a judgement Ξ incon, where Ξ is a finite set of constraints of the same type,
with the meaning that no value of this type satisfies all of the constraints in
Ξ. We will then show that either Ξ incon or not.

The rules defining inconsistency of a finite set, Ξ, of constraints of the
same type are as follows:

Ξ incon
Ξ,> incon

(16.13a)

Ξ, ξ1, ξ2 incon

Ξ, ξ1 ∧ ξ2 incon
(16.13b)

Ξ,⊥ incon
(16.13c)

AUGUST 24, 2010 DRAFT 14:43



140 16.5 Exercises

Ξ, ξ1 incon Ξ, ξ2 incon

Ξ, ξ1 ∨ ξ2 incon
(16.13d)

Ξ, l · ξ1, r · ξ2 incon
(16.13e)

Ξ incon
l · Ξ incon

(16.13f)

Ξ incon
r · Ξ incon

(16.13g)

Ξ1 incon

〈Ξ1, Ξ2〉 incon
(16.13h)

Ξ2 incon

〈Ξ1, Ξ2〉 incon
(16.13i)

In Rule (16.13f) we write l ·Ξ for the finite set of constraints l · ξ1, . . . , l · ξn,
where Ξ = ξ1, . . . , ξn, and similarly in Rules (16.13g), (16.13h), and (16.13i).

Lemma 16.6. It is decidable whether or not Ξ incon.

Proof. The premises of each rule involving only constraints that are proper
components of the constraints in the conclusion. Consequently, we can
simplify Ξ by inverting each of the applicable rules until no rule applies,
then determine whether or not the resulting set, Ξ′, is contradictory in the
sense that it contains ⊥ or both l · ξ and r · ξ ′ for some ξ and ξ ′.

Lemma 16.7. Ξ incon iff Ξ |= ⊥.

Proof. From left to right we proceed by induction on Rules (16.13). From
right to left we may show that if Ξ incon is not derivable, then there exists
a value e such that e |= Ξ, and hence Ξ 6|= ⊥.

16.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 17

Generic Programming

17.1 Introduction

Many programs can be seen as instances of a general pattern applied to a
particular situation. Very often the pattern is determined by the types of
the data involved. For example, in Chapter 12 the pattern of computing by
recursion over a natural number is isolated as the defining characteristic of
the type of natural numbers. This concept will itself emerge as an instance
of the concept of type-generic, or just generic, programming.

Suppose that we have a function, f , of type σ→ σ′ that transforms val-
ues of type σ into values of type σ′. For example, f might be the doubling
function on natural numbers. We wish to extend f to a transformation
from type [σ/t]τ to type [σ′/t]τ by applying f to various spots in the input
where a value of type σ occurs to obtain a value of type σ′, leaving the rest
of the data structure alone. For example, τ might be bool× σ, in which
case f could be extended to a function of type bool× σ → bool× σ′ that
sends the pairs 〈a, b〉 to the pair 〈a, f(b)〉.

This example glosses over a significant problem of ambiguity of the ex-
tension. Given a function f of type σ → σ′, it is not obvious in general
how to extend it to a function mapping [σ/t]τ to [σ′/t]τ. The problem
is that it is not clear which of many occurrences of σ in [σ/t]τ are to be
transformed by f , even if there is only one occurrence of σ. To avoid am-
biguity we need a way to mark which occurrences of σ in [σ/t]τ are to be
transformed, and which are to be left fixed. This can be achieved by isolat-
ing the type operator, t.τ, which is a type expression in which a designated
variable, t, marks the spots at which we wish the transformation to occur.
Given t.τ and f : σ→ σ′, we can extend f unambiguously to a function of



142 17.2 Type Operators

type [σ/t]τ → [σ′/t]τ.
The technique of using a type operator to determine the behavior of

a piece of code is called generic programming. The power of generic pro-
gramming depends on which forms of type operator are considered. The
simplest case is that of a polynomial type operator, one constructed from
sum and product of types, including their nullary forms. These may be
extended to positive type operators, which also permit restricted forms of
function types.

17.2 Type Operators

A type operator is a type equipped with a designated variable whose oc-
currences mark the positions in the type where a transformation is to be
applied. A type operator is represented by an abstractor t.τ such that
t type ` τ type. An example of a type operator is the abstractor

t.unit+ (bool× t)

in which occurrences of t mark the spots in which a transformation is to
be applied. An instance of the type operator t.τ is obtained by substitut-
ing a type, σ, for the variable, t, within the type τ. We sometimes write
Map[t.τ](σ) for the substitution instance [σ/t]τ.

The polynomial type operators are those constructed from the type vari-
able, t, the types void and unit, and the product and sum type construc-
tors, τ1 × τ2 and τ1 + τ2. It is a straightforward exercise to give inductive
definitions of the judgement t.τ poly stating that the operator t.τ is a poly-
nomial type operator.

17.3 Generic Extension

The generic extension primitive has the form

map[t.τ](x.e′; e)

with statics given by the following rule:

t type ` τ type Γ, x : σ ` e′ : σ′ Γ ` e : [σ/t]τ
Γ ` map[t.τ](x.e′; e) : [σ′/t]τ

(17.1)

The abstractor x.e′ specifies a transformation from type σ, the type of x, to
type σ′, the type of e′. The expression e of type [σ/t]τ determines the value

14:43 DRAFT AUGUST 24, 2010



17.3 Generic Extension 143

to be transformed to obtain a value of type [σ′/t]τ. The occurrences of t
in τ determine the spots at which the transformation given by x.e is to be
performed.

The dynamics of generic extension is specified by the following rules.
We consider here only polynomial type operators, leaving the extension to
positive type operators to be considered later.

map[t.t](x.e′; e) 7→ [e/x]e′
(17.2a)

map[t.unit](x.e′; e) 7→ 〈〉
(17.2b)

map[t.τ1 × τ2](x.e′; e)
7→

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

(17.2c)

map[t.void](x.e′; e) 7→ abort(e)
(17.2d)

map[t.τ1 + τ2](x.e′; e)
7→

case e {l · x1⇒ l · map[t.τ1](x.e′; x1) | r · x2⇒ r · map[t.τ2](x.e′; x2)}
(17.2e)

Rule (17.2a) applies the transformation x.e′ to e itself, since the operator
t.t specifies that the transformation is to be perfomed directly. Rule (17.2b)
states that the empty tuple is transformed to itself. Rule (17.2c) states that
to transform e according to the operator t.τ1 × τ2, the first component of e
is transformed according to t.τ1 and the second component of e is trans-
formed according to t.τ2. Rule (17.2d) states that the transformation of a
value of type void aborts, since there can be no such values. Rule (17.2e)
states that to transform e according to t.τ1 + τ2, case analyze e and recon-
struct it after transforming the injected value according to t.τ1 or t.τ2.

Consider the type operator t.τ given by t.unit+ (bool× t). Let x.e be
the abstractor x.s(x), which increments a natural number. Using Rules (17.2)
we may derive that

map[t.τ](x.e; r · 〈tt, n〉) 7→∗ r · 〈tt, n + 1〉.

AUGUST 24, 2010 DRAFT 14:43



144 17.3 Generic Extension

The natural number in the second component of the pair is incremented,
since the type variable, t, occurs in that position in the type operator t.τ.

Theorem 17.1 (Preservation). If map[t.τ](x.e′; e) : ρ and map[t.τ](x.e′; e) 7→
e′′, then e′′ : ρ.

Proof. By inversion of Rule (17.1) we have

1. t type ` τ type;

2. x : σ ` e′ : σ′ for some σ and σ′;

3. e : [σ/t]τ;

4. ρ is [σ′/t]τ.

We proceed by cases on Rules (17.2). For example, consider Rule (17.2c). It
follows from inversion that map[t.τ1](x.e′; e · l) : [σ′/t]τ1, and similarly
that map[t.τ2](x.e′; e · r) : [σ′/t]τ2. It is easy to check that

〈map[t.τ1](x.e′; e · l), map[t.τ2](x.e′; e · r)〉

has type [σ′/t]τ1 × τ2, as required.

The positive type operators extend the polynomial type operators to ad-
mit restricted forms of function type. Specifically, t.τ1 → τ2 is a positive
type operator, provided that (1) t does not occur in τ1, and (2) t.τ2 is a pos-
itive type operator. In general, any occurrences of a type variable t in the
domain a function type are said to be negative occurrences, whereas any oc-
currences of t within the range of a function type, or within a product or
sum type, are said to be positive occurrences.1 A positive type operator is
one for which only positive occurrences of the parameter, t, are permitted.

The generic extension according to a positive type operator is defined
similarly to the case of a polynomial type operator, with the following ad-
ditional rule:

map[t.τ1 → τ2](x.e′; e) 7→ λ (x1:τ1. map[t.τ2](x.e′; e(x1)))
(17.3)

1The origin of this terminology appears to be that a function type τ1 → τ2 is, by the
propositions-as-types principle, analogous to the implication φ1 ⊃ φ2, which is classically
equivalent to ¬φ1 ∨ φ2, placing occurrences in the domain beneath the negation sign.

14:43 DRAFT AUGUST 24, 2010



17.4 Exercises 145

Since t is not permitted to occur within the domain type, the type of the
result is τ1 → [σ′/t]τ2, assuming that e is of type τ1 → [σ/t]τ2. It is easy to
verify preservation for the generic extension of a positive type operator.

It is interesting to consider what goes wrong if we relax the restric-
tion on positive type operators to admit negative, as well as positive, oc-
currences of the parameter of a type operator. Consider the type opera-
tor t.τ1 → τ2, without restriction on t, and suppose that x : σ ` e′ : σ′.
The generic extension map[t.τ1 → τ2](x.e′; e) should have type [σ′/t]τ1 →
[σ′/t]τ2, given that e has type [σ/t]τ1 → [σ/t]τ2. The extension should
yield a function of the form

λ (x1:[σ
′/t]τ1. . . .(e(. . .(x1))))

in which we apply e to a transformation of x1 and then transform the re-
sult. The trouble is that we are given, inductively, that map[t.τ1](x.e′;−)
transforms values of type [σ/t]τ1 into values of type [σ′/t]τ1, but we need
to go the other way around in order to make x1 suitable as an argument for e.
But there is no obvious way to obtain the required transformation.

One solution to this is to assume that the fundamental transformation
x.e′ is invertible so that we may apply the inverse transformation on x1 to
get an argument of type suitable for e, then apply the forward transforma-
tion on the result, just as in the positive case. Since we cannot invert an ar-
bitrary transformation, we must instead pass both the transformation and
its inverse to the generic extension operation so that it can “go backwards”
as necessary to cover negative occurrences of the type parameter. So in the
general case the generic extension applies only when we are given a type
isomorphism (a pair of mutually inverse mappings between two types), and
then results in another isomorphism pair. We leave the formulation of this
as an exercise for the reader.

17.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



146 17.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Part VI

Infinite Data Types





Chapter 18

Inductive and Co-Inductive
Types

The inductive and the coinductive types are two important forms of recur-
sive type. Inductive types correspond to least, or initial, solutions of certain
type isomorphism equations, and coinductive types correspond to their
greatest, or final, solutions. Intuitively, the elements of an inductive type
are those that may be obtained by a finite composition of its introductory
forms. Consequently, if we specify the behavior of a function on each of the
introductory forms of an inductive type, then its behavior is determined for
all values of that type. Such a function is called a recursor, or catamorphism.
Dually, the elements of a coinductive type are those that behave properly
in response to a finite composition of its elimination forms. Consequently,
if we specify the behavior of an element on each elimination form, then we
have fully specified that element as a value of that type. Such an element is
called an generator, or anamorphism.

18.1 Motivating Examples

The most important example of an inductive type is the type of natural
numbers as formalized in Chapter 12. The type nat is defined to be the
least type containing z and closed under s(−). The minimality condition
is witnessed by the existence of the recursor, natiter e {z⇒e0 | s(x)⇒e1},
which transforms a natural number into a value of type τ, given its value
for zero, and a transformation from its value on a number to its value on the
successor of that number. This operation is well-defined precisely because
there are no other natural numbers. Put the other way around, the existence



150 18.1 Motivating Examples

of this operation expresses the inductive nature of the type nat.
With a view towards deriving the type nat as a special case of an in-

ductive type, it is useful to consolidate zero and successor into a single
introductory form, and to correspondingly consolidate the basis and in-
ductive step of the recursor. This following rules specify the statics of this
reformulation:

Γ ` e : unit+ nat

Γ ` foldnat(e) : nat (18.1a)

Γ, x : unit+ τ ` e1 : τ Γ ` e2 : nat
Γ ` recnat[x.e1](e2) : τ

(18.1b)

The expression foldnat(e) is the unique introductory form of the type nat.
Using this, the expression z is defined to be foldnat(l · 〈〉), and s(e) is de-
fined to be foldnat(r · e). The recursor, recnat[x.e1](e2), takes as argu-
ment the abstractor x.e1 that consolidates the basis and inductive step into
a single computation that is given a value of type unit+ τ yields a value
of type τ. Intuitively, if x is replaced by the value l · 〈〉, then e1 computes
the base case of the recursion, and if x is replaced by the value r · e, then e1
computes the inductive step as a function of the result, e, of the recursive
call.

The dynamics of the consolidated representation of natural numbers is
given by the following rules:

foldnat(e) val
(18.2a)

e2 7→ e′2
recnat[x.e1](e2) 7→ recnat[x.e1](e′2)

(18.2b)

recnat[x.e1](foldnat(e2))

7→
[map[t.unit+ t](y.recnat[x.e1](y); e2)/x]e1

(18.2c)

Rule (18.2c) makes use of generic extension (see Chapter 8) to apply the
recursor to the predecessor, if any, of a natural number. The idea is that
the result of extending the recursor from the type unit+ nat to the type
unit+ τ is substituted into the inductive step, given by the expression e1.
If we expand the definition of the generic extension in place, we obtain the

14:43 DRAFT AUGUST 24, 2010



18.1 Motivating Examples 151

following reformulation of this rule:

recnat[x.e1](foldnat(e2))

7→
[case e2 {l · ⇒ l · 〈〉 | r · y⇒ r · recnat[x.e1](y)}/x]e1

An illustrative example of a coinductive type is the type of streams of
natural numbers. A stream is an infinite sequence of natural numbers such
that an element of the stream can be computed only after computing all
preceding elements in that stream. That is, the computations of successive
elements of the stream are sequentially dependent in that the computation
of one element influences the computation of the next. This characteristic
of the introductory form for streams is dual to the analogous property of
the eliminatory form for natural numbers whereby the result for a number
is determined by its result for all preceding numbers.

A stream is characterized by its behavior under the elimination forms
for the stream type: hd(e) returns the next, or head, element of the stream,
and tl(e) returns the tail of the stream, the stream resulting when the head
element is removed. A stream is introduced by a generator, the dual of a
recursor, that determines the head and the tail of the stream in terms of the
current state of the stream, which is represented by a value of some type.
The statics of streams is given by the following rules:

Γ ` e : stream
Γ ` hd(e) : nat

(18.3a)

Γ ` e : stream
Γ ` tl(e) : stream

(18.3b)

Γ ` e : τ Γ, x : τ ` e1 : nat Γ, x : τ ` e2 : τ

Γ ` strgen e <hd(x)⇒ e1 & tl(x)⇒ e2> : stream
(18.3c)

In Rule (18.3c) the current state of the stream is given by the expression e
of some type τ, and the head and tail of the stream are determined by the
expressions e1 and e2, respectively, as a function of the current state.

The dynamics of streams is given by the following rules:

strgen e <hd(x)⇒ e1 & tl(x)⇒ e2> val
(18.4a)

e 7→ e′

hd(e) 7→ hd(e′)
(18.4b)

AUGUST 24, 2010 DRAFT 14:43



152 18.1 Motivating Examples

hd(strgen e <hd(x)⇒ e1 & tl(x)⇒ e2>) 7→ [e/x]e1
(18.4c)

e 7→ e′

tl(e) 7→ tl(e′)
(18.4d)

tl(strgen e <hd(x)⇒ e1 & tl(x)⇒ e2>)

7→
strgen [e/x]e2 <hd(x)⇒ e1 & tl(x)⇒ e2>

(18.4e)

Rules (18.4c) and (18.4e) express the dependency of the head and tail of the
stream on its current state. Observe that the tail is obtained by applying
the generator to the new state determined by e2 as a function of the current
state.

To derive streams as a special case of a coinductive type, we consolidate
the head and the tail into a single eliminatory form, and reorganize the
generator correspondingly. This leads to the following statics:

Γ ` e : stream
Γ ` unfoldstream(e) : nat× stream

(18.5a)

Γ, x : τ ` e1 : nat× τ Γ ` e2 : τ

Γ ` genstream[x.e1](e2) : stream
(18.5b)

Rule (18.5a) states that a stream may be unfolded into a pair consisting of its
head, a natural number, and its tail, another stream. The head, hd(e), and
tail, tl(e), of a stream, e, are defined to be the projections unfoldstream(e) ·
l and unfoldstream(e) · r, respectively. Rule (18.5b) states that a stream
may be generated from the state element, e2, by an expression e1 that yields
the head element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream[x.e1](e2) val
(18.6a)

e 7→ e′

unfoldstream(e) 7→ unfoldstream(e′)
(18.6b)

unfoldstream(genstream[x.e1](e2))

7→
map[t.nat× t](y.genstream[x.e1](y); [e2/x]e1)

(18.6c)

14:43 DRAFT AUGUST 24, 2010



18.2 Statics 153

Rule (18.6c) uses generic extension to generate a new stream whose state
is the second component of [e2/x]e1. Expanding the generic extension we
obtain the following reformulation of this rule:

unfoldstream(genstream[x.e1](e2))

7→
〈([e2/x]e1) · l, genstream[x.e1](([e2/x]e1) · r)〉

18.2 Statics

We may now give a fully general account of inductive and coinductive
types, which are defined in terms of positive type operators. We will con-
sider the language L{µiµf}, which extends L{→×+} with inductive and
co-inductive types.

18.2.1 Types

The syntax of inductive and coinductive types involves type variables, which
are, of course, variables ranging over types. The abstract syntax of induc-
tive and coinductive types is given by the following grammar:

Type τ ::= t t self-reference
ind(t.τ) µi(t.τ) inductive
coi(t.τ) µf(t.τ) coinductive

Type formation judgements have the form

t1 type, . . . , tn type ` τ type,

where t1, . . . , tn are type names. We let ∆ range over finite sets of hypothe-
ses of the form t type, where t name is a type name. The type formation
judgement is inductively defined by the following rules:

∆, t type ` t type (18.7a)

∆ ` unit type (18.7b)

∆ ` τ1 type ∆ ` τ2 type

∆ ` prod(τ1; τ2) type
(18.7c)

∆ ` void type (18.7d)

AUGUST 24, 2010 DRAFT 14:43



154 18.3 Dynamics

∆ ` τ1 type ∆ ` τ2 type

∆ ` sum(τ1; τ2) type
(18.7e)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(18.7f)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` ind(t.τ) type
(18.7g)

∆, t type ` τ type ∆ ` t.τ pos

∆ ` coi(t.τ) type
(18.8)

18.2.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is
given by the following grammar:

Expr e ::= fold[t.τ](e) fold(e) constructor
rec[t.τ][x.e1](e2) rec[x.e1](e2) recursor
unfold[t.τ](e) unfold(e) destructor
gen[t.τ][x.e1](e2) gen[x.e1](e2) generator

The statics for inductive and coinductive types is given by the following
typing rules:

Γ ` e : [ind(t.τ)/t]τ
Γ ` fold[t.τ](e) : ind(t.τ)

(18.9a)

Γ, x : [ρ/t]τ ` e1 : ρ Γ ` e2 : ind(t.τ)

Γ ` rec[t.τ][x.e1](e2) : ρ
(18.9b)

Γ ` e : coi(t.τ)

Γ ` unfold[t.τ](e) : [coi(t.τ)/t]τ (18.9c)

Γ ` e2 : ρ Γ, x : ρ ` e1 : [ρ/t]τ
Γ ` gen[t.τ][x.e1](e2) : coi(t.τ)

(18.9d)

18.3 Dynamics

The dynamics of these constructs is given in terms of the generic exten-
sion operation described in Chapter 17. The following rules specify a lazy
dynamics for L{µiµf}:

fold(e) val
(18.10a)

14:43 DRAFT AUGUST 24, 2010



18.4 Exercises 155

e2 7→ e′2
rec[x.e1](e2) 7→ rec[x.e1](e′2)

(18.10b)

rec[x.e1](fold(e2))

7→
[map[t.τ](y.rec[x.e1](y); e2)/x]e1

(18.10c)

gen[x.e1](e2) val
(18.10d)

e 7→ e′

unfold(e) 7→ unfold(e′)
(18.10e)

unfold(gen[x.e1](e2))

7→
map[t.τ](y.gen[x.e1](y); [e2/x]e1)

(18.10f)

Rule (18.10c) states that to evaluate the recursor on a value of recursive
type, we inductively apply the recursor as guided by the type operator to
the value, and then perform the inductive step on the result. Rule (18.10f)
is simply the dual of this rule for coinductive types.

Lemma 18.1. If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on Rules (18.10).

Lemma 18.2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. By rule induction on Rules (18.9).

18.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



156 18.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 19

Recursive Types

Inductive and coinductive types, such as natural numbers and streams,
may be seen as examples of fixed points of type operators up to isomorphism.
An isomorphism between two types, τ1 and τ2, is given by two expressions

1. x1 : τ1 ` e2 : τ2, and

2. x2 : τ2 ` e1 : τ1

that are mutually inverse to each other.1 For example, the types nat and
unit+ nat are isomorphic, as witnessed by the following two expressions:

1. x : unit+ nat ` case x {l · ⇒ z | r · x2⇒ s(x2)} : nat, and

2. x : nat ` ifz x {z⇒ l · 〈〉 | s(x2)⇒ r · x2} : unit+ nat.

These are called, respectively, the fold and unfold operations of the iso-
morphism nat ∼= unit+ nat. Thinking of unit+ nat as [nat/t](unit+ t),
this means that nat is a fixed point of the type operator t.unit+ t.

In this chapter we study the language L{+×⇀µ}, which provides so-
lutions to all type isomorphism equations. The recursive type µt.τ is defined
to be a solution to the type isomorphism

µt.τ ∼= [µt.τ/t]τ.

This is witnessed by the operations

x : µt.τ ` unfold(x) : [µt.τ/t]τ

1To make this precise requires a discussion of equivalence of expressions to be taken up
in Chapter 50. For now we will rely on an intuitive understanding of when two expressions
are equivalent.



158 19.1 Solving Type Isomorphisms

and
x : [µt.τ/t]τ ` fold(x) : µt.τ,

which are mutually inverse to each other.
Requiring solutions to all type equations may seem suspicious, since we

know by Cantor’s Theorem that an isomorphisms such as X ∼= (X → 2)
is impossible. This negative result tells us not that our requirement is un-
tenable, but rather that types are not sets. To permit solution of arbitrary
type equations, we must take into account that types describe computa-
tions, some of which may not even terminate. Consequently, the function
space does not coincide with the set-theoretic function space, but rather is
analogous to it (in a precise sense that we shall not enter into here).

19.1 Solving Type Isomorphisms

The recursive type µt.τ, where t.τ is a type operator, represents a solution
for t to the isomorphism t ∼= τ. The solution is witnessed by two oper-
ations, fold(e) and unfold(e), that relate the recursive type µt.τ to its
unfolding, [µt.τ/t]τ, and serve, respectively, as its introduction and elimi-
nation forms.

The language L{+×⇀µ} extends L{⇀}with recursive types and their
associated operations.

Type τ ::= t t self-reference
rec(t.τ) µt.τ recursive

Expr e ::= fold[t.τ](e) fold(e) constructor
unfold(e) unfold(e) destructor

The statics of L{+×⇀µ} consists of two forms of judgement. The first,
called type formation, is a general hypothetical judgement of the form

∆ ` τ type,

where ∆ has the form t1 type, . . . , tk type. Type formation is inductively
defined by the following rules:

∆, t type ` t type
(19.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(19.1b)

14:43 DRAFT AUGUST 24, 2010



19.1 Solving Type Isomorphisms 159

∆, t type ` τ type

∆ ` rec(t.τ) type
(19.1c)

The second form of judgement comprising the statics is the typing judge-
ment, which is a hypothetical judgement of the form

Γ ` e : τ,

where we assume that τ type. Typing for L{+×⇀µ} is inductively defined
by the following rules:

Γ ` e : [rec(t.τ)/t]τ
Γ ` fold[t.τ](e) : rec(t.τ)

(19.2a)

Γ ` e : rec(t.τ)

Γ ` unfold(e) : [rec(t.τ)/t]τ (19.2b)

The dynamics of L{+×⇀µ} is specified by one axiom stating that the
elimination form is inverse to the introduction form, together with rules
specifying the order of evaluation (eager or lazy, according to whether the
bracketed rules and premises are included or omitted):

{e val}
fold[t.τ](e) val

(19.3a)

{
e 7→ e′

fold[t.τ](e) 7→ fold[t.τ](e′)

}
(19.3b)

e 7→ e′

unfold(e) 7→ unfold(e′)
(19.3c)

fold[t.τ](e) val
unfold(fold[t.τ](e)) 7→ e

(19.3d)

It is a straightforward exercise to prove type safety for L{+×⇀µ}.

Theorem 19.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

AUGUST 24, 2010 DRAFT 14:43



160 19.2 Recursive Data Structures

19.2 Recursive Data Structures

One important application of recursive types is to the representation of in-
ductive data types such as the type of natural numbers. We may think of
the type nat as a solution (up to isomorphism) of the type equation

nat ∼= [z : unit, s : nat]

According to this isomorphism every natural number is either zero or the
successor of another natural number. A solution is given by the recursive
type

µt.[z : unit, s : t]. (19.4)

The introductory forms for the type nat are defined by the following equa-
tions:

z = fold(z · 〈〉)
s(e) = fold(s · e).

The conditional branch may then be defined as follows:

ifz e {z⇒ e0 | s(x)⇒ e1} = case unfold(e) {z · ⇒ e0 | s · x⇒ e1},

where the “underscore” indicates a variable that does not occur free in e0.
It is easy to check that these definitions exhibit the expected behavior.

As another example, the type list of lists of natural numbers may be
represented by the recursive type

µt.[n : unit, c : nat× t]

so that we have the isomorphism

list ∼= [n : unit, c : nat× list].

The list formation operations are represented by the following equations:

nil = fold(n · 〈〉)
cons(e1; e2) = fold(c · 〈e1, e2〉).

A conditional branch on the form of the list may be defined by the follow-
ing equation:

listcase e {nil⇒ e0 | cons(x; y)⇒ e1} =
case unfold(e) {n · ⇒ e0 | c · 〈x, y〉 ⇒ e1},

14:43 DRAFT AUGUST 24, 2010



19.3 Self-Reference 161

where we have used an underscore for a “don’t care” variable, and used
pattern-matching syntax to bind the components of a pair.

As long as sums and products are evaluated eagerly, there is a natural
correspondence between this representation of lists and the conventional
“blackboard notation” for linked lists. We may think of fold as an abstract
heap-allocated pointer to a tagged cell consisting of either (a) the tag n with
no associated data, or (b) the tag c attached to a pair consisting of a natural
number and another list, which must be an abstract pointer of the same
sort. If sums or products are evaluated lazily, then the blackboard notation
breaks down because it is unable to depict the suspended computations
that are present in the data structure. In general there is no substitute for the
type itself. Drawings can be helpful, but the type determines the semantics.

We may also represent coinductive types, such as the type of streams of
natural numbers, using recursive types. The representation is particularly
natural in the case that fold(−) is evaluated lazily, for then we may define
the type stream to be the recursive type

µt.nat× t.

This states that every stream may be thought of as a computation of a pair
consisting of a number and another stream. If fold(−) is evaluated ea-
gerly, then we may instead consider the recursive type

µt.unit→ (nat× t),

which expresses the same representation of streams. In either case streams
cannot be easily depicted in blackboard notation, not so much because they
are infinite, but because there is no accurate way to depict the delayed com-
putation other than by an expression in the programming language. Here
again we see that pictures can be helpful, but are not adequate for accu-
rately defining a data structure.

19.3 Self-Reference

In the general recursive expression, fix[τ](x.e), the variable, x, stands for
the expression itself. This is ensured by the unrolling transition

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It
is useful to think of x as an implicit argument to e, which is to be thought of

AUGUST 24, 2010 DRAFT 14:43



162 19.3 Self-Reference

as a function of x that it implicitly implied to the recursive expression itself
whenever it is used. In many well-known languages this implicit argument
has a special name, such as this or self, that emphasizes its self-referential
interpretation.

Using this intuition as a guide, we may derive general recursion from
recursive types. This derivation shows that general recursion may, like
other language features, be seen as a manifestation of type structure, rather
than an ad hoc language feature. The derivation is based on isolating a type
of self-referential expressions of type τ, written self(τ). The introduction
form of this type is (a variant of) general recursion, written self[τ](x.e),
and the elimination form is an operation to unroll the recursion by one step,
written unroll(e). The statics of these constructs is given by the following
rules:

Γ, x : self(τ) ` e : τ

Γ ` self[τ](x.e) : self(τ)
(19.5a)

Γ ` e : self(τ)
Γ ` unroll(e) : τ

(19.5b)

The dynamics is given by the following rule for unrolling the self-reference:

self[τ](x.e) val
(19.6a)

e 7→ e′

unroll(e) 7→ unroll(e′)
(19.6b)

unroll(self[τ](x.e)) 7→ [self[τ](x.e)/x]e
(19.6c)

The main difference, compared to general recursion, is that we distinguish
a type of self-referential expressions, rather than impose self-reference at
every type. However, as we shall see shortly, the self-referential type is
sufficient to implement general recursion, so the difference is largely one of
technique.

The type self(τ) is definable from recursive types. As suggested ear-
lier, the key is to consider a self-referential expression of type τ to be a func-
tion of the expression itself. That is, we seek to define the type self(τ) so
that it satisfies the isomorphism

self(τ) ∼= self(τ)→ τ.

This means that we seek a fixed point of the type operator t.t→ τ, where
t /∈ τ is a type variable standing for the type in question. The required fixed

14:43 DRAFT AUGUST 24, 2010



19.4 Exercises 163

point is just the recursive type

rec(t.t→ τ),

which we take as the definition of self(τ).
The self-referential expression self[τ](x.e) is then defined to be the

expression
fold(λ (x:self(τ). e)).

We may easily check that Rule (19.5a) is derivable according to this defi-
nition. The expression unroll(e) is correspondingly defined to be the ex-
pression

unfold(e)(e).

It is easy to check that Rule (19.5b) is derivable from this definition. More-
over, we may check that

unroll(self[τ](y.e)) 7→∗ [self[τ](y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expres-
sions of type τ.

One consequence of admitting the self-referential type self(τ) is that
we may use it to define general recursion at any type. To be precise, we
may define fix[τ](x.e) to stand for the expression

unroll(self[τ](y.[unroll(y)/x]e))

in which we have unrolled the recursion at each occurrence of x within e.
It is easy to check that this verifies the statics of general recursion given in
Chapter 13. Moreover, it also validates the dynamics, as evidenced by the
following derivation:

fix[τ](x.e) = unroll(self[τ](y.[unroll(y)/x]e))
7→∗ [unroll(self[τ](y.[unroll(y)/x]e))/x]e
= [fix[τ](x.e)/x]e.

It follows that recursive types may be used to define a non-terminating
expression of every type, namely fix[τ](x.x). Unlike many other type
constructs we have considered, recursive types change the meaning of ev-
ery type, not just those that involve recursion. Recursive types are there-
fore said to be a non-conservative extension of languages such as L{nat→},
which otherwise admits no non-terminating computations.

19.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



164 19.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Part VII

Dynamic Types





Chapter 20

The Untyped λ-Calculus

Types are the central organizing principle in the study of programming
languages. Yet many languages of practical interest are said to be untyped.
Have we missed something important? The answer is no! The supposed
opposition between typed and untyped languages turns out to be illusory.
In fact, untyped languages are special cases of typed languages with a sin-
gle, pre-determined recursive type. Far from being untyped, such languages
are instead uni-typed.1

In this chapter we study the premier example of a uni-typed program-
ming language, the (untyped) λ-calculus. This formalism was introduced
by Church in the 1930’s as a universal language of computable functions.
It is distinctive for its austere elegance. The λ-calculus has but one “fea-
ture”, the higher-order function, with which to compute. Everything is a
function, hence every expression may be applied to an argument, which
must itself be a function, with the result also being a function. To borrow a
well-worn phrase, in the λ-calculus it’s functions all the way down!

20.1 The λ-Calculus

The abstract syntax of L{λ} is given by the following grammar:

Expr u ::= x x variable
λ(x.u) λ x. u λ-abstraction
ap(u1; u2) u1(u2) application

The statics of L{λ} is defined by general hypothetical judgements of
the form x1 ok, . . . , xn ok ` u ok, stating that u is a well-formed expression

1An apt description of Dana Scott’s.



168 20.1 The λ-Calculus

involving the variables x1, . . . , xn. (As usual, we omit explicit mention of
the parameters when they can be determined from the form of the hypothe-
ses.) This relation is inductively defined by the following rules:

Γ, x ok ` x ok (20.1a)

Γ ` u1 ok Γ ` u2 ok

Γ ` ap(u1; u2) ok
(20.1b)

Γ, x ok ` u ok

Γ ` λ(x.u) ok
(20.1c)

The dynamics is given by the following rules:

λ(x.u) val (20.2a)

ap(λ(x.u1); u2) 7→ [u2/x]u1
(20.2b)

u1 7→ u′1
ap(u1; u2) 7→ ap(u′1; u2)

(20.2c)

In the λ-calculus literature this judgement is called weak head reduction. The
first rule is called β-reduction; it defines the meaning of function application
as substitution of argument for parameter.

Despite the apparent lack of types, L{λ} is nevertheless type safe!

Theorem 20.1. If u ok, then either u val, or there exists u′ such that u 7→ u′ and
u′ ok.

Proof. Exactly as in preceding chapters. We may show by induction on
transition that well-formation is preserved by the dynamics. Since every
closed value of L{λ} is a λ-abstraction, every closed expression is either a
value or can make progress.

Definitional equivalence for L{λ} is a judgement of the form Γ ` u ≡
u′, where Γ = x1 ok, . . . , xn ok for some n ≥ 0, and u and u′ are terms
having at most the variables x1, . . . , xn free. It is inductively defined by the
following rules:

Γ, u ok ` u ≡ u (20.3a)

Γ ` u ≡ u′

Γ ` u′ ≡ u
(20.3b)

Γ ` u ≡ u′ Γ ` u′ ≡ u′′

Γ ` u ≡ u′′
(20.3c)

14:43 DRAFT AUGUST 24, 2010



20.2 Definability 169

Γ ` e1 ≡ e′1 Γ ` e2 ≡ e′2
Γ ` ap(e1; e2) ≡ ap(e′1; e′2)

(20.3d)

Γ, x ok ` u ≡ u′

Γ ` λ(x.u) ≡ λ(x.u′)
(20.3e)

Γ ` ap(λ(x.e2); e1) ≡ [e1/x]e2 (20.3f)

We often write just u ≡ u′ when the variables involved need not be empha-
sized or are clear from context.

20.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness.
It is a Turing-complete language in the sense that it has the same capabil-
ity to expression computations on the natural numbers as does any other
known programming language. Church’s Law states that any conceivable
notion of computable function on the natural numbers is equivalent to the
λ-calculus. This is certainly true for all known means of defining com-
putable functions on the natural numbers. The force of Church’s Law is
that it postulates that all future notions of computation will be equivalent
in expressive power (measured by definability of functions on the natural
numbers) to the λ-calculus. Church’s Law is therefore a scientific law in the
same sense as, say, Newton’s Law of Universal Gravitation, which makes
a prediction about all future measurements of the acceleration in a gravita-
tional field.2

We will sketch a proof that the untyped λ-calculus is as powerful as the
language PCF described in Chapter 13. The main idea is to show that the
PCF primitives for manipulating the natural numbers are definable in the
untyped λ-calculus. This means, in particular, that we must show that the
natural numbers are definable as λ-terms in such a way that case analysis,
which discriminates between zero and non-zero numbers, is definable. The
principal difficulty is with computing the predecessor of a number, which
requires a bit of cleverness. Finally, we show how to represent general
recursion, completing the proof.

2Unfortunately, it is common in Computer Science to put forth as “laws” assertions that
are not scientific laws at all. For example, Moore’s Law is merely an observation about a
near-term trend in microprocessor fabrication that is certainly not valid over the long term,
and Amdahl’s Law is but a simple truth of arithmetic. Worse, Church’s Law, which is a
proper scientific law, is usually called Church’s Thesis, which, to the author’s ear, suggests
something less than the full force of a scientific law.

AUGUST 24, 2010 DRAFT 14:43



170 20.2 Definability

The first task is to represent the natural numbers as certain λ-terms,
called the Church numerals.

0 = λ b. λ s. b (20.4a)

n + 1 = λ b. λ s. s(n(b)(s)) (20.4b)

It follows that
n(u1)(u2) ≡ u2(. . . (u2(u1))),

the n-fold application of u2 to u1. That is, n iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of
arithmetic. For example, successor, addition, and multiplication are de-
fined by the following untyped λ-terms:

succ = λ x. λ b. λ s. s(x(b)(s)) (20.5)
plus = λ x. λ y. y(x)(succ) (20.6)

times = λ x. λ y. y(0)(plus(x)) (20.7)

It is easy to check that succ(n) ≡ n + 1, and that similar correctness con-
ditions hold for the representations of addition and multiplication.

To define ifz(u; u0; x.u1) requires a bit of ingenuity. We wish to find a
term pred such that

pred(0) ≡ 0 (20.8)

pred(n + 1) ≡ n. (20.9)

To compute the predecessor using Church numerals, we must show how to
compute the result for n + 1 as a function of its value for n. At first glance
this seems straightforward—just take the successor—until we consider the
base case, in which we define the predecessor of 0 to be 0. This invalidates
the obvious strategy of taking successors at inductive steps, and necessi-
tates some other approach.

What to do? A useful intuition is to think of the computation in terms
of a pair of “shift registers” satisfying the invariant that on the nth iteration
the registers contain the predecessor of n and n itself, respectively. Given
the result for n, namely the pair (n− 1, n), we pass to the result for n + 1
by shifting left and incrementing to obtain (n, n + 1). For the base case, we
initialize the registers with (0, 0), reflecting the stipulation that the prede-
cessor of zero be zero. To compute the predecessor of n we compute the
pair (n− 1, n) by this method, and return the first component.

14:43 DRAFT AUGUST 24, 2010



20.3 Scott’s Theorem 171

To make this precise, we must first define a Church-style representation
of ordered pairs.

〈u1, u2〉 = λ f . f(u1)(u2) (20.10)
u · l = u(λ x. λ y. x) (20.11)
u · r = u(λ x. λ y. y) (20.12)

It is easy to check that under this encoding 〈u1, u2〉 · l ≡ u1, and that a
similar equivalence holds for the second projection. We may now define
the required representation, up, of the predecessor function:

u′p = λ x. x(〈0, 0〉)(λ y. 〈y · r, s(y · r)〉) (20.13)

up = λ x. u(x) · l (20.14)

It is easy to check that this gives us the required behavior. Finally, we may
define ifz(u; u0; x.u1) to be the untyped term

u(u0)(λ . [up(u)/x]u1).

This gives us all the apparatus of PCF, apart from general recursion. But
this is also definable using a fixed point combinator. There are many choices
of fixed point combinator, of which the best known is the Y combinator:

Y = λ F. (λ f . F( f( f)))(λ f . F( f( f))). (20.15)

Observe that
Y(F) ≡ F(Y(F)).

Using the Y combinator, we may define general recursion by writing Y(λ x. u),
where x stands for the recursive expression itself.

20.3 Scott’s Theorem

Definitional equivalence for the untyped λ-calculus is undecidable: there
is no algorithm to determine whether or not two untyped terms are defini-
tionally equivalent. The proof of this result is based on two key lemmas:

1. For any untyped λ-term u, we may find an untyped term v such that
u(pvq) ≡ v, where pvq is the Gödel number of v, and pvq is its rep-
resentation as a Church numeral. (See Chapter 12 for a discussion of
Gödel-numbering.)

AUGUST 24, 2010 DRAFT 14:43



172 20.3 Scott’s Theorem

2. Any two non-trivial3 properties A0 and A1 of untyped terms that re-
spect definitional equivalence are inseparable. This means that there
is no decidable property B of untyped terms such that A0 u implies
that B u andA1 u implies that it is not the case that B u. In particular,
if A0 and A1 are inseparable, then neither is decidable.

For a propertyB of untyped terms to respect definitional equivalence means
that if B u and u ≡ u′, then B u′.

Lemma 20.2. For any u there exists v such that u(pvq) ≡ v.

Proof Sketch. The proof relies on the definability of the following two oper-
ations in the untyped λ-calculus:

1. ap(pu1q)(pu2q) ≡ pu1(u2)q.

2. nm(n) ≡ pnq.

Intuitively, the first takes the representations of two untyped terms, and
builds the representation of the application of one to the other. The sec-
ond takes a numeral for n, and yields the representation of n. Given these,
we may find the required term v by defining v = w(pwq), where w =

λ x. u(ap(x)(nm(x))). We have

v = w(pwq)

≡ u(ap(pwq)(nm(pwq)))

≡ u(pw(pwq)q)

≡ u(pvq).

The definition is very similar to that of Y(u), except that u takes as input
the representation of a term, and we find a v such that, when applied to the
representation of v, the term u yields v itself.

Lemma 20.3. Suppose thatA0 andA1 are two non-vacuous properties of untyped
terms that respect definitional equivalence. Then there is no untyped term w such
that

1. For every u either w(puq) ≡ 0 or w(puq) ≡ 1.

2. If A0 u, then w(puq) ≡ 0.

3A property of untyped terms is said to be trivial if it either holds for all untyped terms
or never holds for any untyped term.

14:43 DRAFT AUGUST 24, 2010



20.4 Untyped Means Uni-Typed 173

3. If A1 u, then w(puq) ≡ 1.

Proof. Suppose there is such an untyped term w. Let v be the untyped
term λ x. ifz(w(x); u1; .u0), where A0 u0 and A1 u1. By Lemma 20.2 on
the preceding page there is an untyped term t such that v(ptq) ≡ t. If
w(ptq) ≡ 0, then t ≡ v(ptq) ≡ u1, and so A1 t, since A1 respects def-
initional equivalence and A1 u1. But then w(ptq) ≡ 1 by the defining
properties of w, which is a contradiction. Similarly, if w(ptq) ≡ 1, then
A0 t, and hence w(ptq) ≡ 0, again a contradiction.

Corollary 20.4. There is no algorithm to decide whether or not u ≡ u′.

Proof. For fixed u consider the property Eu u′ defined by u′ ≡ u. This is
non-vacuous and respects definitional equivalence, and hence is undecid-
able.

20.4 Untyped Means Uni-Typed

The untyped λ-calculus may be faithfully embedded in the typed language
L{+×⇀µ}, enriched with recursive types. This means that every untyped
λ-term has a representation as an expression in L{+×⇀µ} in such a way
that execution of the representation of a λ-term corresponds to execution
of the term itself. If the execution model of the λ-calculus is call-by-name,
this correspondence holds for the call-by-name variant of L{+×⇀µ}, and
similarly for call-by-value.

It is important to understand that this form of embedding is not a matter
of writing an interpreter for the λ-calculus in L{+×⇀µ} (which we could
surely do), but rather a direct representation of untyped λ-terms as certain
typed expressions of L{+×⇀µ}. It is for this reason that we say that un-
typed languages are just a special case of typed languages, provided that
we have recursive types at our disposal.

The key observation is that the untyped λ-calculus is really the uni-typed
λ-calculus! It is not the absence of types that gives it its power, but rather
that it has only one type, namely the recursive type

D = µt.t→ t.

A value of type D is of the form fold(e) where e is a value of type D → D
— a function whose domain and range are both D. Any such function can
be regarded as a value of type D by “rolling”, and any value of type D can
be turned into a function by “unrolling”. As usual, a recursive type may

AUGUST 24, 2010 DRAFT 14:43



174 20.4 Untyped Means Uni-Typed

be seen as a solution to a type isomorphism equation, which in the present
case is the equation

D ∼= D → D.

This specifies that D is a type that is isomorphic to the space of functions
on D itself, something that is impossible in conventional set theory, but is
feasible in the computationally-based setting of the λ-calculus.

This isomorphism leads to the following translation, ofL{λ} intoL{+×⇀µ}:

x† = x (20.16a)

λ x. u† = fold(λ (x:D. u†)) (20.16b)

u1(u2)
† = unfold(u†

1)(u†
2) (20.16c)

Observe that the embedding of a λ-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
rolling the recursive type. Consequently,

λ x. u1(u2)
† = unfold(fold(λ (x:D. u†

1)))(u†
2)

≡ λ (x:D. u†
1)(u†

2)

≡ [u†
2/x]u†

1

= ([u2/x]u1)
†.

The last step, stating that the embedding commutes with substitution, is
easily proved by induction on the structure of u1. Thus β-reduction is faith-
fully implemented by evaluation of the embedded terms.

Thus we see that the canonical untyped language, L{λ}, which by dint
of terminology stands in opposition to typed languages, turns out to be
but a typed language after all! Rather than eliminating types, an untyped
language consolidates an infinite collection of types into a single recursive
type. Doing so renders static type checking trivial, at the expense of incur-
ring substantial dynamic overhead to coerce values to and from the recur-
sive type. In Chapter 21 we will take this a step further by admitting many
different types of data values (not just functions), each of which is a com-
ponent of a “master” recursive type. This shows that so-called dynamically
typed languages are, in fact, statically typed. Thus a traditional distinction
can hardly be considered an opposition, since dynamic languages are but
particular forms of static language in which (undue) emphasis is placed on
a single recursive type.

14:43 DRAFT AUGUST 24, 2010



20.5 Exercises 175

20.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



176 20.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 21

Dynamic Typing

We saw in Chapter 20 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped λ-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first ar-
gument can only be a function. Obviously this property breaks down once
more than one class of value is permitted into the language. For example, if
we add natural numbers as a primitive concept to the untyped λ-calculus
(rather than defining them via Church encodings), then it is possible to in-
cur a run-time error arising from attempting to apply a number to an argu-
ment, or to add a function to a number. One school of thought in language
design is to turn this vice into a virtue by embracing a model of compu-
tation that has multiple classes of value of a single type. Such languages
are said to be dynamically typed, in purported opposition to statically typed
languages. But the supposed opposition is illusory. Just as the untyped λ-
calculus is really unityped, so dynamic languages are special cases of static
languages.

21.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of
L{nat⇀}, called L{dyn}. The abstract syntax of L{dyn} is given by the



178 21.1 Dynamically Typed PCF

following grammar:

Expr d ::= x x variable
num(n) n numeral
zero zero zero
succ(d) succ(d) successor
ifz(d; d0; x.d1) ifz d {zero⇒ d0 | succ(x)⇒ d1}

zero test
fun(λ x. d) λ(x.d) abstraction
dap(d1; d2) d1(d2) application
fix(x.d) fix x is d recursion

There are two classes of values in L{dyn}, the numbers, which have the
form n,1 and the functions, which have the form λ(x.d). The expressions
zero and succ(d) are not in themselves values, but rather are operations
that evaluate to classified values.

The concrete syntax of L{dyn} is somewhat deceptive, in keeping with
common practice in dynamic languages. For example, the concrete syntax
for a number is a bare numeral, n, but in fact it is just a convenient nota-
tion for the classified value, num(n), of class num. Similarly, the concrete
syntax for a function is a λ-abstraction, λ(x.d), which must be regarded as
standing for the classified value fun(λ x. d) of class fun.

The statics of L{dyn} is essentially the same as that of L{λ} given in
Chapter 20; it merely checks that there are no free variables in the expres-
sion. The judgement

x1 ok, . . . xn ok ` d ok

states that d is a well-formed expression with free variables among those in
the hypothesis list.

The dynamics of L{dyn} checks for errors that would never arise in
a safe statically typed language. For example, function application must
ensure that its first argument is a function, signaling an error in the case
that it is not, and similarly the case analysis construct must ensure that its
first argument is a number, signaling an error if not. The reason for having
classes labelling values is precisely to make this run-time check possible.
One could argue that the required check may be made by inspection of the
unlabelled value itself, but this is unrealistic. At run-time both numbers
and functions might be represented by machine words, the former a two’s
complement number, the latter an address in memory. But given an arbi-
trary word, one cannot determine whether it is a number or an address!

1The numerals, n, are n-fold compositions of the form s(s(. . . s(z) . . .)).

14:43 DRAFT AUGUST 24, 2010



21.1 Dynamically Typed PCF 179

The value judgement, d val, states that d is a fully evaluated (closed)
expression:

num(n) val (21.1a)

fun(λ x. d) val (21.1b)

The dynamics makes use of judgements that check the class of a value,
and recover the underlying λ-abstraction in the case of a function.

num(n) is num n (21.2a)

fun(λ x. d) is fun x.d (21.2b)

The second argument of each of these judgements has a special status—it is
not an expression of L{dyn}, but rather just a special piece of syntax used
internally to the transition rules given below.

We also will need the “negations” of the class-checking judgements in
order to detect run-time type errors.

num( ) isnt fun (21.3a)

fun( ) isnt num (21.3b)

The transition judgement, d 7→ d′, and the error judgement, d err, are
defined simultaneously by the following rules:2

zero 7→ num(z) (21.4a)

d 7→ d′

succ(d) 7→ succ(d′)
(21.4b)

d is num n
succ(d) 7→ num(s(n))

(21.4c)

d isnt num
succ(d) err

(21.4d)

d 7→ d′

ifz(d; d0; x.d1) 7→ ifz(d′; d0; x.d1)
(21.4e)

d is num z
ifz(d; d0; x.d1) 7→ d0

(21.4f)

d is num s(n)
ifz(d; d0; x.d1) 7→ [num(n)/x]d1

(21.4g)

2The obvious error propagation rules discussed in Chapter 9 are omitted here for the
sake of concision.

AUGUST 24, 2010 DRAFT 14:43



180 21.2 Variations and Extensions

d isnt num
ifz(d; d0; x.d1) err

(21.4h)

d1 7→ d′1
dap(d1; d2) 7→ dap(d′1; d2)

(21.4i)

d1 is fun x.d
dap(d1; d2) 7→ [d2/x]d

(21.4j)

d1 isnt fun

dap(d1; d2) err
(21.4k)

fix(x.d) 7→ [fix(x.d)/x]d (21.4l)

Rule (21.4g) labels the predecessor with the class num to maintain the in-
variant that variables are bound to expressions of L{dyn}.

The language L{dyn} enjoys essentially the same safety properties as
L{nat⇀}, except that there are more opportunities for errors to arise at
run-time.

Theorem 21.1 (Safety). If d ok, then either d val, or d err, or there exists d′ such
that d 7→ d′.

Proof. By rule induction on Rules (21.4). The rules are designed so that
if d ok, then some rule, possibly an error rule, applies, ensuring progress.
Since well-formedness is closed under substitution, the result of a transition
is always well-formed.

21.2 Variations and Extensions

The dynamic language L{dyn} defined in Section 21.1 on page 177 closely
parallels the static language L{nat⇀} defined in Chapter 13. One dis-
crepancy, however, is in the treatment of natural numbers. Whereas in
L{nat⇀} the zero and successor operations are introductory forms for
the type nat, in L{dyn} they are elimination forms that act on separately-
defined numerals. The point of this representation is to ensure that there is
a well-defined class of numbers in the language. It is worthwhile to explore
an alternative representation that, superficially, is even closer to L{nat⇀}.
Suppose that we eliminate the expression num(n) from the language, but
retain zero and succ(d), with the idea that these are to be thought of as
introductory forms for numbers in the language.

Regardless of whether we give succ(d) an eager or a lazy dynamics,
we are immediately faced with the problem that such an expression is well-
formed for any well-formed d. So, in particular, the expression succ(λ(x.d))

14:43 DRAFT AUGUST 24, 2010



21.2 Variations and Extensions 181

is a value, as is succ(zero). It is clear that we have admitted much more
than just numbers into the language. Put in other terms, there is no longer
a well-defined class of numbers, but rather two separate classes of values,
zero and successor, with no guarantee that an instance of the successor class
involves another number.

The dynamics of the conditional branch changes only slightly, as de-
scribed by the following rules:

d 7→ d′

ifz(d; d0; x.d1) 7→ ifz(d′; d0; x.d1)
(21.5a)

d is zero
ifz(d; d0; x.d1) 7→ d0

(21.5b)

d is succ d′

ifz(d; d0; x.d1) 7→ [d′/x]d1
(21.5c)

d isnt zero d isnt succ
ifz(d; d0; x.d1) err

(21.5d)

The foregoing rules are to be augmented by the following rules that check
whether a value is of class zero or successor:

zero is zero
(21.6a)

succ(d) isnt zero
(21.6b)

succ(d) is succ d
(21.6c)

zero isnt succ
(21.6d)

A peculiarity of this formulation of the conditional is that it can only be un-
derstood as distinguishing zero from succ( ), rather than as distinguish-
ing zero from non-zero. The reason is that if d is not zero, it might be either
a successor or a function, and hence its “predecessor” is not well-defined.

Similar considerations arise when enriching L{dyn} with structured
data. The classic example is to enrich the language as follows:

Expr d ::= nil nil null
cons(d1; d2) cons(d1; d2) pair
ifnil(d; d0; x, y.d1) ifnil d {nil⇒ d0 | cons(x; y)⇒ d1}

conditional

AUGUST 24, 2010 DRAFT 14:43



182 21.2 Variations and Extensions

The expression ifnil(d; d0; x, y.d1) distinguishes the null structure from
the pair of two structures. We leave to the reader the exercise of formulating
the dynamics of this extension.

An advantage of dynamic typing is that the constructors nil and cons(d1; d2)

are sufficient to build unbounded, as well as bounded, data structures such
as lists or trees. For example, the list consisting of three zero’s may be rep-
resented by the value

cons(zero; cons(zero; cons(zero; nil))).

But what to make of this beast?

cons(zero; cons(zero; cons(zero; λ(x)x))).

It is a perfectly valid expression, but does not correspond to any natural
data structure.

The disadvantage of this representation becomes apparent as soon as
one wishes to define operations on lists, such as the append function:

fix a isλ(x.λ(y.ifnil(x; y; x1, x2.cons(x1; a(x2)(y)))))

What if x is the second list-like value given above? As it stands, the ap-
pend function will signal an error upon reaching the function at the end of
the list. If, however, y is this value, no error is signalled. This asymmetry
may seem innocuous, but it is only one simple manifestation of a perva-
sive problem with dynamic languages: it is impossible to state within the
language even the most rudimentary assumptions about the inputs, such
as the assumption that both arguments to the append function ought to be
genuine lists.

There is something quite unnatural about the conditional expression
ifnil(d; d0; x, y.d1): why should there be a special distinction between nil

and a pair? Why not distinguish, say, nil from a function? Or a function
from a successor? Or a multi-way distinction among various type classes?
The choice made here is quite ad hoc. It raises the question of whether some
more systematic account is possible.

The standard solution is to enrich the language with predicates that dis-
tinguish values based on their class and destructors that decompose values
built with constructorssuch as nil and cons(d1; d2).

Expr d ::= cond(d; d0; d1) cond(d; d0; d1) conditional
nil?(d) nil?(d) nil test
cons?(d) cons?(d) pair test
car(d) car(d) first projection
cdr(d) cdr(d) second projection

14:43 DRAFT AUGUST 24, 2010



21.3 Critique of Dynamic Typing 183

The conditional cond(d; d0; d1) distinguishes d between nil and all other
values. If d is not nil, the conditional evaluates to d0, and otherwise eval-
uates to d1. In other words the value nil represents boolean falsehood,
and all other values represent boolean truth. The predicates nil?(d) and
cons?(d) test the class of their argument, yielding nil if the argument is
not of the specified class, and yielding some non-nil if so. The destructors
car(d) and cdr(d)3 decompose cons(d1; d2) into d1 and d2, respectively.

When written using predicates and destructors, the append function
becomes

fix a isλ(x.λ(y.cond(x; cons(car(x); a(cdr(x))(y)); y)))

The main difference compared to the previous version is that there is some
additional bureaucracy involving the destructors and predicates.

21.3 Critique of Dynamic Typing

The safety theorem for L{dyn} is often promoted as an advantage of dy-
namic over static typing. Unlike static languages, which rule out some
candidate programs as ill-typed, essentially every piece of abstract syntax
in L{dyn} is well-formed, and hence, by Theorem 21.1 on page 180, has a
well-defined dynamics. But this can also be seen as a disadvantage, since
errors that could be ruled out at compile time by type checking are not sig-
nalled until run time in L{dyn}. To make this possible, the dynamics of
L{dyn} must enforce conditions that need not be checked in a statically
typed language.

Consider, for example, the addition function in L{dyn}, whose spec-
ification is that, when passed two values of class num, returns their sum,
which is also of class num:4

fun(λ x. fix(p.fun(λ y. ifz(y; x; y′.succ(p(y′)))))).

The addition function may, deceptively, be written in concrete syntax as
follows:

λ(x.fix p isλ(y.ifz y {zero⇒ x | succ(y′)⇒ succ(p(y′))})).

3This terminology for the projections is archaic, but firmly established in the literature.
4This specification imposes no restrictions on the behavior of addition on arguments

that are not classified as numbers, but one could make the further demand that the function
abort when applied to arguments that are not classified by num.

AUGUST 24, 2010 DRAFT 14:43



184 21.4 Exercises

It is deceptive, because the concrete syntax obscures the class tags on val-
ues, and obscures the use of primitives that check those tags. Let us now
examine the costs of these operations in a bit more detail.

First, observe that the body of the fixed point expression is labelled with
class fun. The dynamics of the fixed point construct binds p to this function.
This means that the dynamic class check incurred by the application of p in
the recursive call is guaranteed to succeed. But L{dyn} offers no means of
suppressing this redundant check, because it cannot express the invariant
that p is always bound to a value of class fun.

Second, observe that the result of applying the inner λ-abstraction is
either x, the argument of the outer λ-abstraction, or the successor of a re-
cursive call to the function itself. The successor operation checks that its
argument is of class num, even though this is guaranteed for all but the
base case, which returns the given x, which can be of any class at all. In
principle we can check that x is of class num once, and observe that it is oth-
erwise a loop invariant that the result of applying the inner function is of
this class. However, L{dyn} gives us no way to express this invariant; the
repeated, redundant tag checks imposed by the successor operation cannot
be avoided.

Third, the argument, y, to the inner function is either the original ar-
gument to the addition function, or is the predecessor of some earlier re-
cursive call. But as long as the original call is to a value of class num, then
the dynamics of the conditional will ensure that all recursive calls have this
class. And again there is no way to express this invariant in L{dyn}, and
hence there is no way to avoid the class check imposed by the conditional
branch.

Classification is not free—storage is required for the class label, and it
takes time to detach the class from a value each time it is used and to attach
a class to a value whenever it is created. Although the overhead of classi-
fication is not asymptotically significant (it slows down the program only
by a constant factor), it is nevertheless non-negligible, and should be elim-
inated whenever possible. But this is impossible within L{dyn}, because it
cannot enforce the restrictions required to express the required invariants.
For that we need a static type system.

21.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 22

Hybrid Typing

A hybrid language is one that combines static and dynamic typing by en-
riching a statically typed language with a distinguished type, dyn, of dy-
namic values. The dynamically typed language considered in Chapter 21
may be embedded into the hybrid language by regarding a dynamically
typed program as a statically typed program of type dyn. This shows that
static and dynamic types are not opposed to one another, but may coexist
harmoniously.

The notion of a hybrid language, however, is itself illusory, because the
type dyn is really a particular recursive type. This shows that there is no
need for any special mechanisms to support dynamic typing. Rather, they
may be derived from the more general concept of a recursive type. More-
over, this shows that dynamic typing is but a mode of use of static typing! The
supposed opposition between dynamic and static typing is, therefore, a
fallacy: dynamic typing can hardly be opposed to that of which it is but a
special case!

22.1 A Hybrid Language

Consider the language L{nat dyn⇀}, which extends L{nat⇀} (defined
in Chapter 13) with the following additional constructs:

Type τ ::= dyn dyn dynamic
Expr e ::= new[l](e) l · e construct

cast[l](e) e · l destruct
Class l ::= num num number

fun fun function



186 22.1 A Hybrid Language

The type dyn is the type of dynamically classified values. The new operation
attaches a classifier to a value, and the cast operation checks the classifier
and returns the associated value.

The statics of L{nat dyn⇀} extends that of L{nat⇀} with the follow-
ing additional rules:

Γ ` e : nat
Γ ` new[num](e) : dyn (22.1a)

Γ ` e : parr(dyn; dyn)
Γ ` new[fun](e) : dyn

(22.1b)

Γ ` e : dyn
Γ ` cast[num](e) : nat

(22.1c)

Γ ` e : dyn
Γ ` cast[fun](e) : parr(dyn; dyn)

(22.1d)

The statics ensures that class labels are applied to objects of the appropriate
type, namely num for natural numbers, and fun for functions defined over
labelled values.

The dynamics of L{nat dyn⇀} extends that of L{nat⇀} with the fol-
lowing rules:

e val
new[l](e) val

(22.2a)

e 7→ e′

new[l](e) 7→ new[l](e′)
(22.2b)

e 7→ e′

cast[l](e) 7→ cast[l](e′)
(22.2c)

new[l](e) val
cast[l](new[l](e)) 7→ e

(22.2d)

new[l′](e) val l 6= l′

cast[l](new[l′](e)) err
(22.2e)

Casting compares the class of the object to the required class, returning the
underlying object if these coincide, and signalling an error otherwise.

Lemma 22.1 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for
some class l and some e′ val. If l = num, then e′ : nat, and if l = fun, then
e′ : parr(dyn; dyn).

Proof. By a straightforward rule induction on the statics of L{nat dyn⇀}.

Theorem 22.2 (Safety). The language L{nat dyn⇀} is safe:

14:43 DRAFT AUGUST 24, 2010



22.2 Optimization of Dynamic Typing 187

1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or e err, or e 7→ e′ for some e′.

Proof. Preservation is proved by rule induction on the dynamics, and progress
is proved by rule induction on the statics, making use of the canonical
forms lemma. The opportunities for run-time errors are the same as those
for L{dyn}—a well-typed cast might fail at run-time if the class of the cast
does not match the class of the value.

22.2 Optimization of Dynamic Typing

The language L{nat dyn⇀} combines static and dynamic typing by en-
riching L{nat⇀} with the type, dyn, of classified values. It is, for this
reason, called a hybrid language. Unlike a purely dynamic type system, a
hybrid type system can express invariants that are crucial to the optimiza-
tion of programs in L{dyn}.

Let us examine this in the case of the addition function, which may be
defined in L{nat dyn⇀} as follows:

fun · λ (x:dyn. fix p:dyn is fun · λ (y:dyn. ex,p,y)),

where
x : dyn, p : dyn, y : dyn ` ex,p,y : dyn

is defined to be the expression

ifz (y · num) {zero⇒ x | succ(y′)⇒ num · (s((p · fun)(num · y′) · num))}.

This is a reformulation of the dynamic addition function given in Section 21.3
on page 183 in which we have made explicit the checking and imposition of
classes on values. We will exploit the static type system of L{nat dyn⇀} to
optimize this dynamically typed implementation of addition in accordance
with the specification given in Section 21.3 on page 183.

First, note that the body of the fix expression is an explicitly labelled
function. This means that when the recursion is unwound, the variable p is
bound to this value of type dyn. Consequently, the check that p is labelled
with class fun is redundant, and can be eliminated. This is achieved by
rewriting the function as follows:

fun · λ (x:dyn. fun · fix p:dyn⇀ dyn isλ (y:dyn. e′x,p,y)),

AUGUST 24, 2010 DRAFT 14:43



188 22.2 Optimization of Dynamic Typing

where e′x,p,y is the expression

ifz (y · num) {zero⇒ x | succ(y′)⇒ num · (s(p(num · y′) · num))}.

We have “hoisted” the function class label out of the loop, and suppressed
the cast inside the loop. Correspondingly, the type of p has changed to
dyn⇀ dyn, reflecting that the body is now a “bare function”, rather than a
labelled function value of type dyn.

Next, observe that the parameter y of type dyn is cast to a number on
each iteration of the loop before it is tested for zero. Since this function
is recursive, the bindings of y arise in one of two ways, at the initial call
to the addition function, and on each recursive call. But the recursive call
is made on the predecessor of y, which is a true natural number that is
labelled with num at the call site, only to be removed by the class check at
the conditional on the next iteration. This suggests that we hoist the check
on y outside of the loop, and avoid labelling the argument to the recursive
call. Doing so changes the type of the function, however, from dyn⇀ dyn to
nat⇀ dyn. Consequently, further changes are required to ensure that the
entire function remains well-typed.

Before doing so, let us make another observation. The result of the re-
cursive call is checked to ensure that it has class num, and, if so, the un-
derlying value is incremented and labelled with class num. If the result
of the recursive call came from an earlier use of this branch of the condi-
tional, then obviously the class check is redundant, because we know that
it must have class num. But what if the result came from the other branch of
the conditional? In that case the function returns x, which need not be of
class num because it is provided by the caller of the function. However, we
may reasonably insist that it is an error to call addition with a non-numeric
argument. This canbe enforced by replacing x in the zero branch of the
conditional by x · num.

Combining these optimizations we obtain the inner loop e′′x defined as
follows:

fix p:nat⇀ nat isλ (y:nat. ifz y {zero⇒ x · num | succ(y′)⇒ s(p(y′))}).

This function has type nat⇀ nat, and runs at full speed when applied to a
natural number—all checks have been hoisted out of the inner loop.

Finally, recall that the overall goal is to define a version of addition that
works on values of type dyn. Thus we require a value of type dyn⇀ dyn,
but what we have at hand is a function of type nat⇀ nat. This can be

14:43 DRAFT AUGUST 24, 2010



22.3 Static “Versus” Dynamic Typing 189

converted to the required form by pre-composing with a cast to num and
post-composing with a coercion to num:

fun · λ (x:dyn. fun · λ (y:dyn. num · (e′′x(y · num)))).

The innermost λ-abstraction converts the function e′′x from type nat⇀ nat

to type dyn⇀ dyn by composing it with a class check that ensures that y is
a natural number at the initial call site, and applies a label to the result to
restore it to type dyn.

22.3 Static “Versus” Dynamic Typing

There are many attempts to distinguish dynamic from static typing, all of
which are misleading or wrong. For example, it is often said that static type
systems associate types with variables, but dynamic type systems associate
types with values. This oft-repeated characterization appears to be justified
by the absence of type annotations on λ-abstractions, and the presence of
classes on values. But it is based on a confusion of classes with types—the
class of a value (num or fun) is not its type. Moreover, a static type system
assigns types to values just as surely as it does to variables, so the descrip-
tion fails on this account as well. Thus, this supposed distinction between
dynamic and static typing makes no sense, and is best disregarded.

Another way to differentiate dynamic from static languages is to say
that whereas static languages check types at compile time, dynamic lan-
guages check types at run time. While this description seems superficially
accurate, it does not bear scrutiny. To say that static languages check types
statically is to state a tautology, and to say that dynamic languages check
types at run-time is to utter a falsehood. Dynamic languages perform class
checking, not type checking, at run-time. For example, application checks that
its first argument is labelled with fun; it does not type check the body of
the function. Indeed, at no point does the dynamics compute the type of a
value, rather it checks its class against its expectations before proceeding.
Here again, a supposed contrast between static and dynamic languages
evaporates under careful analysis.

Another characterization is to assert that dynamic languages admit het-
erogeneous lists, whereas static languages admit only homogeneous lists. (The
distinction applies to other collections as well.) To see why this description
is wrong, let us consider briefly how one might add lists to L{dyn}. One
would add two constructs, nil, representing the empty list, and cons(d1; d2),
representing the non-empty list with head d1 and tail d2. The origin of the

AUGUST 24, 2010 DRAFT 14:43



190 22.4 Reduction to Recursive Types

supposed distinction lies in the observation that each element of a list rep-
resented in this manner might have a different class. For example, one
might form the list

cons(s(z); cons(λ(λ(x.x)); nil)),

whose first element is a number, and whose second element is a function.
Such a list is said to be heterogeneous. In contrast static languages com-
mit to a single type for each element of the list, and hence are said to be
homogeneous. But here again the supposed distinction breaks down on
close inspection, because it is based on the confusion of the type of a value
with its class. Every labelled value has type dyn, so that the lists are type
homogeneous. But since values of type dyn may have different classes, lists
are class heterogeneous—regardless of whether the language is statically or
dynamically typed!

What, then, are we to make of the traditional distinction between dy-
namic and static languages? Rather than being in opposition to each other,
we see that dynamic languages are a mode of use of static languages. If we have
a type dyn in the language, then we have all of the apparatus of dynamic
languages at our disposal, so there is no loss of expressive power. But there
is a very significant gain from embedding dynamic typing within a static
type discipline! We can avoid much of the overhead of dynamic typing by
simply limiting our use of the type dyn in our programs, as was illustrated
in Section 22.2 on page 187.

22.4 Reduction to Recursive Types

The type dyn codifies the use of dynamic typing within a static language. Its
introduction form labels an object of the appropriate type, and its elimina-
tion form is a (possibly undefined) casting operation. Rather than treating
dyn as primitive, we may derive it as a particular use of recursive types,
according to the following definitions:

dyn = µt.[num : nat, fun : t ⇀ t] (22.3)
new[num](e) = fold(num · e) (22.4)
new[fun](e) = fold(fun · e) (22.5)
cast[num](e) = case unfold(e) {num · x⇒ x | fun · x⇒ error} (22.6)
cast[fun](e) = case unfold(e) {num · x⇒ error | fun · x⇒ x} (22.7)

14:43 DRAFT AUGUST 24, 2010



22.4 Reduction to Recursive Types 191

One may readily check that the static and dynamics for the type dyn are
derivable according to these definitions.

This encoding readily generalizes to any number of classes of values:
we need only consider additional summands corresponding to each class.
For example, to account for the constructors nil and cons(d1; d2) consid-
ered in Chapter 21, the definition of dyn is expanded to the recursive type

µt.[num : nat, fun : t ⇀ t, nil : unit, cons : t× t],

with corresponding definitions for the new and cast operations. This ex-
emplifies the general case: dynamic typing is a mode of use of static types
in which classes of values are simply names of summands in a recursive
type of dynamic values.

AUGUST 24, 2010 DRAFT 14:43



192 22.4 Reduction to Recursive Types

14:43 DRAFT AUGUST 24, 2010



Part VIII

Variable Types





Chapter 23

Girard’s System F

The languages we have considered so far are all monomorphic in that every
expression has a unique type, given the types of its free variables, if it has
a type at all. Yet it is often the case that essentially the same behavior is re-
quired, albeit at several different types. For example, in L{nat→} there is
a distinct identity function for each type τ, namely λ (x:τ. x), even though
the behavior is the same for each choice of τ. Similarly, there is a distinct
composition operator for each triple of types, namely

◦τ1,τ2,τ3 = λ ( f:τ2 → τ3. λ (g:τ1 → τ2. λ (x:τ1. f(g(x))))).

Each choice of the three types requires a different program, even though
they all exhibit the same behavior when executed.

Obviously it would be useful to capture the general pattern once and
for all, and to instantiate this pattern each time we need it. The expression
patterns codify generic (type-independent) behaviors that are shared by all
instances of the pattern. Such generic expressions are said to be polymor-
phic. In this chapter we will study a language introduced by Girard under
the name System F and by Reynolds under the name polymorphic typed λ-
calculus. Although motivated by a simple practical problem (how to avoid
writing redundant code), the concept of polymorphism is central to an im-
pressive variety of seemingly disparate concepts, including the concept of
data abstraction (the subject of Chapter 24), and the definability of product,
sum, inductive, and coinductive types considered in the preceding chap-
ters. (Only general recursive types extend the expressive power of the lan-
guage.)



196 23.1 System F

23.1 System F

System F, or the polymorphic λ-calculus, or L{→∀}, is a minimal functional
language that illustrates the core concepts of polymorphic typing, and per-
mits us to examine its surprising expressive power in isolation from other
language features. The syntax of System F is given by the following gram-
mar:

Type τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Expr e ::= x x
lam[τ](x.e) λ (x:τ. e) abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) Λ(t.e) type abstraction
App[τ](e) e[τ] type application

A type abstraction, Lam(t.e), defines a generic, or polymorphic, function with
type parameter t standing for an unspecified type within e. A type application,
or instantiation, App[τ](e), applies a polymorphic function to a specified
type, which is then plugged in for the type parameter to obtain the result.
Polymorphic functions are classified by the universal type, all(t.τ), that
determines the type, τ, of the result as a function of the argument, t.

The statics of L{→∀} consists of two judgement forms, the type forma-
tion judgement,

~t | ∆ ` τ type,

and the typing judgement,

~t ~x | ∆ Γ ` e : τ.

These are generic judgements over type variables ~t and expression variables
~x. They are also hypothetical in a set ∆ of type assumptions of the form
t type, where t ∈ T , and typing assumptions of the form x : τ, where x ∈ T
and ∆ ` τ type. As usual we drop explicit mention of the parameter sets,
relying on typographical conventions to determine them.

The rules defining the type formation judgement are as follows:

∆, t type ` t type (23.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(23.1b)

14:43 DRAFT AUGUST 24, 2010



23.1 System F 197

∆, t type ` τ type

∆ ` all(t.τ) type
(23.1c)

The rules defining the typing judgement are as follows:

∆ Γ, x : τ ` x : τ (23.2a)

∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2

∆ Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(23.2b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(23.2c)

∆, t type Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(23.2d)

∆ Γ ` e : all(t.τ′) ∆ ` τ type

∆ Γ ` App[τ](e) : [τ/t]τ′
(23.2e)

Lemma 23.1 (Regularity). If ∆ Γ ` e : τ, and if ∆ ` τi type for each assumption
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (23.2).

The statics admits the structural rules for a general hypothetical judge-
ment. In particular, we have the following critical substitution property for
type formation and expression typing.

Lemma 23.2 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then
∆ ` [τ/t]τ′ type.

2. If ∆, t type Γ ` e′ : τ′ and ∆ ` τ type, then ∆ [τ/t]Γ ` [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ ` e′ : τ′ and ∆ Γ ` e : τ, then ∆ Γ ` [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context, Γ,
as well as into the term and its type, because the type variable t may occur
freely in any of these positions.

Returning to the motivating examples from the introduction, the poly-
morphic identity function, I, is written

Λ(t.λ (x:t. x));

it has the polymorphic type

∀(t.t→ t).

AUGUST 24, 2010 DRAFT 14:43



198 23.1 System F

Instances of the polymorphic identity are written I[τ], where τ is some
type, and have the type τ → τ.

Similarly, the polymorphic composition function, C, is written

Λ(t1.Λ(t2.Λ(t3.λ ( f:t2 → t3. λ (g:t1 → t2. λ (x:t1. f(g(x)))))))).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, writing
C[τ1][τ2][τ3]. Each such instance has the type

(τ2 → τ3)→ (τ1 → τ2)→ (τ1 → τ3).

Dynamics

The dynamics of L{→∀} is given as follows:

lam[τ](x.e) val (23.3a)

Lam(t.e) val (23.3b)

ap(lam[τ1](x.e); e2) 7→ [e2/x]e (23.3c)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(23.3d)

App[τ](Lam(t.e)) 7→ [τ/t]e (23.3e)

e 7→ e′

App[τ](e) 7→ App[τ](e′)
(23.3f)

These rules endow L{→∀} with a call-by-name interpretation of applica-
tion, but one could as well consider a call-by-value variant.

It is a simple matter to prove safety forL{→∀}, using familiar methods.

Lemma 23.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam[τ1](x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Proof. By rule induction on the statics.

Theorem 23.4 (Preservation). If e : σ and e 7→ e′, then e′ : σ.

14:43 DRAFT AUGUST 24, 2010



23.2 Polymorphic Definability 199

Proof. By rule induction on the dynamics.

Theorem 23.5 (Progress). If e : σ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on the statics.

23.2 Polymorphic Definability

The language L{→∀} is astonishingly expressive. Not only are all finite
products and sums definable in the language, but so are all inductive and
coinductive types! This is most naturally expressed using definitional equiv-
alence, which is defined to be the least congruence containing the following
two axioms:

∆ Γ, x : τ1 ` e : τ2 ∆ Γ ` e1 : τ1

∆ Γ ` λ (x:τ. e2)(e1) ≡ [e1/x]e2 : τ2
(23.4a)

∆, t type Γ ` e : τ ∆ ` σ type

∆ Γ ` Λ(t.e)[σ] ≡ [σ/t]e : [σ/t]τ
(23.4b)

In addition there are rules omitted here specifying that definitional equiv-
alence is reflexive, symmetric, and transitive, and that it is compatible with
both forms of application and abstraction.

23.2.1 Products and Sums

The nullary product, or unit, type is definable in L{→∀} as follows:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ (x:r. x))

It is easy to check that the statics given in Chapter 14 is derivable. There
being no elimination rule, there is no requirement on the dynamics.

Binary products are definable in L{→∀} by using encoding tricks sim-
ilar to those described in Chapter 20 for the untyped λ-calculus:

τ1 × τ2 = ∀(r.(τ1 → τ2 → r)→ r)
〈e1, e2〉 = Λ(r.λ (x:τ1 → τ2 → r. x(e1)(e2)))

e · l = e[τ1](λ (x:τ1. λ (y:τ2. x)))
e · r = e[τ2](λ (x:τ1. λ (y:τ2. y)))

AUGUST 24, 2010 DRAFT 14:43



200 23.2 Polymorphic Definability

The statics given in Chapter 14 is derivable according to these definitions.
Moreover, the following definitional equivalences are derivable in L{→∀}
from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and
〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in L{→∀}:

void = ∀(r.r)
abort[ρ](e) = e[ρ]

There is no definitional equivalence to be checked, there being no introduc-
tory rule for the void type.

Binary sums are also definable in L{→∀}:

τ1 + τ2 = ∀(r.(τ1 → r)→ (τ2 → r)→ r)
l · e = Λ(r.λ (x:τ1 → r. λ (y:τ2 → r. x(e))))
r · e = Λ(r.λ (x:τ1 → r. λ (y:τ2 → r. y(e))))

case e {l · x1⇒ e1 | r · x2⇒ e2} =
e[ρ](λ (x1:τ1. e1))(λ (x2:τ2. e2))

provided that the types make sense. It is easy to check that the following
equivalences are derivable in L{→∀}:

case l · d1 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d1/x1]e1 : ρ

and
case r · d2 {l · x1⇒ e1 | r · x2⇒ e2} ≡ [d2/x2]e2 : ρ.

Thus the dynamic behavior specified in Chapter 15 is correctly implemented
by these definitions.

23.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation)
are also definable in L{→∀}. The key is the representation of the iterator,
whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ` e2 : τ

natiter(e0; e1; x.e2) : τ
.

14:43 DRAFT AUGUST 24, 2010



23.3 Parametricity Overview 201

Since the result type τ is arbitrary, this means that if we have an iterator,
then it can be used to define a function of type

nat→ ∀(t.t→ (t→ t)→ t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, if given the initial result for z, and if given
a function transforming the result for x into the result for s(x), then it re-
turns the result of iterating the transformer n times starting with the initial
result.

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that we may define the type of natural numbers in L{→∀} by the following
equations:

nat = ∀(t.t→ (t→ t)→ t)
z = Λ(t.λ (z:t. λ (s:t→ t. z)))

s(e) = Λ(t.λ (z:t. λ (s:t→ t. s(e[t](z)(s)))))
natiter(e0; e1; x.e2) = e0[τ](e1)(λ (x:τ. e2))

It is a straightforward exercise to check that the static and dynamics given
in Chapter 12 is derivable in L{→∀} under these definitions.

This shows that L{→∀} is at least as expressive as L{nat→}. But is it
more expressive? Yes! It is possible to show that the evaluation function
for L{nat→} is definable in L{→∀}, even though it is not definable in
L{nat→} itself. However, the same diagonal argument given in Chap-
ter 12 applies here, showing that the evaluation function for L{→∀} is not
definable in L{→∀}. We may enrich L{→∀} a bit more to define the eval-
uator for L{→∀}, but as long as all programs in the enriched language
terminate, we will once again have an undefinable function, the evaluation
function for that extension. The extension process will never close as long
as all programs written in it terminate.

23.3 Parametricity Overview

A remarkable property of L{→∀} is that polymorphic types severely con-
strain the behavior of their elements. One may prove useful theorems about
an expression knowing only its type—that is, without ever looking at the
code! For example, if i is any expression of type ∀(t.t→ t), then it must

AUGUST 24, 2010 DRAFT 14:43



202 23.4 Restricted Forms of Polymorphism

be the identity function. Informally, when i is applied to a type, τ, and
an argument of type τ, it must return a value of type τ. But since τ is
not specified until i is called, the function has no choice but to return its
argument, which is to say that it is essentially the identity function. Sim-
ilarly, if b is any expression of type ∀(t.t→ t→ t), then b must be either
Λ(t.λ (x:t. λ (y:t. x))) or Λ(t.λ (x:t. λ (y:t. y))). For when b is applied
to two arguments of some type, its only choice to return a value of that type
is to return one of the two.

A full proof of these claims is somewhat involved (see Chapter 52 for
details), but the core idea is relatively simple, namely to interpret types as
relations. The parametricity theorem (Theorem 52.8 on page 489) states that
every well-typed term respects the relational interpretation of its type. For
example, the parametricity theorem implies that if i : ∀(t.t→ t), then for
any type τ, any predicate P on expressions of type τ, and any e : τ, if P(e),
then P(i[τ](e)). Fix τ and e : τ, and define P(x) to hold iff x ≡ e. By the
theorem we have that for any e′ : τ, if e′ ≡ e, then i[τ](e′) ≡ e, and so in
particular i[τ](e) ≡ e. Similarly, if c : ∀(t.t→ t→ t), then, fixing τ, e1 : τ,
and e2 : τ, we may define P(e) to hold iff either e ≡ e1 or e ≡ e2. It follows
from the theorem that either c[τ](e1)(e2) ≡ e1 or c[τ](e1)(e2) ≡ e2.

What is remarkable is that these properties of i and c have been de-
rived without knowing anything about the expressions themselves, but only their
types! The theory of parametricity implies that we are able to derive the-
orems about the behavior of a program knowing only its type. Such the-
orems are sometimes called free theorems because they come “for free” as
a consequence of typing, and require no program analysis or verification
to derive (beyond the once-and-for-all proof of Theorem 52.8 on page 489).
Free theorems such as those illustrated above underly the experience that in
a polymorphic language, well-typed programs tend to behave as expected
no further debugging or analysis required. Parametricity so constrains the
behavior of a program that it is relatively easy to ensure that the code works
just by checking its type. Free theorems also underly the principle of rep-
resentation independence for abstract types, which is discussed further in
Chapter 24.

23.4 Restricted Forms of Polymorphism

In this section we briefly examine some restricted forms of polymorphism
with less than the full expressive power of L{→∀}. These are obtained in
one of two ways:

14:43 DRAFT AUGUST 24, 2010



23.4 Restricted Forms of Polymorphism 203

1. Restricting type quantification to unquantified types.

2. Restricting the occurrence of quantifiers within types.

23.4.1 Predicative Fragment

The remarkable expressive power of the language L{→∀} may be traced
to the ability to instantiate a polymorphic type with another polymorphic
type. For example, if we let τ be the type ∀(t.t→ t), and, assuming that
e : τ, we may apply e to its own type, obtaining the expression e[τ] of type
τ → τ. Written out in full, this is the type

∀(t.t→ t)→ ∀(t.t→ t),

which is larger (both textually, and when measured by the number of oc-
currences of quantified types) than the type of e itself. In fact, this type is
large enough that we can go ahead and apply e[τ] to e again, obtaining the
expression e[τ](e), which is again of type τ — the very type of e!

This property of L{→∀} is called impredicativity1; the language L{→∀}
is said to permit impredicative (type) quantification. The distinguishing char-
acteristic of impredicative polymorphism is that it involves a kind of cir-
cularity in that the meaning of a quantified type is given in terms of its
instances, including the quantified type itself. This quasi-circularity is re-
sponsible for the surprising expressive power of L{→∀}, and is corre-
spondingly the prime source of complexity when reasoning about it (for
example, in the proof that all expressions of L{→∀} terminate).

Contrast this with L{→}, in which the type of an application of a func-
tion is evidently smaller than the type of the function itself. For if e :
τ1 → τ2, and e1 : τ1, then we have e(e1) : τ2, a smaller type than the type of
e. This situation extends to polymorphism, provided that we impose the re-
striction that a quantified type can only be instantiated by an un-quantified
type. For in that case passage from ∀(t.τ) to [σ/t]τ decreases the num-
ber of quantifiers (even if the size of the type expression viewed as a tree
grows). For example, the type ∀(t.t→ t) may be instantiated with the
type u → u to obtain the type (u→ u) → (u→ u). This type has more
symbols in it than τ, but is smaller in that it has fewer quantifiers. The re-
striction to quantification only over unquantified types is called predicative2

polymorphism. The predicative fragment is significantly less expressive than

1pronounced im-PRED-ic-a-tiv-it-y
2pronounced PRED-i-ca-tive

AUGUST 24, 2010 DRAFT 14:43



204 23.4 Restricted Forms of Polymorphism

the full impredicative language. In particular, the natural numbers are no
longer definable in it.

The formalization of L{→∀p} is left to Chapter 25, where the appropri-
ate technical machinery is available.

23.4.2 Prenex Fragment

A rather more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to occur
within the arguments to any other type constructors. This restriction, called
prenex quantification, is often imposed for the sake of type inference, which
permits type annotations to be omitted entirely in the knowledge that they
can be recovered from the way the expression is used. We will not discuss
type inference here, but we will give a formulation of the prenex fragment
of L{→∀}, because it plays an important role in the design of practical
polymorphic languages.

The prenex fragment of L{→∀} is designated L1{→∀}, for reasons that
will become clear in the next subsection. It is defined by stratifying types
into two sorts, the monotypes (or rank-0 types) and the polytypes (or rank-1
types). The monotypes are those that do not involve any quantification,
and may be used to instantiate the polymorphic quantifier. The polytypes
include the monotypes, but also permit quantification over monotypes.
These classifications are expressed by the judgements ∆ ` τ mono and
∆ ` τ poly, where ∆ is a finite set of hypotheses of the form t mono, where t
is a type variable not otherwise declared in ∆. The rules for deriving these
judgements are as follows:

∆, t mono ` t mono (23.5a)

∆ ` τ1 mono ∆ ` τ2 mono

∆ ` arr(τ1; τ2) mono
(23.5b)

∆ ` τ mono
∆ ` τ poly

(23.5c)

∆, t mono ` τ poly

∆ ` all(t.τ) poly
(23.5d)

Base types, such as nat (as a primitive), or other type constructors, such as
sums and products, would be added to the language as monotypes.

The statics of L1{→∀} is given by rules for deriving hypothetical judge-
ments of the form ∆ Γ ` e : σ, where ∆ consists of hypotheses of the form

14:43 DRAFT AUGUST 24, 2010



23.4 Restricted Forms of Polymorphism 205

t mono, and Γ consists of hypotheses of the form x : σ, where ∆ ` σ poly.
The rules defining this judgement are as follows:

∆ Γ, x : τ ` x : τ (23.6a)

∆ ` τ1 mono ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2)
(23.6b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(23.6c)

∆, t mono Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(23.6d)

∆ ` τ mono ∆ Γ ` e : all(t.τ′)
∆ Γ ` App[τ](e) : [τ/t]τ′

(23.6e)

We tacitly exploit the inclusion of monotypes as polytypes so that all typing
judgements have the form e : σ for some expression e and polytype σ.

The restriction on the domain of a λ-abstraction to be a monotype means
that a fully general let construct is no longer definable—there is no means
of binding an expression of polymorphic type to a variable. For this reason
it is usual to augment L{→∀p}with a primitive let construct whose statics
is as follows:

∆ ` τ1 poly ∆ Γ ` e1 : τ1 ∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` let[τ1](e1; x.e2) : τ2
. (23.7)

For example, the expression

let I:∀(t.t→ t) beΛ(t.λ (x:t. x)) in I[τ → τ](I[τ])

has type τ → τ for any polytype τ.

23.4.3 Rank-Restricted Fragments

The binary distinction between monomorphic and polymorphic types in
L1{→∀} may be generalized to form a hierarchy of languages in which
the occurrences of polymorphic types are restricted in relation to function
types. The key feature of the prenex fragment is that quantified types are
not permitted to occur in the domain of a function type. The prenex frag-
ment also prohibits polymorphic types from the range of a function type,
but it would be harmless to admit it, there being no significant difference
between the type σ → ∀(t.τ) and the type ∀(t.σ→ τ) (where t /∈ σ).

AUGUST 24, 2010 DRAFT 14:43



206 23.4 Restricted Forms of Polymorphism

This motivates the definition of a hierarchy of fragments of L{→∀} that
subsumes the prenex fragment as a special case.

We will define a judgement of the form τ type [k], where k ≥ 0, to mean
that τ is a type of rank k. Informally, types of rank 0 have no quantification,
and types of rank k + 1 may involve quantification, but the domains of
function types are restricted to be of rank k. Thus, in the terminology of
Section 23.4.2 on page 204, a monotype is a type of rank 0 and a polytype
is a type of rank 1.

The definition of the types of rank k is defined simultaneously for all
k by the following rules. These rules involve hypothetical judgements of
the form ∆ ` τ type [k], where ∆ is a finite set of hypotheses of the form
ti type [ki] for some pairwise distinct set of type variables ti. The rules defin-
ing these judgements are as follows:

∆, t type [k] ` t type [k] (23.8a)

∆ ` τ1 type [0] ∆ ` τ2 type [0]
∆ ` arr(τ1; τ2) type [0]

(23.8b)

∆ ` τ1 type [k] ∆ ` τ2 type [k + 1]
∆ ` arr(τ1; τ2) type [k + 1]

(23.8c)

∆ ` τ type [k]
∆ ` τ type [k + 1]

(23.8d)

∆, t type [k] ` τ type [k + 1]
∆ ` all(t.τ) type [k + 1]

(23.8e)

With these restrictions in mind, it is a good exercise to define the statics
of Lk{→∀}, the restriction of L{→∀} to types of rank k (or less). It is most
convenient to consider judgements of the form e : τ [k] specifying simul-
taneously that e : τ and τ type [k]. For example, the rank-limited rules for
λ-abstractions is phrased as follows:

∆ ` τ1 type [0] ∆ Γ, x : τ1 [0] ` e2 : τ2 [0]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [0]

(23.9a)

∆ ` τ1 type [k] ∆ Γ, x : τ1 [k] ` e2 : τ2 [k + 1]
∆ Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [k + 1]

(23.9b)

The remaining rules follow a similar pattern.

14:43 DRAFT AUGUST 24, 2010



23.5 Exercises 207

The rank-limited languagesLk{→∀} clarifies the requirement for a prim-
itive let construct in L1{→∀}. The prenex fragment of L{→∀} corre-
sponds to the rank-one fragment L1{→∀}. The let construct for rank-
one types is definable in L2{→∀} from λ-abstraction and application. This
definition only makes sense at rank two, since it abstracts over a rank-one
polymorphic type.

23.5 Exercises

1. Show that primitive recursion is definable in L{→∀} by exploiting
the definability of iteration and binary products.

2. Investigate the representation of eager products and sums in eager
and lazy variants of L{→∀}.

3. Show how to write an interpreter for L{nat→} in L{→∀}.

AUGUST 24, 2010 DRAFT 14:43



208 23.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 24

Abstract Types

Data abstraction is perhaps the most important technique for structuring
programs. The main idea is to introduce an interface that serves as a contract
between the client and the implementor of an abstract type. The interface
specifies what the client may rely on for its own work, and, simultaneously,
what the implementor must provide to satisfy the contract. The interface
serves to isolate the client from the implementor so that each may be devel-
oped in isolation from the other. In particular one implementation may be
replaced by another without affecting the behavior of the client, provided
that the two implementations meet the same interface and are, in a sense
to be made precise below, suitably related to one another. (Roughly, each
simulates the other with respect to the operations in the interface.) This
property is called representation independence for an abstract type.

Data abstraction may be formalized by extending the language L{→∀}
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction
is modelled so naturally and directly by the logical concept of existential
type quantification. Existential types are closely connected with universal
types, and hence are often treated together. The superficial reason is that
both are forms of type quantification, and hence both require the machin-
ery of type variables. The deeper reason is that existentials are definable
from universals — surprisingly, data abstraction is actually just a form of
polymorphism! One consequence of this observation is that representation
independence is just a use of the parametricity properties of polymorphic



210 24.1 Existential Types

functions discussed in Chapter 23.

24.1 Existential Types

The syntax of L{→∀∃} is the extension of L{→∀} with the following con-
structs:

Type τ ::= some(t.τ) ∃(t.τ) interface
Expr e ::= pack[t.τ][ρ](e) pack ρ with e as ∃(t.τ) implementation

open[t.τ][ρ](e1; t, x.e2) open e1 as t with x:τ in e2 client

The introductory form for the existential type σ = ∃(t.τ) is a package of
the form pack ρ with e as ∃(t.τ), where ρ is a type and e is an expression of
type [ρ/t]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x:τ in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable,
t, and the expression variable, x, are bound within the client. They may be
renamed at will by α-equivalence without affecting the meaning of the con-
struct, provided, of course, that the names are chosen so as not to conflict
with any others that may be in scope. In other words the type, t, may be
thought of as a “new” type, one that is distinct from all other types, when
it is introduced. This is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that
client. This behavior is simply a consequence of identifying terms up to
α-equivalence, and is not particularly tied to data abstraction.

24.1.1 Statics

The statics of existential types is specified by rules defining when an exis-
tential is well-formed, and by giving typing rules for the associated intro-
ductory and eliminatory forms.

∆, t type ` τ type

∆ ` some(t.τ) type
(24.1a)

14:43 DRAFT AUGUST 24, 2010



24.1 Existential Types 211

∆ ` ρ type ∆, t type ` τ type ∆ Γ ` e : [ρ/t]τ
∆ Γ ` pack[t.τ][ρ](e) : some(t.τ)

(24.1b)

∆ Γ ` e1 : some(t.τ) ∆, t type Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[t.τ][τ2](e1; t, x.e2) : τ2
(24.1c)

Rule (24.1c) is complex, so study it carefully! There are two important
things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This
restriction prevents the client from attempting to export a value of the
abstract type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in the type
variable t.

Lemma 24.1 (Regularity). Suppose that ∆ Γ ` e : τ. If ∆ ` τi type for each
xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on Rules (24.1).

24.1.2 Dynamics

The (eager or lazy) dynamics of existential types is specified as follows:

{e val}
pack[t.τ][ρ](e) val

(24.2a)

{
e 7→ e′

pack[t.τ][ρ](e) 7→ pack[t.τ][ρ](e′)

}
(24.2b)

e1 7→ e′1
open[t.τ][τ2](e1; t, x.e2) 7→ open[t.τ][τ2](e′1; t, x.e2)

(24.2c)

{e val}
open[t.τ][τ2](pack[t.τ][ρ](e); t, x.e2) 7→ [ρ, e/t, x]e2

(24.2d)

It is important to observe that, according to these rules, there are no abstract
types at run time! The representation type is propagated to the client by sub-
stitution when the package is opened, thereby eliminating the abstraction
boundary between the client and the implementor. Thus, data abstraction
is a compile-time discipline that leaves no traces of its presence at execution
time.

AUGUST 24, 2010 DRAFT 14:43



212 24.2 Data Abstraction Via Existentials

24.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for L{→∀} to the new constructs.

Theorem 24.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on e 7→ e′, making use of substitution for both
expression- and type variables.

Lemma 24.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack[t.τ][ρ](e′)
for some type ρ and some e′ such that e′ : [ρ/t]τ.

Proof. By rule induction on the statics, making use of the definition of closed
values.

Theorem 24.4 (Progress). If e : τ then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on e : τ, making use of the canonical forms lemma.

24.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an ab-
stract type of queues of natural numbers supporting three operations:

1. Formation of the empty queue.

2. Inserting an element at the tail of the queue.

3. Remove the head of the queue.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type,
τ, of our choosing; we will not be specific about this choice, since nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, ∃(t.τ), which serves as the interface of
the queue abstraction:

∃(t.〈emp : t, ins : nat× t→ t, rem : t→ nat× t〉).

14:43 DRAFT AUGUST 24, 2010



24.2 Data Abstraction Via Existentials 213

The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,
the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el , in which queues are represented
as lists:

pack list with 〈emp = nil, ins = ei, rem = er〉 as ∃(t.τ),

where
ei : nat× list→ list = λ (x:nat× list. e′i),

and
er : list→ nat× list = λ (x:list. e′r).

Here the expression e′i conses the first component of x, the element, onto the
second component of x, the queue. Correspondingly, the expression e′r re-
verses its argument, and returns the head element paired with the reversal
of the tail. These operations “know” that queues are represented as values
of type list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, ∃(t.τ), but in which queues are represented as pairs of lists, consist-
ing of the “back half” of the queue paired with the reversal of the “front
half”. This representation avoids the need for reversals on each call, and,
as a result, achieves amortized constant-time behavior:

pack list× list with 〈emp = 〈nil, nil〉, ins = ei, rem = er〉 as ∃(t.τ).

In this case ei has type

nat× (list× list)→ (list× list),

and er has type

(list× list)→ nat× (list× list).

These operations “know” that queues are represented as values of type
list× list, and are implemented accordingly.

The important point is that the same client type checks regardless of
which implementation of queues we choose. This is because the represen-
tation type is hidden, or held abstract, from the client during type checking.

AUGUST 24, 2010 DRAFT 14:43



214 24.3 Definability of Existentials

Consequently, it cannot rely on whether it is list or list× list or some
other type. That is, the client is independent of the representation of the
abstract type.

24.3 Definability of Existentials

It turns out that it is not necessary to extend L{→∀} with existential types
to model data abstraction, because they are already definable using only
universal types! Before giving the details, let us consider why this should
be possible. The key is to observe that the client of an abstract type is poly-
morphic in the representation type. The typing rule for

open e as t with x:τ in e′ : τ′,

where e : ∃(t.τ), specifies that e′ : τ′ under the assumptions t type and
x : τ. In essence, the client is a polymorphic function of type

∀(t.τ → τ′),

where t may occur in τ (the type of the operations), but not in τ′ (the type
of the result).

This suggests the following encoding of existential types:

∃(t.σ) = ∀(t′.∀(t.σ→ t′)→ t′)
pack ρ with e as ∃(t.σ) = Λ(t′.λ (x:∀(t.σ→ t′). x[ρ](e)))
open e as t with x:σ in e′ = e[τ′](Λ(t.λ (x:σ. e′)))

An existential is encoded as a polymorphic function taking the overall re-
sult type, t′, as argument, followed by a polymorphic function representing
the client with result type t′, and yielding a value of type t′ as overall re-
sult. Consequently, the open construct simply packages the client as such a
polymorphic function, instantiates the existential at the result type, τ, and
applies it to the polymorphic client. (The translation therefore depends
on knowing the overall result type, τ, of the open construct.) Finally, a
package consisting of a representation type ρ and an implementation e is a
polymorphic function that, when given the result type, t, and the client, x,
instantiates x with ρ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the statics and dynamics of existential types.

14:43 DRAFT AUGUST 24, 2010



24.4 Representation Independence 215

24.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are
insensitive to the representations of abstract types. More precisely, there is
a criterion, called bisimilarity, for relating two implementations of an ab-
stract type such that the behavior of a client is unaffected by swapping one
implementation by another that is bisimilar to it. This leads to a simple
methodology for proving the correctness of candidate implementation of an
abstract type, which is to show that it is bisimilar to an obviously correct
reference implementation of it. Since the candidate and the reference imple-
mentations are bisimilar, no client may distinguish them from one another,
and hence if the client behaves properly with the reference implementation,
then it must also behave properly with the candidate.

To derive the definition of bisimilarity of implementations, it is help-
ful to examine the definition of existentials in terms of universals given
in Section 24.3 on the facing page. It is an immediate consequence of the
definition that the client of an abstract type is polymorphic in the represen-
tation of the abstract type. A client, c, of an abstract type ∃(t.σ) has type
∀(t.(σ→ τ)→ τ), where t does not occur free in τ (but may, of course,
occur in σ). Applying the parametricity property described informally in
Chapter 23 (and developed rigorously in Chapter 52), this says that if R is
a bisimulation relation between any two implementations of the abstract
type, then the client behaves identically on both of them. The fact that t
does not occur in the result type ensures that the behavior of the client is
independent of the choice of relation between the implementations, pro-
vided that this relation is preserved by the operation that implement it.

To see what this means requires that we specify what is meant by a
bisimulation. This is best done by example. So suppose that σ is the type

〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉.

Theorem 52.8 on page 489 ensures that if ρ and ρ′ are any two closed types,
R is a relation between expressions of these two types, then if any the im-
plementations e : [ρ/x]σ and e′ : [ρ′/x]σ respect R, then c[ρ]e behaves the
same as c[ρ′]e′. It remains to define when two implementations respect the
relation R. Let

e = 〈emp = em, ins = ei, rem = er〉

and
e′ = 〈emp = e′m, ins = e′i , rem = e′r〉.

AUGUST 24, 2010 DRAFT 14:43



216 24.4 Representation Independence

For these implementations to respect R means that the following three con-
ditions hold:

1. The empty queues are related: R(em, e′m).

2. Inserting the same element on each of two related queues yields re-
lated queues: if d : τ and R(q, q′), then R(ei(d)(q), e′i(d)(q′)).

3. If two queues are related, their front elements are the same and their
back elements are related: if R(q, q′), er(q) ≡ 〈d, r〉, e′r(q′) ≡ 〈d′, r′〉,
then d is d′ and R(r, r′).

If such a relation R exists, then the implementations e and e′ are said to be
bisimilar. The terminology stems from the requirement that the operations
of the abstract type preserve the relation: if it holds before an operation is
performed, then it must also hold afterwards, and the relation must hold
for the initial state of the queue. Thus each implementation simulates the
other up to the relationship specified by R.

To see how this works in practice, let us consider informally two im-
plementations of the abstract type of queues specified above. For the ref-
erence implementation we choose ρ to be the type list, and define the
empty queue to be the empty list, insert to add the specified element to
the front of the list, and remove to remove the last element of the list. (A
remove therefore takes time linear in the length of the list.) For the candi-
date implementation we choose ρ′ to be the type list× list consisting of
two lists, 〈b, f 〉, where b represents the “back” of the queue, and f repre-
sents the “front” of the queue represented in reverse order of insertion. The
empty queue consists of two empty lists. To insert d onto 〈b, f 〉, we simply
return 〈cons(d; b), f 〉, placing it on the “back” of the queue as expected.
To remove an element from 〈b, f 〉 breaks into two cases. If the front, f ,
of the queue is non-empty, say cons(d; f ′), then return 〈d, 〈b, f ′〉〉 consist-
ing of the front element and the queue with that element removed. If, on
the other hand, f is empty, then we must move elements from the “back”
to the “front” by reversing b and re-performing the remove operation on
〈nil, rev(b)〉, where rev is the obvious list reversal function.

To show that the candidate implementation is correct, we show that it
is bisimilar to the reference implementation. This reduces to specifying a
relation, R, between the types list and list × list such that the three
simulation conditions given above are satisfied by the two implementa-
tions just described. The relation in question states that R(l, 〈b, f 〉) iff the
list l is the list app(b)(rev( f)), where app is the evident append function

14:43 DRAFT AUGUST 24, 2010



24.5 Exercises 217

on lists. That is, thinking of l as the reference representation of the queue,
the candidate must maintain that the elements of b followed by the ele-
ments of f in reverse order form precisely the list l. It is easy to check that
the implementations just described preserve this relation. Having done so,
we are assured that the client, c, behaves the same regardless of whether
we use the reference or the candidate. Since the reference implementation
is obviously correct (albeit inefficient), the candidate must also be correct
in that the behavior of any client is unaffected by using it instead of the
reference.

24.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



218 24.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 25

Constructors and Kinds

Types such as τ1 → τ2 or τ list may be thought of as being built from other
types by the application of a type constructor, or type operator. These two
examples differ from each other in that the function space type constructor
takes two arguments, whereas the list type constructor takes only one. We
may, for the sake of uniformity, think of types such as nat as being built by
a type constructor of no arguments. More subtly, we may even think of the
types ∀(t.τ) and ∃(t.τ) as being built up in the same way by regarding
the quantifiers as higher-order type operator.

These seemingly disparate cases may be treated uniformly by enrich-
ing the syntactic structure of a language with a new layer of constructors.
To ensure that constructors are used properly (for example, that the list
constructor is given only one argument, and that the function constructor
is given two), we classify constructors by kinds. Constructors of a distin-
guished kind, Type, are types, which may be used to classify expressions.
To allow for multi-argument and higher-order constructors, we will also
consider finite product and function kinds. (Later we shall consider even
richer kinds.)

The distinction between constructors and kinds on one hand and types
and expressions on the other reflects a fundamental separation between
the static and dynamic phase of processing of a programming language,
called the phase distinction. The static phase implements the statics and the
dynamic phase implements the dynamics. Constructors may be seen as a
form of static data that is manipulated during the static phase of process-
ing. Expressions are a form of dynamic data that is manipulated at run-time.
Since the dynamic phase follows the static phase (we only execute well-
typed programs), we may also manipulate constructors at run-time.



220 25.1 Statics

Adding constructors and kinds to a language introduces more techni-
cal complications than might at first be apparent. The main difficulty is that
as soon as we enrich the kind structure beyond the distinguished kind of
types, it becomes essential to simplify constructors to determine whether
they are equivalent. For example, if we admit product kinds, then a pair of
constructors is a constructor of product kind, and projections from a con-
structor of product kind are also constructors. But what if we form the first
projection from the pair consisiting of the constructors nat and str? This
should be equivalent to nat, since the elimination form if post-inverse to
the introduction form. Consequently, any expression (say, a variable) of the
one type should also be an expression of the other. That is, typing should
respect definitional equivalence of constructors.

There are two main ways to deal with this. One is to introduce a concept
of definitional equivalence for constructors, and to demand that the typing
judgement for expressions respect definitional equivalence of constructors
of kind Type. This means, however, that we must show that definitional
equivalence is decidable if we are to build a complete implementation of
the language. The other is to prohibit formation of awkward constructors
such as the projection from a pair so that there is never any issue of when
two constructors are equivalent (only when they are identical). But this
complicates the definition of substitution, since a projection from a con-
structor variable is well-formed, until you substitute a pair for the vari-
able. Both approaches have their benefits, but the second is simplest, and
is adopted here.

25.1 Statics

The syntax of kinds is given by the following grammar:

Kind κ ::= Type Type types
Unit 1 nullary product
Prod(κ1; κ2) κ1 × κ2 binary product
Arr(κ1; κ2) κ1→ κ2 function

The kinds consist of the kind of types, Type, the unit kind, Unit, and are
closed under formation of product and function kinds.

The syntax of constructors is divided into two syntactic sorts, the neutral

14:43 DRAFT AUGUST 24, 2010



25.1 Statics 221

and the canonical, according to the following grammar:

Neut a ::= u u variable
proj[l](a) prl(a) first projection
proj[r](a) prr(a) second projection
app(a1; c2) a1[c2] application

Canon c ::= atom(a) â atomic
unit 〈〉 null tuple
pair(c1; c2) 〈c1, c2〉 pair
lam(u.c) λ u.c abstraction

The reason to distinguish neutral from canonical constructors is to en-
sure that it is impossible to apply an elimination form to an introduction
form, which demands an equation to capture the inversion principle. For
example, the putative constructor prl(〈c1, c2〉), which would be definition-
ally equivalent to c1, is ill-formed according to Grammar (25.1). This is
because the argument to a projection must be neutral, but a pair is only
canonical, not neutral.

The canonical constructor atom(a) is the inclusion of neutral construc-
tors into canonical constructors. However, the grammar does not capture
a crucial property of the statics that ensures that only neutral constructors
of kind Type may be treated as canonical. This requirement is imposed
to limit the forms of canonical contructors of the other kinds. In particular,
variables of function, product, or unit kind will turn out not to be canonical,
but only neutral.

The statics of constructors and kinds is specified by the judgements

∆ ` a ⇑ κ neutral constructor formation
∆ ` c ⇓ κ canonical constructor formation

In each of these judgements ∆ is a finite set of hypotheses of the form

u1 ⇑ κ1, . . . , un ⇑ κn

for some n ≥ 0. The form of the hypotheses expresses the principle that
variables are neutral constructors. The formation judgements are to be
understood as generic hypothetical judgements with parameters u1, . . . , un
that are determined by the forms of the hypotheses.

The rules for constructor formation are as follows:

∆, u ⇑ κ ` u ⇑ κ (25.1a)

AUGUST 24, 2010 DRAFT 14:43



222 25.2 Adding Constructors and Kinds

∆ ` a ⇑ κ1 × κ2

∆ ` prl(a) ⇑ κ1
(25.1b)

∆ ` a ⇑ κ1 × κ2

∆ ` prr(a) ⇑ κ2
(25.1c)

∆ ` a1 ⇑ κ2→ κ ∆ ` c2 ⇓ κ2

∆ ` a1[c2] ⇑ κ
(25.1d)

∆ ` a ⇑ Type

∆ ` â ⇓ Type
(25.1e)

∆ ` 〈〉 ⇓ 1 (25.1f)

∆ ` c1 ⇓ κ1 ∆ ` c2 ⇓ κ2

∆ ` 〈c1, c2〉 ⇓ κ1 × κ2
(25.1g)

∆, u ⇑ κ1 ` c2 ⇓ κ2

∆ ` λ u.c2 ⇓ κ1→ κ2
(25.1h)

Rule (25.1e) specifies that the only neutral constructors that are canon-
ical are those with kind Type. This ensures that the language enjoys the
following canonical forms property, which is easily proved by inspection
of Rules (25.1).

Lemma 25.1. Suppose that ∆ ` c ⇓ κ.

1. If κ = 1, then c = 〈〉.

2. If κ = κ1 × κ2, then c = 〈c1, c2〉 for some c1 and c2 such that ∆ ` ci ⇓ κi
for i = 1, 2.

3. If κ = κ1→ κ2, then c = λ u.c2 with ∆, u ⇑ κ1 ` c2 ⇓ κ2.

25.2 Adding Constructors and Kinds

To equip a language, L, with constructors and kinds requires that we aug-
ment its statics with hypotheses governing constructor variables, and that
we relate constructors of kind Type (types as static data) to the classifiers of
dynamic expressions (types as classifiers). To achieve this the statics of L
must be defined to have judgements of the following two forms:

∆ ` τ type type formation
∆ Γ ` e : τ expression formation

14:43 DRAFT AUGUST 24, 2010



25.2 Adding Constructors and Kinds 223

where, as before, Γ is a finite set of hypotheses of the form

x1 : τ1, . . . , xk : τk

for some k ≥ 0 such that ∆ ` τi type for each 1 ≤ i ≤ k.
As a general principle, every constructor of kind Type is a classifier:

∆ ` τ ⇑ Type

∆ ` τ type
. (25.2)

In many cases this is the sole rule of type formation, so that every classifier
is a constructor of kind Type. However, this need not be the case. In some
situations we may wish to have strictly more classifiers than constructors
of the distinguished kind.

To see how this might arise, let us consider two extensions of L{→∀}
from Chapter 23. In both cases we extend the universal quantifier ∀(t.τ)
to admit quantification over an arbitrary kind, written ∀κ u.τ, but the two
languages differ in what constitutes a constructor of kind Type. In one
case, the impredicative, we admit quantified types as constructors, and in
the other, the predicative, we exclude quantified types from the domain of
quantification.

The impredicative fragment includes the following two constructor con-
stants:

∆ ` → ⇑ Type→ Type→ Type (25.3a)

∆ ` ∀κ ⇑ (κ→ Type)→ Type (25.3b)

We regard the classifier τ1 → τ2 to be the application→[τ1][τ2]. Similarly,
we regard the classifier ∀κ u.τ to be the application ∀κ[λ u.τ].

The predicative fragment excludes the constant specified by Rule (25.3b)
in favor of a separate rule for the formation of universally quantified types:

∆, u ⇑ κ ` τ type

∆ ` ∀κ u.τ type
. (25.4)

The important point is that ∀κ u.τ is a type (as classifier), but is not a con-
structor of kind type.

The signficance of this distinction becomes apparent when we consider
the introduction and elimination forms for the generalized quantifier, which
are the same for both fragments:

∆, u ⇑ κ Γ ` e : τ

∆ Γ ` Λ(u::κ.e) : ∀κ u.τ
(25.5a)

AUGUST 24, 2010 DRAFT 14:43



224 25.3 Substitution

∆ Γ ` e : ∀κ u.τ ∆ ` c ⇓ κ

∆ Γ ` e[c] : [c/u]τ
(25.5b)

(Rule (25.5b) makes use of substitution, whose definition requires some
care. We will return to this point in Section 25.3.)

Rule (25.5b) makes clear that a polymorphic abstraction quantifies over
the constructors of kind κ. When κ is Type this kind may or may not include
all of the classifiers of the language, according to whether we are working
with the impredicative formulation of quantification (in which the quan-
tifiers are distinguished constants for building constructors of kind Type)
or the predicative formulation (in which quantifiers arise only as classifiers
and not as constructors).

The important principle here is that constructors are static data, so that a
constructor abstraction Λ(u::κ.e) of type ∀κ u.τ is a mapping from static
data c of kind κ to dynamic data [c/u]e of type [c/u]τ. Rule (25.1e) tells
us that every constructor of kind Type determines a classifier, but it may or
may not be the case that every classifier arises in this manner.

25.3 Substitution

Rule (25.5b) involves substitution of a canonical constructor, c, of kind κ
into a family of types u ⇑ κ ` τ type. This operation is is written [c/u]τ, as
usual. Although the intended meaning is clear, it is in fact impossible to in-
terpret [c/u]τ as the standard concept of substitution defined in Chapter 3.
The reason is that to do so would risk violating the distinction between
neutral and canonical constructors. Consider, for example, the case of the
family of types

u ⇑ Type→ Type ` u[d] ⇑ Type,

where d ⇑ Type. (It is not important what we choose for d, so we leave it
abstract.) Now if c ⇓ Type→ Type, then by Lemma 25.1 on page 222 we
have that c is λ u′.c′. Thus, if interpreted conventionally, substitution of c
for u in the given family yields the “constructor” (λ u′.c′)[d], which is not
well-formed.

The solution is to define a form of canonizing substitution that simplifies
such “illegal” combinations as it performs the replacement of a variable by
a constructor of the same kind. In the case just sketched this means that we
must ensure that

[λ u′.c′/u]u[d] = [d/u′]c′.

If viewed as a definition this equation is problematic because it switches
from substituting for u in the constructor u[d] to substituting for u′ in the

14:43 DRAFT AUGUST 24, 2010



25.3 Substitution 225

unrelated constructor c′. Why should such a process terminate? The an-
swer lies in the observation that the kind of u′ is definitely smaller than the
kind of u, since the former’s kind is the domain kind of the latter’s function
kind. In all other cases of substitution (as we shall see shortly) the size of
the target of the substitution becomes smaller; in the case just cited the size
may increase, but the type of the target variable decreases. Therefore by
a lexicographic induction on the type of the target variable and the struc-
ture of the target constructor, we may prove that canonizing substitution is
well-defined.

We now turn to the task of making this precise. We will define simulta-
neously two principal forms of substitution, one of which divides into two
cases:

[c/u : κ]a = a′ canonical into neutral yielding neutral
[c/u : κ]a = c′ ⇓ κ′ canonical into neutral yielding canonical and kind
[c/u : κ]c′ = c′′ canonical into canonical yielding canonical

Substitution into a neutral constructor divides into two cases according to
whether the substituted variable u occurs in critical position in a sense to be
made precise below.

These forms of substitution are simultaneously inductively defined by
the following rules, which are broken into groups for clarity.

The first set of rules defines substitution of a canonical constructor into
a canonical constructor; the result is always canonical.

[c/u : κ]a′ = a′′

[c/u : κ]â′ = â′′
(25.6a)

[c/u : κ]a′ = c′′ ⇓ κ′′

[c/u : κ]â′ = c′′
(25.6b)

[u/〈〉 : κ]=〈〉 (25.6c)

[c/u : κ]c′1 = c′′1 [c/u : κ]c′2 = c′′2
[c/u : κ]〈c′1, c′2〉 = 〈c′′1 , c′′2 〉

(25.6d)

[c/u : κ]c′ = c′′ (u 6= u′) (u′ /∈ c)
[c/u : κ]λ u′.c′ = λ u′.c′′

(25.6e)

The conditions on variables in Rule (25.6e) may always be met by renaming
the bound variable, u′, of the abstraction.

AUGUST 24, 2010 DRAFT 14:43



226 25.3 Substitution

The second set of rules defines substitution of a canonical constructor
into a neutral constructor, yielding another neutral constructor.

(u 6= u′)
[c/u : κ]u′ = u′

(25.7a)

[c/u : κ]a′ = a′′

[c/u : κ]prl(a′) = prl(a′′)
(25.7b)

[c/u : κ]a′ = a′′

[c/u : κ]prr(a′) = prr(a′′)
(25.7c)

[c/u : κ]a1 = a′1 [c/u : κ]c2 = c′2
[c/u : κ]a1[c2] = a′1(c′2)

(25.7d)

Rule (25.7a) pertains to a non-critical variable, which is not the target of sub-
stitution. The remaining rules pertain to situations in which the recursive
call on a neutral constructor yields a neutral constructor.

The third set of rules defines substitution of a canonical constructor into
a neutral constructor, yielding a canonical constructor and its kind.

[c/u : κ]u = c ⇓ κ (25.8a)

[c/u : κ]a′ = 〈c′1, c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]prl(a′) = c′1 ⇓ κ′1

(25.8b)

[c/u : κ]a′ = 〈c′1, c′2〉 ⇓ κ′1 × κ′2
[c/u : κ]prr(a′) = c′2 ⇓ κ′2

(25.8c)

[c/u : κ]a′1 = λ u′.c′ ⇓ κ′2→ κ′ [c/u : κ]c′2 = c′′2 [c′′2 /u′ : κ′2]c
′ = c′′

[c/u : κ]a′1[c′2] = c′′ ⇓ κ′

(25.8d)
Rule (25.8a) governs a critical variable, which is the target of substitution.
The substitution transforms it from a neutral constructor to a canonical con-
structor. This has a knock-on effect in the remaining rules of the group,
which analyze the canonical form of the result of the recursive call to de-
termine how to proceed. Rule (25.8d) is the most interesting rule. In the
third premise, all three arguments to substitution change as we substitute
the (substituted) argument of the application for the parameter of the (sub-
stituted) function into the body of that function. Here we require the type
of the function in order to determine the type of its parameter.

14:43 DRAFT AUGUST 24, 2010



25.4 Exercises 227

Theorem 25.2. Suppose that ∆ ` c ⇓ κ, and ∆, u ⇑ κ ` c′ ⇓ κ′, and ∆, u ⇑ κ `
a′ ⇑ κ′. There exists a unique ∆ ` c′′ ⇓ κ′ such that [c/u : κ]c′ = c′′. Either there
exists a unique ∆ ` a′′ ⇑ κ′ such that [c/u : κ]a′ = a′′, or there exists a unique
∆ ` c′′ ⇓ κ′ such that [c/u : κ]a′ = c′′, but not both.

Proof. Simultaneously by a lexicographic induction with major component
the structure of the kind κ, and with minor component determined by
Rules (25.1) governing the formation of c′ and a′. For all rules except Rule (25.8d)
the inductive hypothesis applies to the premise(s) of the relevant formation
rules. For Rule (25.8d) we appeal to the major inductive hypothesis applied
to κ′2, which is a component of the kind κ′2→ κ′.

25.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



228 25.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 26

Indexed Families of Types

26.1 Type Families

26.2 Exercises



230 26.2 Exercises

14:43 DRAFT AUGUST 24, 2010



Part IX

Subtyping





Chapter 27

Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types
that validates the subsumption principle:

if σ is a subtype of τ, then a value of type σ may be provided
whenever a value of type τ is required.

The subsumption principle relaxes the strictures of a type system to permit
values of one type to be treated as values of another.

Experience shows that the subsumption principle, while useful as a
general guide, can be tricky to apply correctly in practice. The key to get-
ting it right is the principle of introduction and elimination. To determine
whether a candidate subtyping relationship is sensible, it suffices to con-
sider whether every introductory form of the subtype can be safely manip-
ulated by every eliminatory form of the supertype. A subtyping principle
makes sense only if it passes this test; the proof of the type safety theorem
for a given subtyping relation ensures that this is the case.

A good way to get a subtyping principle wrong is to think of a type
merely as a set of values (generated by introductory forms), and to consider
whether every value of the subtype can also be considered to be a value of
the supertype. The intuition behind this approach is to think of subtyping
as akin to the subset relation in ordinary mathematics. But this can lead to
serious errors, because it fails to take account of the operations (eliminatory
forms) that one can perform on values of the supertype. It is not enough to
think only of the introductory forms; one must also think of the eliminatory
forms. Subtyping is a matter of behavior, rather than containment.



234 27.1 Subsumption

27.1 Subsumption

A subtyping judgement has the form σ <: τ, and states that σ is a subtype of
τ. At a minimum we demand that the following structural rules of subtyp-
ing be admissible:

τ <: τ (27.1a)
ρ <: σ σ <: τ

ρ <: τ
(27.1b)

In practice we either tacitly include these rules as primitive, or prove that
they are admissible for a given set of subtyping rules.

The point of a subtyping relation is to enlarge the set of well-typed pro-
grams, which is achieved by the subsumption rule:

Γ ` e : σ σ <: τ
Γ ` e : τ

(27.2)

In contrast to most other typing rules, the rule of subsumption is not syntax-
directed, because it does not constrain the form of e. That is, the subsump-
tion rule may be applied to any form of expression. In particular, to show
that e : τ, we have two choices: either apply the rule appropriate to the
particular form of e, or apply the subsumption rule, checking that e : σ and
σ <: τ.

27.2 Varieties of Subtyping

In this section we will informally explore several different forms of subtyp-
ing for various extensions of L{⇀}. In Section 27.4 on page 242 we will
examine some of these in more detail from the point of view of type safety.

27.2.1 Numeric Types

For languages with numeric types, our mathematical experience suggests
subtyping relationships among them. For example, in a language with
types int, rat, and real, representing, respectively, the integers, the ratio-
nals, and the reals, it is tempting to postulate the subtyping relationships

int <: rat <: real

by analogy with the set containments

Z ⊆ Q ⊆ R

14:43 DRAFT AUGUST 24, 2010



27.2 Varieties of Subtyping 235

familiar from mathematical experience.
But are these subtyping relationships sensible? The answer depends

on the representations and interpretations of these types! Even in mathe-
matics, the containments just mentioned are usually not quite true—or are
true only in a somewhat generalized sense. For example, the set of rational
numbers may be considered to consist of ordered pairs (m, n), with n 6= 0
and gcd(m, n) = 1, representing the ratio m/n. The set Z of integers may
be isomorphically embedded within Q by identifying n ∈ Z with the ratio
n/1. Similarly, the real numbers are often represented as convergent se-
quences of rationals, so that strictly speaking the rationals are not a subset
of the reals, but rather may be embedded in them by choosing a canonical
representative (a particular convergent sequence) of each rational.

For mathematical purposes it is entirely reasonable to overlook fine dis-
tinctions such as that between Z and its embedding within Q. This is jus-
tified because the operations on rationals restrict to the embedding in the
expected manner: if we add two integers thought of as rationals in the
canonical way, then the result is the rational associated with their sum.
And similarly for the other operations, provided that we take some care
in defining them to ensure that it all works out properly. For the purposes
of computing, however, one cannot be quite so cavalier, because we must
also take account of algorithmic efficiency and the finiteness of machine
representations. Often what are called “real numbers” in a programming
language are, in fact, finite precision floating point numbers, a small subset
of the rational numbers. Not every rational can be exactly represented as
a floating point number, nor does floating point arithmetic restrict to ratio-
nal arithmetic, even when its arguments are exactly represented as floating
point numbers.

27.2.2 Product Types

Product types give rise to a form of subtyping based on the subsumption
principle. The only elimination form applicable to a value of product type
is a projection. Under mild assumptions about the dynamics of projections,
we may consider one product type to be a subtype of another by consid-
ering whether the projections applicable to the supertype may be validly
applied to values of the subtype.

Consider a context in which a value of type τ = ∏j∈J τj is required. The
statics of finite products (Rules (14.3)) ensures that the only operation we
may perform on a value of type τ, other than to bind it to a variable, is to
take the jth projection from it for some j ∈ J to obtain a value of type τj.

AUGUST 24, 2010 DRAFT 14:43



236 27.2 Varieties of Subtyping

Now suppose that e is of type σ. If the projection e · j is to be well-formed,
then σ must be a finite product type ∏i∈I σi such that j ∈ I. Moreover, for
this to be of type τj, it is enough to require that σj = τj. Since j ∈ J is
arbitrary, we arrive at the following subtyping rule for finite product types:

J ⊆ I
∏i∈I τi <: ∏j∈J τj

. (27.3)

It is sufficient, but not necessary, to require that σj = τj for each j ∈ J; we
will consider a more liberal form of this rule in Section 27.3 on page 238.

The argument for Rule (27.3) is based on a dynamics in which we may
evaluate e · j regardless of the actual form of e, provided only that it has a
field indexed by j ∈ J. Is this a reasonable assumption?

One common case is that I and J are initial segments of the natural
numbers, say I = [0..m − 1] and J = [0..n − 1], so that the product types
may be thought of as m- and n-tuples, respectively. The containment I ⊆
J amounts to requiring that m ≥ n, which is to say that a tuple type is
regarded as a subtype of all of its prefixes. When specialized to this case,
Rule (27.3) may be stated in the form

m ≥ n
〈τ1, . . . , τm〉 <: 〈τ1, . . . , τn〉

. (27.4)

One way to justify this rule is to consider elements of the subtype to be
consecutive sequences of values of type τ0, . . . , τm−1 from which we may
calculate the jth projection for any 0 ≤ j < n ≤ m, regardless of whether or
not m is strictly bigger than n.

Another common case is when I and J are finite sets of symbols, so
that projections are based on the field name, rather than its position. When
specialized to this case, Rule (27.3) takes the following form:

m ≥ n
〈l1 : τ1, . . . , lm : τm〉 <: 〈l1 : τ1, . . . , ln : τn〉

. (27.5)

Here we are taking advantage of the implicit identification of labeled tuple
types up to reordering of fields, so that the rule states that any field of the
supertype must be present in the subtype with the same type.

When using symbolic labels for the components of a tuple, it is perhaps
slightly less clear that Rule (27.5) is well-justified. After all, how are we to
find field li, where 0 ≤ i < n, in a labeled tuple that may have additional
fields anywhere within it? The trouble is that the label does not reveal the
position of the field within the tuple, precisely because of subtyping. One

14:43 DRAFT AUGUST 24, 2010



27.2 Varieties of Subtyping 237

way to achieve this is to associate with a labeled tuple a dictionary map-
ping labels to positions within the tuple, which the projection operation
uses to find the appropriate component of the record. Since the labels are
fixed statically, this may be done in constant time using a perfect hashing
function mapping labels to natural numbers, so that the cost of a projec-
tion remains constant. Another method is to use coercions that a value of
the subtype to a value of the supertype whenever subsumption is used. In
the case of labeled tuples this means creating a new labeled tuple contain-
ing only the fields of the supertype, copied from those of the subtype, so
that the type specifies exactly the fields present in the value. This allows
for more efficient implementation (for example, by a simple offset calcula-
tion), but is not compatible with languages that permit mutation (in-place
modification) of fields because it destroys sharing.

27.2.3 Sum Types

By an argument dual to the one given for finite product types we may de-
rive a related subtyping rule for finite sum types. If a value of type ∑j∈J τj is
required, the statics of sums (Rules (15.3)) ensures that the only non-trivial
operation that we may perform on that value is a J-indexed case analysis.
If we provide a value of type ∑i∈I σi instead, no difficulty will arise so long
as I ⊆ J and each σi is equal to τi. If the containment is strict, some cases
cannot arise, but this does not disrupt safety. This leads to the following
subtyping rule for finite sums:

I ⊆ J
∑i∈I τi <: ∑j∈J τj

. (27.6)

Note well the reversal of the containment as compared to Rule (27.3).
When I and J are initial segments of the natural numbers, we obtain the

following special case of Rule (27.6):

m ≤ n
[l1 : τ1, . . . , lm : τm] <: [l1 : τ1, . . . , ln : τn]

(27.7)

One may also consider a form of width subtyping for unlabeled n-ary sums,
by considering any prefix of an n-ary sum to be a subtype of that sum. Here
again the elimination form for the supertype, namely an n-ary case analy-
sis, is prepared to handle any value of the subtype, which is enough to
ensure type safety.

AUGUST 24, 2010 DRAFT 14:43



238 27.3 Variance

27.3 Variance

In addition to basic subtyping principles such as those considered in Sec-
tion 27.2 on page 234, it is also important to consider the effect of subtyping
on type constructors. A type constructor is said to be covariant in an argu-
ment if subtyping in that argument is preserved by the constructor. It is
said to be contravariant if subtyping in that argument is reversed by the
constructor. It is said to be invariant in an argument if subtyping for the
constructed type is not affected by subtyping in that argument.

27.3.1 Product Types

Finite product types are covariant in each field. For if e is of type ∏i∈I σi,
and the projection e · j is expected to be of type τj, then it is sufficient to
require that j ∈ I and σj <: τj. This is summarized by the following rule:

(∀i ∈ I) σi <: τi

∏i∈I σi <: ∏i∈I τi
(27.8)

It is implicit in this rule that the dynamics of projection must not be sen-
sitive to the precise type of any of the fields of a value of finite product
type.

When specialized to n-tuples, Rule (27.8) reads as follows:

σ1 <: τ1 . . . σn <: τn

〈σ1, . . . , σn〉 <: 〈τ1, . . . , τn〉
. (27.9)

When specialized to symbolic labels, the covariance principle for finite prod-
ucts may be re-stated as follows:

σ1 <: τ1 . . . σn <: τn

〈l1 : σ1, . . . , ln : σn〉 <: 〈l1 : τ1, . . . , ln : τn〉
. (27.10)

27.3.2 Sum Types

Finite sum types are also covariant, because each branch of a case analysis
on a value of the supertype expects a value of the corresponding summand,
for which it is sufficient to provide a value of the corresponding subtype
summand:

(∀i ∈ I) σi <: τi

∑i∈I σi <: ∑i∈I τi
(27.11)

14:43 DRAFT AUGUST 24, 2010



27.3 Variance 239

When specialized to symbolic labels as index sets, we obtain the follow-
ing formulation of the covariance principle for sum types:

σ1 <: τ1 . . . σn <: τn

[l1 : σ1, . . . , ln : σn] <: [l1 : τ1, . . . , ln : τn]
. (27.12)

A case analysis on a value of the supertype is prepared, in the ith branch,
to accept a value of type τi. By the premises of the rule, it is sufficient to
provide a value of type σi instead.

27.3.3 Function Types

The variance of the function type constructor is a bit more subtle. Let us
consider first the variance of the function type in its range. Suppose that
e : σ→ τ. This means that if e1 : σ, then e(e1) : τ. If τ <: τ′, then e(e1) : τ′

as well. This suggests the following covariance principle for function types:

τ <: τ′

σ→ τ <: σ→ τ′
(27.13)

Every function that delivers a value of type τ must also deliver a value
of type τ′, provided that τ <: τ′. Thus the function type constructor is
covariant in its range.

Now let us consider the variance of the function type in its domain.
Suppose again that e : σ→ τ. This means that e may be applied to any
value of type σ, and hence, by the subsumption principle, it may be applied
to any value of any subtype, σ′, of σ. In either case it will deliver a value of
type τ. Consequently, we may just as well think of e as having type σ′ → τ.

σ′ <: σ
σ→ τ <: σ′ → τ

(27.14)

The function type is contravariant in its domain position. Note well the
reversal of the subtyping relation in the premise as compared to the con-
clusion of the rule!

Combining these rules we obtain the following general principle of
contra- and co-variance for function types:

σ′ <: σ τ <: τ′

σ→ τ <: σ′ → τ′
(27.15)

Beware of the reversal of the ordering in the domain!

AUGUST 24, 2010 DRAFT 14:43



240 27.3 Variance

27.3.4 Recursive Types

The variance principle for recursive types is rather subtle, and has been the
source of errors in language design. To gain some intuition, consider the
type of labeled binary trees with natural numbers at each node,

µt.[empty : unit, binode : 〈data : nat, lft : t, rht : t〉],

and the type of “bare” binary trees, without labels on the nodes,

µt.[empty : unit, binode : 〈lft : t, rht : t〉].

Is either a subtype of the other? Intuitively, one might expect the type of
labeled binary trees to be a subtype of the type of bare binary trees, since
any use of a bare binary tree can simply ignore the presence of the label.

Now consider the type of bare “two-three” trees with two sorts of nodes,
those with two children, and those with three:

µt.[empty : unit, binode : 〈lft : t, rht : t〉, trinode : 〈lft : t, mid : t, rht : t〉].

What subtype relationships should hold between this type and the preced-
ing two tree types? Intuitively the type of bare two-three trees should be
a supertype of the type of bare binary trees, since any use of a two-three
tree must proceed by three-way case analysis, which covers both forms of
binary tree.

To capture the pattern illustrated by these examples, we must formulate
a subtyping rule for recursive types. It is tempting to consider the following
rule:

t type ` σ <: τ
µt.σ <: µt.τ ?? (27.16)

That is, to determine whether one recursive type is a subtype of the other,
we simply compare their bodies, with the bound variable treated as a pa-
rameter. Notice that by reflexivity of subtyping, we have t <: t, and hence
we may use this fact in the derivation of σ <: τ.

Rule (27.16) validates the intuitively plausible subtyping between la-
beled binary tree and bare binary trees just described. To derive this re-
duces to checking the subtyping relationship

〈data : nat, lft : t, rht : t〉 <: 〈lft : t, rht : t〉,

generically in t, which is evidently the case.

14:43 DRAFT AUGUST 24, 2010



27.3 Variance 241

Unfortunately, Rule (27.16) also underwrites incorrect subtyping rela-
tionships, as well as some correct ones. As an example of what goes wrong,
consider the recursive types

σ = µt.〈a : t→ nat, b : t→ int〉

and
τ = µt.〈a : t→ int, b : t→ int〉.

We assume for the sake of the example that nat <: int, so that by using
Rule (27.16) we may derive σ <: τ, which we will show to be incorrect. Let
e : σ be the expression

fold(〈a = λ (x:σ. 4), b = λ (x:σ. q((unfold(x) · a)(x)))〉),

where q : nat→ nat is the discrete square root function. Since σ <: τ, it
follows that e : τ as well, and hence

unfold(e) : 〈a : τ → int, b : τ → int〉.

Now let e′ : τ be the expression

fold(〈a = λ (x:τ. -4), b = λ (x:τ. 0)〉).

(The important point about e′ is that the a method returns a negative num-
ber; the b method is of no significance.) To finish the proof, observe that

(unfold(e) · b)(e′) 7→∗ q(-4),

which is a stuck state. We have derived a well-typed program that “gets
stuck”, refuting type safety!

Rule (27.16) is therefore incorrect. But what has gone wrong? The error
lies in the choice of a single parameter to stand for both recursive types,
which does not correctly model self-reference. In effect we are regarding
two distinct recursive types as equal while checking their bodies for a sub-
typing relationship. But this is clearly wrong! It fails to take account of
the self-referential nature of recursive types. On the left side the bound
variable stands for the subtype, whereas on the right the bound variable
stands for the super-type. Confusing them leads to the unsoundness just
illustrated.

As is often the case with self-reference, the solution is to assume what
we are trying to prove, and check that this assumption can be maintained

AUGUST 24, 2010 DRAFT 14:43



242 27.4 Safety for Subtyping

by examining the bodies of the recursive types. To do so we maintain a
finite set, Ψ, of hypotheses of the form

s1 <: t1, . . . , sn <: tn,

which is used to state the rule of subsumption for recursive types:

Ψ, s <: t ` σ <: τ

Ψ ` µs.σ <: µt.τ
. (27.17)

That is, to check whether µs.σ <: µt.τ, we assume that s <: t, since s and
t stand for the respective recursive types, and check that σ <: τ under this
assumption.

We tacitly include the rule of reflexivity for subtyping assumptions,

Ψ, s <: t ` s <: t (27.18)

Using reflexivity in conjunction with Rule (27.17), we may verify the sub-
typings among the tree types sketched above. Moreover, it is instructive
to check that the unsound subtyping is not derivable using this rule. The
reason is that the assumption of the subtyping relation is at odds with the
contravariance of the function type in its domain.

27.4 Safety for Subtyping

Proving safety for a language with subtyping is considerably more delicate
than for languages without. The rule of subsumption means that the static
type of an expression reveals only partial information about the underly-
ing value. This changes the proof of the preservation and progress theo-
rems, and requires some care in stating and proving the auxiliary lemmas
required for the proof.

As a representative case we will sketch the proof of safety for a language
with subtyping for product types. The subtyping relation is defined by
Rules (27.3) and (27.8). We assume that the statics includes subsumption,
Rule (27.2).

Lemma 27.1 (Structurality).

1. The tuple subtyping relation is reflexive and transitive.

2. The typing judgement Γ ` e : τ is closed under weakening and substitution.

Proof.

14:43 DRAFT AUGUST 24, 2010



27.4 Safety for Subtyping 243

1. Reflexivity is proved by induction on the structure of types. Tran-
sitivity is proved by induction on the derivations of the judgements
ρ <: σ and σ <: τ to obtain a derivation of ρ <: τ.

2. By induction on Rules (14.3), augmented by Rule (27.2).

Lemma 27.2 (Inversion).

1. If e · j : τ, then e : ∏i∈I τi, j ∈ I, and τj <: τ.

2. If 〈ei〉i∈I : τ, then ∏i∈I σi <: τ where ei : σi for each i ∈ I.

3. If σ <: ∏j∈J τj, then σ = ∏i∈I σi for some I and some types σi for i ∈ I.

4. If ∏i∈I σi <: ∏j∈J τj, then I ⊆ J and σj <: τj for each j ∈ J.

Proof. By induction on the subtyping and typing rules, paying special at-
tention to Rule (27.2).

Theorem 27.3 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By induction on Rules (14.4). For example, consider Rule (14.4d), so
that e = 〈ei〉i∈I · k, e′ = ek. By Lemma 27.2 we have that 〈ei〉i∈I : ∏j∈J τj,
k ∈ J, and τk <: τ. By another application of Lemma 27.2 for each i ∈ I
there exists σi such that ei : σi and ∏i∈I σi <: ∏j∈J τj. By Lemma 27.2 again,
we have J ⊆ I and σj <: τj for each j ∈ J. But then ek : τk, as desired. The
remaing cases are similar.

Lemma 27.4 (Canonical Forms). If e val and e : ∏j∈J τj, then e is of the form
〈ei〉i∈I , where J ⊆ I, and ej : τj for each j ∈ J.

Proof. By induction on Rules (14.3) augmented by Rule (27.2).

Theorem 27.5 (Progress). If e : τ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By induction on Rules (14.3) augmented by Rule (27.2). The rule
of subsumption is handled by appeal to the inductive hypothesis on the
premise of the rule. Rule (14.4d) follows from Lemma 27.4.

To account for recursive subtyping in addition to finite product subtyp-
ing, the following inversion lemma is required.

AUGUST 24, 2010 DRAFT 14:43



244 27.5 Exercises

Lemma 27.6.

1. If Ψ, s <: t ` σ′ <: τ′ and Ψ, σ <: τ, then Ψ, [σ/s]σ′ <: [τ/t]τ′.

2. If Ψ ` σ <: µt.τ′, then σ = µs.σ′ and Ψ, s <: t ` σ′ <: τ′.

3. If Ψ ` µs.σ <: µt.τ, then Ψ ` [µs.σ/s]σ <: [µt.τ/t]τ.

4. The subtyping relation is reflexive and transitive, and closed under weaken-
ing.

Proof.

1. By induction on the derivation of the first premise. Wherever the
assumption is used, replace it by σ <: τ, and propagate forward.

2. By induction on the derivation of σ <: µt.τ.

3. Follows immediately from the preceding two properties of subtyp-
ing.

4. Reflexivity is proved by construction. Weakening is proved by an
easy induction on subtyping derivations. Transitivity is proved by
induction on the sizes of the types involved. For example, suppose
we have Ψ ` µr.ρ <: µs.σ because Ψ, r <: s ` ρ <: σ, and Ψ `
µs.σ <: µt.τ because and Ψ, s <: t ` σ <: τ. We may assume
without loss of generality that s does not occur free in either ρ or τ.
By weakening we have Ψ, r <: s, s <: t ` ρ <: σ and Ψ, r <: s, s <:
t ` σ <: τ. Therefore by induction we have Ψ, r <: s, s <: t ` ρ <: τ.
But since Ψ, r <: t ` r <: t and Ψ, r <: t ` t <: t, we have by the first
property above that Ψ, r <: t ` ρ <: τ, from which the result follows
immediately.

The remainder of the proof of type safety in the presence of recursive
subtyping proceeds along lines similar to that for product subtyping.

27.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 28

Singleton and Dependent
Kinds

The expression let e1:τ be x in e2 is a form of abbreviation mechanism by
which we may bind e1 to the variable x for use within e2. In the presence of
function types this expression is definable as the application λ (x:τ. e2)(e1),
which accomplishes the same thing. It is natural to consider an analogous
form of let expression which permits a type expression to be bound to a type
variable within a specified scope. The expression let t be τ in e binds t to τ
within e, so that one may write expressions such as

let t be nat× nat inλ (x:t. s(x · l)).

For this expression to be type-correct the type variable t must be synony-
mous with the type nat× nat, for otherwise the body of the λ-abstraction
is not type correct.

Following the pattern of the expression-level let, we might guess that
lettype is an abbreviation for the polymorphic instantiation Λ(t.e)[τ],
which binds t to τ within e. This does, indeed, capture the dynamics of
type abbreviation, but it fails to validate the intended statics. The difficulty
is that, according to this interpretation of lettype, the expression e is type-
checked in the absence of any knowledge of the binding of t, rather than in
the knowledge that t is synomous with τ. Thus, in the above example, the
expression s(x · l) fails to type check, unless the binding of t were exposed.

The proposed definition of lettype in terms of type abstraction and
type application fails. Lacking any other idea, one might argue that type
abbreviation ought to be considered as a primitive concept, rather than a
derived notion. The expression let t be τ in e would be taken as a primitive



246 28.1 Informal Overview

form of expression whose statics is given by the following rule:

Γ ` [τ/t]e : τ′

Γ ` let t be τ in e : τ′
(28.1)

This would address the problem of supporting type abbreviations, but it
does so in a rather ad hoc manner. One might hope for a more principled
solution that arises naturally from the type structure of the language.

Our methodology of identifying language constructs with type struc-
ture suggests that we ask not how to support type abbreviations, but rather
what form of type structure gives rise to type abbreviations? And what else
does this type structure suggest? By following this methodology we are led
to the concept of singleton kinds, which not only account for type abbrevia-
tions but also play a crucial role in the design of module systems.

28.1 Informal Overview

The central organizing principle of type theory is compositionality. To en-
sure that a program may be decomposed into separable parts, we ensure
that the composition of a program from constituent parts is mediated by
the types of those parts. Put in other terms, the only thing that one portion
of a program “knows” about another is its type. For example, the formation
rule for addition of natural numbers depends only on the type of its argu-
ments (both must have type nat), and not on their specific form or value.
But in the case of a type abbreviation of the form let t be τ in e, the prin-
ciple of compositionality dictates that the only thing that e “knows” about
the type variable t is its kind, namely Type, and not its binding, namely τ.
This is accurately captured by the proposed representation of type abbre-
viation as the combination of type abstraction and type application, but, as
we have just seen, this is not the intended meaning of the construct!

We could, as suggested in the introduction, abandon the core princi-
ples of type theory, and introduce type abbreviations as a primitive notion.
But there is no need to do so. Instead we can simply note that what is
needed is for the kind of t to capture its identity. This may be achieved
through the notion of a singleton kind. Informally, the kind Eqv(τ) is the
kind of types that are definitionally equivalent to τ. That is, up to defini-
tional equality, this kind has only one inhabitant, namely τ. Consequently,
if u :: Eqv(τ) is a variable of singleton kind, then within its scope, the
variable u is synonymous with τ. Thus we may represent let t be τ in e by

14:43 DRAFT AUGUST 24, 2010



28.1 Informal Overview 247

Λ(t::Eqv(τ).e)[τ], which correctly propagates the identity of t, namely
τ, to e during type checking.

A proper treatment of singleton kinds requires some additional machin-
ery at the constructor and kind level. First, we must capture the idea that
a constructor of singleton kind is a fortiori a constructor of kind Type, and
hence is a type. Otherwise, a variable, u, singleton kind cannot be used as
a type, even though it is explicitly defined to be one! This may be captured
by introducing a subkinding relation, κ1 :<: κ2, which is analogous to sub-
typing, exception at the kind level. The fundamental axiom of subkinding
is Eqv(τ) :<: Type, stating that every constructor of singleton kind is a
type.

Second, we must account for the occurrence of a constructor of kind
Type within the singleton kind Eqv(τ). This intermixing of the construc-
tor and kind level means that singletons are a form of dependent kind in
that a kind may depend on a constructor. Another way to say the same
thing is that Eqv(τ) represents a family of kinds indexed by constructors of
kind Type. This, in turn, implies that we must generalize the function and
product kinds to dependent functions and dependent products. The dependent
function kind, Π u::κ1.κ2 classifies functions that, when applied to a con-
structor c1 :: κ1, results in a constructor of kind [c1/u]κ2. The important
point is that the kind of the result is sensitive to the argument, and not
just to its kind.1 The dependent product kind, Σ u::κ1.κ2, classifies pairs
〈c1, c2〉 such that c1 :: κ1, as might be expected, and c2 :: [c1/u]κ2, in which
the kind of the second component is sensitive to the first component itself,
and not just its kind.

Third, it is useful to consider singletons not just of kind Type, but also
of higher kinds. To support this we introduce higher-kind singletons, written
Eqv(c::κ), where κ is a kind and c is a constructor of kind k. These are
definable in terms of the primitive form of singleton kind by making use of
dependent function and product kinds.

This chapter is under construction . . . .

1As we shall see in the development, the propagation of information as sketched here is
managed through the use of singleton kinds.

AUGUST 24, 2010 DRAFT 14:43



248 28.1 Informal Overview

14:43 DRAFT AUGUST 24, 2010



Part X

Classes and Methods





Chapter 29

Dynamic Dispatch

It frequently arises that the values of a type are partitioned into a variety of
classes, each classifying data with distinct internal structure. A good exam-
ple is provided by the type of points in the plane, which may be classified
according to whether they are represented in cartesian or polar form. Both
are represented by a pair of real numbers, but in the cartesian case these
are the x and y coordinates of the point, whereas in the polar case these
are its distance, ρ, from the origin and its angle, θ, with the polar axis. A
classified value is said to be an instance of, or an object of its class. The class
determines the type of the classified data, which is called the instance type
of the class. The classified data itself is called the instance data of the object.

Functions that act on classified values are called methods. The behavior
of a method is determined by the class of its argument. The method is said
to dispatch on the class of the argument. Because it happens at run-time,
this is called, rather grandly, dynamic dispatch. For example, the distance
of a point from the origin is calculated differently according to whether
the point is represented in cartesian or polar form. In the former case the
required distance is

√
x2 + y2, whereas in the latter it is simply ρ itself. Sim-

ilarly, the quadrant of a cartesian point may be determined by examining
the sign of its x and y coordinates, and the quadrant of a polar point may
be calculated by taking the integral part of the angle θ divided by π/2.

Since each method acts by dispatch on the class of its argument, we may
envision the entire system of classes and methods as a matrix, M, called the
dispatch matrix, whose rows are classes, whose columns are methods, and
whose (c, d)-entry is the code for method d acting on an argument of class c,
expressed as a function of the instance data of the object. Thus, the dispatch



252

matrix has a type of the form

∏
c∈C

∏
d∈D

(σc → ρd),

where C is the set of class names, D is the set of method names, σc is the
instance type associated with class c and ρd is the result type of method d.
The instance type is the same for all methods acting on a given class, and
that the result type is the same for all classes acted on by a given method.

There are two main ways to organize a system of classes and methods,
according to whether we wish to place emphasis on the classes, thought
of as a collection of methods acting on its instances, or on the methods,
thought of as a collection of classes on which the methods act. These are,
respectively, the class-based and the method-based organizations. Languages
that place special emphasis on classes and methods, called object-oriented
languages,1 usually adopt one or the other of these organizations as a cen-
tral design principle. Often the class-based organization is considered to
be especially “object-oriented”, but in fact many such languages stress the
method-based organization.

There is little point in making heavy weather of the distinction, both
being applicable in different situations. What is important is that both arise
from simple manipulations of the dispatch matrix based on symmetries be-
tween product and sum types. A fully expressive language supports sums
and products equally well, and hence supports the class-based organiza-
tion as readily as the method-based, rather than taking a doctrinal stance
that cannot be maintained in the face of these symmetries.

The method-based organization starts with the transpose, M>, of the
dispatch matrix, M, which has the type

∏
d∈D

∏
c∈C

(σc → ρd).

By observing that each row of the transposed dispatch matrix determines a
method, we obtain the method vector, Mmv, of type

τmv , ∏
d∈D

(∑
c∈C

σc)→ ρd.

Each entry of the method vector consists of a dispatcher that determines the
result as a function of the instance data associated with a given object. This

1The term “object-oriented” itself speaks to the vagueness of the concept. It is used, for
the most part, to express approval.

14:43 DRAFT AUGUST 24, 2010



29.1 The Dispatch Matrix 253

organization makes it easy to add new methods for a given collection of
classes by simply defining a new function of this type. It makes adding a
new class relatively more difficult, however, since doing so requires that
each method be updated to account for the new forms of object.

The class-based organization starts with the observation that the dis-
patch matrix may be reorganized to “factor out” the instance data for each
method acting on that class to obtain the class vector, Mcv, of type

τcv , ∏
c∈C

(σc → (∏
d∈D

ρd)).

Each row of the class vector consists of a constructor that determines the
result of each of the methods when acting on given instance data. This
organization makes it easy to add a new class to the program; we need
only define the method tuple on the instance data for the new class. It
makes adding a new method relatively more difficult, however, because
we must extend the interpretation of each class to account for it.

We will show how to give a method-based and a class-based implemen-
tation of objects by defining the following concepts:

• The type of objects arising as instances of the classes on which the
methods act.

• The operation new[c](e) that creates an object of the class c with in-
stance data given by the expression e.

• The operation e⇐ d that invokes method d on the instance given by
the expression e.

Informally, under the method-based organization an object consists of the
instance data tagged with its class. A new instance is created by attaching
the class tag to the instance data, and a method is invoked by dispatching
on the class of the instance. Conversely, under the class-based organization
an object consists of a tuple of results of each of the methods acting on the
instance data of the object. A new object is created by applying each of the
methods to given instance data, and a method is invoked by projecting the
result from the object.

29.1 The Dispatch Matrix

As an illustrative example, let us consider the type of points in the plane
classified into two classes, cart and pol, corresponding to the cartesian

AUGUST 24, 2010 DRAFT 14:43



254 29.1 The Dispatch Matrix

and polar representations. The instance data for a cartesian point has the
type

σcart = 〈x : real, y : real〉,

and the instance data for a polar point has the type

σpol = 〈r : real, th : real〉.

Consider two methods acting on points, dist and quad, which com-
pute, respectively, the squared distance of a point from the origin and the
quadrant of a point. The distance method is given by the tuple edist =
〈cart = ecartdist, pol = epoldist〉 of type

〈cart : σcart → ρdist, pol : σpol → ρdist〉,

where ρdist = real is the result type,

ecartdist = λ (u:σcart. (u · x)2 + (u · y)2)

is the distance computation for a cartesian point, and

epoldist = λ (v:σpol. (v · r)2)

is the distance computation for a polar point. Similarly, the quadrant method
is given by the tuple equad = 〈cart = ecartquad, pol = epolquad〉 of type

〈cart : σcart → ρquad, pol : σpol → ρquad〉,

where ρquad = [I, II, III, IV] is the type of quadrants, and ecartquad and epolquad

are expressions that compute the quadrant of a point in rectangular and
polar forms, respectively.

Now let C = { cart, pol } and let D = { dist, quad }, and define the
dispatch matrix, M, to be the value of type

∏
c∈C

∏
d∈D

(σc → ρd)

such that, for each class c and method d,

M · c · d 7→∗ ec
d.

That is, the entry in the dispatch matrix, M, for class c and method d is
defined to be the implementation of that method acting on an instance of
that class.

14:43 DRAFT AUGUST 24, 2010



29.2 Method-Based Organization 255

29.2 Method-Based Organization

An object is a value of type σ = ∑c∈C σc, the sum over the classes of the
instance types. For example, the type of points in the plane is the sum type

[cart : σcart, pol : σpol].

Each point is labelled with its class, specifying its representation as having
either cartesian or polar form.

An instance of a class c is just the instance data labelled with its class to
form an element of the object type:

new[c](e) , c · e.

For example, a cartesian point with coordinates x0 and y0 is given by the
expression

new[cart](〈x = x0, y = y0〉) , cart · 〈x = x0, y = y0〉.

Similarly, a polar point with distance ρ0 and angle θ0 is given by the expres-
sion

new[pol](〈r = r0, th = θ0〉) , pol · 〈r = r0, th = θ0〉.

The method-based organization consolidates the implementation of each
method into the method vector, Mmv of type τmv, defined by 〈ed〉d∈D, where
for each d ∈ D the expression ed : σ→ ρd is

λ (this:σ. case this {c · u⇒M · c · d(u)}c∈C).

Each entry in the method vector may be thought of as a dispatch function
that determines the action of that method on each class of object.

In the case of points in the plane, the method vector has the product
type

〈dist : σ→ ρdist, quad : σ→ ρquad〉.

The dispatch function for the dist method has the form

λ (this:σ. case this {cart · u⇒M · cart · dist(u) | pol · v⇒M · pol · dist(v)}),

and the dispatch function for the quad method has the similar form

λ (this:σ. case this {cart · u⇒M · cart · quad(u) | pol · v⇒M · pol · quad(v)}).

AUGUST 24, 2010 DRAFT 14:43



256 29.3 Class-Based Organization

The message send operation, e⇐ d, applies the dispatch function for method
d to the object e:

e⇐ d , Mmv · d(e).

Thus we have, for each class, c, and method, d,

(new[c](e))⇐ d 7→∗ Mmv · d(c · e)
7→∗ M · c · d(e)

That is, the message send invokes the implementation of the method d on
the instance data for the given object.

29.3 Class-Based Organization

An object has the type ρ = ∏d∈D ρd consisting of the product over the
methods of the result types of the methods. For example, in the case of
points in the plane, the type ρ is the product type

〈dist : ρdist, quad : ρquad〉.

Each component specifies the result of each of the methods acting on that
object.

The message send operation, e⇐ d, is just the projection e · d. So, in the
case of points in the plane, e⇐ dist is the projection e · dist, and similarly
e⇐ quad is the projection e · quad.

The class-based organization consolidates the implementation of each
class into a class vector, Mcv, a tuple of type τcv consisting of the constructor
of type σc → ρ for each class c ∈ C. The class vector is defined by Mcv =
〈ec〉c∈C, where for each c ∈ C the expression ec is

λ (u:σc. 〈M · c · d(u)〉d∈D).

For example, the constructor for the class cart is the function ecart

given by the expression

λ (u:σcart. 〈dist = M · cart · dist(u), quad = M · cart · quad(u)〉).

Similarly, the constructor for the class pol is the function epol given by the
expression

λ (u:σpol. 〈dist = M · pol · dist(u), quad = M · pol · quad(u)〉).

14:43 DRAFT AUGUST 24, 2010



29.4 Self-Reference 257

The class vector, Mcv, in this case is the tuple 〈cart = ecart, pol = epol〉 of
type 〈cart : σcart → ρ, pol : σpol → ρ〉.

An instance of a class is obtained by applying the constructor for that
class to the instance data:

new[c](e) , Mcv · c(e).

For example, a cartesian point is obtained by writing new[cart](〈x = x0, y = y0〉),
which is defined by the expression

Mcv · cart(〈x = x0, y = y0〉).

Similarly, a polar point is obtained by writing new[pol](r = r0, th = θ0),
which is defined by the expression

Mcv · pol(〈r = r0, th = θ0〉).

It is easy to check for this organization of points that for each class c and
method d, we may derive

(new[c](e))⇐ d 7→∗ (Mcv · c(e)) · d
7→∗ M · c · d(e)

The outcome is, of course, the same as for the method-based organization.

29.4 Self-Reference

A significant shortcoming of the foregoing account of classes and methods
is that methods are not permitted to create new objects or to send messages
to existing objects. The elements of the dispatch matrix are functions whose
domain and range are given in advance. It is only after the dispatch ma-
trix has been defined that we are able to choose either the method-based
or class-based organization for computing with classified objects. Rectify-
ing this will, en passant, also permit methods to call one another, perhaps
even themselves, and allow constructors to create instances, perhaps even
of their own class.

The first step to correcting this shortcoming is to change the definition
and type of the dispatch matrix so that method bodies may create instances
and send messages. This is not quite so straightforward as it may sound,
because the meaning of instance creation and message send varies accord-
ing to whether we are using a method-based or a class-based organization.

AUGUST 24, 2010 DRAFT 14:43



258 29.4 Self-Reference

Naı̈vely, this would seem to imply that the dispatch matrix can no longer
be organized along either the method or class axis, but must instead be
defined separately according to whether we are using a method-based or
class-based organization. However, the dependency can be avoided by us-
ing an abstract type to avoid representation commitments.

To allow methods to call one another and to allow constructors to gen-
erate objects of other classes, the types of the class and method vectors
must be given self-referential types (see Section 19.3 on page 161). This is
necessary because the definitions of message send (in the method-based
setup) and instantiation (in the class-based setup) imply that the dispatch-
ers in the method vector and the constructors in the class vector may refer
to themselves indirectly via the dispatch matrix.

The type of the dispatch matrix is generalized to the polymorphic type

∏
c∈C

∏
d∈D
∀(t.τcv → τmv → σc → ρd),

where t is the abstract type of objects, the type of the class vector is given
by the equation

τcv = ∏
c∈C

(σc → t),

and the type of the method vector is given by the equation

τmv = (∏
d∈D

t→ ρd).

Each class vector entry is a constructor yielding an object of type t given
instance data for that class, and each method vector entry is a dispatcher
that acts on an object of type t to determine the result of that method. The
entry for class c and method d in the dispatch matrix has the form

Λ(t.λ (cv:τcv. λ (mv:τmv. λ (u:σc. e)))),

where within the body e a new object of class c′ with instance data e′ is
obtained by writing cv · c′(e′), and a message d′ is sent to an object e′ by
writing mv · d′(e′). Thus thus the implementation of method d on class c
may create an instance of any class, including c itself, and may invoke any
method, including d itself.

The change to the type of the dispatch matrix requires that we recon-
sider the definition of the class and method vectors. Under the method-
based organization the instantiation operation is defined directly to tag the
instance data with its class, just as before. The messaging operation must

14:43 DRAFT AUGUST 24, 2010



29.5 Irregular Systems 259

be generalized, however, to allow for the self-reference engendered by in-
voking a method that may itself invoke another method. Dually, under
the class-based organizaton messaging is defined by projection, as before,
but instantiation must be generalized to to account for the self-reference
engendered by a constructor creating an instance.

To allow for self-reference the method vector, Mmv is defined to have the
type [σ/t]τmv self, in which the abstract object type is specialized to the
sum over all classes of their instance types. The method vector is defined
by the expression

selfmv is 〈d = λ (this:σ. case this {c · u⇒M · c · d[σ](ecv)(emv)(u)}c∈C)〉d∈D,

where the class vector argument, ecv, is the tuple of tagging operations
〈c = λ (u:σc. c · u)〉c∈C, and the method vector argument, emv, is the recur-
sive unrolling of the method vector itself, unroll(mv). The message send
operation e⇐ d is given by the expression unroll(Mmv) · d(e), whereas
objection creation, new[c](e), is defined as before to be c · e.

Alternatively, under the class-based organization, the class vector, Mcv,
is defined to have the type [ρ/t]τcv self, which specifies that the abstract
type of objects is the product over all methods of their result types. The
class vector itself is given by the expression

self cv is 〈c = λ (u:σc. 〈d = M · c · d[ρ](e′cv)(e′mv)(u)〉d∈D)〉c∈C

where the class vector argument, e′cv, is unroll(cv), and the method vector
argument, e′mv, is the tuple of projections, 〈d = λ (this:ρ. this · d)〉d∈D. Ob-
ject creation, new[c](e) is defined by the expression unroll(Mcv) · c(e),
whereas message send, d⇐ e, is defined, as before, by e · d.

The symmetries between the two organizations are striking. They mir-
ror the duality of sum and product types. Neither the class-based nor the
method-based organization enjoys a privileged status with respect to the
other, and hence there is no basis for preferring one over the other.

29.5 Irregular Systems

To simplify matters we have so far considered only regular systems of classes
and methods in which every method is defined for every class of data, and
every class of data admits the full range of methods. In practice it is often
useful to relax this assumption and allow the suite of available methods to
be determined by the class of an object, or to allow the classes to which a
method may be applied to be determined by that method.

AUGUST 24, 2010 DRAFT 14:43



260 29.6 Exercises

Such irregular systems may be handled by changing slightly the index-
ing of the dispatch matrix. Rather than consider the dispatch matrix to be
indexed by two independent finite sets, C and D, we instead consider it to
be indexed by a finite relation, E, consisting of pairs (c, d) where c is a class
and d is a method. The idea is that if (c, d) ∈ E, then class c admits method
d, and so the dispatch matrix, M, is required to provide an implementation
for this combination. Therefore, the dispatch matrix has the finite product
type

∏
(c,d)∈E

σc → ρd

For the irregular case the projections E1 = { c | (∃d) (c, d) ∈ E } and E2 =
{ d | (∃c) (c, d) ∈ E } play the role of the sets C and D in the regular case.
The coverage sets E[c] = { d | (c, d) ∈ E } and E−1[d] = { c | (c, d) ∈ E }
consist of, respectively, the methods defined on instances of class c and the
classes on which the method d is defined.

If M is an irregular dispatch table indexed by E, then the class vector
Mcv has the type

∏
c∈C

σc → ( ∏
d∈E[c]

ρd),

where C = { c | (∃d) (c, d) ∈ E }. The class-based object type, ∏d∈E[c] ρd is
determined by the class, c ∈ C; it contains a field for each method covered
by the class c. Similarly, the method vector Mmv has the type

∏
d∈D

( ∑
c∈E−1[d]

σc)→ ρd,

where D = { d | (∃c) (c, d) ∈ E }. The method-based object type, ∑c∈E−1[d] σc,
is determined by the method, d ∈ D; it contains an instance for each class
covered by the method d.

The rest of the development proceeds as before, albeit based on an ir-
regular configuration of classes and methods.

29.6 Exercises

1. Extend to allow methods to return instances as results and construc-
tors to take instances as arguments. The method-based approach has
no difficulty with the former, but requires some modification to allow
for the latter; dually, the class-based approach has no difficulty with
the latter, but requires some modification to allow for the former.

14:43 DRAFT AUGUST 24, 2010



29.6 Exercises 261

2. Add support for an instance test, which allows testing whether an ob-
ject is an instance of a specified class. This amounts to insisting that
each object come equipped with a family of methods instanceof[c],
where c ∈ C, which evaluates to a boolean according to whether the
object is an instance of class c or not.

AUGUST 24, 2010 DRAFT 14:43



262 29.6 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 30

Inheritance

In Chapter 29 we introduced dynamic dispatch using a dispatch matrix that
specifies the implementation of a method d on an instance of a class c when-
ever this combination is deemed meaningful. Inheritance is the process of
modifying and extending one dispatch matrix to form another. Given a
dispatch matrix, M, we wish to define another dispatch matrix, M∗, that
differs from M in several possible senses:

1. We may introduce a new class by specifying which methods it sup-
ports, and defining the behavior of these methods on instances of that
class.

2. We may introduce a new method by specifying on which classes it is
defined, and specifying the behavior of that method on instances of
those classes.

3. We may redefine the behavior of an existing method on an existing
class.

Methodologically speaking, these modifications are intended to be rela-
tively few compared to the full extent of the dispatch matrix, so that M∗

is “much the same” as M, except in a few key spots. The dispatch matrix
M∗ is said to inherit from M those entries that are not modifications or ex-
tensions of those in M. Inheritance focuses attention on the extensions or
modifications, the parts that change, rather than on the parts that remain
the same.

Before analyzing inheritance in more detail, it is important to empha-
size that nothing stops us from redefining every method on every class, so



264 30.1 Subclasses and Submethods

that M∗ may bear little or no relationship to M. In fact there is no fun-
damental reason why even the types of the entries that they have in com-
mon should remain the same, though certain methodologies that seek to
constrain the use of inheritance impose restrictions that ensure such con-
ditions. Put in other terms, it is important to stress that inheritance has no
meaning. The fact that M∗ inherits from M tells us nothing whatsoever
about the behavior of objects arising from M∗ as compared to those arising
from M. Moreover, there is no trace of M∗ having arisen by inheritance by
M as compared to having been defined by some other means. Inheritance
is not a matter of essence, but rather one of accident; it is simply a statement
about how a body of code came into being, rather than about what a body
of code does or does not do.1

Another critical feature of inheritance is that, in the presence of self-
reference, overriding has a non-local effect that interferes with standard
principles of modular programming. Since methods can call one another
by sending messages to the distinguished object this, overriding a method
can affect the behavior not only of the overridden method itself, but also of
every method that may invoke the overridden method, even methods that
appear superficially to be inherited intact. Although classes and methods
are often marketed as modularity mechanisms, it follows from this obser-
vation that inheritance is profoundly antimodular. To understand the effect
of an override, one must understand the code, and not just the type, of ev-
ery method that may, directly or indirectly, invoke the overridden method.
Much has been written about this problem, but fundamentally there is no
solution: whatever their merits, methods and classes do not support mod-
ular reasoning or modular development of systems. On the contrary, they
impede it.

30.1 Subclasses and Submethods

Among many forms of inheritance, perhaps the most common is to define
a new class to be a subclass of a specified superclass. The subclass inherits
the superclass methods, but may, in addition, override a superclass method
by providing an implementation specific to the subclass, or extend the su-
perclass with additional methods that apply only to the subclass. There are
many notations for expressing inheritance. Rather than invent a syntax, we

1In view of this one may doubt the significance of programming methodologies that
stress inheritance as a central organizing principle.

14:43 DRAFT AUGUST 24, 2010



30.1 Subclasses and Submethods 265

will instead focus on the conditions that must be met in order to define one
class to be a subclass of another.

Let M be a(n irregular) dispatch matrix of type ∏(c,d)∈E σc → ρd, and
suppose that c∗ /∈ E1 is a fresh class name. The subclass c∗ of the class
c ∈ E1 is defined by the following data and conditions:

1. A set Dext such that Dext ∩ E[c] = ∅ of methods that extend those
of c, and a set Dovr ⊆ E[c] of methods that override those of c. Let
Dinh = D \ Dovr be the set of methods inherited by the class c∗ from
the class c.

2. The instance type, σc∗
∗ , of the new class, c∗ such that σc∗

∗ <: σc.

3. For each d ∈ Dext, the result type ρ∗d and the implementation e∗d of
type σc∗

∗ → ρ∗d of each extending method.

4. For each d ∈ Dovr, the implementation e∗d of type σc∗
∗ → ρd of each

overriding method.

The requirement on the subclass instance type ensures that any inherited
method may be safely applied to subclass intance data. The requirement on
the type of an overriding method may be met by a function that delivers a
value of a subtype of the result type of that method.

The subclass definition determines a new dispatch matrix, M∗, which is
specified as follows:

1. E∗ = E ∪ { (c∗, d) | d ∈ Dext ∪ E[c] }. The new class has the methods
inherited from class c, plus any extensions to these.

2. For each c ∈ E1, σc
∗ = σc. The instance types of the old classes are

unchanged. The instance type of the new class is given as part of the
subclass definition.

3. For each d ∈ E[c], ρ∗d = ρd. The result type of each inherited or over-
ridden method is as specified in the superclass. The result type of an
extending method is given in the subclass definition.

4. For d ∈ Dinh, M∗ · c · d 7→∗ M · c · d. The inherited methods are those
of class c.

5. For d ∈ Dext ∪ Dovr, M∗ · c · d 7→∗ e∗d . The extending and overriding
methods are as specified in the subclass definition.

AUGUST 24, 2010 DRAFT 14:43



266 30.2 Inheritance and Subtyping

It is a good exercise to check that the new dispatch matrix, M∗, has the
type ∏(c,d)∈E∗ σc

∗ → ρ∗d according to these definitions, provided that the
conditions on subclassing are met.

Defining a new class to be a subclass of a specified superclass is called
single inheritance, by contrast with multiple inheritance, which allows a sub-
class to inherit from more than one superclass. When the superclasses
overlap by providing a definition for a common method, d, it is necessary
to disambiguate by specifying which superclass takes precedence. Many
techniques for doing this have been considered, but no one policy seems
best overall. One may resolve the ambiguity on a case-by-case basis (for
example, by altering the resolution algorithm), but this makes the program
harder to understand and maintain.

One may also consider a dual form of inheritance in which a submethod
is defined by inheriting “most” of its clauses from a supermethod, and ex-
tending or overriding clauses with those appropriate for some instances.
We leave the details of this as an exercise for the reader.

30.2 Inheritance and Subtyping

Inheritance is a mechanism for building new systems of classes and meth-
ods from old ones. Inheritance has no semantic significance. One may, for
example, override all of the methods of a superclass in a subclass, drasti-
cally changing its behavior, even if the types remain the same. Knowing
that a class was defined by inheritance from another class, or that a method
was defined by inheritance from another class, tells us nothing about the
new class or method.

Many languages constrain inheritance to ensure that some semblance
of behavior is preserved. A basic requirement is to ask that if a class c∗

is defined to be a subclass of the class c, then instances of class c∗ should
be usable whenever an instance of class c is required. This is, of course, a
restatement of the subsumption principle put forth in Chapter 27 as the def-
inition of subtyping. Many languages restrict inheritance so that subclasses
determine subtypes.

The definition of subclassing given in the preceding section ensures that
subclasses determine subtypes, which is to say that

∏
d∈E∗[c]

ρ∗d <: ∏
d∈E[c]

ρd.

This subtyping holds provided that E[c] ⊆ E∗[c], which follows directly

14:43 DRAFT AUGUST 24, 2010



30.3 Exercises 267

from the definition of E∗, and that for each d ∈ E[c], we have ρ∗d <: ρd,
which holds trivially since ρ∗d = ρd for each such method d.

A similar situation arises when considering submethoding. In particu-
lar the type of the new method vector is a subtype of that of the old method
vector. We leave it as an exercise for the reader to work out the analogous
conditions.

30.3 Exercises

1. Extend inheritance to self-referential methods.

AUGUST 24, 2010 DRAFT 14:43



268 30.3 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XI

Control Effects





Chapter 31

Control Stacks

The technique of structural dynamics is very useful for theoretical pur-
poses, such as proving type safety, but is too high level to be directly usable
in an implementation. One reason is that the use of “search rules” requires
the traversal and reconstruction of an expression in order to simplify one
small part of it. In an implementation we would prefer to use some mecha-
nism to record “where we are” in the expression so that we may “resume”
from that point after a simplification. This can be achieved by introduc-
ing an explicit mechanism, called a control stack, that keeps track of the
context of an instruction step for just this purpose. By making the control
stack explicit the transition rules avoid the need for any premises—every
rule is an axiom. This is the formal expression of the informal idea that no
traversals or reconstructions are required to implement it. In this chapter
we introduce an abstract machine, K{nat⇀}, for the language L{nat⇀}.
The purpose of this machine is to make control flow explicit by introducing
a control stack that maintains a record of the pending sub-computations of
a computation. We then prove the equivalence ofK{nat⇀}with the struc-
tural dynamics of L{nat⇀}.

31.1 Machine Definition

A state, s, ofK{nat⇀} consists of a control stack, k, and a closed expression,
e. States may take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of
a closed expression, e, relative to a control stack, k.



272 31.1 Machine Definition

2. A return state of the form k / e, where e val, corresponds to the evalu-
ation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack (31.1a)

f frame k stack

k; f stack
(31.1b)

The definition of frame depends on the language we are evaluating. The
frames of K{nat⇀} are inductively defined by the following rules:

s(−) frame (31.2a)

ifz(−; e1; x.e2) frame (31.2b)

ap(−; e2) frame (31.2c)

The frames correspond to rules with transition premises in the dynamics
of L{nat⇀}. Thus, instead of relying on the structure of the transition
derivation to maintain a record of pending computations, we make an ex-
plicit record of them in the form of a frame on the control stack.

The transition judgement between states of theK{nat⇀} is inductively
defined by a set of inference rules. We begin with the rules for natural
numbers.

k . z 7→ k / z (31.3a)

k . s(e) 7→ k;s(−) . e (31.3b)

k;s(−) / e 7→ k / s(e) (31.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on
the stack to record the pending successor, and evaluate e; when that returns
with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz(e; e1; x.e2) 7→ k;ifz(−; e1; x.e2) . e (31.4a)

k;ifz(−; e1; x.e2) / z 7→ k . e1 (31.4b)

14:43 DRAFT AUGUST 24, 2010



31.2 Safety 273

k;ifz(−; e1; x.e2) / s(e) 7→ k . [e/x]e2 (31.4c)

First, the test expression is evaluated, recording the pending case analysis
on the stack. Once the value of the test expression has been determined,
we branch to the appropriate arm of the conditional, substituting the pre-
decessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

k . lam[τ](x.e) 7→ k / lam[τ](x.e) (31.5a)

k . ap(e1; e2) 7→ k;ap(−; e2) . e1 (31.5b)

k;ap(−; e2) / lam[τ](x.e) 7→ k . [e2/x]e (31.5c)

k . fix[τ](x.e) 7→ k . [fix[τ](x.e)/x]e (31.5d)

These rules ensure that the function is evaluated before the argument, ap-
plying the function when both have been evaluated. Note that evaluation
of general recursion requires no stack space! (But see Chapter 41 for more
on evaluation of general recursion.)

The initial and final states of theK{nat⇀} are defined by the following
rules:

ε . e initial (31.6a)

e val
ε / e final

(31.6b)

31.2 Safety

To define and prove safety for K{nat⇀} requires that we introduce a new
typing judgement, k : τ, stating that the stack k expects a value of type τ.
This judgement is inductively defined by the following rules:

ε : τ (31.7a)

k : τ′ f : τ ⇒ τ′

k; f : τ
(31.7b)

This definition makes use of an auxiliary judgement, f : τ ⇒ τ′, stating
that a frame f transforms a value of type τ to a value of type τ′.

s(−) : nat⇒ nat (31.8a)

e1 : τ x : nat ` e2 : τ

ifz(−; e1; x.e2) : nat⇒ τ
(31.8b)

AUGUST 24, 2010 DRAFT 14:43



274 31.3 Correctness of the Control Machine

e2 : τ2
ap(−; e2) : arr(τ2; τ)⇒ τ

(31.8c)

The two forms of K{nat⇀} state are well-formed provided that their
stack and expression components match.

k : τ e : τ
k . e ok

(31.9a)

k : τ e : τ e val
k / e ok

(31.9b)

We leave the proof of safety of K{nat⇀} as an exercise.

Theorem 31.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

31.3 Correctness of the Control Machine

It is natural to ask whether K{nat⇀} correctly implements L{nat⇀}. If
we evaluate a given expression, e, using K{nat⇀}, do we get the same
result as would be given by L{nat⇀}, and vice versa?

Answering this question decomposes into two conditions relatingK{nat⇀}
to L{nat⇀}:

Completeness If e 7→∗ e′, where e′ val, then ε . e 7→∗ ε / e′.

Soundness If ε . e 7→∗ ε / e′, then e 7→∗ e′ with e′ val.

Let us consider, in turn, what is involved in the proof of each part.
For completeness it is natural to consider a proof by induction on the

definition of multistep transition, which reduces the theorem to the follow-
ing two lemmas:

1. If e val, then ε . e 7→∗ ε / e.

2. If e 7→ e′, then, for every v val, if ε . e′ 7→∗ ε / v, then ε . e 7→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second
requires an inductive analysis of the derivation of e 7→ e′, giving rise to two
complications that must be accounted for in the proof. The first complica-
tion is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the machine is

ε . ap(e1; e2) 7→ ε;ap(−; e2) . e1,

14:43 DRAFT AUGUST 24, 2010



31.3 Correctness of the Control Machine 275

and so we must consider evaluation of e1 on a non-empty stack.
A natural generalization is to prove that if e 7→ e′ and k . e′ 7→∗ k / v,

then k . e 7→∗ k / v. Consider again the case e = ap(e1; e2), e′ = ap(e′1; e2),
with e1 7→ e′1. We are given that k . ap(e′1; e2) 7→∗ k / v, and we are to
show that k . ap(e1; e2) 7→∗ k / v. It is easy to show that the first step of
the former derivation is

k . ap(e′1; e2) 7→ k;ap(−; e2) . e′1.

We would like to apply induction to the derivation of e1 7→ e′1, but to do so
we must have a v1 such that e′1 7→∗ v1, which is not immediately at hand.

This means that we must consider the ultimate value of each sub-expression
of an expression in order to complete the proof. This information is pro-
vided by the evaluation dynamics described in Chapter 10, which has the
property that e ⇓ e′ iff e 7→∗ e′ and e′ val.

Lemma 31.2. If e ⇓ v, then for every k stack, k . e 7→∗ k / v.

The desired result follows by the analogue of Theorem 10.2 on page 85
for L{nat⇀}, which states that e ⇓ v iff e 7→∗ v.

For the proof of soundness, it is awkward to reason inductively about
the multistep transition from ε . e 7→∗ ε / v, because the intervening
steps may involve alternations of evaluation and return states. Instead we
regard each K{nat⇀}machine state as encoding an expression, and show
that K{nat⇀} transitions are simulated by L{nat⇀} transitions under
this encoding.

Specifically, we define a judgement, s# e, stating that state s “unravels
to” expression e. It will turn out that for initial states, s = ε . e, and final
states, s = ε / e, we have s # e. Then we show that if s 7→∗ s′, where
s′ final, s # e, and s′ # e′, then e′ val and e 7→∗ e′. For this it is enough to
show the following two facts:

1. If s# e and s final, then e val.

2. If s 7→ s′, s# e, s′ # e′, and e′ 7→∗ v, where v val, then e 7→∗ v.

The first is quite simple, we need only observe that the unravelling of a
final state is a value. For the second, it is enough to show the following
lemma.

Lemma 31.3. If s 7→ s′, s# e, and s′ # e′, then e 7→∗ e′.

Corollary 31.4. e 7→∗ n iff ε . e 7→∗ ε / n.

The remainder of this section is devoted to the proofs of the soundness
and completeness lemmas.

AUGUST 24, 2010 DRAFT 14:43



276 31.3 Correctness of the Control Machine

31.3.1 Completeness

Proof of Lemma 31.2 on the previous page. The proof is by induction on an eval-
uation dynamics for L{nat⇀}.

Consider the evaluation rule

e1 ⇓ lam[τ2](x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(31.10)

For an arbitrary control stack, k, we are to show that k . ap(e1; e2) 7→∗ k / v.
Applying both of the inductive hypotheses in succession, interleaved with
steps of the abstract machine, we obtain

k . ap(e1; e2) 7→ k;ap(−; e2) . e1

7→∗ k;ap(−; e2) / lam[τ2](x.e)
7→ k . [e2/x]e
7→∗ k / v.

The other cases of the proof are handled similarly.

31.3.2 Soundness

The judgement s# e′, where s is either k . e or k / e, is defined in terms of
the auxiliary judgement k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(31.11a)

k ./ e = e′

k / e# e′
(31.11b)

In words, to unravel a state we wrap the stack around the expression. The
latter relation is inductively defined by the following rules:

ε ./ e = e (31.12a)

k ./ s(e) = e′

k;s(−) ./ e = e′
(31.12b)

k ./ ifz(e1; e2; x.e3) = e′

k;ifz(−; e2; x.e3) ./ e1 = e′
(31.12c)

k ./ ap(e1; e2) = e
k;ap(−; e2) ./ e1 = e

(31.12d)

These judgements both define total functions.

14:43 DRAFT AUGUST 24, 2010



31.4 Exercises 277

Lemma 31.5. The judgement s# e has mode (∀, ∃!), and the judgement k ./ e =
e′ has mode (∀, ∀, ∃!).

That is, each state unravels to a unique expression, and the result of
wrapping a stack around an expression is uniquely determined. We are
therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.

The following lemma is crucial. It states that unravelling preserves the
transition relation.

Lemma 31.6. If e 7→ e′, k ./ e = d, k ./ e′ = d′, then d 7→ d′.

Proof. The proof is by rule induction on the transition e 7→ e′. The inductive
cases, in which the transition rule has a premise, follow easily by induction.
The base cases, in which the transition is an axiom, are proved by an induc-
tive analysis of the stack, k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ =
ap(e′1; e2), and e1 7→ e′1. We have k ./ e = d and k ./ e′ = d′. It follows from
Rules (31.12) that k;ap(−; e2) ./ e1 = d and k;ap(−; e2) ./ e′1 = d′. So by
induction d 7→ d′, as desired.

For an example of a base case, suppose that e = ap(lam[τ2](x.e); e2)

and e′ = [e2/x]e with e 7→ e′ directly. Assume that k ./ e = d and k ./ e′ = d′;
we are to show that d 7→ d′. We proceed by an inner induction on the
structure of k. If k = ε, the result follows immediately. Consider, say, the
stack k = k′;ap(−; c2). It follows from Rules (31.12) that k′ ./ ap(e; c2) = d
and k′ ./ ap(e′; c2) = d′. But by the SOS rules ap(e; c2) 7→ ap(e′; c2), so by
the inner inductive hypothesis we have d 7→ d′, as desired.

We are now in a position to complete the proof of Lemma 31.3 on page 275.

Proof of Lemma 31.3 on page 275. The proof is by case analysis on the transi-
tions of K{nat⇀}. In each case after unravelling the transition will corre-
spond to zero or one transitions of L{nat⇀}.

Suppose that s = k . s(e) and s′ = k;s(−) . e. Note that k ./ s(e) = e′

iff k;s(−) ./ e = e′, from which the result follows immediately.
Suppose that s = k;ap(lam[τ](x.e1);−) / e2 and s′ = k . [e2/x]e1.

Let e′ be such that k;ap(lam[τ](x.e1);−) ./ e2 = e′ and let e′′ be such that
k ./ [e2/x]e1 = e′′. Observe that k ./ ap(lam[τ](x.e1); e2) = e′. The result
follows from Lemma 31.6.

31.4 Exercises

AUGUST 24, 2010 DRAFT 14:43



278 31.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 32

Exceptions

Exceptions effect a non-local transfer of control from the point at which the
exception is raised to an enclosing handler for that exception. This transfer
interrupts the normal flow of control in a program in response to unusual
conditions. For example, exceptions can be used to signal an error condi-
tion, or to indicate the need for special handling in certain circumstances
that arise only rarely. To be sure, one could use explicit conditionals to
check for and process errors or unusual conditions, but using exceptions
is often more convenient, particularly since the transfer to the handler is
direct and immediate, rather than indirect via a series of explicit checks.

32.1 Failures

A failure is a control mechanism that permits a computation to refuse to re-
turn a value to the point of its evaluation. Failure can be detected by catch-
ing it, diverting evaluation to another expression, called a handler. Failure
can be turned into success, provided that the handler does not itself fail.

The following grammar defines the syntax of failures:

Expr e ::= fail fail failure
catch(e1; e2) catch e1 ow e2 handler

The expression fail aborts the current evaluation, and the expression catch(e1; e2)

handles any failure in e1 by evaluating e2 instead.
The statics of failures is straightforward:

Γ ` fail : τ
(32.1a)



280 32.1 Failures

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1; e2) : τ
(32.1b)

A failure can have any type, because it never returns. The two expressions
in a catch expression must have the same type, since either might deter-
mine the value of that expression.

The dynamics of failures may be given using stack unwinding. Evalua-
tion of a catch installs a handler on the control stack. Evaluation of a fail

unwinds the control stack by popping frames until it reaches the nearest
enclosing handler, to which control is passed. The handler is evaluated in
the context of the surrounding control stack, so that failures within it prop-
agate further up the stack.

Stack unwinding can be defined directly using structural dynamics, but
we prefer to make use of the stack machine defined in Chapter 31. In ad-
dition to states of the form k . e, which evaluates the expression e on the
stack k, and k / e, which passes the value e to the stack k, we make use of
an additional form of state, k J , which passes a failure up the stack to the
nearest enclosing handler.

The set of frames defined in Chapter 31 is extended with the additonal
form catch(−; e2). The transition rules given in Chapter 31 are extended
with the following additional rules:

k . fail 7→ k J
(32.2a)

k . catch(e1; e2) 7→ k;catch(−; e2) . e1
(32.2b)

k;catch(−; e2) / v 7→ k / v
(32.2c)

k;catch(−; e2) J 7→ k . e2
(32.2d)

( f 6= catch(−; e2))

k; f J 7→ k J
(32.2e)

Evaluating fail propagates a failure up the stack. Evaluating catch(e1; e2)

consists of pushing the handler onto the control stack and evaluating e1.
If a value is propagated to the handler, the handler is removed and the
value continues to propagate upwards. If a failure is propagated to the
handler, the stored expression is evaluated with the handler removed from
the control stack. All other frames propagate failures.

14:43 DRAFT AUGUST 24, 2010



32.2 Exceptions 281

The definition of initial state remains the same as for K{nat⇀}, but we
change the definition of final state to include these two forms:

e val
ε / e final

(32.3a)

ε J final
(32.3b)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typ-
ing given in Chapter 31 to account for the new forms of frame. Using this,
safety can be proved by standard means. Note, however, that the meaning
of the progress theorem is now significantly different: a well-typed pro-
gram does not get stuck, but it may well result in an uncaught failure!

Theorem 32.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

32.2 Exceptions

Failures are simplistic in that they do not distinguish different causes, and
hence do not permit handlers to react differently to different circumstances.
An exception is a generalization of a failure that associates a value with the
failure. This value is passed to the handler, allowing it to discriminate be-
tween various forms of failures, and to pass data appropriate to that form
of failure. The type of values associated with exceptions is discussed in Sec-
tion 32.3 on the next page. For now, we simply assume that there is some
type, τexn, of values associated with a failure.

The syntax of exceptions is given by the following grammar:

Expr e ::= raise[τ](e) raise(e) exception
handle(e1; x.e2) handle e1 ow x⇒ e2 handler

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1; x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.

AUGUST 24, 2010 DRAFT 14:43



282 32.3 Exception Type

The statics of exceptions generalizes that of failures:

Γ ` e : τexn
Γ ` raise[τ](e) : τ

(32.4a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1; x.e2) : τ
(32.4b)

The dynamics of exceptions is a mild generalization of the dynamics of
failures in which we generalize the failure state, k J , to the exception state,
k J e, which passes a value of type τexn along with the failure. The syntax
of stack frames is extended to include raise[τ](−) and handle(−; x.e2).
The dynamics of exceptions is specified by the following rules:

k . raise[τ](e) 7→ k;raise[τ](−) . e
(32.5a)

k;raise[τ](−) / e 7→ k J e
(32.5b)

k;raise[τ](−) J e 7→ k J e
(32.5c)

k . handle(e1; x.e2) 7→ k;handle(−; x.e2) . e1
(32.5d)

k;handle(−; x.e2) / e 7→ k / e
(32.5e)

k;handle(−; x.e2) J e 7→ k . [e/x]e2
(32.5f)

( f 6= handle(−; x.e2))

k; f J e 7→ k J e
(32.5g)

It is a straightforward exercise to extend the safety theorem given in
Section 32.1 on page 279 to exceptions.

32.3 Exception Type

The statics of exceptions is parameterized by the type of exception values,
τexn. This type may be chosen arbitrarily, but it must be shared by all ex-
ceptions in a program to ensure type safety. For otherwise a handler cannot
tell what type of value to expect from an exception, compromising safety.

14:43 DRAFT AUGUST 24, 2010



32.3 Exception Type 283

But how do we choose the type of exceptions? A very naı̈ve choice
would be to take τexn to be the type str, so that, for example, one may
write

raise "Division by zero error."

to signal the obvious arithmetic fault. This is fine as far as it goes, but a
handler for such an exception would have to interpret the string if it is to
distinguish one exception from another!

Motivated by this, we might choose τexn to be nat, which amounts to
saying that exceptional conditions are coded as natural numbers.1 This
does allow the handler to distinguish one source of failure from another,
but makes no provision for associating data with the failure. Moreover, it
forces the programmer to impose a single, global convention for indexing
the causes of failure, compromising modular development and evolution.

The first concern—how to associate data specific to the type of failure—
can be addressed by taking τexn to be a labelled sum type whose classes are
the forms of failure, and whose associated types determine the form of the
data attached to the exception. For example, the type τexn might have the
form

τexn = [div : unit, fnf : string, . . .].

The class div might represent an arithmetic fault, with no associated data,
and the class fnf might represent a “file not found” error, with associated
data being the name of the file.

Using a sum type for τexn makes it easy for the handler to discriminate
on the source of the failure, and to recover the associated data without fear
of a type safety violation. For example, we might write

try e1 ow x ⇒
match x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf }

to handle the exceptions specified by the sum type given in the preceding
paragraph.

The problem with choosing a sum type for τexn is that it imposes a static
classification of the sources of failure in a program. There must be one, glob-
ally agreed-upon type that classifies all possible forms of failure, and spec-
ifies their associated data. Using sums in this manner impedes modular

1In Unix these are called errno’s, for error numbers.

AUGUST 24, 2010 DRAFT 14:43



284 32.4 Encapsulation

development and evolution, since all of the modules comprising a system
must agree on the one, central type of exception values. A better approach
is to use dynamic classification for exception values by choosing τexn to be an
extensible sum, one to which new classes may be added at execution time.
This allows separate program modules to introduce their own failure clas-
sification scheme without worrying about interference with one another;
the initialization of the module generates new classes at run-time that are
guaranteed to be distinct from all other classes previously or subsequently
generated. (See Chapter 38 for more on dynamic classification.)

32.4 Encapsulation

It is sometimes useful to distinguish expressions that can fail or raise an
exception from those that cannot. An expression is called fallible, or ex-
ceptional, if it can fail or raise an exception during its evaluation, and is
infallible, or unexceptional, otherwise. The concept of fallibility is intention-
ally permissive in that an infallible expression may be considered to be
(vacuously) fallible, whereas infallibility is intended to be strict in that an
infallible expression cannot fail. Consequently, if e1 and e2 are two infal-
lible expressions both of whose values are required in a computation, we
may evaluate them in either order without affecting the outcome. If, on
the other hand, one or both are fallible, then the outcome of the compu-
tation is sensitive to the evaluation order (whichever fails first determines
the overall result).

To formalize this distinction we distinguish two modes of expression,
the fallible and the infallible, linked by a modality classifying the fallible
expressions of a type.

Type τ ::= fallible(τ) τ fallible fallible
Fall f ::= fail fail failure

succ(e) succ e success
try(e; x. f1; f2) let fall(x) be e in f1 ow f2 handler

Infall e ::= x x variable
fall( f) fall f fallible
try(e; x.e1; e2) let fall(x) be e in e1 ow e2 handler

The type τ fallible is the type of encapsulated fallible expressions of
type τ. Fallible expressions include failures, successes (infallible expres-
sions thought of as vacuously fallible), and handlers that intercept failures,

14:43 DRAFT AUGUST 24, 2010



32.4 Encapsulation 285

but which may itself fail. Infallible expressions include variables, encap-
sulated fallible expressions, and handlers that intercepts failures, always
yielding an infallible result.

The statics of encapsulated failures consists of two judgement forms,
Γ ` e : τ for infallible expressions and Γ ` f ∼ τ for fallible expressions.
These judgements are defined by the following rules:

Γ, x : τ ` x : τ
(32.6a)

Γ ` f ∼ τ

Γ ` fall( f) : fallible(τ)
(32.6b)

Γ ` e : fallible(τ) Γ, x : τ ` e1 : τ′ Γ ` e2 : τ′

Γ ` try(e; x.e1; e2) : τ′
(32.6c)

Γ ` fail ∼ τ
(32.6d)

Γ ` e : τ
Γ ` succ(e) ∼ τ

(32.6e)

Γ ` e : fallible(τ) Γ, x : τ ` f1 ∼ τ′ Γ ` f2 ∼ τ′

Γ ` try(e; x. f1; f2) ∼ τ′
(32.6f)

Rule (32.6c) specifies that a handler may be used to turn a fallible expres-
sion (encapsulated by e) into an infallible computation, provided that the
result is infallible regardless of whether the encapsulated expression suc-
ceeds or fails.

The dynamics of encapsulated failures is readily derived, though some
care must be taken with the elimination form for the modality.

fall( f) val
(32.7a)

k . try(e; x.e1; e2) 7→ k;try(−; x.e1; e2) . e
(32.7b)

k;try(−; x.e1; e2) / fall( f) 7→ k;try(−; x.e1; e2);fall(−) . f
(32.7c)

k . fail 7→ k J
(32.7d)

AUGUST 24, 2010 DRAFT 14:43



286 32.5 Exercises

k . succ(e) 7→ k;succ(−) . e
(32.7e)

e val
k . succ(e) 7→ k / succ(e)

(32.7f)

e val
k;try(−; x.e1; e2);fall(−) / e 7→ k . [e/x]e1

(32.7g)

k;try(−; x.e1; e2);fall(−) J 7→ k . e2
(32.7h)

We have omitted the rules for the fallible form of handler; they are sim-
ilar to Rules (32.7b) to (32.7b) and (32.7g) to (32.7h), albeit with infallible
subexpresions e1 and e2 replaced by fallible subexpressions f1 and f2.

An initial state has the form k . e, where e is an infallible expression,
and k is a stack of suitable type. Consequently, a fallible expression, f , can
only be evaluated on a stack of the form

k;try(−; x.e1; e2);fall(−)

in which a handler for any failure that may arise from f is present. There-
fore, a final state has the form ε / e, where e val; no uncaught failure can
arise.

32.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 33

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to be
passed as a value within a program and to be restored at a later point, even
if control has long since returned past the point of reification. Reified con-
trol stacks of this kind are called continuations, where the qualification “first
class” stresses that they are ordinary values with an indefinite lifetime that
can be passed and returned at will in a computation. continuations never
“expire”, and it is always sensible to reinstate a continuation without com-
promising safety. Thus continuations support unlimited “time travel” —
we can go back to a previous point in the computation and then return to
some point in its future, at will.

Why are continuations useful? Fundamentally, they are representations
of the control state of a computation at a given point in time. Using con-
tinuations we can “checkpoint” the control state of a program, save it in a
data structure, and return to it later. In fact this is precisely what is neces-
sary to implement threads (concurrently executing programs) — the thread
scheduler must be able to checkpoint a program and save it for later exe-
cution, perhaps after a pending event occurs or another thread yields the
processor.

33.1 Informal Overview

We will extend L{→} with the type cont(τ) of continuations accepting
values of type τ. The introduction form for cont(τ) is letcc[τ](x.e),
which binds the current continuation (that is, the current control stack) to the



288 33.1 Informal Overview

variable x, and evaluates the expression e. The corresponding elimination
form is throw[τ](e1; e2), which restores the value of e1 to the control stack
that is the value of e2.

To illustrate the use of these primitives, consider the problem of mul-
tiplying the first n elements of an infinite sequence q of natural numbers,
where q is represented by a function of type nat → nat. If zero occurs
among the first n elements, we would like to effect an “early return” with
the value zero, rather than perform the remaining multiplications. This
problem can be solved using exceptions (we leave this as an exercise), but
we will give a solution that uses continuations in preparation for what fol-
lows.

Here is the solution in L{nat⇀}, without short-cutting:

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒ (q z) × (ms (q ◦ succ) n’)

}
The recursive call composes q with the successor function to shift the se-
quence by one step.

Here is the version with short-cutting:

λ q : nat ⇀ nat.

λ n : nat.

letcc ret : nat cont in

let ms be

fix ms is

λ q : nat ⇀ nat.

λ n : nat.

case n {
z ⇒ s(z)

| s(n’) ⇒
case q z {
z ⇒ throw z to ret

| s(n’’) ⇒ (q z) × (ms (q ◦ succ) n’)

}
}

in

ms q n

14:43 DRAFT AUGUST 24, 2010



33.2 Semantics of Continuations 289

The letcc binds the return point of the function to the variable ret for use
within the main loop of the computation. If zero is encountered, control is
thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′ → τ, return a continuation k′ of type τ′ cont with
the following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We wish
to fill in the following template:

fun compose(f:τ′ → τ,k:τ cont):τ′ cont = ....

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′ → τ, k:τ cont):τ′ cont =

letcc ret:τ′ cont cont in

throw (f (letcc r in throw r to ret)) to k

The type of ret is that of a continuation-expecting continuation!

33.2 Semantics of Continuations

We extend the language of L{→} expressions with these additional forms:

Type τ ::= cont(τ) τ cont continuation
Expr e ::= letcc[τ](x.e) letcc x in e mark

throw[τ](e1; e2) throw e1 to e2 goto
cont(k) cont(k) continuation

The expression cont(k) is a reified control stack, which arises during eval-
uation.

AUGUST 24, 2010 DRAFT 14:43



290 33.2 Semantics of Continuations

The statics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ

Γ ` letcc[τ](x.e) : τ
(33.1a)

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw[τ′](e1; e2) : τ′
(33.1b)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.

The statics of continuation values is given by the following rule:

k : τ
Γ ` cont(k) : cont(τ)

(33.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack ac-
cepting values of type τ.

To define the dynamics we extendK{nat⇀} stacks with two new forms
of frame: e2 exp

throw[τ](−; e2) frame
(33.3a)

e1 val

throw[τ](e1;−) frame
(33.3b)

Every reified control stack is a value:

k stack
cont(k) val

(33.4)

The transition rules for the continuation constructs are as follows:

k . letcc[τ](x.e) 7→ k . [cont(k)/x]e (33.5a)

k;throw[τ](v;−) / cont(k′) 7→ k′ / v (33.5b)

k . throw[τ](e1; e2) 7→ k;throw[τ](−; e2) . e1 (33.5c)

e1 val

k;throw[τ](−; e2) / e1 7→ k;throw[τ](e1;−) . e2
(33.5d)

Evaluation of a letcc expression duplicates the control stack; evaluation of
a throw expression destroys the current control stack.

The safety of this extension of L{→} may be established by a simple
extension to the safety proof for K{nat⇀} given in Chapter 31.

14:43 DRAFT AUGUST 24, 2010



33.3 Coroutines 291

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw[τ](−; e2) : τ ⇒ τ′
(33.6a)

e1 : τ e1 val

throw[τ](e1;−) : cont(τ)⇒ τ′
(33.6b)

The rest of the definitions remain as in Chapter 31.

Lemma 33.1 (Canonical Forms). If e : cont(τ) and e val, then e = cont(k)
for some k such that k : τ.

Theorem 33.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

33.3 Coroutines

A familiar pattern of control flow in a program distinguishes the main rou-
tine of a computation, which represents the principal control path of the
program, from a sub-routine, which represents a subsidiary path that per-
forms some auxiliary computation. The main routine invokes the the sub-
routine by passing it a data value, its argument, and a control point to return
to once it has completed its work. This arrangement is asymmetric in that
the main routine plays the active role, whereas the subroutine is passive. In
particular the subroutine passes control directly to the return point without
itself providing a return point with which it can be called back. A corou-
tine is a symmetric pattern of control flow in which each routine passes to
the other the return point of the call. The asymmetric call/return pattern
is symmetrized to a call/call pattern in which each routine is effectively
a subroutine of the other. (This raises an interesting question of how the
interaction commences, which we will discuss in more detail below.)

To see how coroutines are implemented in terms of continuations, it is
best to think of the “steady state” interaction between the two routines,
leaving the initialization phase to be discussed separately. A routine is
represented by a continuation that, when invoked, is passed a data item,
whose type is shared between the two routines, and a return continuation,
which represents the partner routine. Crucially, the argument type of the
other continuation is again of the very same form, consisting of a data item

AUGUST 24, 2010 DRAFT 14:43



292 33.3 Coroutines

and another return continuation. If we think of the coroutine as a trajec-
tory through a succession of such continuations, then the state of the con-
tinuation (which changes as the interaction progresses) satisfies the type
isomorphism

state ∼= (τ × state) cont,

where τ is the type of data exchanged by the routines. The solution to such
an isomorphism is, of course, the recursive type

state = µt.(τ × t) cont.

Thus a state, s, encapsulates a pair consisting of a value of type τ together
with another state.

The routines pass control from one to the other by calling the function
resume of type

τ × state→ τ × state.

That is, given a datum, d, and a state, s, the application resume(〈d, s〉)
passes d and its own return address to the routine represented by the state
s. The function resume is defined by the following expression:

λ (〈x, s〉:τ × state. letcc k in throw 〈x, fold(k)〉 to unfold(s))

When applied, this function seizes the current continuation, and passes
the given datum and this continuation to the partner routine, using the
isomorphism between state and (τ × state) cont.

The general form of a coroutine consists of a loop that, on each iteration,
takes a datum, d, and a state, s, performs a transformation on d, resuming
its partner routine with the result, d′, of the transformation. The function
corout builds a coroutine from a data transformation routine; it has type

(τ → τ)→ (τ × state)→ τ′.

The result type, τ′, is arbitrary, because the routine never returns to the
call site. A coroutine is shut down by an explicit exit operation, which
will be specified shortly. The function corout is defined by the following
expression (with types omitted for concision):

λ next. fix loop isλ 〈d, s〉. loop(resume(〈next(d), s〉)).

Each time through the loop, the partner routine, s, is resumed with the
updated datum given by applying next to the current datum, d.

14:43 DRAFT AUGUST 24, 2010



33.3 Coroutines 293

Let ρ be the ultimate type of a computation consisting of two interact-
ing coroutines that exchanges values of type τ during their execution. The
function run, which has type

τ → ((ρ cont→ τ → τ)× (ρ cont→ τ → τ))→ ρ,

takes an initial value of type τ and two routines, each of type

ρ cont→ τ → τ,

and builds a coroutine of type ρ from them. The first argument to each
routine is the exit point, and the result is a data transformation operation.
The definition of run begins as follows:

λ init. λ 〈r1, r2〉. letcc exit in let r′1 be r1(exit) in let r′2 be r2(exit) in . . .

First, run establishes an exit point that is passed to the two routines to ob-
tain their data transformation components. This allows either or both of
the routines to terminate the computation by throwing the ultimate result
value to exit. The implementation of run continues as follows:

corout(r′2)(letcc k in corout(r′1)(〈init, fold(k)〉))

The routine r′1 is called with the initial datum, init, and the state fold(k),
where k is the continuation corresponding to the call to r′2. The first resume
from the coroutine built from r′1 will cause the coroutine built from r′2 to
be initiated. At this point the steady state behavior is in effect, with the
two routines exchanging control using resume. Either may terminate the
computation by throwing a result value, v, of type ρ to the continuation
exit.

A good example of coroutining arises whenever we wish to interleave
input and output in a computation. We may achieve this using a coroutine
between a producer routine and a consumer routine. The producer emits the
next element of the input, if any, and passes control to the consumer with
that element removed from the input. The consumer processes the next
data item, and returns control to the producer, with the result of processing
attached to the output. The input and output are modeled as lists of type
τi list and τo list, respectively, which are passed back and forth between
the routines.1 The routines exchange messages according to the following

1In practice the input and output state are implicit, but we prefer to make them explicit
for the sake of clarity.

AUGUST 24, 2010 DRAFT 14:43



294 33.3 Coroutines

protocol. The message OK(〈i, o〉) is sent from the consumer to producer
to acknowledge receipt of the previous message, and to pass back the cur-
rent state of the input and output channels. The message EMIT(〈v, 〈i, o〉〉),
where v is a value of type τi opt, is sent from the producer to the consumer
to emit the next value (if any) from the input, and to pass the current state
of the input and output channels to the consumer.

This leads to the following implementation of the producer/consumer
model. The type τ of data exchanged by the routines is the labelled sum
type

[OK : τi list× τo list, EMIT : τi opt× (τi list× τo list)].

This type specifies the message protocol between the producer and the con-
sumer described in the preceding paragraph.

The producer, producer, is defined by the expression

λ exit. λ msg. casemsg {b1 | b2 | b3},

where the first branch, b1, is

OK · 〈nil, os〉 ⇒ EMIT · 〈null, 〈nil, os〉〉

and the second branch, b2, is

OK · 〈cons(i; is), os〉 ⇒ EMIT · 〈just(i), 〈is, os〉〉,

and the third branch, b3, is

EMIT · ⇒ error.

In words, if the input is exhausted, the producer emits the value null, along
with the current channel state. Otherwise, it emits just(i), where i is the
first remaining input, and removes that element from the passed channel
state. The producer cannot see an EMIT message, and signals an error if it
should occur.

The consumer, consumer, is defined by the expression

λ exit. λ msg. casemsg {b′1 | b′2 | b′3},

where the first branch, b′1, is

EMIT · 〈null, 〈 , os〉〉 ⇒ throw os to exit,

14:43 DRAFT AUGUST 24, 2010



33.4 Exercises 295

the second branch, b′2, is

EMIT · 〈just(i), 〈is, os〉〉 ⇒ OK · 〈is, cons( f(i); os)〉,

and the third branch, b′3, is

OK · ⇒ error.

The consumer dispatches on the emitted datum. If it is absent, the output
channel state is passed to exit as the ultimate value of the computation. If
it is present, the function f (unspecified here) of type τi → τo is applied
to transform the input to the output, and the result is added to the output
channel. If the message OK is received, the consumer signals an error, as the
producer never produces such a message.

The initial datum, init, has the form OK · 〈is, os〉, where is and os are
the initial input and output channel state, respectively. The computation is
created by the expression

run(init)(〈producer, consumer〉),

which sets up the coroutines as described earlier.
While it is relatively easy to visualize and implement coroutines involv-

ing only two partners, it is more complex, and less useful, to consider a
similar pattern of control among n ≥ 2 participants. In such cases it is
more common to structure the interaction as a collection of n routines, each
of which is a coroutine of a central scheduler. When a routine resumes its
partner, it passes control to the scheduler, which determines which routine
to execute next, again as a coroutine of itself. When structured as corou-
tines of a scheduler, the individual routines are called threads. A thread
yields control by resuming its partner, the scheduler, which then determines
which thread to execute next as a coroutine of itself. This pattern of con-
trol is called cooperative multi-threading, since it is based on explicit yields,
rather than implicit yields imposed by asynchronous events such as timer
interrupts.

33.4 Exercises

1. Study the short-circuit multiplication example carefully to be sure
you understand why it works!

2. Attempt to solve the problem of composing a continuation with a
function yourself, before reading the solution.

AUGUST 24, 2010 DRAFT 14:43



296 33.4 Exercises

3. Simulate the evaluation of compose ( f, k) on the empty stack. Ob-
serve that the control stack substituted for x is

ε;throw[τ](−; k);ap( f ;−)

This stack is returned from compose. Next, simulate the behavior of
throwing a value v′ to this continuation. Observe that the stack is
reinstated and that v′ is passed to it.

14:43 DRAFT AUGUST 24, 2010



Part XII

Types and Propositions





Chapter 34

Constructive Logic

The correspondence between propositions and types, and the associated cor-
respondence between proofs and programs, is the central organizing princi-
ple of programming languages. A type specifies a behavior, and a program
implements it. Similarly, a proposition poses a problem, and a proof solves
it. A statics relates a program to the type it implements, and a dynamics
relates a program to its simplification by an execution step. Similarly, a for-
mal logical system relates a proof to the proposition it proves, and proof
reduction relates equivalent proofs. The structural rule of substitution un-
derlies the decomposition of a program into separate modules. Similarly,
the structural rule of transitivity underlies the decomposition of a theorem
into lemmas.

These correspondences are neither accidental nor incidental. The propo-
sitions as types principle,1 identifies propositions with types and proofs with
programs. According to this principle, a proposition is the type of its proofs,
and a proof is a program of that type. Consequently, every theorem has
computational content, the its proof viewed as a program, and every pro-
gram has mathematical content, the proof that the program represents.

Can every conceivable form of proposition also be construed as a type?
Does every type correspond to a proposition? Must every proof have com-
putational content? Is every program a proof of a theorem? To answer
these questions would require a book of its own (and still not settle the
matter). From a constructive perspective we may say that type theory en-

1The propositions-as-types principle is sometimes called the Curry-Howard Isomorphism.
Although it is arguably snappier, this name ignores the essential contributions of Arend
Heyting, Nicolaas deBruijn, and Per Martin-Löf to the development of the propositions-as-
types principle.



300 34.1 Constructive Semantics

riches logic to incorporate not only types of proofs, but also types for the
objects of study. In this sense logic is a particular mode of use of type the-
ory. If we think of type theory as a comprehensive view of mathematics,
this implies that, contrary to conventional wisdom, logic is based on math-
ematics, rather than mathematics on logic!

In this chapter we introduce the propositions-as-types correspondence
for a particularly simple system of logic, called propositional contructive logic.
In Chapter 35 we will extend the correspondence to propositional classical
logic. This will give rise to a computational interpretation of classical proofs
that makes essential use of continuations.

34.1 Constructive Semantics

Constructive logic is concerned with two judgements, φ prop, stating that
φ expresses a proposition, and φ true, stating that φ is a true proposi-
tion. What distinguishes constructive from non-constructive logic is that
a proposition is not conceived of as merely a truth value, but instead as a
problem statement whose solution, if it has one, is given by a proof. A propo-
sition is said to be true exactly when it has a proof, in keeping with ordinary
mathematical practice. There is no other criterion of truth than the existence of
a proof.

This principle has important, possibly surprising, consequences, the
most important of which is that we cannot say, in general, that a propo-
sition is either true or false. If for a proposition to be true means to have
a proof of it, what does it mean for a proposition to be false? It means
that we have a refutation of it, showing that it cannot be proved. That is, a
proposition is false if we can show that the assumption that it is true (has a
proof) contradicts known facts. In this sense constructive logic is a logic of
positive, or affirmative, information — we must have explicit evidence in the
form of a proof in order to affirm the truth or falsity of a proposition.

In light of this it should be clear that not every proposition is either
true or false. For if φ expresses an unsolved problem, such as the famous

P
?
= NP problem, then we have neither a proof nor a refutation of it (the

mere absence of a proof not being a refutation). Such a problem is unde-
cided, precisely because it is unsolved. Since there will always be unsolved
problems (there being infinitely many propositions, but only finitely many
proofs at a given point in the evolution of our knowledge), we cannot say
that every proposition is decidable, that is, either true or false.

Having said that, some propositions are decidable, and hence may be

14:43 DRAFT AUGUST 24, 2010



34.2 Constructive Logic 301

considered to be either true or false. For example, if φ expresses an inequal-
ity between natural numbers, then φ is decidable, because we can always
work out, for given natural numbers m and n, whether m ≤ n or m 6≤ n —
we can either prove or refute the given inequality. This argument does not
extend to the real numbers. To get an idea of why not, consider the presen-
tation of a real number by its decimal expansion. At any finite time we will
have explored only a finite initial segment of the expansion, which is not
enough to determine if it is, say, less than 1. For if we have determined the
expansion to be 0.99 . . . 9, we cannot decide at any time, short of infinity,
whether or not the number is 1. (This argument is not a proof, because one
may wonder whether there is some other representation of real numbers
that admits such a decision to be made finitely, but it turns out that this is
not the case.)

The constructive attitude is simply to accept the situation as inevitable,
and make our peace with that. When faced with a problem we have no
choice but to roll up our sleeves and try to prove it or refute it. There is no
guarantee of success! Life’s hard, but we muddle through somehow.

34.2 Constructive Logic

The judgements φ prop and φ true of constructive logic are rarely of interest
by themselves, but rather in the context of a hypothetical judgement of the
form

φ1 true, . . . , φn true ` φ true.

This judgement expresses that the proposition φ is true (has a proof), under
the assumptions that each of φ1, . . . , φn are also true (have proofs). Of course,
when n = 0 this is just the same as the judgement φ true.

The structural properties of the hypothetical judgement, when special-
ized to constructive logic, define what we mean by reasoning under hy-
potheses:

Γ, φ true ` φ true (34.1a)

Γ ` φ1 true Γ, φ1 true ` φ2 true

Γ ` φ2 true
(34.1b)

Γ ` φ2 true

Γ, φ1 true ` φ2 true
(34.1c)

Γ, φ1 true, φ1 true ` φ2 true

Γ, φ1 true ` φ2 true
(34.1d)

AUGUST 24, 2010 DRAFT 14:43



302 34.2 Constructive Logic

Γ1, φ2 true, φ1 true, Γ2 ` φ true

Γ1, φ1 true, φ2 true, Γ2 ` φ true
(34.1e)

The last two rules are implicit in that we regard Γ as a set of hypotheses, so
that two “copies” are as good as one, and the order of hypotheses does not
matter.

34.2.1 Rules of Provability

The syntax of propositional logic is given by the following grammar:

Prop φ ::= true > truth
false ⊥ falsity
and(φ1; φ2) φ1 ∧ φ2 conjunction
or(φ1; φ2) φ1 ∨ φ2 disjunction
imp(φ1; φ2) φ1 ⊃ φ2 implication

The connectives of propositional logic are given meaning by rules that de-
termine (a) what constitutes a “direct” proof of a proposition formed from
a given connective, and (b) how to exploit the existence of such a proof in
an “indirect” proof of another proposition. These are called the introduc-
tion and elimination rules for the connective. The principle of conservation
of proof states that these rules are inverse to one another — the elimination
rule cannot extract more information (in the form of a proof) than was put
into it by the introduction rule, and the introduction rules can be used to re-
construct a proof from the information extracted from it by the elimination
rules.

Truth Our first proposition is trivially true. No information goes into
proving it, and so no information can be obtained from it.

Γ ` > true (34.2a)

(no elimination rule)
(34.2b)

Conjunction Conjunction expresses the truth of both of its conjuncts.

Γ ` φ1 true Γ ` φ2 true

Γ ` φ1 ∧ φ2 true
(34.3a)

Γ ` φ1 ∧ φ2 true

Γ ` φ1 true
(34.3b)

14:43 DRAFT AUGUST 24, 2010



34.2 Constructive Logic 303

Γ ` φ1 ∧ φ2 true

Γ ` φ2 true
(34.3c)

Implication Implication states the truth of a proposition under an as-
sumption.

Γ, φ1 true ` φ2 true

Γ ` φ1 ⊃ φ2 true
(34.4a)

Γ ` φ1 ⊃ φ2 true Γ ` φ1 true

Γ ` φ2 true
(34.4b)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule)
(34.5a)

Γ ` ⊥ true
Γ ` φ true

(34.5b)

Disjunction Disjunction expresses the truth of either (or both) of two
propositions.

Γ ` φ1 true

Γ ` φ1 ∨ φ2 true
(34.6a)

Γ ` φ2 true

Γ ` φ1 ∨ φ2 true
(34.6b)

Γ ` φ1 ∨ φ2 true Γ, φ1 true ` φ true Γ, φ2 true ` φ true

Γ ` φ true
(34.6c)

Negation The negation, ¬φ, of a proposition, φ, may be defined as the
implication φ ⊃⊥. This means that ¬φ true if φ true ` ⊥ true, which
is to say that the truth of φ is refutable in that we may derive a proof of
falsehood from any purported proof of φ. Because constructive truth is
identified with the existence of a proof, the implied semantics of negation
is rather strong. In particular, a problem, φ, is open exactly when we can
neither affirm nor refute it. This is in contrast to the classical conception of
truth, which assigns a fixed truth value to each proposition, so that every
proposition is either true or false.

AUGUST 24, 2010 DRAFT 14:43



304 34.2 Constructive Logic

34.2.2 Rules of Proof

The key to the propositions-as-types principle is to make explict the forms
of proof. The basic judgement φ true, which states that φ has a proof, is
replaced by the judgement p : φ, stating that p is a proof of φ. (Sometimes
p is called a “proof term”, but we will simply call p a “proof.”) The hy-
pothetical judgement is modified correspondingly, with variables standing
for the presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn ` p : φ.

We again let Γ range over such hypothesis lists, subject to the restriction
that no variable occurs more than once.

The rules of constructive propositional logic may be restated using proof
terms as follows.

Γ ` trueI : >
(34.7a)

Γ ` p1 : φ1 Γ ` p2 : φ2

Γ ` andI(p1; p2) : φ1 ∧ φ2
(34.7b)

Γ ` p1 : φ1 ∧ φ2

Γ ` andE[l](p1) : φ1
(34.7c)

Γ ` p1 : φ1 ∧ φ2

Γ ` andE[r](p1) : φ2
(34.7d)

Γ, x : φ1 ` p2 : φ2

Γ ` impI[φ1](x.p2) : φ1 ⊃ φ2
(34.7e)

Γ ` p : φ1 ⊃ φ2 Γ ` p1 : φ1

Γ ` impE(p; p1) : φ2
(34.7f)

Γ ` p : ⊥
Γ ` falseE[φ](p) : φ

(34.7g)

Γ ` p1 : φ1

Γ ` orI[l][φ2](p1) : φ1 ∨ φ2
(34.7h)

Γ ` p2 : φ2

Γ ` orI[r][φ1](p2) : φ1 ∨ φ2
(34.7i)

Γ ` p : φ1 ∨ φ2 Γ, x1 : φ1 ` p1 : φ Γ, x2 : φ2 ` p2 : φ

Γ ` orE[φ1; φ2](p; x.p1; y.p2) : φ
(34.7j)

14:43 DRAFT AUGUST 24, 2010



34.3 Propositions as Types 305

34.3 Propositions as Types

Reviewing the rules of proof for constructive logic, we observe a striking
correspondence between them and the rules for forming expressions of var-
ious types. For example, the introduction rule for conjunction specifies that
a proof of a conjunction consists of a pair of proofs, one for each conjunct,
and the elimination rule inverts this, allowing us to extract a proof of each
conjunct from any proof of a conjunction. There is an obvious analogy with
the static semantics of product types, whose introductory form is a pair and
whose eliminatory forms are projections.

This correspondence extends to other forms of proposition as well, as
summarized by the following chart relating a proposition, φ, to a type φ∗:

Proposition Type
> unit

⊥ void

φ1 ∧ φ2 φ∗1 × φ∗2
φ1 ⊃ φ2 φ∗1 → φ∗2
φ1 ∨ φ2 φ∗1 + φ∗2

It is obvious that this correspondence is invertible, so that we may associate
a proposition with each product, sum, or function type.

Importantly, this correspondence extends to the introductory and elim-
inatory forms of proofs and programs as well:

Proof Program
trueI 〈〉
falseE[φ](p) abort(p∗)
andI(p1; p2) 〈p∗1 , p∗2〉
andE[l](p) p∗ · l
andE[r](p) p∗ · r
impI[φ1](x1.p2) λ (x1:φ∗1 . p∗2)
impE(p; p1) p∗(p∗1)
orI[l][φ2](p) l · p∗
orI[r][φ1](p) r · p∗
orE[φ1; φ2](p; x1.p1; x2.p2) case p∗ {l · x1⇒ p∗1 | r · x2⇒ p∗2}

Here again the correspondence is easily seen to be invertible, so that we
may regard a program of a product, sum, or function type as a proof of the
corresponding proposition.

Theorem 34.1.

AUGUST 24, 2010 DRAFT 14:43



306 34.4 Exercises

1. If φ prop, then φ∗ type.

2. If Γ ` p : φ, then Γ∗ ` p∗ : φ∗.

The foregoing correspondence between the statics of propositions and
proofs on one hand, and types and programs on the other extends also to
the dynamics, by applying the inversion principle stating that eliminatory
forms are post-inverse to introductory forms. The dynamic correspondence
may be expressed by the validity of these definitional equivalences under
the static correspondences given above:

andE[l](andI(p; q)) ≡ p
andE[r](andI(p; q)) ≡ q

impE(impI[φ](x.p2); p1) ≡ [p1/x]p2
orE[φ1; φ2](orI[l][φ2](p); x1.p2; x2.p2) ≡ [p/x1]p1
orE[φ1; φ2](orI[r][φ1](p); x1.p1; x2.p2) ≡ [p/x2]p2

Observe that these equations are all valid under the static correspondence
given above. For example, the first of these equations corresponds to the
definitional equivalence 〈e1, e2〉 · l ≡ e1, which is valid for the lazy inter-
pretation of ordered pairs.

The significance of the dynamic correspondence is that it assigns com-
putational content to proofs: a proof in constructive propositional logic may
be read as a program. Put the other way around, it assigns logical content to
programs: every expression of product, sum, or function type may be read
as a proof of a proposition.

34.4 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 35

Classical Logic

In constructive logic a proposition is true exactly when it has a proof, a
derivation of it from axioms and assumptions, and is false exactly when
it has a refutation, a derivation of a contradiction from the assumption that
it is true. Constructive logic is a logic of positive evidence. To affirm or
deny a proposition requires a proof, either of the proposition itself, or of
a contradiction, under the assumption that it has a proof. We are not al-
ways in a position to affirm or deny a proposition. An open problem is one
for which we have neither a proof nor a refutation—so that, constructively
speaking, it is neither true nor false!

In contrast classical logic (the one we learned in school) is a logic of
perfect information in which every proposition is either true or false. One
may say that classical logic corresponds to “god’s view” of the world—
there are no open problems, rather all propositions are either true or false.
Put another way, to assert that every proposition is either true or false is
to weaken the notion of truth to encompass all that is not false, dually to the
constructively (and classically) valid interpretation of falsity as all that is
not true. The symmetry between truth and falsity is appealing, but there is
a price to pay for this: the meanings of the logical connectives are weaker
in the classical case than in the constructive.

A prime example is provided by the law of the excluded middle, the as-
sertion that φ ∨ ¬φ true is valid for all propositions φ. Constructively, this
principle is not universally valid, because it would mean that every propo-
sition either has a proof or a refutation, which is manifestly not the case.
Classically, however, the law of the excluded middle is valid, because every
proposition is either true or false. The discrepancy between the construc-
tive and classical interpretations can be attributed to the different meanings



308 35.1 Classical Logic

given to disjunction and negation by the two logics. In particular the classi-
cal truth of a disjunction cannot guarantee the constructive truth of one or
the other disjunct. Something other than a constructive proof must be ad-
mitted as evidence for a disjunction if the law of the excluded middle is to
hold true. And it is precisely for this reason that a classical proof expresses
less than does a constructive proof of the same proposition.

Despite this weakness, classical logic admits a computational interpre-
tation similar to, but somewhat less expressive than, that of constructive
logic. The dynamics of classical proofs is derived from the complementar-
ity of truth and falsity. A computation is initiated by juxtaposing a proof
and a refutation—or, in programming terms, an expression and a continua-
tion, or control stack. Continuations are essential to the meaning of classical
proofs. In particular, the proof of the law of the excluded middle will be
seen to equivocate between proving and refuting a proposition, using con-
tinuations to avoid getting caught in a contradiction.

35.1 Classical Logic

In constructive logic a connective is defined by giving its introduction and
elimination rules. In classical logic a connective is defined by giving its
truth and falsity conditions. Its truth rules correspond to introduction, and
its falsity rules to elimination. The symmetry between truth and falsity is
expressed by the principle of indirect proof. To show that φ true it is enough
to show that φ false entails a contradiction, and, conversely, to show that
φ false it is enough to show that φ true leads to a contradiction. While the
second of these is constructively valid, the first is fundamentally classical,
expressing the principle of indirect proof.

35.1.1 Provability and Refutability

There are three judgement forms in classical logic:

1. φ true, stating that the proposition φ is provable;

2. φ false, stating that the proposition φ is refutable;

3. #, stating that a contradiction has been derived.

We will consider hypothetical judgements of the form

φ1 false, . . . , φm false ψ1 true, . . . , ψn true ` J,

14:43 DRAFT AUGUST 24, 2010



35.1 Classical Logic 309

where J is any of the three basic judgement forms. The hypotheses are
divided into two “zones” for convenience. We let Γ stand for a finite set of
“true” hypotheses, and ∆ stand for a finite set of “false” hypotheses.

The rules of classical logic are organized around the symmetry between
truth and falsity, which is mediated by the contradiction judgement.

The hypothetical judgement is reflexive:

∆, φ false Γ ` φ false (35.1a)

∆ Γ, φ true ` φ true (35.1b)

The remaining rules are stated so that the structural properties of weaken-
ing, contraction, and transitivity are admissible.

A contradiction arises when a proposition is judged to be both true and
false. A proposition is true if its falsity is absurd, and is false if its truth is
absurd.

∆ Γ ` φ false ∆ Γ ` φ true

∆ Γ ` #
(35.1c)

∆, φ false Γ ` #
∆ Γ ` φ true

(35.1d)

∆ Γ, φ true ` #
∆ Γ ` φ false

(35.1e)

Truth is trivially true, and cannot be refuted.

∆ Γ ` > true (35.1f)

A conjunction is true if both conjuncts are true, and is false if either
conjunct is false.

∆ Γ ` φ1 true ∆ Γ ` φ2 true

∆ Γ ` φ1 ∧ φ2 true
(35.1g)

∆ Γ ` φ1 false

∆ Γ ` φ1 ∧ φ2 false
(35.1h)

∆ Γ ` φ2 false

∆ Γ ` φ1 ∧ φ2 false
(35.1i)

Falsity is trivially false, and cannot be proved.

∆ Γ ` ⊥ false (35.1j)

AUGUST 24, 2010 DRAFT 14:43



310 35.1 Classical Logic

A disjunction is true if either disjunct is true, and is false if both dis-
juncts are false.

∆ Γ ` φ1 true

∆ Γ ` φ1 ∨ φ2 true
(35.1k)

∆ Γ ` φ2 true

∆ Γ ` φ1 ∨ φ2 true
(35.1l)

∆ Γ ` φ1 false ∆ Γ ` φ2 false

∆ Γ ` φ1 ∨ φ2 false
(35.1m)

Negation inverts the sense of each judgement:

∆ Γ ` φ false

∆ Γ ` ¬φ true
(35.1n)

∆ Γ ` φ true

∆ Γ ` ¬φ false
(35.1o)

An implication is true if its conclusion is true whenever the assumption
is true, and is false if its conclusion if false yet its assumption is true.

∆ Γ, φ1 true ` φ2 true

∆ Γ ` φ1 ⊃ φ2 true
(35.1p)

∆ Γ ` φ1 true ∆ Γ ` φ2 false

∆ Γ ` φ1 ⊃ φ2 false
(35.1q)

35.1.2 Proofs and Refutations

The dynamics of classical proofs is most easily explained by introducing
a notation for the derivations of each of the judgement forms of classical
logic:

1. p : φ, stating that p is a proof of φ;

2. k ÷ φ, stating that k is a refutation of φ;

3. k # p, stating that k and p are contradictory.

We will consider hypothetical judgements of the form

u1 ÷ φ1, . . . , um ÷ φm︸ ︷︷ ︸
∆

x1 : ψ1, . . . , xn : ψn︸ ︷︷ ︸
Γ

` J,

14:43 DRAFT AUGUST 24, 2010



35.1 Classical Logic 311

in which we have labelled the truth and falsity assumptions with variables.
A contradiction arises whenever a proposition is both true and false:

∆ Γ ` k ÷ φ ∆ Γ ` p : φ

∆ Γ ` k # p
(35.2a)

Truth and falsity are defined symmetrically in terms of contradiction:

∆, u ÷ φ Γ ` k # p
∆ Γ ` ccr(u ÷ φ.k # p) : φ

(35.2b)

∆ Γ, x : φ ` k # p
∆ Γ ` ccp(x : φ.k # p) ÷ φ

(35.2c)

Reflexivity corresponds to the use of a variable hypothesis:

∆, u ÷ φ Γ ` u ÷ φ (35.2d)

∆ Γ, x : φ ` x : φ (35.2e)

The other structure properties are admissible.
Truth is trivially true, and cannot be refuted.

∆ Γ ` 〈〉 : > (35.2f)

A conjunction is true if both conjuncts are true, and is false if either
conjunct is false.

∆ Γ ` p1 : φ1 ∆ Γ ` p2 : φ2

∆ Γ ` 〈p1, p2〉 : φ1 ∧ φ2
(35.2g)

∆ Γ ` k1 ÷ φ1

∆ Γ ` fst;k1 ÷ φ1 ∧ φ2
(35.2h)

∆ Γ ` k2 ÷ φ2

∆ Γ ` snd;k2 ÷ φ1 ∧ φ2
(35.2i)

Falsity is trivially false, and cannot be proved.

∆ Γ ` abort ÷ ⊥ (35.2j)

A disjunction is true if either disjunct is true, and is false if both dis-
juncts are false.

∆ Γ ` p1 : φ1

∆ Γ ` inl(p1) : φ1 ∨ φ2
(35.2k)

AUGUST 24, 2010 DRAFT 14:43



312 35.2 Deriving Elimination Forms

∆ Γ ` p2 : φ2

∆ Γ ` inr(p2) : φ1 ∨ φ2
(35.2l)

∆ Γ ` k1 ÷ φ1 ∆ Γ ` k2 ÷ φ2

∆ Γ ` case(k1; k2) ÷ φ1 ∨ φ2
(35.2m)

Negation inverts the sense of each judgement:

∆ Γ ` k ÷ φ

∆ Γ ` not(k) : ¬φ
(35.2n)

∆ Γ ` p : φ

∆ Γ ` not(p) ÷ ¬φ
(35.2o)

An implication is true if its conclusion is true whenever the assumption
is true, and is false if its conclusion if false yet its assumption is true.

∆ Γ, x : φ1 ` p2 : φ2

∆ Γ ` λ (x:φ1. p2) : φ1 ⊃ φ2
(35.2p)

∆ Γ ` p1 : φ1 ∆ Γ ` k2 ÷ φ2

∆ Γ ` app(p1);k2 ÷ φ1 ⊃ φ2
(35.2q)

35.2 Deriving Elimination Forms

The price of achieving a symmetry between truth and falsity in classical
logic is that we must very often rely on the principle of indirect proof: to
show that a proposition is true, we often must derive a contradicton from
the assumption of its falsity. For example, a proof of

(φ ∧ (ψ ∧ θ)) ⊃ (θ ∧ φ)

in classical logic has the form

λ (w:φ ∧ (ψ ∧ θ). ccr(u ÷ θ ∧ φ.k # w)),

where k is the refutation

fst;ccp(x : φ.snd;ccp(y : ψ ∧ θ.snd;ccp(z : θ.u # 〈z, x〉) # y) # w).

And yet in constructive logic this proposition has a direct proof that avoids
the circumlocations of proof by contradiction:

λ (w:φ ∧ (ψ ∧ θ). andI(andE[r](andE[r](w)); andE[l](w))).

14:43 DRAFT AUGUST 24, 2010



35.2 Deriving Elimination Forms 313

But this proof cannot be expressed (as is) in classical logic, because classical
logic lacks the elimination forms of constructive logic.

However, we may package the use of indirect proof into a slightly more
palatable form by deriving the elimination rules of constructive logic. For
example, the rule

∆ Γ ` φ ∧ ψ true

∆ Γ ` φ true

is derivable in classical logic:

∆, φ false Γ ` φ false

∆, φ false Γ ` φ ∧ ψ false

∆ Γ ` φ ∧ ψ true

∆, φ false Γ ` φ ∧ ψ true

∆, φ false Γ ` #
∆ Γ ` φ true

The other elimination forms are derivable in a similar manner, in each case
relying on indirect proof to construct a proof of the truth of a proposition
from a derivation of a contradiction from the assumption of its falsity.

The derivations of the elimination forms of constructive logic are most
easily exhibited using proof and refutation expressions, as follows:

falseE[φ](p) = ccr(u ÷ φ.abort # p)
andE[l](p) = ccr(u ÷ φ.fst;u # p)
andE[r](p) = ccr(u ÷ ψ.snd;u # p)
impE(p1; p2) = ccr(u ÷ ψ.app(p2);u # p1)

orE[φ; ψ](p1; x.p2; y.p) = ccr(u ÷ γ.case(ccp(x : φ.u # p2); ccp(y : ψ.u # p)) # p1)

It is straightforward to check that the expected elimination rules hold. For
example, the rule

∆ Γ ` p1 : φ ⊃ ψ ∆ Γ ` p2 : φ

∆ Γ ` impE(p1; p2) : ψ
(35.3)

is derivable using the definition of impE(p1; p2) given above. By suppress-
ing proof terms, we may derive the corresponding provability rule

∆ Γ ` φ ⊃ ψ true ∆ Γ ` φ true

∆ Γ ` ψ true
. (35.4)

AUGUST 24, 2010 DRAFT 14:43



314 35.3 Proof Dynamics

35.3 Proof Dynamics

The dynamics of classical logic arises from the simplification of the con-
tradiction between a proof and a refutation of a proposition. To make this
explicit we will define a transition system whose states are contradictions
k # p consisting of a proof, p, and a refutation, k, of the same proposition.
The steps of the computation consist of simplifications of the contradictory
state based on the form of p and k.

The truth and falsity rules for the connectives play off one another in a
pleasing manner:

fst;k # 〈p1, p2〉 7→ k # p1 (35.5a)
snd;k # 〈p1, p2〉 7→ k # p2 (35.5b)

case(k1; k2) # inl(p1) 7→ k1 # p1 (35.5c)
case(k1; k2) # inr(p2) 7→ k2 # p2 (35.5d)

not(p) # not(k) 7→ k # p (35.5e)
app(p1);k # λ (x:φ. p2) 7→ k # [p1/x]p2 (35.5f)

The rules of indirect proof give rise to the following transitions:

ccp(x : φ.k1 # p1) # p2 7→ [p2/x]k1 # [p2/x]p1 (35.5g)
k1 # ccr(u ÷ φ.k2 # p2) 7→ [k1/u]k2 # [k1/u]p2 (35.5h)

The first of these defines the behavior of the refutation of φ that proceeds
by contradicting the assumption that φ is true. This refutation is activated
by presenting it with a proof of φ, which is then substituted for the assump-
tion in the new state. Thus, “ccp” stands for “call with current proof.” The
second transition defines the behavior of the proof of φ that proceeds by
contradicting the assumption that φ is false. This proof is activated by pre-
senting it with a refutation of φ, which is then substituted for the assump-
tion in the new state. Thus, “ccr” stands for “call with current refutation.”

A canonical proof is any proof other than an indirect proof, and a canon-
ical refutation is any refutation other than an indirect refutation. We write
p canonical to mean that p is a canonical proof, and k canonical to mean that
k is a canonical refutation. To initiate computation we postulate that halt
is a canonical refutation of any proposition. The initial and final states of
computational are defined as follows:

halt # p initial
(35.6a)

14:43 DRAFT AUGUST 24, 2010



35.4 Law of the Excluded Middle 315

p canonical

halt # p final
(35.6b)

Theorem 35.1 (Preservation). If k ÷ φ, p : φ, and k # p 7→ k′ # p′, then k′ ÷ φ
and p′ : φ.

Proof. By rule induction on the dynamics of classical logic.

Theorem 35.2 (Progress). If k ÷ φ and p : φ, then either k # p final, or k # p 7→
k′ # p′.

Proof. By rule induction on the statics of classical logic.

Rules (35.5g) to (35.5h) overlap in that there are two possible transitions
for a state of the form

ccp(x : φ.k1 # p1) # ccr(u ÷ φ.k2 # p2),

one to the state [p/x]k1 # [p/x]p1, where p is ccr(u ÷ φ.k2 # p2), and one
to the state [k/u]k2 # [k/u]p2, where k is ccp(x : φ.k1 # p1).

This shows that the dynamics of classical logic is non-deterministic. But
this means that it is difficult to predict the outcome of a computation, since
it could be radically different in the case of the overlapping state just de-
scribed. To avoid this one may impose a priority ordering among the two
cases, preferring one transition over the other when there is a choice. Pre-
ferring the first corresponds to a “lazy” dynamics for proofs, because we
pass the unevaluated proof, p, to the refutation on the left, which is thereby
activated. Preferring the second corresponds to an “eager” dynamics for
proofs, in which we pass the unevaluated refutation, k, to the proof, which
is thereby activated.

35.4 Law of the Excluded Middle

The law of the excluded middle is derivable in classical logic:

φ ∨ ¬φ false, φ true ` φ true

φ ∨ ¬φ false, φ true ` φ ∨ ¬φ true φ ∨ ¬φ false, φ true ` φ ∨ ¬φ false

φ ∨ ¬φ false, φ true ` #
φ ∨ ¬φ false ` φ false

φ ∨ ¬φ false ` ¬φ true

φ ∨ ¬φ false ` φ ∨ ¬φ true φ ∨ ¬φ false ` φ ∨ ¬φ false

φ ∨ ¬φ false ` #
φ ∨ ¬φ true

AUGUST 24, 2010 DRAFT 14:43



316 35.4 Law of the Excluded Middle

When written out using explicit proofs and refutations, we obtain the
proof term p0 : φ ∨ ¬φ:

ccr(u ÷ φ ∨ ¬φ.u # inr(not(ccp(x : φ.u # inl(x))))).

To understand the computational meaning of this proof, let us juxtapose it
with a refutation, k ÷ φ ∨ ¬φ, and simplify it using the dynamics given in
Section 35.3 on page 314. The first step is the transition

k # ccr(u ÷ φ ∨ ¬φ.u # inr(not(ccp(x : φ.u # inl(x)))))
7→

k # inr(not(ccp(x : φ.k # inl(x)))),

wherein we have replicated k so that it occurs in two places in the result
state. By virtue of its type the refutation k must have the form case(k1; k2),
where k1 ÷ φ and k2 ÷ ¬φ. Continuing the reduction, we obtain:

case(k1; k2) # inr(not(ccp(x : φ.case(k1; k2) # inl(x))))
7→

k2 # not(ccp(x : φ.case(k1; k2) # inl(x))).

By virtue of its type k2 must have the form not(p2), where p2 : φ, and
hence the transition proceeds as follows:

not(p2) # not(ccp(x : φ.case(k1; k2) # inl(x)))
7→

ccp(x : φ.case(k1; k2) # inl(x)) # p2.

Observe that p2 is a valid proof of φ! Proceeding, we obtain

ccp(x : φ.case(k1; k2) # inl(x)) # p2

7→
case(k1; k2) # inl(p2)

7→
k2 # p2

The first of these two steps is the crux of the matter: the refutation, k =
case(k1; k2), which was replicated at the outset of the derivation, is re-
used, but with a different argument. At the first use, the refutation, k, which

14:43 DRAFT AUGUST 24, 2010



35.5 Exercises 317

is provided by the context of use of the law of the excluded middle, is pre-
sented with a proof inr(p1) of φ∨¬φ. That is, the proof behaves as though
the right disjunct of the law is true, which is to say that φ is false. If the con-
text is such that it inspects this proof, it can only be by providing the proof,
p2, of φ that refutes the claim that φ is false. Should this occur, the proof
of the law of the excluded middle backtracks the context, providing instead
the proof inl(p2) to k, which then passes p2 to k2 without further incident.
The proof of the law of the excluded middle baldly asserts ¬φ true, regard-
less of the form of φ. Then, if caught in its lie by the context providing a
proof of φ, changes its mind and asserts to the original context, k, after all!
No further reversion is possible, because the context has itself provided a
proof, p2, of φ.

The law of the excluded middle illustrates that classical proofs are to be
thought of as interactions between proofs and refutations, which is to say
interactions between a proof and the context in which it is used. In pro-
gramming terms this corresponds to an abstract machine with an explicit
control stack, or continuation, representing the context of evaluation of an
expression. That expression may access the context (stack, continuation)
to effect backtracking as necessary to maintain the perfect symmetry be-
tween truth and falsity. The penalty is that a closed proof of a disjunction
no longer need reveal which disjunct it proves, for as we have just seen, it
may, on further inspection, change its mind!

35.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



318 35.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XIII

Symbols





Chapter 36

Symbols

A symbol is an atomic datum with no internal structure. The only way to
compute with an unknown symbol is to compare it for identity with one
or more known symbols, and branching according to the outcome. We
shall make use of symbols for several purposes, including fluid binding,
assignable variables, tags for classification of data, and names of commu-
nication channels. The common characteristic is that symbols are the in-
dices of some family of operations, and that the types of the operations are
conditioned by the type associated to the symbol.

We will divide the treatment of symbols into two parts, one for intro-
ducing new symbols (in two senses), and one for computing with symbols
as values of a type.

36.1 Symbol Declaration

Symbols, as distinct from variables, are a fundamental notion whose mean-
ing is given not by substitution (as for variables), but by primitive opera-
tions associated with them. To account for symbols in a program we in-
troduce an operation for declaring a symbol, and a corresponding context
for recording the symbols that have been declared. There are two, distinct
semantics for symbol declaration, the stack-like and the heap-like, that differ
according to whether symbols are confined to the scope of their declaration
or are instead allowed to exceed it.

The syntax for symbol declaration is given by the following grammar:

Expr e ::= new[τ](a.e) new a:τ in e generation



322 36.1 Symbol Declaration

There are two important things to notice about this syntax. First, the sym-
bol declaration mechanism is a pervasive primitive that is not associated
with a particular type. (This is analogous to, but crucially different from,
the binding and scope of variables, which are similarly given meaning
without regard to type.) Second, symbols are not, at this stage, forms of
expression. (Expressions that denote symbols will be introduced in Sec-
tion 36.2 on page 324.)

The statics of symbol declaration makes use of a signature, or symbol
context, that associates a type to each of a finite set of symbols. We use the
letter Σ to range over signatures, which are finite sets of pairs a : τ, where
a is a symbol and τ is a type. The judgement Γ `Σ e : τ enriches the usual
typing judgement to include a signature declaring the symbols that may be
used within e. (For the time being we have no such expressions, but we
will do so in Section 36.2 on page 324 and in subsequent chapters.)

Using this enriched form of typing judgement, the typing rule for sym-
bol declaration is given as follows:

Γ `Σ,a:σ e : τ τ mobile

Γ `Σ new[σ](a.e) : τ
(36.1a)

The expression new[τ](a.e) allocates a fresh symbol, a, of type σ for use
within the expression, e. It is implicit that a is chosen to not already be
declared in Σ, ensuring that it is not otherwise in use. The requirement that
the type of the expression be mobile can only be explained in conjunction
with the dynamics of symbol declaration, to which we now turn.

There are two forms of dynamics for symbol declaration, the stack-like
and the heap-like. In a stack-like dynamics the symbol, a, introduce by the
declaration new[σ](a.e) is confined to the expression e. This means that
the value of e must not embed any use of the symbol, a, for otherwise the
result would escape the scope of a. The judgement τ mobile is to be chosen
so that this condition holds, ensuring type safety. The heap-like dynamics,
on the other hand, permits symbols to escape the scope of their declaration,
so that no restriction on the value of the body of a symbol declaration need
be imposed. In that case the judgement τ mobile may be taken to hold
universally, for all types τ.

36.1.1 Stack-Like Dynamics

The stack-like dynamics of symbol declaration is given by a transition judge-
ment of the form e 7−→

Σ
e′. The signature, Σ, records the active symbols of

14:43 DRAFT AUGUST 24, 2010



36.1 Symbol Declaration 323

the transition between expressions e and e′. The new construct introduces a
new, or fresh, symbol for use within the body of the declaration. The new
symbol is added to Σ during evaluation of the body of the new, and de-
allocated afterwards. The judgement τ mobile must be chosen so that this
condition is true. For example, if the successor is evaluated eagerly, then
the type nat may be regarded as mobile, for no value of this type may em-
bed a symbol. If, on the other hand, the successor is lazy, then the delayed
computation of the predecessor may well contain uses of a, and so nat can-
not be regarded as mobile. Similarly, function types cannot be regarded as
mobile, but if pairing is evaluated eagerly, then we may regard the product
of two mobile types to itself be mobile.

The judgement e valΣ states that e is a value relative to symbols Σ, and
the judgement e 7−→

Σ
e′ states that e transitions to e′ in the presence of the

symbols Σ.
e 7−−→

Σ,a:σ
e′

new[σ](a.e) 7−→
Σ

new[σ](a.e′)
(36.2a)

e valΣ,a:σ a /∈ e
new[σ](a.e) 7−→

Σ
e (36.2b)

36.1.2 Heap-Like Dynamics

The heap-like intepretation specifies that new[σ](a.e) generates a new sym-
bol that may be used within e, without imposing the requirement that the
scope of a be limited to e. This means that the symbol will continue to
be available even after e returns a value. Consequently, any type may be
deemed mobile under a heap-like dynamics.

The heap-like dynamics has states of the form ν Σ { e }, where Σ declares
a finite set of symbols and their types, and e is an expression possibly in-
volving the symbols declared in Σ. The transition judgement ν Σ { e } 7→
ν Σ′ { e′ } states that evaluation of e relative to symbols Σ results in the ex-
pression e′ in the extension Σ′ of Σ. New symbols come into existence dur-
ing execution, but old symbols are never thrown away.

a /∈ dom(Σ)
ν Σ { new[σ](a.e) } 7→ ν Σ, a : σ { e }

(36.3a)

The chief difference compared to Rules (36.5) is that execution continues
with the body of the declaration under the extended signature.

AUGUST 24, 2010 DRAFT 14:43



324 36.2 Symbolic References

The only threat to safety is posed by Rule (36.2b). We must ensure that
the condition a /∈ e is met in any well-typed program. This requires the
following mobility lemma. More precisely, the mobility judgement must be
chosen so that the following condition holds.

Lemma 36.1. If `Σ,a:σ e : τ and τ mobile, then a /∈ e.

Proof. The proof is by induction on the derivation of τ mobile.

Given this, the statement and proof of safety for either the stack-like or
the heap-like dynamics is entirely straightforward, and is left as an exercise
for the reader.

36.2 Symbolic References

Symbols have a variety of uses in programming languages, including fluid
binding (Chapter 37), assignable variables (Chapter 39), dynamic classifi-
cation (Chapter 38), and interprocess communication (Chapter 45). Sym-
bols are not values, nor are symbols variables. That is, symbols do not
themselves inhabit types, nor are symbols given meaning by substitution.
Rather, symbols are merely indices of families of primitive operations.

If we wish to compute with symbols as data objects, it is necessary to
introduce a type whose values are references to symbols. These are called
symbolic references. We associate to each symbol a a symbolic reference, writ-
ten & a, that refers to it. Given a symbolic reference, we may dispatch on
whether it is a reference to a known symbol.

The syntax of symbolic references is given by the following grammar:

Type τ ::= sym(τ) τ sym symbolic reference
Expr e sym[a] & a symbolic reference

is[a][t.τ](e; e1; e2) comparison
if e is a then e1 ow be2

The expression sym[a] is a reference to the symbol a, a value of type sym(τ).
The expression is[a][t.τ](e; e1; e2) compares the value of e, which must
be a reference to some symbol b, with the given symbol, a. If b is a, the ex-
pression evaluates to e1, and otherwise to e2. (The abstractor, t.τ, is needed
for the statics, as will be explained shortly.)

14:43 DRAFT AUGUST 24, 2010



36.2 Symbolic References 325

36.2.1 Statics

The typing rules for symbolic references are as follows:

Γ `Σ,a:σ sym[a] : sym(σ)
(36.4a)

Γ `Σ,a:ρ e : sym(σ) Γ `Σ,a:ρ e1 : [ρ/t]τ Γ `Σ,a:ρ e2 : [σ/t]τ
Γ `Σ,a:ρ is[a][t.τ](e; e1; e2) : [σ/t]τ

(36.4b)

Rule (36.4a) is the introduction rule for the type sym(σ). It states that if a
is a symbol with associated type σ, then sym[a] is an expression of type
sym(σ). Rule (36.4b) is the elimination rule for the type sym(σ). Observe
that the type associated to the given symbol, a, is not required to be the
same as the type of the symbol referred to by the expression e. If e evaluates
to a reference to a, then these types will, of course, coincide, but if it refers
to a different symbol, there is no reason to insist that it be of the same type.

With this in mind, let us examine carefully Rule (36.4b). A priori there
is a discrepancy between the type, ρ, of a and the type, σ, of the symbol
referred to by e. This discrepancy is mediated by the type operator t.τ.1

Regardless of the outcome of the comparison, the overall type of the expre-
sion is [σ/t]τ. To ensure safety, we must ensure that this is a valid type for
the result, regardless of whether the comparison succeeds or fails. If e eval-
uates to the symbol a, then we “learn” that the types σ and ρ coincide, since
the specified and referenced symbol coincide. This is reflected by the type
[ρ/t]τ for e1. If e evaluates to some other symbol, a′ 6= a, then the com-
parison evaluates to e2, which is required to have type [σ/t]τ; no further
information about the type of the symbol is acquired in this branch.

36.2.2 Dynamics

We may give either a stack-like or a heap-like dynamics to symbolic ref-
erences. In the stack-like case we must ensure that the type sym(τ) is not
mobile, since its values are precisely references to symbols, and hence can
never satisfy the mobility lemma. In the heap-like case no restrictions are
required, since the symbols are given global scope in the dynamics itself.

The stack-like dynamics of symbolic references is given by the follow-
ing rules:

sym[a] valΣ,a:σ
(36.5a)

1See Chapter 17 for a discussion of type operators.

AUGUST 24, 2010 DRAFT 14:43



326 36.2 Symbolic References

is[a][t.τ](sym[a]; e1; e2) 7−−→
Σ,a:ρ

e1
(36.5b)

is[a][t.τ](sym[a′]; e1; e2) 7−−−−→
Σ,a:ρ,a′ :σ

e2
(36.5c)

e 7−−→
Σ,a:ρ

e′

is[a][t.τ](e; e1; e2) 7−−→
Σ,a:ρ

is[a][t.τ](e′; e1; e2)
(36.5d)

The heap-like dynamics of symbolic references is given by the following
rules:

sym[a] valΣ,a:σ
(36.6a)

ν Σ, a : ρ { is[a][t.τ](sym[a]; e1; e2) } 7→ ν Σ, a : ρ { e1 }
(36.6b)

ν Σ, a : ρ { is[a][t.τ](sym[a′]; e1; e2) } 7→ ν Σ, a : ρ { e2 }
(36.6c)

ν Σ, a : ρ { e } 7→ ν Σ′, a : ρ { e′ }
ν Σ, a : ρ { is[a][t.τ](e; e1; e2) }

7→
ν Σ′, a : ρ { is[a][t.τ](e′; e1; e2) }

(36.6d)

36.2.3 Safety

We will focus on the safety of the heap-like dynamics. The proof for the
stack-like dynamics is very similar, and left as an exercise for the reader.

Theorem 36.2 (Preservation). Suppose that `Σ e : τ and ν Σ { e } 7→ ν Σ′ { e′ }.
Then Σ′ ⊇ Σ and `Σ′ e′ : τ.

Proof. By rule induction on Rules (36.6). The most interesting case is Rule (36.6b),
for in this case we “learn” that σ = ρ, so that e1, which has type [ρ/t]τ, also
has type [σ/t]τ, as required.

Lemma 36.3 (Canonical Forms). If `Σ e : sym(σ) and e valΣ, then e = sym[a]
for some a such that Σ = Σ′, a : σ.

Proof. By rule induction on Rules (36.4), taking account of the definition of
values.

14:43 DRAFT AUGUST 24, 2010



36.3 Exercises 327

Theorem 36.4 (Progress). Suppose that `Σ e : τ. Then either e valΣ, or
ν Σ { e } 7→ ν Σ′ { e′ } for some Σ′ and e′.

Proof. By rule induction on Rules (36.4). For example, consider Rule (36.4b),
in which we have that is[a][t.τ](e; e1; e2) has some type τ and that e :
sym(σ) for some σ. By induction either Rule (36.6d) applies, or else we
have that e valΣ, in which case we are assured by Lemma 36.3 on the fac-
ing page that e is sym[a] for some symbol a of some type σ in Σ. But then
progress is assured by Rules (36.6b) and (36.6c).

36.3 Exercises

1. Formulate an equality test, with type specialization, that compares
two symbolic references, branching accordingly.

AUGUST 24, 2010 DRAFT 14:43



328 36.3 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 37

Fluid Binding

Recall from Chapter 11 that under the dynamic scope discipline evaluation
is defined for expressions with free variables whose bindings are deter-
mined by capture-incurring substitution. Evaluation aborts if the binding
of a variable is required in a context in which no binding for it exists. Oth-
erwise, it uses whatever bindings for its free variables happen to be active
at the point at which it is evaluated. In essence the bindings of variables
are determined as late as possible during execution—just in time for eval-
uation to proceed. However, we found that as a language design dynamic
scoping is deficient in (at least) two respects:

• Bound variables may not always be renamed in an expression with-
out changing its meaning.

• Since the scopes of variables are resolved dynamically, it is difficult
to ensure type safety.

These difficulties can be overcome by distinguishing two different con-
cepts, namely static binding of variables, which is defined by substitution,
and dynamic, or fluid, binding of symbols, which is defined by storing and
retrieving bindings from a table during execution.

37.1 Statics

The language L{fluid} extends the language L{sym} defined in Chap-
ter 36 with the following additional constructs:

Expr e ::= put[a](e1; e2) put e1 for a in e2 binding
get[a] get a retrieval



330 37.2 Dynamics

As in Chapter 36, the variable a ranges over some fixed set of symbols. The
expression get[a] evaluates to the value of the current binding of a, if it
has one, and is stuck otherwise. The expression put[a](e1; e2) binds the
symbol a to the value e1 for the duration of the evaluation of e2, at which
point the binding of a reverts to what it was prior to the execution. The
symbol a is not bound by the put expression, but is instead a parameter of
it.

The statics of L{fluid} is defined by judgements of the form

Γ `Σ e : τ,

where Σ is a finite set a1 : τ1, . . . , ak : τk of declarations of the pairwise
distinct symbols a1, . . . , ak, and Γ is, as usual, a finite set x1 : τ1, . . . , xn : τn
of declarations of the pairwise distinct variables x1, . . . , xn.

The statics of L{fluid} extends that of L{sym} (see Chapter 36) with
the following rules:

Γ `Σ,a:τ get[a] : τ (37.1a)

Γ `Σ,a:τ1 e1 : τ1 Γ `Σ,a:τ e2 : τ2

Γ `Σ,a:τ1 put[a](e1; e2) : τ2
(37.1b)

Rule (37.1b) specifies that the symbol a is a parameter of the expression that
must be declared in Σ.

37.2 Dynamics

We assume a stack-like dynamics for symbols, as described in Chapter 36.
The dynamics of L{fluid} maintains an association of values to symbols
that changes in a stack-like manner during execution. We define a family
of transition judgements of the form e

µ7−→
Σ

e′, where Σ is as in the statics,

and µ is a finite function mapping some subset of the symbols declared in
Σ to values of appropriate type. If µ is defined for some symbol a, then
it has the form µ′ ⊗ 〈a : e〉 for some µ′ and value e. If, on the other hand,
µ is undefined for some symbol a, we may regard it as having the form
µ′ ⊗ 〈a : •〉. We will write 〈a : 〉 to stand ambiguously for either 〈a : •〉 or
〈a : e〉 for some expression e.

The dynamics of L{fluid} is given by the following rules:

e valΣ,a:τ

get[a]
µ⊗〈a : e〉7−−−−→

Σ,a:τ
e

(37.2a)

14:43 DRAFT AUGUST 24, 2010



37.3 Type Safety 331

e1
µ7−→
Σ

e′1

put[a](e1; e2)
µ7−→
Σ

put[a](e′1; e2)
(37.2b)

e1 valΣ,a:τ e2
µ⊗〈a : e1〉7−−−−−→

Σ,a:τ
e′2

put[a](e1; e2)
µ⊗〈a : 〉7−−−−→

Σ,a:τ
put[a](e1; e′2)

(37.2c)

e1 valΣ,a:τ e2 valΣ,a:τ

put[a](e1; e2)
µ7−→
Σ

e2
(37.2d)

Rule (37.2a) specifies that get[a] evaluates to the current binding of a, if
any. Rule (37.2b) specifies that the binding for the symbol a is to be evalu-
ated before the binding is created. Rule (37.2c) evaluates e2 in an environ-
ment in which the symbol a is bound to the value e1, regardless of whether
or not a is already bound in the environment. Rule (37.2d) eliminates the
fluid binding for a once evaluation of the extent of the binding has com-
pleted.

According to the dynamics defined by Rules (37.2), there is no transition
of the form get[a]

µ7−→
Σ

e if µ(a) = •. The judgement e unboundΣ states

that execution of e leads to such a state. It is inductively defined by the
following rules:

µ(a) = •
get[a] unboundµ

(37.3a)

e1 unboundµ

put[a](e1; e2) unboundµ
(37.3b)

e1 valΣ e2 unboundµ

put[a](e1; e2) unboundµ
(37.3c)

In addition to these rules we would also have, in a richer language, rules to
propagate the unbound symbol error through other language constructs,
as described in Chapter 9.

37.3 Type Safety

Define the auxiliary judgement µ : Σ by the following rules:

∅ : ∅ (37.4a)

AUGUST 24, 2010 DRAFT 14:43



332 37.4 Some Subtleties

`Σ e : τ µ : Σ
µ⊗ 〈a : e〉 : Σ, a : τ

(37.4b)

µ : Σ
µ⊗ 〈a : •〉 : Σ, a : τ

(37.4c)

These rules specify that if a symbol is bound to a value, then that value
must be of the type associated to the symbol by Σ. No demand is made
in the case that the symbol is unbound (equivalently, bound to a “black
hole”).

Theorem 37.1 (Preservation). If e
µ7−→
Σ

e′, where µ : Σ and `Σ e : τ, then

`Σ e′ : τ.

Proof. By rule induction on Rules (37.2). Rule (37.2a) is handled by the defi-
nition of µ : Σ. Rule (37.2b) follows immediately by induction. Rule (37.2d)
is handled by inversion of Rules (37.1). Finally, Rule (37.2c) is handled by
inversion of Rules (37.1) and induction.

Theorem 37.2 (Progress). If `Σ e : τ and µ : Σ, then either e valΣ, or e unboundµ,

or there exists e′ such that e
µ7−→
Σ

e′.

Proof. By induction on Rules (37.1). For Rule (37.1a), we have Σ ` a : τ
from the premise of the rule, and hence, since µ : Σ, we have either µ(a) = •
or µ(a) = e for some e such that `Σ e : τ. In the former case we have
e unboundµ, and in the latter we have get[a]

µ7−→
Σ

e. For Rule (37.1b), we

have by induction that either e1 valΣ or e1 unboundµ, or e1
µ7−→
Σ

e′1. In the

latter two cases we may apply Rule (37.2b) or Rule (37.3b), respectively.
If e1 valΣ, we apply induction to obtain that either e2 valΣ, in which case
Rule (37.2d) applies; e2 unboundµ, in which case Rule (37.3b) applies; or

e2
µ7−→
Σ

e′2, in which case Rule (37.2c) applies.

37.4 Some Subtleties

Fluid binding in the context of a first-order language is easy to understand.
If the expression put e1 for a in e2 has a type such as nat, then its execution
consists of the evaluation of e2 to a number in the presence of a binding of a
to the value of expression e1. When execution is completed, the binding of
a is dropped (reverted to its state in the surrounding context), and the value

14:43 DRAFT AUGUST 24, 2010



37.4 Some Subtleties 333

is returned. Since this value is a number, it cannot contain any reference to
a, and so no issue of its binding arises.

But what if the type of put e1 for a in e2 is a function type, so that the
returned value is a λ-abstraction? In that case the body of the λ may contain
references to the symbol a whose binding is dropped upon return. This
raises an important question about the interaction between fluid binding
and higher-order functions. For example, consider the expression

put 17 for a inλ (x:nat. x + get a), (37.5)

which has type nat, given that a is a symbol of the same type. Let us as-
sume, for the sake of discussion, that a is unbound at the point at which this
expression is evaluated. Doing so binds a to the number 17, and returns the
function λ (x:nat. x + get a). This function contains the symbol a, but is
returned to a context in which the symbol a is not bound. This means that,
for example, application of the expression (37.5) to an argument will incur
an error because the symbol a is not bound.

Contrast this with the similar expression

let y be 17 inλ (x:nat. x + y), (37.6)

in which we have replaced the fluid-bound symbol, a, by a statically bound
variable, y. This expression evaluates to λ (x:nat. x + 17), which adds 17
to its argument when applied. There is never any possibility of an un-
bound symbol arising at execution time, precisely because the identifica-
tion of scope and extent ensures that the association between a variable
and its binding is never violated.

It is hard to say whether either of these two behaviors is “right” or
“wrong.” Static binding is an important mechanism for encapsulation of
behavior in a program; without static binding, one cannot ensure that the
meaning of a variable is unchanged by the context in which it is used. Dy-
namic binding is used to avoid passing arguments to a function in order
to specialize its behavior. Instead we rely on fluid binding to establish the
binding of a symbol for the duration of execution of the function, avoiding
the need to re-bind the fluids at each call site.

For example, let e stand for the value of expression (37.5), a λ-abstraction
whose body is dependent on the binding of the symbol a. This imposes the
requirement that the programmer provide a binding for a whenever e is
applied to an argument. For example, the expression

put 7 for a in (e(9))

AUGUST 24, 2010 DRAFT 14:43



334 37.4 Some Subtleties

evaluates to 15, and the expression

put 8 for a in (e(9))

evaluates to 17. Writing just e(9), without a surrounding binding for a, re-
sults in a run-time error attempting to retrieve the binding of the unbound
symbol a.

The alternative to fluid binding is to add an additional parameter to e
for the binding of the symbol a, so that one would write

e′(7)(9)

and
e′(8)(9),

respectively, where e′ is the λ-abstraction

λ (a:nat. λ (x:nat. x + a)).

Using additional arguments can be slightly inconvenient, though, when
several call sites have the same binding for a. Using fluid binding we may
write

put 7 for a in 〈e(8), e(9)〉,

whereas using an additional argument we must write

〈e′(7)(8), e′(7)(9)〉.

However, such redundancy can be mitigated by simply factoring out the
common part, writing

let f be e′(7) in 〈 f(8), f(9)〉.

One might argue, then, that it is all a matter of taste. However, a sig-
nificant drawback of using fluid binding is that the requirement to provide
a binding for a is not apparent in the type of e, whereas the type of e′ re-
flects the demand for an additional argument. One may argue that the type
system should record the dependency of a computation on a specified set of
fluid-bound symbols. For example, the expression e might be given a type
of the form nat →a nat, reflecting the demand that a binding for a be pro-
vided at the call site.

14:43 DRAFT AUGUST 24, 2010



37.5 Fluid References 335

37.5 Fluid References

The foregoing treatment of fluid binding makes explicit the target of a get

or put operation in the syntax of the language. It is sometimes useful to
defer to execution time the choice of which fluid a get or a put acts on. This
may be achieved by introducing references to fluids, which allow the name
of a fluid to be represented as a value. References come equipped with
analogues of the get and put primitives, but for a dynamically determined
symbol.

The syntax of references as an extension to L{fluid} is given by the
following grammar:

Type τ ::= fluid(τ) τ fluid fluid
Expr e ::= fl[a] fl[a] reference

getfl(e) getfl e retrieval
putfl(e; e1; e2) putfl e is e1 in e2 binding

The expression fl[a] is the symbol a considered as a value of type fluid(τ).
The expressions getfl(e) and putfl(e; e1; e2) are analogues of the get and
put operations for fluid-bound symbols.

The statics of these constructs is given by the following rules:

Γ `Σ,a:τ fl[a] : fluid(τ)
(37.7a)

Γ `Σ e : fluid(τ)

Γ `Σ getfl(e) : τ
(37.7b)

Γ `Σ e : fluid(τ) Γ `Σ e1 : τ Γ `Σ e2 : τ2

Γ `Σ putfl(e; e1; e2) : τ2
(37.7c)

Since we are assuming a stack-like allocation of symbols, references to flu-
ids cannot be considered to be mobile!

The dynamics of references consists of resolving the referent and defer-
ring to the underlying primitives acting on symbols.

fl[a] valΣ,a:τ
(37.8a)

e
µ7−→
Σ

e′

getfl(e)
µ7−→
Σ

getfl(e′)
(37.8b)

AUGUST 24, 2010 DRAFT 14:43



336 37.6 Exercises

getfl(fl[a])
µ7−→
Σ

get[a]
(37.8c)

e
µ7−→
Σ

e′

putfl(e; e1; e2)
µ7−→
Σ

putfl(e′; e1; e2)
(37.8d)

putfl(fl[a]; e1; e2)
µ7−→
Σ

put[a](e1; e2)
(37.8e)

37.6 Exercises

1. Formalize deep binding and shallow binding using the stack machine of
Chapter 31.

14:43 DRAFT AUGUST 24, 2010



Chapter 38

Dynamic Classification

In Chapters 15 and 29 we investigated the use of sums for the classification
of values of disparate type. Every value of a classified type is labelled with
a symbol that determines the type of the instance data. A classified value is
decomposed by pattern matching against a known class, which reveals the
type of the instance data.

Under this representation the possible classes of an object are fully de-
termined statically by its type. However, it is sometimes useful to allow the
possible classes of data value to be determined dynamically. A typical situa-
tion of this kind arises when two components of a program wish to “share
a secret”—that is, to compute a value that is opaque to intermediaries. This
can be accomplished by creating a fresh class that is known only to the two
“end points” of the communication who may create instances of this class,
and pattern match against it to recover the underlying datum. In this sense
dynamic classification may be regarded as a perfect encryption mechanism in
which the class serves as an absolutely unbreakable encryption key under
which data may be protected from intruders. It is absolutely unbreakable
because, by α-equivalence, it is impossible to “guess” the name of a bound
symbol.1

One may wonder why a program would ever need to keep a secret
from itself. There are, in fact, many useful applications of such an idea.
For example, a program may consist of many independent processes com-
municating over an insecure network. Perfect encryption by dynamic clas-
sification supports the creation of private channels between processes; see

1In practice this is implemented using probabilistic techniques to avoid the need for a
central arbiter of unicity of symbol names. However, such methods require a source of
randomness, which may be seen as just such an arbiter in disguise. There is no free lunch.



338 38.1 Dynamic Classes

Chapter 46 for further details. Exceptions are another, less obvious, ap-
plication of dynamic classification. An exception involves two parties, the
raiser and the handler. Raising an exception may be viewed as sending a
message to a specific handler (rather than to any handler that wishes to in-
tercept it). This may be enforced by classifying the exception value with
a dynamically generated class that is recognized by the intended handler,
and no other.

38.1 Dynamic Classes

A dynamic class is a symbol that may be generated at run-time. A classified
value consists of a symbol of type τ together with a value of that type. To
compute with a classified value, it is compared with a known class. If the
value is of this class, the underlying instance data is passed to the positive
branch, otherwise the negative branch is taken, where it may be matched
against other known classes.

38.1.1 Statics

The syntax of dynamic classification is given by the following grammar:

Type τ ::= clsfd clsfd classified
Expr e ::= inst[a](e) a · e instance

isof[a](e; x.e1; e2) match e as a · x ⇒ e1 ow e2 comparison

The expression inst[a](e) is a classified value with class a and underlying
value e. The expression isof[a](e; x.e1; e2) checks whether the class of the
value given by e is a. If so, the classified value is passed to e1; if not, the
expression e2 is evaluated instead.

The statics of dynamic classification is defined by the following rules:

Γ `Σ,a:σ e : σ

Γ `Σ,a:σ inst[a](e) : clsfd
(38.1a)

Γ `Σ,a:σ e : clsfd Γ, x : σ `Σ,a:σ e1 : τ Γ `Σ,a:σ e2 : τ

Γ `Σ,a:σ isof[a](e; x.e1; e2) : τ
(38.1b)

The type associated to the symbol in the signature determines the type of
the instance data.

14:43 DRAFT AUGUST 24, 2010



38.1 Dynamic Classes 339

38.1.2 Dynamics

Dynamic classes require a heap-like dynamics for symbol generation (as
described in Section 36.1.2 on page 323). This dynamics is defined by the
following rules:

e valΣ,a:τ

inst[a](e) valΣ,a:τ
(38.2a)

ν Σ { e } 7→ ν Σ′ { e′ }
ν Σ { inst[a](e) } 7→ ν Σ′ { inst[a](e′) }

(38.2b)

ν Σ { isof[a](inst[a](e); x.e1; e2) } 7→ ν Σ { [e/x]e1 }
(38.2c)

(a 6= a′)
ν Σ { isof[a](inst[a′](e′); x.e1; e2) } 7→ ν Σ { e2 }

(38.2d)

ν Σ { e } 7→ ν Σ′ { e′ }
ν Σ { isof[a](e; x.e1; e2) } 7→ ν Σ′ { isof[a](e′; x.e1; e2) }

(38.2e)

38.1.3 Safety

Theorem 38.1 (Safety).

1. If `Σ e : τ and ν Σ { e } 7→ ν Σ′ { e′ }, then Σ′ ⊇ Σ and `Σ′ e′ : τ.

2. If `Σ e : τ, then either e valΣ or ν Σ { e } 7→ ν Σ′ { e′ } for some e′ and Σ′.

Proof. Similar to the safety proofs given in Chapters 15, 16, and 36.

It is straightforward to introduce a type class(τ) of references to dy-
namic classes with instance type τ.

Type τ ::= class(τ) τ class class reference
Expr e ::= cls[a] & a reference

instref(e1; e2) instref(e1; e2) instance

The statics of these constructs is given by the following rules:

Γ `Σ,a:τ cls[a] : class(τ)
(38.3a)

Γ `Σ e1 : class(τ) Γ `Σ e2 : τ

Γ `Σ instref(e1; e2) : clsfd
(38.3b)

AUGUST 24, 2010 DRAFT 14:43



340 38.2 Defining Dynamic Classes

The corresponding dynamics is straightforward:

ν Σ { e1 } 7→ ν Σ′ { e′1 }
ν Σ { instref(e1; e2) } 7→ ν Σ′ { instref(e′1; e2) }

(38.4a)

e1 valΣ ν Σ { e2 } 7→ ν Σ′ { e′2 }
ν Σ { instref(e1; e2) } 7→ ν Σ′ { instref(e1; e′2) }

(38.4b)

e valΣ
ν Σ { instref(cls[a]; e) } 7→ ν Σ { inst[a](e) } (38.4c)

38.2 Defining Dynamic Classes

The type clsfd may be defined in terms of symbolic references, product
types, and existential types by the type expression

clsfd , ∃(t.t sym× t).

The introductory form, inst[a](e), where a is a symbol with associated
type τ, is defined by the package

pack τ with 〈& a, e〉 as ∃(t.t sym× t).

The eliminatory form, isof[a](e; x.e1; e2) is interesting, because it relies
on symbol comparison in the form detailed in Chapter 36. Consider the
expression isof[a](e; x.e1; e2) of type ρ, where a is a symbol of type σ, e is
of type clsfd, e1 is of type ρ given that x is of type σ, and e2 is of type ρ.
The class comparison is defined to be the compound expression

open e as t with 〈x, y〉:t sym× t in (ebody(y)),

where ebody is an expression to be defined shortly. The comparison opens
the package, e, representing the classified value, and decomposes it into a
type, t, a symbol, x, of type t sym, and an underlying value, y, of type t. The
expression ebody, which is to be defined shortly, will have the type t→ ρ, so
that the application to y is type correct.

The expression ebody compares the symbolic reference, x, to the symbol,
a, of type σ, and yields a value of type t → ρ regardless of the outcome. It
is therefore defined to be the expression

is[a][u.u→ ρ](x; e′1; e′2)

14:43 DRAFT AUGUST 24, 2010



38.3 Classifying Secrets 341

where, in accordance with Rule (36.4b), e′1 has type [σ/u](u→ ρ) = σ→ ρ,
and e′2 has type [t/u](u→ ρ) = t → ρ. The expression e′1 “knows” that
the abstract type, t, is σ, the type associated to the symbol a, because the
comparison has come out positively. On the other hand, e′2 does not “learn”
anything about the identity of t. In the positive case we wish to propagate
the classified value to e1, which is accomplished by defining e′1 to be the
expression

λ (x:σ. e1) : σ→ ρ.

In the negative case evaluation proceeds to e2, which is accomplished by
defining e′2 to be the expression

λ ( :t. e2) : t→ ρ.

It is a good exercise to check that the statics and dynamics given in Sec-
tion 38.1 on page 338 are preserved under these definitions. Note in par-
ticular that the comparison with a known symbol, a, reveals the identity of
the abstract type, t, so that the underlying classified value may be passed
to the branch corresponding to a. This is reflected in the type of e′1. Should
the comparison fail, no type information is gained; this is reflected in the
type of e′2. In any case the comparison results in a value of type t → ρ, as
required.

38.3 Classifying Secrets

Dynamic classification may be used to enforce confidentiality and integrity
of data values in a program. A value of type clsfd may only be con-
structed by sealing it with some class, a, and may only be deconstructed
by a case analysis that includes a branch for a. By controlling which parties
in a multi-party interaction have access to the classifier, a, we may control
how classified values are created (ensuring their integrity) and how they
are inspected (ensuring their confidentiality). Any party that lacks access
to a cannot decipher a value classified by a, nor may it create a classified
value with this class. Because classes are dynamically generated symbols,
they provide an absolute confidentiality guarantee among parties in a com-
putation.2

2Of course, this guarantee is for programs written in conformance with the statics given
here. If the abstraction imposed by the type system is violated, no guarantees of confiden-
tiality can be made.

AUGUST 24, 2010 DRAFT 14:43



342 38.4 Exercises

Consider the following simple protocol for controlling the integrity and
confidentiality of data in a program. A fresh symbol, a, is introduced, and
we return a pair of functions of type

(τ → clsfd)× (clsfd→ τ opt),

called the constructor and destructor functions for that class.

newsym a:τ in

〈 λ (x:τ. a · x),
λ (x:clsfd. match x as a · y⇒ null ow just(y)) 〉.

The first function creates a value classified by a, and the second function
recovers the instance data of a value classified by a. Outside of the scope of
the declaration the symbol a is an absolutely unguessable secret.

To enforce the integrity of a value of type τ, it is sufficient to ensure that
only trusted parties have access to the constructor. To enforce the confiden-
tiality of a value of type τ, it is sufficient to ensure that only trusted parties
have access to the destructor. Ensuring the integrity of a value amounts to
associating an invariant to it that is maintained by the trusted parties that
may create an instance of that class. Ensuring the confidentiality of a value
amounts to propagating the invariant to parties that may decipher it.

38.4 Exercises

1. Show how to use dynamic classification to implement exceptions.

14:43 DRAFT AUGUST 24, 2010



Part XIV

Storage Effects





Chapter 39

Modernized Algol

Modernized Algol, or MA, is an imperative, block-structured programming
language based on the classic language Algol. MA may be seen as an ex-
tension to PCF with a new syntactic sort of commands that act on assignable
variables (or assignables for short) by retrieving and altering their contents.
Assignables are introduced by declaring them for use within a specified
scope; this is the essence of block structure. Commands may be combined
by sequencing, and may be iterated using recursion.

MA maintains a careful separation between pure expressions, whose
meaning does not depend on any assignables, and impure commands, whose
meaning is given in terms of assignables. This ensures that the evaluation
order for expressions is not constrained by the presence of assignables in
the language, and allows for expressions to be manipulated much as in
PCF. Commands, on the other hand, have a tightly constrained execution
order, because the execution of one may affect the meaning of another.

A distinctive feature of MA is that it adheres to the stack discipline, which
means that assignables are allocated on entry to the scope of their declara-
tion, and deallocated on exit, using a conventional stack discipline. This
avoids the need for more complex forms of storage management, at the
expense of reducing the expressiveness of the language. (Relaxing this re-
striction is the subject of Chapter 40.)

39.1 Basic Commands

The syntax of L{nat cmd⇀} distinguishes pure expressions from impure
commands. The expressions include those of L{nat⇀} (as described in
Chapter 13), augmented with one additional construct, and the commands



346 39.1 Basic Commands

are those of a simple imperative programming language based on assign-
ment. The language maintains a sharp distinction between mathematical
variables, or just variables, and assignable variables, or just assignables. Vari-
ables are introduced by λ-abstraction, and are given meaning by substitu-
tion. Assignables are introduced by a declaration, and are given meaning
by assignment and retrieval of their contents, which is, for the time be-
ing, restricted to natural numbers. Expressions evaluate to values, and
have no effect on assignables. Commands are executed for their effect
on assignables, and also return a value. Composition of commands not
only sequences their execution order, but also passes the value returned by
the first to the second before it is executed. The returned value of a com-
mand is, for the time being, restricted to the natural numbers. (But see
Section 39.3 on page 353 for the general case.)

The syntax of L{nat cmd⇀} is given by the following grammar, from
which we have omitted repetition of the expression syntax of L{nat⇀}
for the sake of brevity.

Type τ ::= cmd cmd command
Expr e ::= do(m) dom encapsulation
Cmd m ::= ret(e) ret e return

bnd(e; x.m) bnd x← e ; m sequence
dcl(e; a.m) dcl a := e inm new assignable
get[a] a fetch
set[a](e) a := e assign

The expression do(m) consists of the unevaluated command, m, thought
of as a value of type cmd. The command, ret(e), returns the value of the
expression e without having any effect on the assignables. The command
bnd(e; x.m) evaluates e to an encapulated command, which is then exe-
cuted and its returned value is substituted for x prior to executing m. The
command dcl(e; a.m) introduces a new assignable, a, for use within the
command, m, whose initial contents is given by the expression, e. The com-
mand get[a] returns the current contents of the assignable, a, and the com-
mand set[a](e) changes the contents of the assignable a to the value of e,
and returns that value.

39.1.1 Statics

The statics of L{nat cmd⇀} consists of two forms of judgement:

1. Expression typing: Γ `Σ e : τ.

14:43 DRAFT AUGUST 24, 2010



39.1 Basic Commands 347

2. Command formation: Γ `Σ m ok.

The context, Γ, specifies the types of variables, as usual, and the signature,
Σ, consists of a finite set of assignables. These judgements are inductively
defined by the following rules:

Γ `Σ m ok

Γ `Σ do(m) : cmd
(39.1a)

Γ `Σ e : nat
Γ `Σ ret(e) ok

(39.1b)

Γ `Σ e : cmd Γ, x : nat `Σ m ok

Γ `Σ bnd(e; x.m) ok
(39.1c)

Γ `Σ e : nat Γ `Σ,a m ok

Γ `Σ dcl(e; a.m) ok
(39.1d)

Γ `Σ,a get[a] ok
(39.1e)

Γ `Σ,a e : nat
Γ `Σ,a set[a](e) ok

(39.1f)

Rule (39.1a) is the introductory rule for the type cmd, and Rule (39.1c) is the
corresponding eliminatory form. Rule (39.1d) introduces a new assignable
for use within a specified command. The name, a, of the assignable is
bound by the declaration, and hence may be renamed to satisfy the im-
plicit constraint that it not already be present in Σ. Rule (39.1e) states that
the command to retrieve the contents of an assignable, a, returns a natu-
ral number. Rule (39.1f) states that we may assign a natural number to an
assignable.

39.1.2 Dynamics

The dynamics of L{nat cmd⇀} is defined in terms of a memory, µ, a finite
function assigning a numeral to each of a finite set of assignables.

The dynamics of expressions consists of these two judgement forms:

1. e valΣ, stating that e is a value relative to Σ.

2. e 7−→
Σ

e′, stating that the expression e steps to the expression e′.

AUGUST 24, 2010 DRAFT 14:43



348 39.1 Basic Commands

These judgements are inductively defined by the following rules, together
with the rules defining the dynamics of L{nat⇀} (see Chapter 13). It is
important, however, that the successor operation be given an eager, rather
than lazy, dynamics so that a closed value of type nat is a numeral.

do(m) valΣ
(39.2a)

Rule (39.2a) states that an encapsulated command is a value.
The dynamics of commands consists of these two judgement forms:

1. m ‖ µ finalΣ stating that the state m ‖ µ is fully executed.

2. m ‖ µ 7−→
Σ

m′ ‖ µ′ stating that the state m ‖ µ steps to the state m′ ‖ µ′,

relative to the set of assignables, Σ.

These judgements are inductively defined by the following rules:

e valΣ
ret(e) ‖ µ finalΣ

(39.3a)

e 7−→
Σ

e′

ret(e) ‖ µ 7−→
Σ

ret(e′) ‖ µ
(39.3b)

e 7−→
Σ

e′

bnd(e; x.m) ‖ µ 7−→
Σ

bnd(e′; x.m) ‖ µ
(39.3c)

e valΣ
bnd(do(ret(e)); x.m) ‖ µ 7−→

Σ
[e/x]m ‖ µ (39.3d)

m1 ‖ µ 7−→
Σ

m′1 ‖ µ′

bnd(do(m1); x.m2) ‖ µ 7−→
Σ

bnd(do(m′1); x.m2) ‖ µ′
(39.3e)

get[a] ‖ µ⊗ 〈a : e〉 7−→
Σ,a

ret(e) ‖ µ⊗ 〈a : e〉 (39.3f)

e 7−→
Σ

e′

set[a](e) ‖ µ 7−→
Σ

set[a](e′) ‖ µ
(39.3g)

e valΣ
set[a](e) ‖ µ⊗ 〈a : 〉 7−→

Σ
ret(e) ‖ µ⊗ 〈a : e〉 (39.3h)

14:43 DRAFT AUGUST 24, 2010



39.1 Basic Commands 349

e 7−→
Σ

e′

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m) ‖ µ
(39.3i)

e valΣ m ‖ µ⊗ 〈a : e〉 7−→
Σ,a

m′ ‖ µ′ ⊗ 〈a : e′〉

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m′) ‖ µ′
(39.3j)

e valΣ e′ valΣ,a

dcl(e; a.ret(e′)) ‖ µ 7−→
Σ

ret(e′) ‖ µ (39.3k)

Rule (39.3a) specifies that a ret command is final if its argument is a value.
Rules (39.3c) to (39.3d) specify the dynamics of sequential composition. The
expression, e, must, by virtue of the type system, evaluate to an encap-
sulated command, which is to be executed to determine its return value,
which is then substituted into m before executing it.

Rules (39.3i) to (39.3k) define the concept of block structure in a pro-
gramming language. Declarations adhere to the stack discipline in that an
assignable is allocated for the duration of evaluation of the body of the dec-
laration, and deallocated after evaluation of the body is complete. There-
fore the lifetime of an assignable can be identified with its scope, and hence
we may visualize the dynamic lifetimes of assignables as being nested in-
side one another, in the same manner as their static scopes are nested inside
one another. This stack-like behavior of assignables is a characteristic fea-
ture of what are known as Algol-like languages.

39.1.3 Safety

The judgement m ‖ µ okΣ is defined by the rule

`Σ m ok µ : Σ
m ‖ µ okΣ

(39.4)

where the auxiliary judgement µ : Σ is defined by the rule

∀a : σ ∈ Σ ∃e µ(a) = e and e val∅ and `∅ e : nat
µ : Σ

(39.5)

That is, the memory must bind a number to each location in Σ.

Theorem 39.1 (Preservation).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.

AUGUST 24, 2010 DRAFT 14:43



350 39.1 Basic Commands

2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ok and µ : Σ, then `Σ m′ ok and µ′ : Σ.

Proof. Simultaneously, by induction on Rules (39.2) and (39.3).
Consider Rule (39.3j). Assume that `Σ dcl(e; a.m) ok and µ : Σ. By

inversion of typing we have `Σ e : nat and `Σ,a m ok. Since e valΣ and
µ : Σ, we have µ⊗ 〈a : e〉 : Σ, a. By induction we have `Σ,a m′ ok and
µ′ ⊗ 〈a : e〉 : Σ, a, from which the result follows immediately.

Consider Rule (39.3k). Assume that `Σ dcl(e; a.ret(e′)) ok and µ : Σ.
By inversion we have `Σ e : nat, `Σ,a ret(e′) ok, and hence that `Σ,a e′ :
nat. But since e′ valΣ,a, we also have `Σ e′ : nat, as required.

Theorem 39.2 (Progress).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ok and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for

some µ′ and m′.

Proof. Simultaneously, by induction on Rules (39.1). Consider Rule (39.1d).
By the first inductive hypothesis we have either e 7−→

Σ
e′ or e valΣ. In the

former case Rule (39.3i) applies. In the latter, we have by the second in-
ductive hypothesis either m ‖ µ⊗ 〈a : e〉 finalΣ,a or m ‖ µ⊗ 〈a : e〉 7−→

Σ,a
m′ ‖

µ′ ⊗ 〈a : e′〉. In the former case we apply Rule (39.3k), and in the latter,
Rule (39.3j).

A variant of L{nat cmd⇀} treats the operation get[a] as a form of ex-
pression, rather than as a form of command. This allows us to write expres-
sions such as a + b for the sum of the contents of assignables a and b, rather
than have to write a command that explicitly fetches the contents of a and
b, returning their sum.

To allow for this we must enrich the dynamics of expressions to allow
access to the bindings of the active assignables, writing e

µ7−→
Σ

e′ to state that

one step of evaluation of the expression e relative to Σ and µ results in the
expression e′. The definition of this judgement includes the rule

e valΣ

get[a]
µ⊗〈a : e〉7−−−−→

Σ,a
e

,
(39.6)

which allows an expression to depend on the contents of an assignable.

14:43 DRAFT AUGUST 24, 2010



39.2 Some Programming Idioms 351

39.2 Some Programming Idioms

The language L{nat cmd⇀} is designed to expose the elegant interplay
between the execution of an expression for its value and the execution of a
command for its effect on assignables. In this section we show how to de-
rive several standard idioms of imperative programming in L{nat cmd⇀}.

We define the sequential composition of commands, written {x←m1 ; m2},
to stand for the command bnd x← dom1 ; m2. This generalizes to an n-ary
form by defining

{x1←m1 ; . . . xn−1←mn−1 ; mn},

to stand for the iterated composition

{x1←m1 ; . . . {xn−1←mn−1 ; {xn←mn ; ret xn}}}.

We sometimes write just {m1 ; m2} for the composition { ←m1 ; m2} in
which the returned value from m1 is ignored; this generalizes in the ob-
vious way to an n-ary form.

A related idiom, the command run e, executes an encapsulated com-
mand and returns its result. It stands for the sequentialization bnd x← e ;
ret x.

The conditional command, if (m)m1 elsem2, executes either m1 or m2
according to whether the result of executing m is zero or not:

{x←m ; run (ifz x {z⇒ dom1 | s( )⇒ dom2})}.

The returned value of the conditional is the value returned by the selected
command.

The while loop command, while (m1)m2, repeatedly executes the com-
mand m2 while the command m1 yields a non-zero number. It is defined as
follows:

run (fix loop:cmd is do(if (m1) {ret z} else {m2 ; run loop})).

This commands runs the self-referential encapsulated command that, when
executed, first executes m1, branching on the result. If the result is zero, the
loop returns zero (arbitrarily). If the result is non-zero, the command m2 is
executed and the loop is repeated.

A procedure is a function of type τ ⇀ cmd that takes an argument of some
type, τ, and yields an unexecuted command as result. A procedure call is the

AUGUST 24, 2010 DRAFT 14:43



352 39.2 Some Programming Idioms

composition of a function application with the activation of the resulting
command. If e1 is a procedure and e2 is its argument, then the procedure
call call e1(e2) is defined to be the command run (e1(e2)), which immedi-
ately runs the result of applying e1 to e2.

As an example, here is a procedure of type nat⇀ cmd that returns the
factorial of its argument:

λx:nat. do {
dcl r := 1 in

dcl a := x in

{ whilenz ( { a } ) {
r’ ← r

; a’ ← a

; r := (x-a’+1)× r’

; a := a’-1

}
; r’ ← r

; ret ( r’ )

}
}

The loop maintains that invariant that the contents of r is the factorial of x
minus the contents of a. Initialization makes this invariant true, and it is
preserved by each iteration of the loop, so that upon completion of the loop
the assignable a contains 0 and r contains the factorial of x, as required.

If, as described in Section 39.2 on the preceding page, we admit assignables
as forms of expression, this example may be simplified as follows:

λx:nat. do {
dcl r := 1 in

dcl a := x in

{ whilenz ( a ) {
r := (x-a+1)× r

; a := a-1

}
; ret ( r )

}
}

An advantage of this formulation of the language is that the condition gov-
erning the while loop may now be regarded as a form of expression, rather
than a form of command.

14:43 DRAFT AUGUST 24, 2010



39.3 Typed Commands and Typed Assignables 353

39.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and
the contents of an assignable, to be nat. Can this restriction be relaxed,
while adhering to the stack discipline?

The key to admitting other types of returned value and assignable vari-
ables is to consider the proof of Theorem 39.1 on page 349. There we relied
on the fact that a value of type nat is a composition of successors, start-
ing from zero, to ensure that the value is well-typed even in the absence of
the locally declared assignable, a. The proof breaks down, and indeed the
preservation theorem is false, when the return type of a command or the
contents type of an assignable is unrestricted.

For example, if we may return values of procedure type, then we may
violate safety as follows:

dcl a := z in ret (λ (x:nat. do {a := x})).

This command, when executed, allocates a new assignable, a, and returns
a procedure that, when called, assigns its argument to a. But this makes
no sense, because the assignable, a, is deallocated when the body of the
declaration returns, but the returned value still refers to it! If the returned
procedure is called, execution will get stuck in the attempt to assign to a.

A similar example shows that admitting assignables of arbitrary type is
also unsound:

dcl a := z in {b := λ (x:nat. do {a := x}) ; ret z}.

Here we assume that b is an assignable of type nat⇀ nat cmd. We assign to
it a procedure that uses a locally declared assignable, a, and then leaves the
scope of the declaration. If we then call the procedure stored in b, execution
will get stuck attempting to assign to the non-existent assignable, a, or, even
worse, assign to a different assignable that happens to be named a!

The critical step in the proof of safety given in Section 39.1.3 on page 349
is to ensure the following safety condition:

if `Σ,a e : τ and e valΣ,a then `Σ e : τ. (39.7)

When τ = nat, this step is ensured, because e must be a numeral. If, on
the other hand, τ is a procedure type, then e may contain uses of the locally
declared assignable, a, and, indeed, the above counterexamples violate this
safety condition.

AUGUST 24, 2010 DRAFT 14:43



354 39.3 Typed Commands and Typed Assignables

We say that a type, τ, is mobile, written τ mobile, if the safety condi-
tion (39.7) is valid for all values of that type. The proof of safety given
above shows that nat is mobile. Obviously, reference types are not mobile,
since they involve an assignable. The counterexamples show that proce-
dure types are not mobile. Moreover, simple variations of these examples
may be given to show that command types may not be considered mo-
bile either. What about function types other than procedure types? One
may think they are mobile, because a pure expression cannot depend on an
assignable. While this is indeed the case, the safety condition (39.7) need
not be satisfied for such a type. For example, consider the following value
of type nat⇀ nat:

λ (x:nat. (λ ( :cmd. z))(do {a})).

Although the assignable a is not actually needed to compute the result, it
nevertheless occurs in the value, in violation of the safety condition.

To account for this generalization, we must rework the statics ofL{nat cmd⇀}
to record the returned type of a command and to record the type of the
contents of each assignable. First, we generalize the finite set, Σ, of active
assignables to assign a type to each active assignable so that Σ has the form
of a finite set of assumptions of the form a : τ, where a is an assignable.
Second, we replace the judgement Γ `Σ m ok by the more general form
Γ `Σ m ∼ τ, stating that m is a well-formed command returning a value
of type τ. Third, the type cmd must be generalized to cmd(τ) to reflect the
return type of the encapsulated command.

The statics given in Section 39.1.1 on page 346 may be generalized to
admit typed commands and typed assignables, as follows:

Γ `Σ m ∼ τ

Γ `Σ do(m) : cmd(τ)
(39.8a)

Γ `Σ e : τ τ mobile

Γ `Σ ret(e) ∼ τ
(39.8b)

Γ `Σ e : cmd(τ) Γ, x : τ `Σ m ∼ τ′

Γ `Σ bnd(e; x.m) ∼ τ′
(39.8c)

Γ `Σ e : τ τ mobile Γ `Σ,a:τ m ∼ τ′

Γ `Σ dcl(e; a.m) ∼ τ′
(39.8d)

Γ `Σ,a:τ get[a] ∼ τ
(39.8e)

14:43 DRAFT AUGUST 24, 2010



39.4 Capabilities and References 355

Γ `Σ,a:τ e : τ

Γ `Σ,a:τ set[a](e) ∼ τ
(39.8f)

Apart from the generalization to track returned types and content types,
the most important change is to require that τ be a mobile type in Rules (39.8b)
and (39.8d).

The statement of preservation and progress must be correspondingly
generalized to account for types.

Theorem 39.3 (Preservation for Typed Commands).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.

2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ∼ τ and µ : Σ, then `Σ m′ ∼ τ and

µ′ : Σ.

Theorem 39.4 (Progress for Typed Commands).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ∼ τ and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for

some µ′ and m′.

The proofs of Theorems 39.3 and 39.4 follows very closely the proof
of Theorems 39.1 on page 349 and 39.2 on page 350. The main difference
is that we appeal to the safety condition for mobility to ensure that the
returned value from a declaration does not involve the declared assignable.

39.4 Capabilities and References

The commands a and a := e operate on a statically specified target assignable,
a. That is, a must be in scope at the point where the command occurs. Since
a is a static parameter of these commands, and not an argument determined
at run-time, it would appear, at first glance, that there is no way to operate
on an assignable that is not determined until run-time. For example, how
can we write a procedure that, for a dynamically specified assignable, adds
two to the contents of that assignable?

One way is to use a capability to operate on that assignment. A capa-
bility is an encapsulated command that operates on an assignable when it
is activated. The get capability, or getter, for an assignable a of type τ is the
command do {a} of type τ cmd that, when executed, returns the contents of

AUGUST 24, 2010 DRAFT 14:43



356 39.4 Capabilities and References

a. The set capability, or setter, for a is the procedure λ (x:τ. do {a := x}) that,
when applied, assigns its argument to a. A general double-increment pro-
cedure that operates on any assignable, regardless of whether it is in scope,
may be programmed as follows:

λ (get:nat cmd. λ (set:nat⇀ nat cmd. do {x← get ; set(s(s(x)))})).

The procedure is to be called with a getter and a setter for the same assignable.
When executed, it invokes the getter to obtain the contents of that assignable,
and then invokes the setter to assign its contents to be two more than the
value it contained.

Although it is natural to consider the get and set capabilities for an
assignable as a pair, it can be useful to separate them to provide limited
access to an assignable in a particular context. If only the get capability is
passed to a procedure, then its result may depend on the contents of the
underlying assignable, but may not alter it. Similarly, if only the set capa-
bility is passed, then it may alter the contents of the underlying assignable,
but cannot access its current contents. It is also useful to consider other
forms of capability than simple getters and setters. For example, one could
define an increment and a decrement capability for an assignable, and pass
one or both to a procedure to limit how it may influence the value of that
assignable. The possibilities are endless.

Returning to the double-increment example, the type does not constrain
the caller to provide get and set capabilities that act on the same assignable.
One way to ensure this is to introduce a name, or reference, to an assignable
as a form of value. A reference may be thought of as a token that provides
access to the get and set capabilities of an assignable. Moreover, two ref-
erences may be tested for equality, so that one may determine at run-time
whether they refer to the same underlying assignable.1

A reference is a value of type ref(τ), where τ is the type of the con-
tents of the assignable to which it refers. A (closed) value of reference type
is the name of an assignable thought of as a form of expression. Possess-
ing a reference allows one to perform either a get or a set operation on the
underlying assignable. (One may also consider read-only or write-only ref-
erences, or more complex capabilities for assignables, in a similar manner.)

1This can also be achieved using capabilities by using the setter for one to modify the
assignable and using the setter for the other to determine whether it changed.

14:43 DRAFT AUGUST 24, 2010



39.4 Capabilities and References 357

This suggests the following syntax for references:

Type τ ::= ref(τ) τ ref assignable
Expr e ::= ref[a] & a reference
Cmd m ::= getref(e) @ e contents

setref(e1; e2) e1 := e2 update

The statics of references is given by the following rules:

Γ `Σ,a:τ ref[a] : ref(τ)
(39.9a)

Γ `Σ e : ref(τ)

Γ `Σ getref(e) ∼ τ
(39.9b)

Γ `Σ e1 : ref(τ) Γ `Σ e2 : τ

Γ `Σ setref(e1; e2) ∼ τ
(39.9c)

Rule (39.9a) specifies that the name of any active assignable is an expression
of type ref(τ).

The dynamics is defined to defer to the corresponding operation on the
assignable to which a reference refers.

ref[a] valΣ,a
(39.10a)

e 7−→
Σ

e′

getref(e) ‖ µ 7−→
Σ

getref(e′) ‖ µ
(39.10b)

getref(ref[a]) ‖ µ 7−→
Σ

get[a] ‖ µ
(39.10c)

e1 7−→
Σ

e′1

setref(e1; e2) ‖ µ 7−→
Σ

setref(e′1; e2) ‖ µ
(39.10d)

setref(ref[a]; e) ‖ µ 7−→
Σ

set[a](e) ‖ µ
(39.10e)

A reference to an assignable is a value. The getref and setref operations
on references defer to the corresponding operations on assignables once the
reference has been determined.

AUGUST 24, 2010 DRAFT 14:43



358 39.4 Capabilities and References

Suprisingly, the addition of references to assignables does not violate
the stack discipline, so long as reference types are deemed immobile. This
ensures that a reference can never escape the scope of the assignable to
which it refers, which is essential to maintaining safety. We leave to the
reader the task of proving safety for the extension of L{nat cmd⇀} with
reference types.

As an example of programming with references, the double increment
procedure given earlier can be coded using references, rather than capabil-
ities, as follows:

λ (r:nat ref. do {x← @ r ; r := s(s(x))}).

Since the argument is a reference to an assignable, rather than a get and
set capability, it is assured that the body of the procedure acts on a single
assignable when performing the get and set operations on the reference.

References and capabilities allow assignables to be treated as values
that can be passed as arguments to procedures. This allows us to write
programs, such as the double increment procedure, that act on assignables
that are not in scope within the body of the procedure. Such expressive
power, however, comes at a price: we must carefully consider whether two
references refer to the same assignable or not. This phenomenon is called
aliasing; it greatly complicates reasoning about program correctness.

Consider, for example, the problem of writing a procedure that, when
given two references, x and y, adds twice the contents of y to the contents
of x. One way to write this code creates no complications:

λ (x:nat ref. λ (y:nat ref. do {x′← @ x ; y′← @ y ; x := x′ + y′ + y′})).

Even if x and y refer to the same assignable, the effect will be to set the con-
tents of the assignable referenced by x to twice the contents of the assignable
referenced by y.

But now consider the following apparently equivalent implementation
of the “same” procedure:

λ (x:nat ref. λ (y:nat ref. do {x += y ; x += y})),

where x += y is the command

{x′← @ x ; y′← @ y ; x := x′ + y′}

that adds the contents of y to the contents of x. The second implementation
works properly provided that x and y do not refer to the same assignable.

14:43 DRAFT AUGUST 24, 2010



39.5 Exercises 359

For if they are aliases in that they both refer to the same assignable, a, with
contents n0, the result is that a is to set 4× n0, instead of the intended 3× n0.

In this case it is entirely obvious how to avoid the problem: use the first
implementation, rather than the second. But the difficulty is not in fixing
the problem once it has been uncovered, but rather noticing the problem in
the first place! Wherever references (or capabilities) are used, the problems
of interference lurk. Avoiding them requires very careful consideration of
all possible aliasing relationships among all of the references in play at a
given point of a computation. The problem is that the number of possible
aliasing relationships among n references grows at least quadratically in n
(we must consider all possible pairings) and can even be worse when more
subtle relationships among three or more variables must be considered.
Aliasing is a prime source of errors in imperative programs, and remains a
strong argument against using imperative methods whenever possible.

39.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



360 39.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 40

Mutable Data Structures

In Chapter 39 we considered an imperative programming language that
adheres to the stack discipline in that assignables are allocated and de-
allocated on a last-in, first-out basis. To ensure this we restricted the types
of return values from a command, the types of contents of assignables, to be
mobile types, ones whose values cannot depend on the stack of assignables.
Function and command types are not mobile, nor are reference types, be-
cause these types may classify values that refer to an assignable.

A major use of references, however, is to implement mutable data struc-
tures whose structure may be changed at execution time. The classic ex-
ample is a linked list in which the tail of any initial segment of the list may
be changed to refer to another list. Crucially, any such alteration is shared
among all uses of that list. (This behavior is in contrast to an immutable
list, which can never change once created.) The usual way to implement a
linked list is to specify that the tail of a list is not another list, but rather a
reference to an assignable containing the tail of the list. The list structure is
altered by setting the target assignable of the reference.

For this strategy to make sense, references must be mobile, and hence
that assignables have indefinite extent—they must persist beyond the scope
of their declaration. Assignables with indefinite extent are said to be scope-
free, or simply free. In this chapter we consider a variation of Modernized
Algol in which all assignables are free, and hence all types are mobile. The
dynamics of this variation of Modernized Algol is significantly different
from that given in Chapter 39 in that assignables are heap-allocated, rather
than stack-allocated.

We also consider a further variation in which the distinction between
commands and expressions is eliminated. This facilitates the use of benign



362 40.1 Free Assignables

effects to achieve purely functional behavior using references. An example
is a self-adjusting data structure that, externally, is a pure dictionary struc-
ture, but which internally makes use of mutation to rebalance itself.

40.1 Free Assignables

To support mutable data structures it is essential that references to assignables
be exportable from the scope of their declaration. This amounts to requir-
ing that assignables be allocated globally, rather than locally, in the sense
that the range of validity of an assignable transcends its static scope. For
this reason globally allocated assignables are said to be scope-free, or just free,
to distinguish them from the scoped assignables considered in Chapter 39.

The statics of free assignables is the same as for scoped assignables, but
the dynamics differs considerably. We consider states of the form ν Σ {m ‖ µ }
consisting of a command, m, executing relative to a memory, µ, assign-
ing values to the assignables declared in Σ. Transitions have the form
ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }, where Σ′ may extend Σ with declarations
of new assignables. The transition judgement is inductively defined by the
following rules:

e valΣ
ν Σ { ret(e) ‖ µ } final

(40.1a)

e 7−→
Σ

e′

ν Σ { ret(e) ‖ µ } 7→ ν Σ { ret(e′) ‖ µ }
(40.1b)

e 7−→
Σ

e′

ν Σ { bnd(e; x.m) ‖ µ } 7→ ν Σ { e′ ‖ µ }xm
(40.1c)

e valΣ
ν Σ { bnd(do(ret(e)); x.m) ‖ µ } 7→ ν Σ { [e/x]m ‖ µ } (40.1d)

ν Σ {m1 ‖ µ } 7→ ν Σ′ {m′1 ‖ µ′ }
ν Σ { bnd(do(m1); x.m2) ‖ µ } 7→ ν Σ′ { bnd(do(m′1); x.m2) ‖ µ′ }

(40.1e)

ν Σ, a : τ { get[a] ‖ µ⊗ 〈a : e〉 } 7→ ν Σ, a : τ { ret(e) ‖ µ⊗ 〈a : e〉 }
(40.1f)

e 7−→
Σ

e′

ν Σ { set[a](e) ‖ µ } 7→ ν Σ { set[a](e′) ‖ µ }
(40.1g)

14:43 DRAFT AUGUST 24, 2010



40.2 Free References 363

e valΣ
ν Σ, a : τ { set[a](e) ‖ µ⊗ 〈a : 〉 } 7→ ν Σ, a : τ { ret(e) ‖ µ⊗ 〈a : e〉 }

(40.1h)
e 7−→

Σ
e′

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ { dcl(e′; a.m) ‖ µ }
(40.1i)

e valΣ
ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a : τ {m ‖ µ⊗ 〈a : e〉 } (40.1j)

The most important difference is expressed by Rule (40.1j), which allows
assignables to escape their scope of declaration by allocating them globally,
rather than according to a stack discipline. The remaining rules are very
similar to those given in Chapter 39, modified to account for heap alloca-
tion.

40.2 Free References

References to assignables are defined exactly as in Chapter 39 to be val-
ues of type ref(τ), where τ is the type of the contents of the underly-
ing assignable. But when all types are mobile, references may appear in
data structures, may be stored assignables of reference type, and may be
returned from commands, without restriction. For example, we may de-
fine the command newref[τ](e) to stand for the command

dcl a := e in ret (& a), (40.2)

which allocates and initializes an assignable, and immediately returns a ref-
erence to it. Obviously the sensibility of this example relies on the mobility
of reference types, and the scope-free allocation of assignables.

The statics of the command newref[τ](e) is given by the rule

Γ `Σ e : τ

Γ `Σ newref[τ](e) ∼ ref(τ)
(40.3)

and its dynamics is given by the rules

e 7−→
Σ

e′

ν Σ { newref[τ](e) ‖ µ } 7→ ν Σ { newref[τ](e′) ‖ µ }
(40.4a)

e valΣ
ν Σ { newref[τ](e) ‖ µ } 7→ ν Σ, a : τ { ret(ref[a]) ‖ µ⊗ 〈a : e〉 } (40.4b)

AUGUST 24, 2010 DRAFT 14:43



364 40.3 Safety

The corresponding dynamics of the getref and setref commands is essen-
tially as in Chapter 39, but adapted to free, rather than scoped, assignables.

e 7−→
Σ

e′

ν Σ { getref(e) ‖ µ } 7→ ν Σ { getref(e′) ‖ µ }
(40.5a)

ν Σ { getref(ref[a]) ‖ µ } 7→ ν Σ { get[a] ‖ µ }
(40.5b)

e1 7−→
Σ

e′1

ν Σ { setref(e1; e2) ‖ µ } 7→ ν Σ { setref(e′1; e2) ‖ µ }
(40.5c)

ν Σ { setref(ref[a]; e2) ‖ µ } 7→ ν Σ { set[a](e2) ‖ µ }
(40.5d)

Observe that the evaluation of expressions cannot alter or extend the mem-
ory, only commands may do this.

40.3 Safety

The safety theorem for the language with free assignables and free refer-
ences is surprisingly tricky. The main difficulty is that the memory can ex-
hibit cyclic dependencies in that the contents of an assignable may contain
a use of that very assignable. For example, consider the following proce-
dure, e, of type nat→ nat cmd:

λ (x:nat. ifz x {z⇒ do {ret (1)} | s(x′)⇒ do { f ← a ; y← call f(x′) ; ret (x ∗ y)}}).

Let µ be a memory of the form µ′ ⊗ 〈a : e〉 in which the contents of a con-
tains, via the body of the procedure, a reference to a itself. Indeed, if the
procedure e is called with a non-zero argument, it will “call itself” by indi-
rect reference through a! (We will see in Section 40.4 on page 366 that such
a situation can arise by executing a closed program—the memory need not
be “preloaded” for such cycles to arise.)

The possibility of cyclic dependencies means that some care in the defi-
nition of the judgement µ : Σ is required. Whereas in Chapter 39 this judge-
ment was defined to mean that each assignable declared in Σ is assigned
a natural number by µ, we must now take into account the possibility that
the contents of each assignable might refer, directly or indirectly, to that
assignable.

14:43 DRAFT AUGUST 24, 2010



40.3 Safety 365

With this in mind we define the well-formed states by the following
rule:

`Σ m ∼ τ `Σ µ : Σ
ν Σ {m ‖ µ } ok

(40.6)

The first premise of the rule states that the command m is well-formed rel-
ative to Σ. The second premise states that the memory, µ, conforms to Σ,
relative to the whole of Σ. The latter judgement is defined for general Σ′ as
follows:

∀a : σ ∈ Σ ∃e µ(a) = e and `Σ′ e : σ

`Σ′ µ : Σ
(40.7)

This definition ensures that cyclic dependencies are permissible without
threatening type safety.

Theorem 40.1 (Preservation).

1. If `Σ e : τ and e 7−→
Σ

e′, then `Σ e′ : τ.

2. If ν Σ {m ‖ µ } ok and ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }, then ν Σ′ {m′ ‖ µ′ } ok.

Proof. Simultaneously, by induction on transition. We prove the following
stronger form of the second statement:

If ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }, where `Σ m ∼ τ, `Σ µ : Σ,
then Σ′ extends Σ, and `Σ′ m′ ∼ τ, and `Σ′ µ′ : Σ′.

Consider, for example, the transition

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a : σ {m ‖ µ⊗ 〈a : e〉 }

where e valΣ. By assumption and inversion of Rule (39.8d) we have σ such
that `Σ e : σ, `Σ,a:σ m ∼ τ, and `Σ µ : Σ. But since extension of Σ with a
fresh assignable does not affect typing, we also have `Σ,a:σ µ : Σ and `Σ,a:σ
e : σ, from which it follows by Rule (40.7) that `Σ,a:σ µ⊗ 〈a : e〉 : Σ, a : σ.

The other cases follow a similar pattern, and are left as an exercise for
the reader.

Theorem 40.2 (Progress).

1. If `Σ e : τ, then either e valΣ or there exists e′ such that e 7−→
Σ

e′.

2. If ν Σ {m ‖ µ } ok then either ν Σ {m ‖ µ } final or ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ }
for some Σ′, µ′, and m′.

AUGUST 24, 2010 DRAFT 14:43



366 40.4 Integrating Commands and Expressions

Proof. Simultaneously, by induction on typing. For the second statement
we prove the stronger form

If `Σ m ∼ τ and `Σ µ : Σ, then either ν Σ {m ‖ µ } final, or
ν Σ {m ‖ µ } 7→ ν Σ′ {m′ ‖ µ′ } for some Σ′, µ′, and m′.

Consider, for example, the typing rule

Γ `Σ e : σ Γ `Σ,a:σ m ∼ τ

Γ `Σ dcl(e; a.m) ∼ τ

We have by the first inductive hypothesis that either e valΣ or e 7−→
Σ

e′ for

some e′. In the latter case we have by Rule (40.1i)

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ { dcl(e′; a.m) ‖ µ }.

In the former case we have by Rule (40.1j) that

ν Σ { dcl(e; a.m) ‖ µ } 7→ ν Σ, a : σ {m ‖ µ⊗ 〈a : e〉 }.

As another example, consider the typing rule

Γ `Σ,a:τ get[a] ∼ τ

By assumption `Σ,a:τ µ : Σ, a : τ, and hence there exists e valΣ,a:τ such that
µ = µ′ ⊗ 〈a : e〉 and `Σ,a:τ e : τ. By Rule (40.1f)

ν Σ, a : τ { get[a] ‖ µ′ ⊗ 〈a : e〉 } 7→ ν Σ, a : τ { ret(e) ‖ µ′ ⊗ 〈a : e〉 },

as required. The other cases are handled similarly.

40.4 Integrating Commands and Expressions

Having taken the decision to consider all types mobile, it is natural to
consider a further simplification, eliminating the distinction between com-
mands and expressions. Once consolidated, we may equivalently consider
that every expression is a form of command, or that every command is a
form of expression. Before analyzing its advantages and disadvantages, let
us first briefly review the definition of the integral formulation of mutable
data structures.

14:43 DRAFT AUGUST 24, 2010



40.4 Integrating Commands and Expressions 367

The statics is obtained by regarding all commands as forms of expres-
sion. The following typing rules are illustrative:

Γ `Σ e : τ

Γ `Σ do(e) : cmd(τ)
(40.8a)

Γ `Σ e1 : cmd(τ1) Γ, x : τ1 `Σ e2 : τ2

Γ `Σ bnd(e1; x.e2) : τ2
(40.8b)

Γ `Σ e1 : τ1 Γ `Σ,a:τ1 e2 : τ2

Γ `Σ dcl(e1; a.e2) : τ2
(40.8c)

Γ `Σ,a:τ get[a] : τ
(40.8d)

Γ `Σ,a:τ e : τ

Γ `Σ,a:τ set[a](e) : τ
(40.8e)

The rules for references are left as an exercise for the reader. The command
ret(e) is dropped, as it serves no purpose, but the introductory and elimi-
natory forms for the encapsulated command type are retained.

The dynamics of the integral formulation of mutation is defined as a
transition system between states of the form ν Σ { e ‖ µ }, where e is an ex-
pression involving the assignables declared in Σ, and µ is a memory pro-
viding values for each of these assignables. It is a straightforward exer-
cise to reformulate Rules (40.1) to eliminate the mode distinction between
commands and expressions. Rules (40.5) may similarly be adapted to the
integral setting.

The modal and integral formulations of references have complemen-
tary strengths and weaknesses. The chief virtue of the modal formulation is
that the use of assignment is confined to commands, leaving expressions as
pure computations. One consequence is that typing judgements for expres-
sions retain their force even in the presence of references to free assignables,
so that the type unit⇀ unit contains only the identity and the divergent
functions, and the type nat⇀ nat consists solely of partial functions on
the natural numbers. By contrast the integral formulation enjoys none of
these properties. Any expression may alter or allocate new assignables,
and the semantics of typing assertions is therefore significantly weakened
compared to the modal formulation. In particular, the type unit⇀ unit

contains infinitely many distinct functions, and the type nat⇀ nat con-
tains procedures that in no way represent partial functions (for example,
those whose returned value depends on previous returned values).

AUGUST 24, 2010 DRAFT 14:43



368 40.4 Integrating Commands and Expressions

While the modal separation of pure expressions from impure commands
may seem like an unalloyed good, it is important to recognize that the sit-
uation is not nearly so simple. The modal approach impedes the use of
mutable storage to implement purely functional behavior. For example, a
self-adjusting tree, such as a splay tree, uses in-place mutation to provide
an efficient implementation of what is otherwise a purely functional dictio-
nary structure mapping keys to values. The use of mutation is an example
of a benign effect, a use of mutation that is not semantically visible to the
client of an abstraction, but allows for more efficient execution time. In the
modal formulation any use of assignment confines the programmer to the
command sub-language, with no possibility of escape: there is no way to
restore the purity of an impure computation!

Many other examples arise in practice. For example, suppose that we
wish to instrument an otherwise pure functional program with code to col-
lect execution statistics for profiling. In the integral setting it is a simple
matter to allocate free assignables that contain profiling information col-
lected by assignments that update their contents at critical points in the
program. In the modal setting, however, we must globally restructure the
program to transform it from a pure expression to an impure command.
Another example is provided by the technique of backpatching for imple-
menting recursion using a free assignable, which we now describe in more
detail.

In the integral formulation we may implement the factorial function
using backpatching as follows:

dcl a := λn:nat.0 in

{ f ← λn:nat.ifz(n, 1, n’.n * a(n’))

; ← a := f

; f

}

wherein we have used the concrete syntax for commands introduced in
Chapter 39. Observe that the assignable a is used as an expression standing
for its contents (that is, it stands for the abstract syntax get[a]).

This expression returns a function of type nat⇀ nat that is obtained
by (a) allocating a free assignable initialized arbitrarily (and immaterially)
with a function of this type, (b) defining a λ-abstraction in which each “re-
cursive call” consists of retrieving and applying the function stored in that
assignable, (c) assigning this function to the assignable, and (d) returning
that function. The result is a value of function type that uses an assignable
“under the hood” in a manner not visible to its clients.

14:43 DRAFT AUGUST 24, 2010



40.4 Integrating Commands and Expressions 369

In contrast the modal formulation forces us to make explicit the reliance
on private state.

dcl a := λn:nat.do{ret 0} in

{ f ← ret (λ n:nat. ...)

; ← a := f

; ret f

}

where the elided procedure body is as follows:

ifz(n,do{ret(1)},n’.do{f←a; x←run(f(n’)); ret (n*x)}).

Each branch of the conditional test returns a command. In the case that
the argument is zero, the command simply returns the value 1. Otherwise,
it fetches the contents of the assignable, calls it on the predecessor, and
returns the result of multiplying this by the argument.

The modal implementation of factorial is a command (not an expres-
sion) of type nat → (nat cmd), which exposes two properties of the back-
patching implementation:

1. The command that builds the recursive factorial function is impure,
because it allocates and assigns to the assignable used to implement
backpatching.

2. The body of the factorial function is impure, because it accesses the
assignable to effect the recursive call.

As a result the factorial function (so implemented) may no longer be used
as a function, but must instead be called as a procedure. For example, to
compute the factorial of n, we must write

{ f ← fact ; x ← run (f(n)); return x }

where fact stands for the command implementing factorial given above.
The factorial procedure is bound to a variable, which is then applied to
yield an encapsulated command that, when activated, computes the de-
sired result.

These examples illustrate that exposing the reliance on effects in the
type system is both a boon and a bane. Under the integral formulation a
“boring” type such as unit→ unit can have very “interesting” behavior—
for example, it may depend on or alter the contents of an assignable, or may
allocate new assignables. Under the modal formulation a value of such a

AUGUST 24, 2010 DRAFT 14:43



370 40.5 Exercises

boring type is indeed boring: it can only be the the identity or the diver-
gent function. An interesting function must have an interesting type such
as unit → unit cmd, which makes clear that the body of the function en-
genders storage effects. On the other hand, as the example of backpatch-
ing makes clear, the integral formulation allows one to think of types as
descriptions of behavior, rather than descriptions of implementation. The fac-
torial function, whether implemented using backpatching or not, is a pure
function of type nat → nat. The reliance on assignment is an implemen-
tation detail that remains hidden from the caller. The modal formulation,
however, exposes the reliance on effects in both the definition and imple-
mentation of the factorial function, and hence forces it to be treated as an
imperative procedure, rather than a pure function.

40.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XV

Laziness





Chapter 41

Lazy Evaluation

Lazy evaluation refers to a variety of concepts that seek to avoid evaluation
of an expression unless its value is needed, and to share the results of eval-
uation of an expression among all uses of its, so that no expression need
be evaluated more than once. Within this broad mandate, various forms of
laziness are considered.

One is the call-by-need evaluation strategy for functions. This is a refine-
ment of the call-by-name evaluation order in which arguments are passed
unevaluated to functions so that it is only evaluated if needed, and, if so,
the value is shared among all occurrences of the argument in the body of
the function.

Another is the lazy evaluation strategy for data structures, including
formation of pairs, injections into summands, and recursive folding. The
decisions of whether to evaluate the components of a pair, or the argument
to an injection or fold, are independent of one another, and of the decision
whether to pass arguments to functions in unevaluated form.

Another aspect of laziness is the use of general recursion to define self-
referential computations, including recursive functions. The role of lazi-
ness in this setting is to defer evaluation of any self-reference until it is
actually required for a computation.

Traditionally, languages are classified into one of two categories. Lazy
languages use a call-by-need interpretation of function application, impose
a lazy evaluation strategy for data structures, and allow unrestricted use of
general recursion. Strict languages take the opposite positions: call-by-value
for function application, eager evaluation of data structures, and limita-
tions on general recursion (typically, to functions). More recently, however,
language designers have come to realize that it is not whole languages that



374 41.1 Need Dynamics

should be lazy or strict, but rather that the type system should distinguish
lazy and strict evaluation order. In its most basic form this only requires
the introduction of a type whose values are suspended computations that
are evaluated by-need. (A more sophisticated approach is the subject of
Chapter 42.)

41.1 Need Dynamics

The distinguishing feature of call-by-need is the use of memoization to record
the value of an expression whenever it is computed so that, should the
value of that expression ever be required again, the stored value can be
returned without recomputing it. This is achieved by augmenting the com-
putation state with a memo table that associates an expression (not necessar-
ily a value) to each of a finite set of symbols. The symbols serve as names
of the expressions to which they are associated by the memo table. When-
ever the value of a name is required, the associated expression is evaluated
and its value is both stored in the memo table under the same name and
returned as the value of that name. This ensures that any subsequent eval-
uation of the same name returns the new value without recomputing it.

Another perspective on call-by-need is that it uses names to mediate
sharing among multiple occurrences of a sub-expression within a larger ex-
pression. Ordinary substitution often replicates an expression, generating
one copy for each occurrence of the target of the substitution. Under call-
by-need each expression is given a name which serves as a proxy for it. In
particular, expression names are substituted for variables so that all occur-
rences have the same name and hence refer to the same copy of the expres-
sion to which it is associated. In this way we economize on both the time
required to evaluate the expression, which would be needlessly repeated
under call-by-name, and the space required to store it during computation,
which would be replicated under call-by-name.

The need dynamics for L{nat⇀} is based on a transition system with
states of the form ν Σ { e ‖ µ }, where Σ is a finite set of hypotheses a1 :
τ1, . . . , an : τn associating types to names, e is an expression that may in-
volve the names in Σ, and µ maps each name declared in Σ to either an
expression or a special symbol, •, called the black hole. (The role of the black
hole will be made clear below.)

The call-by-need dynamics consists of the following two forms of judge-
ment:

1. e valΣ, stating that e is a value that may involve the names in a.

14:43 DRAFT AUGUST 24, 2010



41.1 Need Dynamics 375

2. ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }, stating that one step of evaluation of
the expression e relative to memo table µ with the names declared in
Σ results in the expression e′ relative to the memo table µ′ with names
declared in Σ′.

The dynamics is defined so that the collection of active names grows mono-
tonically, and so that the type of a name never changes. The memo ta-
ble may be altered destructively during execution to reflect progress in the
evaluation of the expression associated with a given name.

The judgement e valΣ is defined by the following rules:

z valΣ
(41.1a)

s(a) valΣ,a:nat
(41.1b)

lam[τ](x.e) valΣ
(41.1c)

Rules (41.1a) through (41.1c) specify that z is a value, any expression of
the form s(a), where a is a name, is a value, and that any λ-abstraction, pos-
sibly containing names, is a value. It is important that names themselves
are not values, rather they stand for (possibly unevaluated) expressions as
specified by the memo table.

The initial and final states of evaluation are defined as follows:

ν ∅ { e ‖ ∅ } initial
(41.2a)

e valΣ
ν Σ { e ‖ µ } final

(41.2b)

Rule (41.2a) specifies that an initial state consists of an expression eval-
uated relative to an empty memo table. Rule (41.2b) specifies that a final
state has the form ν Σ { e ‖ µ }, where e is a value relative to Σ.

The transition judgement for the call-by-need dynamics of L{nat⇀} is
defined by the following rules:

e valΣ,a:τ

ν Σ, a : τ { a ‖ µ⊗ 〈a : e〉 } 7→ ν Σ, a : τ { e ‖ µ⊗ 〈a : e〉 } (41.3a)

AUGUST 24, 2010 DRAFT 14:43



376 41.1 Need Dynamics

ν Σ, a : τ { e ‖ µ⊗ 〈a : •〉 } 7→ ν Σ′, a : τ { e′ ‖ µ′ ⊗ 〈a : •〉 }
ν Σ, a : τ { a ‖ µ⊗ 〈a : e〉 } 7→ ν Σ′, a : τ { a ‖ µ′ ⊗ 〈a : e′〉 }

(41.3b)

ν Σ { s(e) ‖ µ } 7→ ν Σ, a : nat { s(a) ‖ µ⊗ 〈a : e〉 }
(41.3c)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { ifz(e; e0; x.e1) ‖ µ } 7→ ν Σ′ { ifz(e′; e0; x.e1) ‖ µ′ }

(41.3d)

ν Σ { ifz(z; e0; x.e1) ‖ µ } 7→ ν Σ { e0 ‖ µ }
(41.3e)


ν Σ, a : nat { ifz(s(a); e0; x.e1) ‖ µ⊗ 〈a : e〉 }

7→
ν Σ, a : nat { [a/x]e1 ‖ µ⊗ 〈a : e〉 }

 (41.3f)

ν Σ { e1 ‖ µ } 7→ ν Σ′ { e′1 ‖ µ′ }
ν Σ { ap(e1; e2) ‖ µ } 7→ ν Σ′ { ap(e′1; e2) ‖ µ′ }

(41.3g)


ν Σ { ap(lam[τ](x.e); e2) ‖ µ }

7→
ν Σ, a : τ { [a/x]e ‖ µ⊗ 〈a : e2〉 }

 (41.3h)

ν Σ { fix[τ](x.e) ‖ µ } 7→ ν Σ, a : τ { a ‖ µ⊗ 〈a : [a/x]e〉 }
(41.3i)

Rule (41.3a) governs a name whose associated expression is a value; the
value of the name is the value associated to that name in the memo table.
Rule (41.3b) specifies that if the expression associated to a name is not a
value, then it is evaluated “in place” until such time as Rule (41.3a) applies.
This is achieved by switching the focus of evaluation to the associated ex-
pression, while at the same time associating the black hole to that name.
The black hole represents the absence of a value for that name, so that any
attempt to access it during evaluation of its associated expression cannot
make progress. This signals a circular dependency that, if not caught using

14:43 DRAFT AUGUST 24, 2010



41.2 Safety 377

a black hole, would initiate an infinite regress. We may therefore think of
the black hole as catching a particular form of non-termination that arises
when the value of an expression associated to a name depends on the name
itself.

Rule (41.3c) specifies that evaluation of s(e) allocates a fresh name, a,
for the expression e, and yields the value s(a). The value of e is not deter-
mined until such time as the predecessor is required in a subsequent com-
putation. This implements a lazy dynamics for the successor. Rule (41.3f),
which governs a conditional branch on a successor, substitutes the name, a,
for the variable, x, when computing the predecessor of a non-zero number,
ensuring that all occurrences of x share the same predecessor computation.

Rule (41.3g) specifies that the value of the function position of an appli-
cation must be determined before the application can be executed. Rule (41.3h)
specifies that to evaluate an application of a λ-abstraction we allocate a
fresh name for the argument, and substitute this name for the parameter of
the function. The argument is evaluated only if it is needed in the subse-
quent computation, and then that value is shared among all occurrences of
the parameter in the body of the function.

General recursion is implemented by Rule (41.3i). Recall from Chap-
ter 13 that the expression fix[τ](x.e) stands for the solution of the recur-
sion equation x = e, where x may occur within e. Rule (41.3i) computes
this solution by associating a fresh name, a, with the body, e, substituting
a for x within e to effect the self-reference. It is this substitution that per-
mits a named expression to depend on its own name. For example, the
expression fix x:τ is x associates the expression a to a in the memo table,
and returns a. The next step of evaluation is stuck, because it seeks to eval-
uate a with a bound to the black hole. In contrast an expression such as
fix f:σ→ τ isλ (x:σ. e) does not get stuck, because the self-reference is
“hidden” within the λ-abstraction, and hence need not be evaluated to de-
termine the value of the binding.

41.2 Safety

We write Σ; Γ ` e : τ to mean that e has type τ under the assumptions Σ and
Γ as defined by Rules (13.1). That is, we regard the names Σ as variables for
the purposes of the statics.

The judgement ν Σ { e ‖ µ } ok is defined by the following rules:

Σ ` e : τ Σ ` µ : Σ
ν Σ { e ‖ µ } ok

(41.4a)

AUGUST 24, 2010 DRAFT 14:43



378 41.2 Safety

∀a : τ ∈ Σ µ(a) = e 6= • =⇒ Σ′ ` e : τ

Σ′ ` µ : Σ
(41.4b)

Rule (41.4b) permits self-reference through the memo table by allowing the
expression associated to a name, a, to contain a, or, more generally, to con-
tain a name whose associated expression contains a, and so on through any
finite chain of such dependencies. Moreover, a name that is bound to the
“black hole” is deemed to be of any type.

Theorem 41.1 (Preservation). Suppose that ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }. If
ν Σ { e ‖ µ } ok, then ν Σ′ { e′ ‖ µ′ } ok.

Proof. We prove by induction on Rules (41.3) that if ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
and Σ ` µ : Σ and Σ ` e : τ, then Σ′ ⊇ Σ and Σ′ ` µ′ : Σ′ and Σ′ ` e′ : τ.

Consider Rule (41.3b), for which we have e = e′ = a, µ = µ0 ⊗ 〈a : e0〉,
µ′ = µ′0 ⊗ 〈a : e′0〉, and

ν Σ, a : τ { e0 ‖ µ0 ⊗ 〈a : •〉 } 7→ ν Σ′, a : τ { e′0 ‖ µ′0 ⊗ 〈a : •〉 }.

Assume that Σ, a : τ ` µ : Σ, a : τ. It follows that Σ, a : τ ` e0 : τ and
Σ, a : τ ` µ0 : Σ, and hence that

Σ, a : τ ` µ0 ⊗ 〈a : •〉 : Σ, a : τ.

We have by induction that Σ′ ⊇ Σ and Σ′, a : τ ` e′0 : τ′ and

Σ′, a : τ ` µ0 ⊗ 〈a : •〉 : Σ, a : τ.

But then
Σ′, a : τ ` µ′ : Σ′, a : τ,

which suffices for the result.
Consider Rule (41.3g), so that e is the application ap(e1; e2) and

ν Σ { e1 ‖ µ } 7→ ν Σ′ { e′1 ‖ µ′ }.

Suppose that Σ ` µ : Σ and Σ ` e : τ. By inversion of typing Σ ` e1 :
τ2 → τ for some type τ2 such that Σ ` e2 : τ2. By induction Σ′ ⊇ Σ and
Σ′ ` µ′ : Σ′ and Σ′ ` e′1 : τ2 → τ. By weakening we have Σ′ ` e2 : τ2, so
that Σ′ ` ap(e′1; e2) : τ, which is enough for the result.

14:43 DRAFT AUGUST 24, 2010



41.2 Safety 379

The statement of the progress theorem allows for the possibility of en-
countering a black hole, representing a checkable form of non-termination.
The judgement ν Σ { e ‖ µ } loops, stating that e diverges by virtue of en-
countering the black hole, is defined by the following rules:

ν Σ, a : τ { a ‖ µ⊗ 〈a : •〉 } loops
(41.5a)

ν Σ, a : τ { e ‖ µ⊗ 〈a : •〉 } loops

ν Σ, a : τ { a ‖ µ⊗ 〈a : e〉 } loops
(41.5b)

ν Σ { e ‖ µ } loops

ν Σ { ifz(e; e0; x.e1) ‖ µ } loops
(41.5c)

ν Σ { e1 ‖ µ } loops

ν Σ { ap(e1; e2) ‖ µ } loops
(41.5d)

Theorem 41.2 (Progress). If ν Σ { e ‖ µ } ok, then either ν Σ { e ‖ µ } final, or
ν Σ { e ‖ µ } loops, or there exists µ′ and e′ such that ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }.

Proof. We proceed by induction on the derivations of Σ ` e : τ and Σ ` µ :
Σ implicit in the derivation of ν Σ { e ‖ µ } ok.

Consider Rule (13.1a), where the variable, a, is declared in Σ. Thus
Σ = Σ0, a : τ and Σ ` µ : Σ. It follows that µ = µ0⊗ 〈a : e0〉with Σ ` µ0 : Σ0
and Σ ` e0 : τ. Note that Σ ` µ0 ⊗ 〈a : •〉 : Σ. Applying induction to the
derivation of Σ ` e0 : τ, we consider three cases:

1. ν Σ { e0 ‖ µ⊗ 〈a : •〉 } final. By inversion of Rule (41.2b) we have e0 valΣ,
and hence by Rule (41.3a) we obtain ν Σ { a ‖ µ } 7→ ν Σ { e0 ‖ µ }.

2. ν Σ { e0 ‖ µ0 ⊗ 〈a : •〉 } loops. By applying Rule (41.5b) we obtain ν Σ { a ‖ µ } loops.

3. ν Σ { e0 ‖ µ0 ⊗ 〈a : •〉 } 7→ ν Σ′ { e′0 ‖ µ′0 ⊗ 〈a : •〉 }. By applying Rule (41.3b)
we obtain

ν Σ { a ‖ µ⊗ 〈a : e0〉 } 7→ ν Σ′ { a ‖ µ′ ⊗ 〈a : e′0〉 }.

AUGUST 24, 2010 DRAFT 14:43



380 41.3 Lazy Data Structures

41.3 Lazy Data Structures

The call-by-need dynamics extends to product, sum, and recursive types in
a straightforward manner. For example, the need dynamics of lazy product
types is given by the following rules:

pair(a1; a2) valΣ,a1:τ1,a2 :τ2

(41.6a)


ν Σ { pair(e1; e2) ‖ µ }

7→
ν Σ, a1 : τ1, a2 : τ2 { pair(a1; a2) ‖ µ⊗ 〈a1 : e1〉 ⊗ 〈a2 : e2〉 }

 (41.6b)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { proj[l](e) ‖ µ } 7→ ν Σ′ { proj[l](e′) ‖ µ′ }

(41.6c)

ν Σ { e ‖ µ } loops

ν Σ { proj[l](e) ‖ µ } loops
(41.6d)


ν Σ, a1 : τ1, a2 : τ2 { proj[l](pair(a1; a2)) ‖ µ }

7→
ν Σ, a1 : τ1, a2 : τ2 { a1 ‖ µ }

 (41.6e)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { proj[r](e) ‖ µ } 7→ ν Σ′ { proj[r](e′) ‖ µ′ }

(41.6f)

ν Σ { e ‖ µ } loops

ν Σ { proj[r](e) ‖ µ } loops
(41.6g)


ν Σ, a1 : τ1, a2 : τ2 { proj[r](pair(a1; a2)) ‖ µ }

7→
ν Σ, a1 : τ1, a2 : τ2 { a2 ‖ µ }

 (41.6h)

A pair is considered a value only if its arguments are names (Rule (41.6a)),
which are introduced when the pair is created (Rule (41.6b)). The first and
second projections evaluate to one or the other name in the pair, inducing
a demand for the value of that component (Rules (41.6e) and (41.6h)).

Using similar techniques we may give a need dynamics to sums and
recursive types. We leave the formalization of these as an exercise for the
reader.

14:43 DRAFT AUGUST 24, 2010



41.4 Suspensions 381

41.4 Suspensions

Another way to introduce laziness is to consolidate the machinery of the
by-need dynamics into a single type whose values are possibly uneval-
uated, memoized computations. The type of suspensions of type τ, writ-
ten τ susp, has as introductory form susp x : τ is e representing the sus-
pended, possibly self-referential, computation, e, of type τ, and as elimi-
natory form the operation force(e) that evaluates the suspended compu-
tation presented by e, records the value in a memo table, and returns that
value as result.

Using suspension types we may construct other lazy types according to
our needs in a particular program. For example, the type of lazy pairs with
components of type τ1 and τ2 is expressible as the type

τ1 susp× τ2 susp

and the type of call-by-need functions with domain τ1 and range τ2 is ex-
pressible as the type

τ1 susp→ τ2.

We may also express more complex combinations of eagerness and lazi-
ness, such as the type of “lazy lists” consisting of computations that, when
forced, evaluate either to the empty list, or a non-empty list consisting of a
natural number and another lazy list:

µt.(unit+ (nat× t)) susp.

This type should be contrasted with the type

µt.(unit+ (nat× t susp))

whose values are the empty list and a pair consisting of a natural number
and a computation of another such value.

The syntax of suspensions is given by the following grammar:

Type τ ::= susp(τ) τ susp suspension
Expr e ::= susp[τ](x.e) susp x : τ is e delay

force(e) force(e) force
susp[a] susp[a] self-reference

Suspensions are self-referential; the bound variable, x, refers to the suspen-
sion itself. The expression susp[a] is a reference to the suspension named
a.

AUGUST 24, 2010 DRAFT 14:43



382 41.4 Suspensions

The statics of the suspension type is given sing a judgement of the form
Σ Γ ` e : τ, where Σ assigns types to the names of suspensions. It is defined
by the following rules:

Σ Γ, x : susp(τ) ` e : τ

Σ Γ ` susp[τ](x.e) : susp(τ)
(41.7a)

Σ Γ ` e : susp(τ)

Σ Γ ` force(e) : τ
(41.7b)

Σ, a : τ Γ ` susp[a] : susp(τ)
(41.7c)

Rule (41.7a) checks that the expression, e, has type τ under the assumption
that x, which stands for the suspension itself, has type susp(τ).

The by-need dynamics of suspensions is defined by the following rules:

susp[a] valΣ,a:τ
(41.8a)


ν Σ { susp[τ](x.e) ‖ µ }

7→
ν Σ, a : τ { susp[a] ‖ µ⊗ 〈a : [a/x]e〉 }

 (41.8b)

ν Σ { e ‖ µ } 7→ ν Σ′ { e′ ‖ µ′ }
ν Σ { force(e) ‖ µ } 7→ ν Σ′ { force(e′) ‖ µ′ }

(41.8c)

e valΣ,a:τ
ν Σ, a : τ { force(susp[a]) ‖ µ⊗ 〈a : e〉 }

7→
ν Σ, a : τ { e ‖ µ⊗ 〈a : e〉 }

 (41.8d)

ν Σ, a : τ { e ‖ µ⊗ 〈a : •〉 }
7→

ν Σ′, a : τ { e′ ‖ µ′ ⊗ 〈a : •〉 }
ν Σ, a : τ { force(susp[a]) ‖ µ⊗ 〈a : e〉 }

7→
ν Σ′, a : τ { force(susp[a]) ‖ µ′ ⊗ 〈a : e′〉 }


(41.8e)

Rule (41.8a) specifies that a reference to a suspension is a value. Rule (41.8b)
specifies that evaluation of a delayed computation consists of allocating

14:43 DRAFT AUGUST 24, 2010



41.5 Exercises 383

a fresh name for it in the memo table, and returning a reference to that
suspension. Rules (41.8c) to (41.8e) specify that demanding the value of a
suspension forces evaluation of the suspended computation, which is then
stored in the memo table and returned as result.

41.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



384 41.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 42

Polarization

Up to this point we have frequently encountered arbitrary choices in the
dynamics of various language constructs. For example, when specifying
the dynamics of pairs, we must choose, rather arbitrarily, between the lazy
dynamics, in which all pairs are values regardless of the value status of
their components, and the eager dynamics, in which a pair is a value only
if its components are both values. We could even consider a half-eager (or,
if you are a pessimist, half-lazy) dynamics, in which a pair is a value only
if, say, the first component is a value, but without regard to the second.
Although the latter choice seems rather arbitrary, it is no less so than the
choice between a fully lazy or a fully eager dynamics.

Similar questions arise with sums (all injections are values, or only in-
jections of values are values), recursive types (all folds are values, or only
folds whose arguments are values), and function types (functions should
be called by-name or by-value). Whole languages are built around adher-
ence to one policy or another. For example, Haskell decrees that products,
sums, and recursive types are to be lazy, and functions are to be called by
name, whereas ML decrees the exact opposite policy. Not only are these
choices arbitrary, but it is also unclear why they should be linked. For ex-
ample, one could very sensibly decree that products, sums, and recursive
types are lazy, yet impose a call-by-value discipline on functions. Or one
could have eager products, sums, and recursive types, yet insist on call-by-
name. It is not at all clear which of these points in the space of choices is
right; each language has its adherents, each has its drawbacks, and each
has its advantages.

Are we therefore stuck in a tarpit of subjectivity? No! The way out is
to recognize that these distinctions should not be imposed by the language



386 42.1 Polarization

designer, but rather are choices that are to be made by the programmer.
This is achieved by recognizing that differences in dynamics reflect funda-
mental type distinctions that are being obscured by languages that impose
one policy or another. We can have both eager and lazy pairs in the same
language by simply distinguishing them as two distinct types, and sim-
ilarly we can have both eager and lazy sums in the same language, and
both by-name and by-value function spaces, by providing sufficient type
distinctions as to make the choice available to the programmer.

In this chapter we will introduce polarization to distinguish types based
on whether their elements are defined by their values (the positive types) or
by their behavior (the negative types). Put in other terms, positive types are
“eager” (determined by their values), whereas negative types are “lazy”
(determined by their behavior). Since positive types are defined by their
values, they are eliminated by pattern matching against these values. Sim-
ilarly, since negative types are defined by their behavior under a range of
experiments, they are eliminated by performing an experiment on them.

To make these symmetries explicit we formalize polarization using a
technique called focusing, or focalization.1 A focused presentation of a pro-
gramming language distinguishes three general forms of expression, (pos-
itive and negative) values, (positive and negative) continuations, and (neutral)
computations. Besides exposing the symmetries in a polarized type sys-
tem, focusing also clarifies the design of the control machine introduced
in Chapter 31. In a focused framework stacks are just continuations, and
states are just computations; there is no need for any ad hoc apparatus to
explain the flow of control in a program.

42.1 Polarization

Polarization consists of distinguishing positive from negative types accord-
ing to the following two principles:

1. A positive type is defined by its introduction rules, which specify the
values of that type in terms of other values. The elimination rules are
inversions that specify a computation by pattern matching on values
of that type.

2. A negative type is defined by its elimination rules, which specify the
observations that may be performed on elements of that type. The

1More precisely, we employ a weak form of focusing, rather than the stricter forms con-
sidered elsewhere in the literature.

14:43 DRAFT AUGUST 24, 2010



42.2 Focusing 387

introduction rules specify the values of that type by specifying how
they respond to observations.

Based on this characterization we can anticipate that the type of natural
numbers would be positive, since it is defined by zero and successor, whereas
function types would be negative, since they are characterized by their be-
havior when applied, and not by their internal structure.

The language L±{nat⇀} is a polarized formulation of L{nat⇀} in
which the syntax of types is given by the following grammar:

PType τ+ ::= dn(τ−) ↓ τ− suspension
nat nat naturals

NType τ− ::= up(τ+) ↑ τ+ inclusion
parr(τ+

1 ; τ−2 ) τ+

1 ⇀ τ−2 partial function

The types ↓ τ− and ↑ τ+ effect a polarity shift from negative to positive and
positive to negative, respectively. Intuitively, the shifted type ↑ τ+ is just
the inclusion of positive into negative values, whereas the shifted type ↓ τ−

represents the type of suspended computations of negative type.
The domain of the negative function type is required to be positive, but

its range is negative. This allows us to form right-iterated function types

τ+

1 ⇀ (τ+
2 ⇀ (. . . (τ+

n−1 ⇀ τ−n )))

directly, but to form a left-iterated function type requires shifting,

↓ (τ+

1 ⇀ τ−2 )⇀ τ−,

to turn the negative function type into a positive type. Conversely, shifting
is needed to define a function whose range is positive, τ+

1 ⇀ ↑ τ+
2 .

42.2 Focusing

The syntax of L±{nat⇀} is motivated by the polarization of its types. For
each polarity we have a sort of values and a sort of continuations with

AUGUST 24, 2010 DRAFT 14:43



388 42.3 Statics

which we may create (neutral) computations.

PVal v+ ::= z z zero
s(v+) s(v+) successor
del-(e) del-(e) delay

PCont k+ ::= ifz(e0; x.e1) ifz(e0; x.e1) conditional
force-(k−) force-(k−) evaluate

NVal v− ::= lam[τ+](x.e) λ (x:τ+. e) abstraction
del+(v+) del+(v+) inclusion
fix(x.v−) fix x is v− recursion

NCont k− ::= ap(v+; k−) ap(v+; k−) application
force+(x.e) force+(x.e) evaluate

Comp e ::= ret(v−) ret(v−) return
cut+(v+; k+) v+ . k+ cut
cut-(v−; k−) v− . k− cut

The positive values include the numerals, and the negative values include
functions. In addition we may delay a computation of a negative value to
form a positive value using del-(e), and we may consider a positive value
to be a negative value using del+(v+). The positive continuations include
the conditional branch, sans argument, and the negative continuations in-
clude application sites for functions consisting of a positive argument value
and a continuation for the negative result. In addition we include positive
continuations to force the computation of a suspended negative value, and
to extract an included positive value. Computations, which correspond to
machine states, consist of returned negative values (these are final states),
states passing a positive value to a positive continuation, and states pass-
ing a negative value to a negative continuation. General recursion appears
as a form of negative value; the recursion is unrolled when it is made the
subject of an observation.

42.3 Statics

The statics of L±{nat⇀} consists of a collection of rules for deriving judge-
ments of the following forms:

• Positive values: Γ ` v+ : τ+.

• Positive continuations: Γ ` k+ : τ+ > γ−.

• Negative values: Γ ` v− : τ−.

14:43 DRAFT AUGUST 24, 2010



42.3 Statics 389

• Negative continuations: Γ ` k− : τ− > γ−.

• Computations: Γ ` e : γ−.

Throughout Γ is a finite set of hypotheses of the form

x1 : τ+

1 , . . . , xn : τ+
n ,

for some n ≥ 0, and γ− is any negative type.
The typing rules for continuations specify both an argument type (on

which values they act) and a result type (of the computation resulting from
the action on a value). The typing rules for computations specify that the
outcome of a computation is a negative type. All typing judgements specify
that variables range over positive types. (These restrictions may always be
met by appropriate use of shifting.)

The statics of positive values consists of the following rules:

Γ, x : τ+ ` x : τ+ (42.1a)

Γ ` z : nat (42.1b)

Γ ` v+ : nat
Γ ` s(v+) : nat

(42.1c)

Γ ` e : τ−

Γ ` del-(e) : ↓ τ−
(42.1d)

Rule (42.1a) specifies that variables range over positive values. Rules (42.1b)
and (42.1c) specify that the values of type nat are just the numerals. Rule (42.1d)
specifies that a suspended computation (necessarily of negative type) is a
positive value.

The statics of positive continuations consists of the following rules:

Γ ` e0 : γ− Γ, x : nat ` e1 : γ−

Γ ` ifz(e0; x.e1) : nat> γ−
(42.2a)

Γ ` k− : τ− > γ−

Γ ` force-(k−) : ↓ τ− > γ−
(42.2b)

Rule (42.2a) governs the continuation that chooses between two computa-
tions according to whether a natural number is zero or non-zero. Rule (42.2b)
specifies the continuation that forces a delayed computation with the spec-
ified negative continuation.

AUGUST 24, 2010 DRAFT 14:43



390 42.3 Statics

The statics of negative values is defined by these rules:

Γ, x : τ+

1 ` e : τ−2
Γ ` λ (x:τ+

1 . e) : τ+

1 ⇀ τ−2
(42.3a)

Γ ` v+ : τ+

Γ ` del+(v+) : ↑ τ+
(42.3b)

Γ, x : ↓ τ− ` v− : τ−

Γ ` fix x is v− : τ−
(42.3c)

Rule (42.3a) specifies the statics of a λ-abstraction whose argument is a pos-
itive value, and whose result is a computation of negative type. Rule (42.3b)
specifies the inclusion of positive values as negative values. Rule (42.3c)
specifies that negative types admit general recursion.

The statics of negative continuations is defined by these rules:

Γ ` v+

1 : τ+

1 Γ ` k−2 : τ−2 > γ−

Γ ` ap(v+

1 ; k−2) : τ+

1 ⇀ τ−2 > γ−
(42.4a)

Γ, x : τ+ ` e : γ−

Γ ` force+(x.e) : ↑ τ+ > γ−
(42.4b)

Rule (42.4a) is the continuation representing the application of a function to
the positive argument, v+

1 , and executing the body with negative continua-
tion, k−2 . Rule (42.4b) specifies the continuation that passes a positive value,
viewed as a negative value, to a computation.

The statics of computations is given by these rules:

Γ ` v− : τ−

Γ ` ret(v−) : τ−
(42.5a)

Γ ` v+ : τ+ Γ ` k+ : τ+ > γ−

Γ ` v+ . k+ : γ−
(42.5b)

Γ ` v− : τ− Γ ` k− : τ− > γ−

Γ ` v− . k− : γ−
(42.5c)

Rule (42.5a) specifies the basic form of computation that simply returns the
negative value v−. Rules (42.5b) and (42.5c) specify computations that pass
a value to a contination of appropriate polarity.

14:43 DRAFT AUGUST 24, 2010



42.4 Dynamics 391

42.4 Dynamics

The dynamics of L±{nat⇀} is given by a transition system e 7→ e′ speci-
fying the steps of computation. The rules are all axioms; no premises are
required because the continuation is used to manage pending computa-
tions.

The dynamics consists of the following rules:

z . ifz(e0; x.e1) 7→ e0 (42.6a)

s(v+) . ifz(e0; x.e1) 7→ [v+/x]e1 (42.6b)

del-(e) . force-(k−) 7→ e ; k− (42.6c)

λ (x:τ+. e) . ap(v+; k−) 7→ [v+/x]e ; k− (42.6d)

del+(v+) . force+(x.e) 7→ [v+/x]e (42.6e)

fix x is v− . k− 7→ [del-(fix x is v−)/x]v− . k− (42.6f)

These rules specify the interaction between values and continuations.
Rules (42.6) make use of two forms of substitution, [v+/x]e and [v+/x]v−,

which are defined as in Chapter 3. They also employ a new form of com-
position, written e ; k−0 , which composes a computation with a continuation
by attaching k−0 to the end of the computation specified by e. This composi-
tion is defined mutually recursive with the compositions k+ ; k−0 and k− ; k−0 ,
which essentially concatenate continuations (stacks).

ret(v−) ; k−0 = v− . k−0 (42.7a)

k− ; k−0 = k−1
(v− . k−) ; k−0 = v− . k−1

(42.7b)

k+ ; k−0 = k+

1

(v+ . k+) ; k−0 = v+ . k+

1
(42.7c)

e0 ; k− = e′0 x | e1 ; k− = e′1
ifz(e0; x.e1) ; k− = ifz(e′0; x.e′1)

(42.7d)

k− ; k−0 = k−1
force-(k−) ; k−0 = force-(k−1)

(42.7e)

k− ; k−0 = k1

ap(v+; k−) ; k−0 = ap(v+; k−1)
(42.7f)

AUGUST 24, 2010 DRAFT 14:43



392 42.5 Safety

x | e ; k−0 = e′

force+(x.e) ; k−0 = force+(x.e′)
(42.7g)

Rules (42.7d) and (42.7g) make use of the generic hypothetical judgement
defined in Chapter 4 to express that the composition is defined uniformly
in the bound variable.

42.5 Safety

The proof of preservation for L±{nat⇀} reduces to the proof of the typing
properties of substitution and composition.

Lemma 42.1 (Substitution). Suppose that Γ ` v+ : σ+.

1. If Γ, x : σ+ ` e : γ−, then Γ ` [v+/x]e : γ−.

2. If Γ, x : σ+ ` v− : τ−, then Γ ` [v+/x]v− : τ−.

3. If Γ, x : σ+ ` k+ : τ+ > γ−, then Γ ` [v+/x]k+ : τ+ > γ−.

4. If Γ, x : σ+ ` v+

1 : τ+, then Γ ` [v+/x]v+

1 : τ+.

5. If Γ, x : σ+ ` k− : τ− > γ−, then Γ ` [v+/x]k− : τ− > γ−.

Proof. Simultaneously, by induction on the derivation of the typing of the
target of the substitution.

Lemma 42.2 (Composition).

1. If Γ ` e : τ− and Γ ` k− : τ− > γ−, then Γ ` e ; k− : τ− > γ−.

2. If Γ ` k+
0 : τ+ > γ−0 , and Γ ` k−1 : γ−0 > γ−1 , then Γ ` k+

0 ; k−1 : τ+ > γ−1 .

3. If Γ ` k−0 : τ− > γ−0 , and Γ ` k−1 : γ−0 > γ−1 , then Γ ` k−0 ; k−1 : τ− > γ−1 .

Proof. Simultaneously, by induction on the derivations of the first premises
of each clause of the lemma.

Theorem 42.3 (Preservation). If Γ ` e : γ− and e 7→ e′, then Γ ` e′ : γ−.

Proof. By induction on transition, appealing to inversion for typing and
Lemmas 42.1 and 42.2.

The progress theorem reduces to the characterization of the values of
each type. Focusing makes the required properties evident, since it defines
directly the values of each type.

Theorem 42.4 (Progress). If Γ ` e : γ−, then either e = ret(v−) for some v−,
or there exists e′ such that e 7→ e′.

14:43 DRAFT AUGUST 24, 2010



42.6 Definability 393

42.6 Definability

The syntax of L±{nat⇀} exposes the symmetries between positive and
negative types, and hence between eager and lazy computation. It is not,
however, especially convenient for writing programs because it requires
that each computation in a program be expressed in the stilted form of a
value juxtaposed with a continuation. It would be useful to have a more
natural syntax that is translatable into the present language.

But the question of what is a natural syntax begs the very question that
motivated the language in the first place!

Editorial Notes

This chapter under construction.

42.7 Exercises

AUGUST 24, 2010 DRAFT 14:43



394 42.7 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XVI

Parallelism





Chapter 43

Nested Parallelism

Parallel computation seeks to reduce the running times of programs by al-
lowing many computations to be carried out simultaneously. For example,
if one wishes to add two numbers, each given by a complex computation,
we may consider evaluating the addends simultaneously, then computing
their sum. The ability to exploit parallelism is limited by the dependencies
among parts of a program. Obviously, if one computation depends on the
result of another, then we have no choice but to execute them sequentially
so that we may propagate the result of the first to the second. Consequently,
the fewer dependencies among sub-computations, the greater the opportu-
nities for parallelism. This argues for functional models of computation,
because the possibility of mutation of shared assignables imposes sequen-
tialization constraints on imperative code.

In this chapter we discuss nested parallelism in which we nest parallel
computations within one another in a hierarchical manner. Nested paral-
lelism is sometimes called fork-join parallelism to emphasize the hierarchi-
cal structure arising from forking two (or more) parallel computations, then
joining these computations to combine their results before proceeding. We
will consider two forms of dynamics for nested parallelism. The first is a
structural dynamics in which a single transition on a compound expres-
sion may involve multiple transitions on its constituent expressions. The
second is a cost dynamics (introduced in Chapter 10) that focuses atten-
tion on the sequential and parallel complexity (also known as the work and
depth) of a parallel program by associating a series-parallel graph with each
computation.



398 43.1 Binary Fork-Join

43.1 Binary Fork-Join

We begin with a parallel language whose sole source of parallelism is the
simultaneous evaluation of two variable bindings. This is modelled by a
construct of the form letpar x1 = e1 and x2 = e2 in e, in which we bind two
variables, x1 and x2, to two expressions, e1 and e2, respectively, for use
within a single expression, e. This represents a simple fork-join primitive in
which e1 and e2 may be evaluated independently of one another, with their
results combined by the expression e. Some other forms of parallelism may
be defined in terms of this primitive. For example, a parallel pair construct
might be defined as the expression

letpar x1 = e1 and x2 = e2 in 〈x1, x2〉,

which evaluates the components of the pair in parallel, then constructs the
pair itself from these values.

The abstract syntax of the parallel binding construct is given by the ab-
stract binding tree

letpar(e1; e2; x1.x2.e),

which makes clear that the variables x1 and x2 are bound only within e, and
not within their bindings. This ensures that evaluation of e1 is independent
of evaluation of e2, and vice versa. The typing rule for an expression of this
form is given as follows:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1 : τ1, x2 : τ2 ` e : τ

Γ ` letpar(e1; e2; x1.x2.e) : τ
(43.1)

Although we emphasize the case of binary parallelism, it should be clear
that this construct easily generalizes to n-way parallelism for any static
value of n. One may also define an n-way parallel let construct from the
binary parallel let by cascading binary splits. (For a treatment of n-way
parallelism for a dynamic value of n, see Section 43.3 on page 404.)

We will give both a sequential and a parallel dynamics of the parallel
let construct. The definition of the sequential dynamics as a transition
judgement of the form e 7→seq e′ is entirely straightforward:

e1 7→ e′1
letpar(e1; e2; x1.x2.e) 7→seq letpar(e′1; e2; x1.x2.e)

(43.2a)

e1 val e2 7→ e′2
letpar(e1; e2; x1.x2.e) 7→seq letpar(e1; e′2; x1.x2.e)

(43.2b)

14:43 DRAFT AUGUST 24, 2010



43.1 Binary Fork-Join 399

e1 val e2 val

letpar(e1; e2; x1.x2.e) 7→seq [e1, e2/x1, x2]e
(43.2c)

The parallel dynamics is given by a transition judgement of the form e 7→par

e′, defined as follows:

e1 7→par e′1 e2 7→par e′2
letpar(e1; e2; x1.x2.e) 7→par letpar(e′1; e′2; x1.x2.e)

(43.3a)

e1 7→par e′1 e2 val

letpar(e1; e2; x1.x2.e) 7→par letpar(e′1; e2; x1.x2.e)
(43.3b)

e1 val e2 7→par e′2
letpar(e1; e2; x1.x2.e) 7→par letpar(e1; e′2; x1.x2.e)

(43.3c)

e1 val e2 val

letpar(e1; e2; x1.x2.e) 7→par [e1, e2/x1, x2]e
(43.3d)

The parallel dynamics is idealized in that it abstracts away from any limi-
tations on parallelism that would necessarily be imposed in practice by the
availability of computing resources.

An important advantage of the present approach is captured by the im-
plicit parallelism theorem, which states that the sequential and the parallel
dynamics coincide. This means that one need never be concerned with the
semantics of a parallel program (its meaning is determined by the sequen-
tial dynamics), but only with its performance. Since the sequential dynamics
is deterministic (every expression has at most one value), the implicit par-
allelism theorem implies that the parallel dynamics is also deterministic.
This clearly distinguishes parallelism, which is deterministic, from concur-
rency, which is non-deterministic (see Chapters 45 and 46 for more on con-
currency).

A proof of the implicit parallelism theorem may be given by giving an
evaluation dynamics, e ⇓ v, in the style of Chapter 10, and showing that

e 7→∗par v iff e ⇓ v iff e 7→∗seq v

(where v is a closed expression such that v val). The crucial rule of the
evaluation dynamics is the one governing the parallel let construct:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v
letpar(e1; e2; x1.x2.e) ⇓ v

(43.4)

It is easy to show that the sequential dynamics agrees with the evalua-
tion dynamics by a straightforward extension of the proof of Theorem 10.2
on page 85.

AUGUST 24, 2010 DRAFT 14:43



400 43.1 Binary Fork-Join

Lemma 43.1. e 7→∗seq v iff e ⇓ v.

Proof. It suffices to show that if e 7→seq e′ and e′ ⇓ v, then e ⇓ v, and that if
e1 7→∗seq v1 and e2 7→∗seq v2 and [v1, v2/x1, x2]e 7→∗seq v, then

letpar x1 = e1 and x2 = e2 in e 7→∗seq v.

We leave the details of the proof as an exercise for the reader.

By a similar argument we may show that the parallel dynamics also
agrees with the evaluation dynamics, and hence with the sequential dy-
namics.

Lemma 43.2. e 7→∗par v iff e ⇓ v.

Proof. It suffices to show that if e 7→par e′ and e′ ⇓ v, then e ⇓ v, and that if
e1 7→∗par v1 and e2 7→∗par v2 and [v1, v2/x1, x2]e 7→∗par v, then

letpar x1 = e1 and x2 = e2 in e 7→∗par v.

The proof of the first is by a straightforward induction on the parallel dy-
namics. The proof of the second proceeds by simultaneous induction on
the derivations of e1 7→∗par v1 and e2 7→∗par v2. If e1 = v1 with v1 val and
e1 = v2 with v2 val, then the result follows immediately from the third
premise. If e2 = v2 but e1 7→par e′1 7→∗par v1, then by induction we have
that letpar x1 = e′1 and x2 = v2 in e 7→∗par v, and hence the result follows by
an application of Rule (43.3b). The symmetric case follows similarly by an
application of Rule (43.3c), and in case both e1 and e2 take a step, the result
follows by induction and Rule (43.3a).

Theorem 43.3 (Implicit Parallelism). The sequential and parallel dynamics co-
incide: for all v val, e 7→∗seq v iff e 7→∗par v.

Proof. By Lemmas 43.1 and 43.2.

Theorem 43.3 states that parallelism is implicit in that the use of a paral-
lel evaluation strategy does not affect the semantics of a program, but only
its efficiency. The program means the same thing under a parallel execution
strategy as it does under a sequential one. Correctness concerns are fac-
tored out, focusing attention on time (and space) complexity of a parallel
execution strategy.

14:43 DRAFT AUGUST 24, 2010



43.2 Cost Dynamics 401

43.2 Cost Dynamics

In this section we define a parallel cost dynamics that assigns a cost graph to
the evaluation of an expression. Cost graphs are defined by the following
grammar:

Cost c ::= 0 zero cost
1 unit cost
c1 ⊗ c2 parallel combination
c1 ⊕ c2 sequential combination

A cost graph is a form of series-parallel directed acyclic graph, with a des-
ignated source node and sink node. For 0 the graph consists of one node
and no edges, with the source and sink both being the node itself. For 1 the
graph consists of two nodes and one edge directed from the source to the
sink. For c1 ⊗ c2, if g1 and g2 are the graphs of c1 and c2, respectively, then
the graph has two additional nodes, a source node with two edges to the
source nodes of g1 and g2, and a sink node, with edges from the sink nodes
of g1 and g2 to it. Finally, for c1 ⊕ c2, where g1 and g2 are the graphs of c1
and c2, the graph has as source node the source of g1, as sink node the sink
of g2, and an edge from the sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcompu-
tations of an overall computation, and edges represent sequentiality con-
straints stating that one computation depends on the result of another, and
hence cannot be started before the one on which it depends completes. The
product of two graphs represents parallelism opportunities in which there are
no sequentiality constraints between the two computations. The assign-
ment of source and sink nodes reflects the overhead of forking two parallel
computations and joining them after they have both completed.

We associate with each cost graph two numeric measures, the work,
wk(c), and the depth, dp(c). The work is defined by the following equa-
tions:

wk(c) =


0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2

wk(c1) + wk(c2) if c = c1 ⊕ c2

(43.5)

AUGUST 24, 2010 DRAFT 14:43



402 43.2 Cost Dynamics

The depth is defined by the following equations:

dp(c) =


0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2

dp(c1) + dp(c2) if c = c1 ⊕ c2

(43.6)

Informally, the work of a cost graph determines the total number of com-
putation steps represented by the cost graph, and thus corresponds to the
sequential complexity of the computation. The depth of the cost graph de-
termines the critical path length, the length of the longest dependency chain
within the computation, which imposes a lower bound on the parallel com-
plexity of a computation. The critical path length is the least number of
sequential steps that can be taken, even if we have unlimited parallelism
available to us, because of steps that can be taken only after the completion
of another.

In Chapter 10 we introduced cost dynamics as a means of assigning time
complexity to evaluation. The proof of Theorem 10.7 on page 88 shows that
e ⇓k v iff e 7→k v. That is, the step complexity of an evaluation of e to a value
v is just the number of transitions required to derive e 7→∗ v. Here we use
cost graphs as the measure of complexity, then relate these cost graphs to
the structural dynamics given in Section 43.1 on page 398.

The judgement e ⇓c v, where e is a closed expression, v is a closed value,
and c is a cost graph specifies the cost dynamics. By definition we arrange
that e ⇓0 e when e val. The cost assignment for let is given by the following
rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

letpar(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(43.7)

The cost assignment specifies that, under ideal conditions, e1 and e2 are to
be evaluated in parallel, and that their results are to be propagated to e.
The cost of fork and join is implicit in the parallel combination of costs, and
assign unit cost to the substitution because we expect it to be implemented
in practice by a constant-time mechanism for updating an environment.
The cost dynamics of other language constructs is specified in a similar
manner, using only sequential combination so as to isolate the source of
parallelism to the let construct.

Two simple facts about the cost dynamics are important to keep in
mind. First, the cost assignment does not influence the outcome.

Lemma 43.4. e ⇓ v iff e ⇓c v for some c.

14:43 DRAFT AUGUST 24, 2010



43.2 Cost Dynamics 403

Proof. From right to left, erase the cost assignments to obtain an evalua-
tion derivation. From left to right, decorate the evaluation derivations with
costs as determined by the rules defining the cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 43.5. If e ⇓c v and e ⇓c′ v, then c is c′.

Proof. A routine induction on the derivation of e ⇓c v.

The link between the cost dynamics and the structural dynamics given
in the preceding section is established by the following theorem, which
states that the work cost is the sequential complexity, and the depth cost is
the parallel complexity, of the computation.

Theorem 43.6. If e ⇓c v, then e 7→w
seq v and e 7→d

par v, where w = wk(c) and
d = dp(c). Conversely, if e 7→w

seq v or e 7→d
par v, where v val, then e ⇓c v with

wk(c) = w and dp(c) = d.

Proof. The first part is proved by induction on the derivation of e ⇓c v,
the interesting case being Rule (43.7). By induction we have e1 7→w1

seq v1,
e2 7→w2

seq v2, and [v1, v2/x1, x2]e 7→w
seq v, where w1 = wk(c1), w2 = wk(c2),

and w = wk(c). By pasting together derivations we obtain a derivation

letpar(e1; e2; x1.x2.e) 7→w1
seq letpar(v1; e2; x1.x2.e)

7→w2
seq letpar(v1; v2; x1.x2.e)

7→seq [v1, v2/x1, x2]e
7→w

seq v.

Noting that wk((c1 ⊗ c2)⊕ 1⊕ c) = w1 + w2 + 1 + w completes the proof.
Similarly, we have by induction that e1 7→d1

par v1, e2 7→d2
par v2, and e 7→d

par v,
where d1 = dp(c1), d2 = dp(c2), and d = dp(c). Assume, without loss of
generality, that d1 ≤ d2 (otherwise simply swap the roles of d1 and d2 in
what follows). We may paste together derivations as follows:

letpar(e1; e2; x1.x2.e) 7→d1
par letpar(v1; e′2; x1.x2.e)

7→d2−d1
par letpar(v1; v2; x1.x2.e)

7→par [v1, v2/x1, x2]e

7→d
par v.

Calculating dp((c1 ⊗ c2)⊕ 1⊕ c) = max(d1, d2)+ 1+ d completes the proof.

AUGUST 24, 2010 DRAFT 14:43



404 43.3 Multiple Fork-Join

Turning to the second part, note that by the implicit parallelism theorem
(Theorem 43.3 on page 400) and Lemma 43.4 on page 402, the value, v, of
the expression, e, is the same regardless of whether we use the sequential,
parallel, or cost dynamics. It suffices to show that if e′ ⇓c′ v and e 7→seq e′,
then e ⇓c v with wk(c) = wk(c′) + 1, and if e′ ⇓c′ v and e 7→par e′, then
e ⇓c v with dp(c) = dp(c′) + 1. We proceed by induction on the derivation
of e 7→seq e′ or e 7→par e′.

Consider Rule (43.2c). We have e = letpar(e1; e2; x1.x2.e0) with e1 val
and e2 val, and e′ = [e1, e2/x1, x2]e0. By definition e1 ⇓0 e1 and e2 ⇓0 e2,
since e1 and e2 are values. By assumption e′ ⇓c′ v, and so e ⇓(0⊗0)⊕1⊕c′ v
by Rule (43.7). But wk((0⊗ 0)⊕ 1⊕ c′) = 1 + wk(c′), as required. The
remaining cases for sequential steps follow a similar pattern.

Consider Rule (43.3a), for which we have e = letpar(e1; e2; x1.x2.e0),
e′ = letpar(e′1; e′2; x1.x2.e0), e1 7→par e′1 and e2 7→par e′2. Given that e′ ⇓c′ v,
we are to show that e ⇓c v for some c such that dp(c) = dp(c′) + 1. By
inversion of the rules defining the cost dynamics c′ = (c′1 ⊗ c′2)⊕ 1 ⊕ c0,
where e′1 ⇓c′1 v1, e′2 ⇓c′2 v2, and [v1, v2/x1, x2]e0 ⇓c0 v. It follows by induction
that e1 ⇓c1 v1 for some c1 such that dp(c1) = dp(c′1) + 1, and that e2 ⇓c2 v2
for some c2 such that dp(c2) = dp(c′2) + 1. But then e ⇓c v, where c =
(c1 ⊗ c2)⊕ 1⊕ c0. Calculating, we obtain

dp(c) = max(dp(c′1) + 1, dp(c′2) + 1) + 1 + dp(c0)

= max(dp(c′1), dp(c′2)) + 1 + 1 + dp(c0)

= dp((c′1 ⊗ c′2)⊕ 1⊕ c0) + 1
= dp(c′) + 1,

which completes the proof. The remaining cases for parallel steps follow a
similar pattern.

43.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced
by the parallel let construct. While technically sufficient for many pur-
poses, a more natural programming model admit an unbounded number
of parallel tasks to be spawned simultaneously, rather than forcing them
to be created by a cascade of binary forks and corresponding joins. Such a
model, often called data parallelism, ties the source of parallelism to a data
structure of unbounded size. The principal example of such a data struc-
ture is a sequence of values of a specified type. The primitive operations on

14:43 DRAFT AUGUST 24, 2010



43.3 Multiple Fork-Join 405

sequences provide a natural source of unbounded parallelism. For exam-
ple, one may consider a parallel map construct that applies a given function
to every element of a sequence simultaneously, forming a sequence of the
results.

We will consider here a very simple language of sequence operations to
illustrate the main ideas.

Type τ ::= seq(τ) τ seq sequence
Expr e ::= seq(e0, . . . ,en−1) [e0, . . . ,en−1] sequence

sub(e1; e2) e1[e2] element
rpl(e1; e2) rpl(e1; e2) replicate
len(e) len (e) size
idx(e) idx(e) index
map(e1; x.e2) <e2 | x∈ e1> apply to elements
cat(e1; e2) cat(e1; e2) concatenation

The expression seq(e0, . . . ,en−1) evaluates to an n-sequence whose ele-
ments are given by the expressions e0, . . . , en−1. The operation sub(e1; e2)

retrieves the element of the sequence given by e1 at the index given by e2.
The operation rpl(e1; e2) creates a sequence whose length is given by e1
consisting solely of the element given by e2. The operation len(e) returns
the number of elements in the sequence given by e. The operation idx(e)
creates a sequence of length n (given by e) whose elements are 0, . . . , n− 1.
The operation map(e1; x.e2) computes the sequence whose ith element is
the result of evaluating e2 with x bound to the ith element of the sequence
given by e1. The operation cat(e1; e2) concatenates two sequences of the
same type.

The statics of these operations is given by the following typing rules:

Γ ` e0 : τ . . . Γ ` en−1 : τ

Γ ` seq(e0, . . . ,en−1) : seq(τ)
(43.8a)

Γ ` e1 : seq(τ) Γ ` e2 : nat
Γ ` sub(e1; e2) : τ

(43.8b)

Γ ` e1 : nat Γ ` e2 : τ

Γ ` rpl(e1; e2) : seq(τ)
(43.8c)

Γ ` e : seq(τ)

Γ ` len(e) : nat
(43.8d)

Γ ` e : nat
Γ ` idx(e) : seq(nat) (43.8e)

AUGUST 24, 2010 DRAFT 14:43



406 43.4 Provably Efficient Implementations

Γ ` e1 : seq(τ) Γ, x : τ ` e2 : τ′

Γ ` map(e1; x.e2) : seq(τ′)
(43.8f)

Γ ` e1 : seq(τ) Γ ` e2 : seq(τ)

Γ ` cat(e1; e2) : seq(τ)
(43.8g)

The cost dynamics of these primitives is given by the following rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

seq(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(43.9a)

e1 ⇓c1 seq(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)
sub(e1; e2) ⇓c1⊗c2⊕1 vi

(43.9b)

e1 ⇓c1 num[n] e2 ⇓c2 v

rpl(e1; e2) ⇓c1⊗c2⊕
⊗n−1

i=0 1 seq(v, . . . , v︸ ︷︷ ︸
n

) (43.9c)

e ⇓c seq(v0, . . . ,vn−1)

len(e) ⇓c⊕1 num[n]
(43.9d)

e ⇓c num[n]

idx(e) ⇓c⊕⊗n−1
i=0 1 seq(0, . . . ,n− 1)

(43.9e)

e1 ⇓c seq(v0, . . . ,vn−1)

[v0/x]e2 ⇓c0 v′0 . . . [vn−1/x]e2 ⇓cn−1 v′n−1

map(e1; x.e2) ⇓c⊕(c0⊗...⊗cn−1) seq(v′0, . . . ,v′n−1)

(43.9f)

e1 ⇓c1 seq(v0, . . . , vm−1) e2 ⇓c2 seq(v′0, . . . , v′n−1)

cat(e1; e2) ⇓c1⊗c2⊕
⊗m+n−1

i=0 1 seq(v0, . . . , vm−1, v′0, . . . , v′n−1)
(43.9g)

The cost dynamics for sequence operations may be validated by intro-
ducing a sequential and parallel cost dynamics and extending the proof of
Theorem 43.6 on page 403 to cover this extension.

43.4 Provably Efficient Implementations

Theorem 43.6 on page 403 states that the cost dynamics accurately models
the dynamics of the parallel let construct, whether executed sequentially
or in parallel. This validates the cost dynamics from the point of view of the
dynamics of the language, and permits us to draw conclusions about the
asymptotic complexity of a parallel program that abstracts away from the
limitations imposed by a concrete implementation. Chief among these is

14:43 DRAFT AUGUST 24, 2010



43.4 Provably Efficient Implementations 407

the restriction to a fixed number, p > 0, of processors on which to schedule
the workload. In addition to limiting the available parallelism this also im-
poses some synchronization overhead that must be accounted for in order
to make accurate predictions of run-time behavior on a concrete parallel
platform. A provably efficient implementation is one for which we may es-
tablish an asymptotic bound on the actual execution time once these over-
heads are taken into account.

A provably efficient implementation must take account of the limita-
tions and capabilities of the actual hardware on which the program is to be
run. Since we are only interested in asymptotic upper bounds, it is conve-
nient to formulate an abstract machine model, and to show that the prim-
itives of the language can be implemented on this model with guaranteed
time (and space) bounds. One popular model is the SMP, or shared-memory
multiprocessor, which consists of p > 0 sequential processors coordinated
by an interconnect network that provides constant-time access to shared
memory by each of the processors.1 The multiprocessor is assumed to pro-
vide a constant-time2 synchronization primitive with which control simul-
taneous access to a memory cell. There are a variety of such primitives,
any of which is sufficient to provide a parallel fetch-and-add instruction
that allows each processor to obtain the current contents of a memory cell
and update it by adding a fixed constant in a single atomic operation—the
interconnect serializes any simultaneous accesses by more than one proces-
sor.

Building a provably efficient implementation of parallelism involves
two majors tasks. First, we must show that each of the primitives of the
language may be implemented efficiently on the abstract machine model.
Second, we must show how to schedule the workload across the proces-
sors so as to minimize execution time by maximizing parallelism. When
working with a low-level machine model such as an SMP, both tasks in-
volve a fair bit of technical detail to show how to use low-level machine
instructions, including a synchronization primitive, to implement the lan-
guage primitives and to schedule the workload. Collecting these together,
we may then give an asymptotic bound on the time complexity of the im-
plementation that relates the abstract cost of the computation to cost of
implementing the workload on a p-way multiprocessor. The prototypical
result of this kind is called Brent’s Theorem.

1A slightly weaker assumption is that each access may require up to lg p time to account
for the overhead of synchronization, but we shall neglect this refinement in the present,
simplified account.

2Or logarithmic time.

AUGUST 24, 2010 DRAFT 14:43



408 43.4 Provably Efficient Implementations

Theorem 43.7. If e ⇓c v with wk(c) = w and dp(c) = d, then e may be evaluated
on a p-processor SMP in time O(max(w/p, d)).

The theorem tells us that we can never execute a program in fewer steps
than its depth, d, and that, at best, we can divide the work up evenly into
w/p rounds of execution by the p processors. Observe that if p = 1 then
the theorem establishes an upper bound of O(w) steps, the sequential com-
plexity of the computation. Moreover, if d is proportional to w, then the
overall time is again O(w), which is to say that we are unable to exploit
parallelism in that case.

This motivates the definition of a useful figure of merit, called the par-
allelizability ratio, which is the ratio, w/d, of work to depth. If w/d � p,
then the program is said to be parallelizable, because then w/p � d, and
we may therefore reduce running time by using p processors at each step.
If, on the other hand, the parallelizability ratio is a constant, then d will
dominate w/p, and we will have little opportunity to exploit parallelism to
reduce running time. It is not known, in general, whether a problem admits
a parallelizable solution. The best we can say, on present knowledge, is that
there are algorithms for some problems that have a high degree of paral-
lelizability, and there are problems for which no such algorithm is known.
It is a open problem in complexity theory to characterize which problems
are parallelizable, and which are not.

To illustrate the essential ingredients of the proof of Brent’s Theorem we
will consider a dynamics that models the scheduling of work onto p par-
allel processors, each of which implements the dynamics of L{nat⇀} as
described in Chapter 13. The dynamics consists of two transition relations
defined on states of the form

ν x1 : τ1, . . . xn : τn { 〈x1 : e1〉 ⊗ . . .⊗ 〈xn : en〉 }.

Such a state represents the remaining work of a computation, decomposed
into n tasks, with each task binding its value to a variable. Importantly, we
do not distinguish states that differ in the order of the variable declarations
or variable bindings.

The occurrences of variables in a state determine the dependency order-
ing among the tasks: if xi occurs free in xj, then ej cannot be evaluated
before evaluation of ei is complete. Such dependencies reflect data flow de-
pendencies among the tasks, and are therefore manifestations of the depth
complexity of the program. A closed expression ei in a state is said to be
ready in that state; otherwise, ei is said to be blocked, awaiting completion of
evaluation of the expression on which it depends.

14:43 DRAFT AUGUST 24, 2010



43.4 Provably Efficient Implementations 409

We will consider two forms of state transition, the local and the global.
Local transitions represent the steps of computation of the individual pro-
cessors, which we will model using the dynamics of L{nat⇀} given in
Chapter 13 as a guide. Global transitions represent the scheduling and
load-balancing steps that allocate tasks to processors with the intent of
maximizing parallelism insofar as possible consistently with the depen-
dency ordering among the tasks.

Local transitions apply only to ready expressions (those with no free
variables). The local transitions are illustrated by the following rules:


ν x : τ { 〈x : letpar x1 = e1 and x2 = e2 in e〉 }

7→loc

ν x : τ, x1 : τ1, x2 : τ2 { 〈x1 : e1〉 ⊗ 〈x2 : e2〉 ⊗ 〈x : e〉 }

 (43.10a)

e2 val

ν x : τ { 〈x : λ (y:τ2. e)(e2)〉 } 7→loc ν x : τ { 〈x : [e2/y]e〉 } (43.10b)

e1 ¬ val or e2 ¬ val
ν x : τ { 〈x : e1(e2)〉 }

7→loc

ν x : τ, x1 : τ2 → τ, x2 : τ2 { 〈x1 : e1〉 ⊗ 〈x2 : e2〉 ⊗ 〈x : x1(x2)〉 }

 (43.10c)

Rule (43.10a) states that if letpar x1 = e1 and x2 = e2 in e is ready, then exe-
cuting it consists of creating two new, independent tasks, one to evaluate e1
and one to evaluate e2, and to update the current task, which is in general
dependent on the other two, to represent the join point of the parallel bind-
ing. Observe that both e1 and e2 are ready in the resulting state, whereas e
is, in general, not ready. The remaining rules, only two of which are given
here, restate the (eager) dynamics of L{nat⇀} in the parallel setting. For
example, Rules (43.10b) to (43.10c) express the parallel dynamics of func-
tion application.

Global transitions are parameterized by p ≥ 0, representing the number
of processors available for simultaneous execution. Each transition consists
of selecting n ≤ p ready tasks from the state, applying a local transition to
each, then reconstructing the state with the task(s) resulting from the local
step.

(x /∈ e)
ν x : τ { 〈x : e〉 } initial

(43.11a)

e val
ν Γ, x : τ { 〈x : e〉 } final

(43.11b)

AUGUST 24, 2010 DRAFT 14:43



410 43.5 Exercises

Γ = Γ0, x1 : τ1, . . . xn : τn (∃1 ≤ n ≤ p)
e1 val . . . en val

ν Γ { 〈x1 : e1〉 ⊗ . . .⊗ 〈xn : en〉 ⊗ω }
7→glo

ν Γ0 { [e1, . . . , en/x1, . . . , xn]ω }


(43.11c)

Γ = Γ0, x1 : τ1, . . . , xn : τn (∃1 ≤ n ≤ p)
(∀1 ≤ i ≤ n) ν xi : τi { 〈xi : ei〉 } 7→loc ν xi : τi Γi {ωi }

ν Γ { 〈x1 : e1〉 ⊗ . . .⊗ 〈xn : en〉 ⊗ω }
7→glo

ν Γ Γ1 . . . Γn {ω1 ⊗ . . .⊗ωn ⊗ω }


(43.11d)

Rule (43.11c) states that if any n ≤ p tasks are complete, their values may
be propagated to the other tasks by substitution. This has the effect of elim-
inating dependencies on the substituted variables, enabling some tasks for
evaluation at the next global transition. Rule (43.11d) combines the results
of n ≤ p local steps by consolidating the freshly allocated tasks into the
state of the computation. We tacitly assume that the Γi’s have pairwise
disjoint domains and that no xj is in the domain of Γi; this ensures that the
combined context Γ Γ1 . . . Γn does not declare any variable more than once.
In implementation terms this means that the processors must synchronize
memory allocated to ensure that they do not interfere with one another.

The proof of Brent’s Theorem for this high-level dynamics is now ob-
vious. If, at each stage of a computation, there are p ready tasks, then the
computation will complete in w/p steps, where w is the work complex-
ity of the program. We may, however, be unable to make full use of all p
processors at any given stage. This would only be because the dependen-
cies among computations, which are reflected in the variable occurrences
and in the definition of the depth complexity of the computation, inhibits
parallelism to the extent that evaluation cannot complete in fewer than d
rounds. This limitation is significant only to the extent that d is larger than
w/p; otherwise, the overall time is bounded by w/p, making maximal use
of all p processors.

43.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 44

Futures and Speculation

A future is a computation whose evaluation is initiated in advance of any
demand for its value. Like a suspension, a future represents a value that is
to be determined later. Unlike a suspension, a future is always evaluated,
regardless of whether its value is actually required. In a sequential setting
futures are of little interest; a future of type τ is just an expression of type τ.
In a parallel setting, however, futures are of interest because they provide a
means of initiating a parallel computation whose result is not needed until
(presumably) much later, by which time it will have been completed.

The prototypical example of the use of futures is to implementing pipelin-
ing, a method for overlapping the stages of a multistage computation to
the fullest extent possible. This minimizes the latency caused by one stage
waiting for the completion of a previous stage by allowing the two stages
to proceed in parallel until such time as an explicit dependency is encoun-
tered. Ideally, the computation of the result of an earlier stage is completed
by the time a later stage requires it. At worst the later stage must be delayed
until the earlier stage completes, incurring what is known as a pipeline stall.

A suspension is a delayed computation whose result may or may not be
needed for the overall computation to finish. Speculation is a parallel dy-
namics for suspensions in which suspended computations are executed in
parallel with the main thread of computation without regard to whether the
suspension is forced. If the value of the suspension is eventually required,
then speculation pays off, but if not, the effort to evaluate it wasted. Specu-
lation is therefore not work-efficient: if the value of the suspension is never
needed, more work has been undertaken than is necessary to determine the
outcome of the computation. Speculation can be useful in situations where
there is an excess of computing resources available, more than can be used



412 44.1 Futures

in a guaranteed work-efficient manner. In such situations it cannot hurt to
perform extra work as long as resources are used that would otherwise be
idle.

Parallel futures, in contrast to speculatively evaluated suspensions, are
work efficient in that the overall work done by a computation involving fu-
tures is no more than the work required by a sequential execution. Spec-
ulative suspensions, in contrast, are work inefficient in that speculative ex-
ecution may be in vain—the overall computation may involve more steps
than the work required to compute the result. For this reason speculation
is a risky strategy for exploiting parallelism. It can make good use of avail-
able resources, but perhaps only at the expense of doing more work than
necessary!

44.1 Futures

The syntax of futures is given by the following grammar:

Type τ ::= fut(τ) τ fut future
Expr e ::= fut(e) fut(e) future

syn(e) syn(e) synchronize

The type τ fut is the type of futures of type τ. Futures are introduced by the
expression fut(e), which schedules e for evaluation and returns a reference
to it. Futures are eliminated by the expression syn(e), which synchronizes
with the future referred to by e, returning its value.

44.1.1 Statics

The statics of futures is given by the following rules:

Γ ` e : τ
Γ ` fut(e) : fut(τ)

(44.1a)

Γ ` e : fut(τ)
Γ ` syn(e) : τ

(44.1b)

These rules are unsurprising, since futures add no new capabilities to the
language beyond providing an opportunity for parallel evaluation.

14:43 DRAFT AUGUST 24, 2010



44.2 Suspensions 413

44.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated
eagerly; synchronization returns the value of the future.

e val
fut(e) val

(44.2a)

e 7→ e′

fut(e) 7→ fut(e′)
(44.2b)

e 7→ e′

syn(e) 7→ syn(e′)
(44.2c)

e val
syn(fut(e)) 7→ e (44.2d)

44.2 Suspensions

The syntax of (non-recursive) suspensions is given by the following gram-
mar:1

Type τ ::= susp(τ) τ susp suspension
Expr e ::= susp(e) susp(e) delay

force(e) force(e) force

The type τ susp is the type of suspended computations of type τ. The in-
troductory form, susp(e), delays the computation of e until forced, and the
eliminatory form, force(e), forces evaluation of a delayed computation.

44.2.1 Statics

The statics of suspensions is given by the following rules:

Γ ` e : τ
Γ ` susp(e) : susp(τ)

(44.3a)

Γ ` e : susp(τ)

Γ ` force(e) : τ
(44.3b)

Thus, the statics for suspensions as given by Rules (44.3) is essentially equiv-
alent to the statics for futures given by Rules (44.1).

1We confine ourselves to the non-recursive case to facilitate the comparison with futures.

AUGUST 24, 2010 DRAFT 14:43



414 44.3 Parallel Dynamics

44.2.2 Sequential Dynamics

The definition of the sequential dynamics of suspensions is similar to that
of futures, except that suspended computations are values.

susp(e) val
(44.4a)

e 7→ e′

susp(e) 7→ susp(e′)
(44.4b)

force(susp(e)) 7→ e
(44.4c)

Compared with futures, the sole difference is that a suspension is only
evaluated when forced, whereas a future is always evaluated, regardless
of whether its value is needed.

44.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that
allows the computation of the future to proceed concurrently with some
other computation. Suspensions are (as we saw in Chapter 41) useful for
reasons other than parallelism, but they also admit a parallel, speculative
interpretation. In this section we give a parallel dynamics of futures and
suspensions in which the creation, execution, and synchronization of tasks
is made explicit. Interestingly, the parallel dynamics of futures and sus-
pensions is identical, except for the termination condition. Whereas futures
require all concurrently executing evaluations to be completed before ter-
mination, speculatively evaluated suspensions may be abandoned before
they are completed. For the sake of concreteness we will give the parallel
dynamics of futures, remarking only where alterations must be made for
speculative evaluation of suspensions.

The parallel dynamics of futures relies on a modest extension to the
language given in Section 44.1 on page 412 to introduce names for tasks.
Let Σ be a finite mapping assigning types to names. The expression fut[a]
is a value referring to the outcome of task a. The statics of this expression
is given by the following rule:2

Γ `Σ,a:τ fut[a] : fut(τ)
(44.5)

2A similar rule governs the analogous construct, susp[a], in the case of suspensions.

14:43 DRAFT AUGUST 24, 2010



44.3 Parallel Dynamics 415

Rules (44.1) carry over in the obvious way with Σ recording the types of the
task names.

States of the parallel dynamics have the form ν Σ { e ‖ µ }, where e is the
focus of evaluation, and µ represents the parallel futures (or suspensions)
that have been activated thus far in the computation. Formally, µ is a finite
mapping assigning expressions to the task names declared in Σ. A state is
well-formed according to the following rule:

`Σ e : τ (∀a ∈ dom(Σ)) `Σ µ(a) : Σ(a)
ν Σ { e ‖ µ } ok

(44.6)

As discussed in Chapter 40 this rule admits self-referential and mutually
referential futures. A more refined condition could as well be given that
avoids circularities; we leave this as an exercise for the reader.

The parallel dynamics is divided into two phases, the local phase, which
defines the basic steps of evaluation of an expression, and the global phase,
which executes all possible local steps in parallel. The local dynamics is
defined by the following rules:

fut[a] valΣ,a:τ
(44.7a)

ν Σ { fut(e) ‖ µ } 7→loc ν Σ, a : τ { fut[a] ‖ µ⊗ 〈a : e〉 }
(44.7b)

ν Σ { e ‖ µ } 7→loc ν Σ′ { e′ ‖ µ′ }
ν Σ { syn(e) ‖ µ } 7→loc ν Σ′ { syn(e′) ‖ µ′ }

(44.7c)

e′ valΣ,a:τ
ν Σ, a : τ { syn(fut[a]) ‖ µ⊗ 〈a : e′〉 }

7→loc

ν Σ, a : τ { e′ ‖ µ⊗ 〈a : e′〉 }

 (44.7d)

Rule (44.7b) activates a future named a executing the expression e and re-
turns a reference to it. Rule (44.7d) synchronizes with a future whose value
has been determined. Note that a local transition always has the form

ν Σ { e ‖ µ } 7→loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }

where Σ′ is either empty or declares the type of a single symbol, and µ′ is
either empty or of the form 〈a : e′〉 for some expression e′.

AUGUST 24, 2010 DRAFT 14:43



416 44.3 Parallel Dynamics

A global step of the parallel dynamics consists of at most one local step
for the focal expression and one local step for each of up to p futures, where
p > 0 is a fixed parameter representing the number of processors.

µ = µ0 ⊗ 〈a1 : e1〉 ⊗ · · · ⊗ 〈an : en〉
µ′′ = µ0 ⊗ 〈a1 : e′1〉 ⊗ · · · ⊗ 〈an : e′n〉

ν Σ { e ‖ µ } 7→0,1
loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }

(∀1 ≤ i ≤ n) ν Σ { ei ‖ µ } 7→loc ν Σ Σ′i { e′i ‖ µ⊗ µ′i }
ν Σ { e ‖ µ }
7→glo

ν Σ Σ′ Σ′1 . . . Σ′n { e′ ‖ µ′′ ⊗ µ′ ⊗ µ′1 ⊗ · · · ⊗ µ′n }


(44.8a)

Rule (44.8a) allows the focus expression to take either zero or one steps
since it may be blocked awaiting the completion of evaluation of a par-
allel future (or forcing a suspension). The futures allocated by the local
steps of execution are consolidated in the result of the global step. We as-
sume without loss of generality that the names of the new futures in each
local step are pairwise disjoint so that the combination makes sense. In im-
plementation terms satisfying this disjointness assumption means that the
processors must synchronize their access to memory.

The initial state of a computation, whether for futures or suspensions,
is defined by the rule

ν ∅ { e ‖ ∅ } initial
(44.9)

Final states differ according to whether we are considering futures or sus-
pensions. In the case of futures a state is final iff both the focus and all
parallel futures have completed evaluation:

e valΣ µ valΣ

ν Σ { e ‖ µ } final
(44.10a)

(∀a ∈ dom(Σ)) mu(a) valΣ
µ valΣ

(44.10b)

In the case of suspensions a state is final iff the focus is a value:

e valΣ
ν Σ { e ‖ µ } final

(44.11)

This corresponds to the speculative nature of the parallel evaluation of sus-
pensions whose outcome may not be needed to determine the final out-
come of the program.

14:43 DRAFT AUGUST 24, 2010



44.4 Applications of Futures 417

44.4 Applications of Futures

Pipelining provides a good example of the use of parallel futures. Con-
sider a situation in which a producer builds a list whose elements represent
units of work, and a consumer that traverses the work list and acts on each
element of that list. The elements of the work list can be thought of as “in-
structions” to the consumer, which maps a function over that list to carry
out those instructions. An obvious sequential implementation first builds
the work list, then traverses it to perform the work indicated by the list.
This is fine as long as the elements of the list can be produced quickly, but
if each element requires a substantial amount of computation, it would be
preferable to overlap production of the next list element with execution of
the previous unit of work. This can be easily programmed using futures.

Let flist be the recursive type µt.unit+ (nat× t fut), whose ele-
ments are nil, defined to be fold(l · 〈〉), and cons(e1,e2), defined to be
fold(r · 〈e1, fut(e2)〉). The producer is a recursive function that generates
a value of type flist:

fix produce : (nat → nat opt) → nat → flist is

λ f. λ i.

case f(i) {
null ⇒ nil

| just x ⇒ cons(x, fut (produce f (i+1)))

}

On each iteration the producer generates a parallel future to produce the
tail. This computation proceeds after the producer returns so that it overlap
subsequent computation.

The consumer folds an operation over the work list as follows:

fix consume : ((nat×nat)→nat) → nat → flist → nat is

λ g. λ a. λ xs.

case xs {
nil ⇒ a

| cons (x, xs) ⇒ consume g (g (x, a)) (syn xs)

}

The consumer synchronizes with the tail of the work list just at the point
where it makes a recursive call and hence requires the head element of
the tail to continue processing. At this point the consumer will block, if
necessary, to await computation of the tail before continuing the recursion.

AUGUST 24, 2010 DRAFT 14:43



418 44.4 Applications of Futures

Another application of futures is to provide more control over paral-
lelism in a language with suspensions. Rather than evaluate suspensions
speculatively, which is not work efficient, we may instead add futures to
the language in addition to suspensions. One application of futures in such
a setting is called a spark. A spark is a computation that is executed in par-
allel with another purely for its effect on suspensions. The spark traverses a
data structure, forcing the suspensions within so that their values are com-
puted and stored, but otherwise yielding no useful result. The idea is that
the spark forces the suspensions that will be needed by the main computa-
tion, but taking advantage of parallelism in the hope that their values will
have been computed by the time the main computation requires them.

The sequential dynamics of the spark expression spark(e1; e2) is simply
to evaluate e1 before evaluating e2. This is useful in the context of a by-need
dynamics for suspensions, since evaluation of e1 will record the values of
some suspensions in the memo table for subsequent use by the computa-
tion e2. The parallel dynamics specifies, in addition, that e1 and e2 are to be
evaluated in parallel. The behavior of sparks is captured by the definition
of spark(e1; e2) in terms of futures:

let be fut(e1) in e2.

Evaluation of e1 commences immediately, but its value, if any, is aban-
doned. This encoding does not allow for evaluation of e1 to be abandoned
as soon as e2 reaches a value, but this scenario is not expected to arise for
the intended mode of use of sparks. The expression e1 should be a quick
traversal that does nothing other than force the suspensions in some data
structure, exiting as soon as this is complete. Presumably this computation
takes less time than it takes for e2 to perform its work before forcing the
suspensions that were forced by e2, otherwise there is little to be gained
from the use of sparks in the first place!

As an example, consider the type strm of streams of numbers defined
by the recursive type µt.(unit+ (nat× t)) susp. Elements of this type
are suspended computations that, when forced, either signals the end of
stream, or produces a number and another such stream. Suppose that s
is such a stream, and assume that we know, for reasons of its construc-
tion, that it is finite. We wish to compute map( f)(s) for some function
f , and to overlap this computation with the production of the stream el-
ements. We will make use of a function mapforce that forces successive
elements of the input stream, but yields no useful output. The compu-
tation spark(mapforce(s); map( f)(s)) forces the elements of the stream
in parallel with the computation of map( f)(s), with the intention that all

14:43 DRAFT AUGUST 24, 2010



44.5 Exercises 419

suspensions in s are forced before their values are required by the main
computation.

Finally, note that it is easy to encode binary nested parallelism using
futures. This may be accomplished by defining letpar(e1; e2; x1.x2.e) to
stand for the expression

let x′1 be fut(e1) in let x2 be e2 in let x1 be syn(x′1) in e

The order of bindings is important to ensure that evaluation of e2 proceeds
in parallel with evaluation of e1. Observe that evaluation of e cannot, in any
case, proceed until both are complete.

44.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



420 44.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XVII

Concurrency





Chapter 45

Process Calculus

So far we have mainly studied the statics and dynamics of programs in iso-
lation, without regard to their interaction with the world. But to extend this
analysis to even the most rudimentary forms of input and output requires
that we consider external agents that interact with the program. After all,
the whole purpose of a computer is to interact with a person!

To extend our investigations to interactive systems, we begin with the
study of process calculi, which are abstract formalisms that capture the essence
of interaction among independent agents. The development will proceed
in stages, starting with simple action models, then extending to interacting
concurrent processes, and finally to synchronous and asynchronous com-
munication.

Our presentation differs from that in the literature in several respects.
Most significantly, we maintain a distinction between processes and events.
The basic form of process is one that awaits the arrival of one of several
events. Other forms of process include parallel composition and the decla-
ration of a communication channel. The basic forms of event are signalling
and querying on a channel. Events are combined using a non-deterministic
choice operator that signals the arrival any one of a specified collection of
events.

45.1 Actions and Events

Our treatment of concurrent interaction is based on the notion of an event,
which specifies the actions that a process is prepared to undertake in con-
cert with another process. Two processes interact by undertaking two com-
plementary actions, which may be thought of as a signal and a query on a



424 45.1 Actions and Events

channel. The processes synchronize when one signals on a channel that the
other is querying, after which they both proceed independently to interact
with other processes.

To begin with we will focus on sequential processes, which simply await
the arrival of one of several possible actions, known as an event.

Proc P ::= await(E) $ E synchronize
Evt E ::= null 0 nullary choice

or(E1; E2) E1 + E2 binary choice
query[a](P) ?a;P query
signal[a](P) !a;P signal

The variables a, b, and c range over channels, which serve as synchroniza-
tion sites between processes.

We will not distinguish between events that differ only up to structural
congruence, which is defined to be the strongest equivalence relation closed
under these rules:

E ≡ E′
$ E ≡ $ E′

(45.1a)

E1 ≡ E′1 E2 ≡ E′2
E1 + E2 ≡ E′1 + E′2

(45.1b)

P ≡ P′
?a;P ≡ ?a;P′

(45.1c)

P ≡ P′
!a;P ≡ !a;P′

(45.1d)

E + 0 ≡ E
(45.1e)

E1 + E2 ≡ E2 + E1
(45.1f)

E1 + (E2 + E3) ≡ (E1 + E2)+ E3
(45.1g)

Imposing structural congruence on sequential processes enables us to think
of an event as being a finite sum of signal or query events, with the sum of
no events being the null event, 0.

An illustrative example of Milner’s is a simple vending machine that
may take in a 2p coin, then optionally either permit selection of a cup of
tea, or take another 2p coin, then permit selection of a cup of coffee.

V = $ (?2p;$ (!tea;V + ?2p;$ (!cof;V)))

14:43 DRAFT AUGUST 24, 2010



45.2 Interaction 425

As the example indicates, we tacitly permit recursive definitions of pro-
cesses, with the understanding that a defined identifier may always be re-
placed with its definition wherever it occurs.

Because the computation occurring within a process is suppressed, se-
quential processes have no dynamics on their own, but only through their
interaction with other processes. For the vending machine to operate there
must be another process (you!) who initiates the events expected by the
machine, causing both your state (the coins in your pocket) and its state (as
just described) to change as a result.

45.2 Interaction

Processes become interesting when they are allowed to interact with one
another to achieve a common goal. To account for interaction we enrich
the language of processes with concurrent composition:

Proc P ::= await(E) $ E synchronize
stop 1 inert
par(P1; P2) P1 ‖ P2 composition

The process 1 represents the inert process, and the process P1 ‖ P2 represents
the concurrent composition of P1 and P2. One may identify 1 with $ 0, the
process that awaits the event that will never occur, but we prefer to treat
the inert process as a primitive concept.

We will identify processes up to structural congruence, which is defined
to be the strongest equivalence relation closed under these rules:

P ‖ 1 ≡ P
(45.2a)

P1 ‖ P2 ≡ P2 ‖ P1
(45.2b)

P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3
(45.2c)

P1 ≡ P′1 P2 ≡ P′2
P1 ‖ P2 ≡ P′1 ‖ P′2

(45.2d)

Up to structural congruence every process has the form

$ E1 ‖ . . . ‖ $ En

AUGUST 24, 2010 DRAFT 14:43



426 45.2 Interaction

for some n ≥ 0, it being understood that when n = 0 this stands for the
null process, 1.

Interaction between processes consists of synchronization of two com-
plementary actions. The dynamics of interaction is defined by an action-
indexed family of transition judgements, P α7−→ P′, where α is an action as
specified by the following grammar:

Act α ::= query[a] ?a query
signal[a] !a signal

The action label on a transition specifies the effect of an execution step on
the environment in which it occurs. The query action, ?a, and the signal ac-
tion, !a, are complementary. Complementarity may be expressed by defin-
ing α to be the complementary action to α by the equations ?a = !a and
!a = ?a.

Two processes may interact whenever they announce complementary
actions, resulting in a silent transition, as specified by the following rules:

$ (!a;P + E) !a7−→ P
(45.3a)

$ (?a;P + E) ?a7−→ P
(45.3b)

P1
α7−→ P′1

P1 ‖ P2
α7−→ P′1 ‖ P2

(45.3c)

P1
α7−→ P′1 P2

α7−→ P′2
P1 ‖ P2 7→ P′1 ‖ P′2

(45.3d)

Rules (45.3a) and (45.3b) specify that any of the events on which a pro-
cess is synchronizing may occur. Rule (45.3d) synchronizes two processes
that take complementary actions.

As an example, let us consider the interaction of the vending machine,
V, with the user process, U, defined as follows:

U = $ !2p;$ !2p;$ ?cof;1.

14:43 DRAFT AUGUST 24, 2010



45.3 Replication 427

Here is a trace of the interaction between V and U:

V ‖U 7→ $ !tea;V + ?2p;$ !cof;V ‖ $ !2p;$ ?cof;1
7→ $ !cof;V ‖ $ ?cof;1
7→ V

These steps are justified, respectively, by the following pairs of labelled
transitions:

U
!2p
7−−→ U′ = $ !2p;$ ?cof;1

V
?2p
7−−→ V ′ = $ (!tea;V + ?2p;$ !cof;V)

U′
!2p
7−−→ U′′ = $ ?cof;1

V ′
?2p
7−−→ V ′′ = $ !cof;V

U′′ ?cof7−−−→ 1

V ′′ !cof7−−→ V

We have suppressed uses of structural congruence in the above derivations
to avoid clutter, but it is important to see its role in managing the non-
deterministic choice of events by a process.

45.3 Replication

Some presentations of process calculus forego reliance on defining equa-
tions for processes in favor of a replication construct, which we write ∗ P.
This process stands for as many concurrently executing copies of P as one
may require, which may be modeled by the structural congruence

∗ P ≡ P ‖ ∗ P.

Taking this as a principle of structural congruence hides the overhead of
process creation, and gives no hint as to how often it can or should be ap-
plied. One could alternatively build replication into the dynamics to model
the details of replication more closely:

∗ P 7→ P ‖ ∗ P.

AUGUST 24, 2010 DRAFT 14:43



428 45.4 Private Channels

Since the application of this rule is unconstrained, it may be applied at any
time to effect a new copy of the replicated process P.

So far we have been using recursive process definitions to define pro-
cesses that interact repeatedly according to some protocol. Rather than take
recursive definition as a primitive notion, we may instead use replication
to model repetition. This may be achieved by introducing an “activator”
process that is contacted to effect the replication. Consider the recursive
definition X = P(X), where P is a process expression involving occur-
rences of the process variable, X, to refer to itself. This may be simulated
by defining the activator process

A = ∗ $ (?a;P($ (!a;1))),

in which we have replaced occurrences of X within P by an initiator process
that signals the event a to the activator. Observe that the activator, A, is
structurally congruent to the process A′ ‖ A, where A′ is the process

$ (?a;P($ (!a;1))).

To start process P we concurrently compose the activator, A, with an initia-
tor process, $ (!a;1). Observe that

A ‖ $ (!a;1) 7→ A ‖ P(!a;1),

which starts the process P while maintaining a running copy of the activa-
tor, A.

As an example, let us consider Milner’s vending machine written using
replication, rather than using recursive process definition:

V0 = $ (!v;1) (45.4)
V1 = ∗ $ (?v;V2) (45.5)
V2 = $ (?2p;$ (!tea;V0 + ?2p;$ (!cof;V0))) (45.6)

The process V1 is a replicated server that awaits a signal on channel v to
create another instance of the vending machine. The recursive calls are
replaced by signals along v to re-start the machine. The original machine,
V, is simulated by the concurrent composition V0 ‖V1.

45.4 Private Channels

It is often useful (particularly once we have introduce inter-process com-
munication) to introduce new channels within a process, rather than as-
sume that all channels of interaction are given a priori. To allow for this, the

14:43 DRAFT AUGUST 24, 2010



45.4 Private Channels 429

syntax of processes is enriched with a channel declaration primitive:

Proc P ::= new(a.P) ν(a.P) new channel

The channel, a, is bound within the process P, and hence may be renamed
at will (avoiding conflicts) within P. To simplify notation we sometimes
write ν(a1, . . . , ak.P) for the iterated declaration ν(a1.. . . ν(ak.P)).

Structural congruence is extended with the following rules:

P =α P′

P ≡ P′
(45.7a)

P ≡ P′
ν(a.P) ≡ ν(a.P′)

(45.7b)

a /∈ P2

ν(a.P1) ‖ P2 ≡ ν(a.P1 ‖ P2)
(45.7c)

The last rule, called scope extrusion, will be important in the treatment of
communication in Section 45.5 on page 431. Since we identify processes up
to renaming of bound names, the requirement that a /∈ P2 in Rule (45.7c)
may always be met by choosing the name a suitably.

To account for the scopes of names (and to prepare for later generaliza-
tions) it is useful to introduce a static semantics for processes that ensures
that names are properly scoped. A signature, Σ, is, for the time being, a
finite set of channels. The judgement `Σ P proc states that a process, P, is
well-formed relative to the channels declared in the signature, Σ.

`Σ 1 proc
(45.8a)

`Σ P1 proc `Σ P2 proc

`Σ P1 ‖ P2 proc
(45.8b)

`Σ E event

`Σ $ E proc
(45.8c)

`Σ,a P proc

`Σ ν(a.P) proc
(45.8d)

The foregoing rules make use of an auxiliary judgement, `Σ E event, stating
that E is a well-formed event relative to Σ.

`Σ 0 event
(45.9a)

AUGUST 24, 2010 DRAFT 14:43



430 45.4 Private Channels

`Σ,a P proc

`Σ,a ?a;P event
(45.9b)

`Σ,a P proc

`Σ,a !a;P event
(45.9c)

`Σ E1 event `Σ E2 event

`Σ E1 + E2 event
(45.9d)

We shall also have need of the judgement `Σ α action stating that α is a
well-formed action relative to Σ:

`Σ,a ?a action
(45.10a)

`Σ,a !a action
(45.10b)

The dynamics is correspondingly generalized to account for the set of
active channels. The judgement P α7−→

Σ
P′ states that P transitions to P′ with

action α relative to channels Σ. The rules defining the dynamics are indexed
forms of those given above, together with an additional rule governing the
declaration of a channel. We give the complete set of rules here for the sake
of clarity.

$ (!a;P + E) !a7−→
Σ,a

P
(45.11a)

$ (?a;P + E) ?a7−→
Σ,a

P
(45.11b)

P1
α7−→
Σ

P′1

P1 ‖ P2
α7−→
Σ

P′1 ‖ P2

(45.11c)

P1
α7−→
Σ

P′1 P2
α7−→
Σ

P′2

P1 ‖ P2 7−→
Σ

P′1 ‖ P′2
(45.11d)

P α7−→
Σ

P′ `Σ α action

ν(a.P) α7−→
Σ

ν(a.P′)
(45.11e)

14:43 DRAFT AUGUST 24, 2010



45.5 Communication 431

Rule (45.11e) states that no process may interact with ν(a.P) along the
locally-allocated channel, a, since to do so would require that a already be
declared in Σ, which is precluded by the freshness convention on binders.

As an example, let us consider again the definition of the vending ma-
chine using replication, rather than recursion. The channel, v, used to ini-
tialize the machine should be considered private to the machine itself, and
not be made available to a user process. This is naturally expressed by the
process expression ν(v.V0 ‖V1), where V0 and V1 are as defined above us-
ing the designated channel, v. This process correctly simulates the original
machine, V, because it precludes interaction with a user process on channel
v. If U is a user process, the interaction begins as follows:

ν(v.V0 ‖V1) ‖U 7−→
Σ

ν(v.V2) ‖U ≡ ν(v.V2 ‖U)

The interaction continues as before, albeit within the scope of the binder,
provided that v has been chosen (by structural congruence) to be apart from
U, ensuring that it is private to the internal workings of the machine.

45.5 Communication

Synchronization is the coordination of the execution of two processes that
are willing to undertake the complementary actions of signalling and query-
ing a common channel. Synchronous communication is a natural generaliza-
tion of synchronization to allow data to be communicated between two
coordinating processes, a sender and a receiver. In principle any type of
data may be communicated from one process to another, and we can give
a uniform account of communication that is independent of the type of data
communicated between processes. However, communication becomes more
interesting in the presence of a type of channel references, which allow access
to a communication channel to be propagated from one process to another.
Communication may thereby be used to alter the interconnection topology
among processes as the program executes.

To account for interprocess communication we must enrich the lan-
guage of processes to include variables, as well as channels, in the formalism.
Variables range, as always, over types, and are given meaning by substitu-
tion. Channels, on the other hand, are assigned types that classify the data
carried on that channel, and are given meaning by send and receive events
that generalize the signal and query events considered earlier. The abstract

AUGUST 24, 2010 DRAFT 14:43



432 45.5 Communication

syntax of communication events is given by the following grammar:

Evt E ::= snd[τ][a](e; P) !a(e);P send
rcv[τ][a](x.P) ?a(x.P) receive

The event rcv[τ][a](x.P) represents the receipt of a value, x, of type τ on
the channel a, passing x to the process P. The variable, x, of type τ is bound
within P, and hence may be chosen freely, subject to the usual restrictions
on the choice of names of bound variables. The event snd[τ][a](e; P) rep-
resents the transmission of (the value of) the expression e on channel a,
continuing with the process P only once this value has been received.

To account for the type of data that may be sent on a channel, the syntax
of channel declaration is generalized to associate a type with each channel
name.

Proc P ::= new[τ](a.P) ν(a:τ.P) typed channel

The process new[τ](a.P) introduces a new channel name, a, with associ-
ated type τ for use within the process P. The name, a, is bound within P,
and hence may be chosen at will, subject only to avoidance of confusion of
distinct names.

The statics of communication extends that of synchronization by asso-
ciating types to channels and by considering variables that range over a
type. The judgement Γ `Σ P proc states that P is a well-formed process
involving the channels declared in Σ and the variables declared in Γ. It
is inductively defined by the following rules, wherein we assume that the
typing judgement Γ `Σ e : τ is given separately.

Γ `Σ 1 proc
(45.12a)

Γ `Σ P1 proc Γ `Σ P2 proc

Γ `Σ P1 ‖ P2 proc
(45.12b)

Γ `Σ,a:τ P proc

Γ `Σ ν(a:τ.P) proc
(45.12c)

Γ `Σ E event

Γ `Σ $ E proc
(45.12d)

Rules (45.12) make use of the auxiliary judgement Γ `Σ E event, stating that
E is a well-formed event relative to Γ and Σ, which is defined as follows:

Γ `Σ 0 event
(45.13a)

14:43 DRAFT AUGUST 24, 2010



45.5 Communication 433

Γ `Σ E1 event Γ `Σ E2 event

Γ `Σ E1 + E2 event
(45.13b)

Γ, x : τ `Σ,a:τ P proc

Γ `Σ,a:τ ?a(x.P) event
(45.13c)

Γ `Σ,a:τ e : τ Γ `Σ,a:τ P proc

Γ `Σ,a:τ !a(e);P event
(45.13d)

The dynamics of synchronous communication is similarly an extension
of the dynamics of synchronization. Actions are generalized to include the
transmitted value, as well as the channel and its orientation:

Act α ::= rcv[τ][a](e) ? a(e) send
snd[τ][a](e) ! a(e) receive

Complementarity is defined, as before, to switch the orientation of an ac-
tion: ? a(e) = ! a(e) and ! a(e) = ? a(e).

The statics ensures that the expression associated with these actions is
a value of a type suitable for the channel:

`Σ,a:τ e : τ e valΣ

`Σ,a:τ ! a(e) action
(45.14a)

`Σ,a:τ e : τ e valΣ

`Σ,a:τ ? a(e) action
(45.14b)

The dynamics of synchronous communication is defined by replacing
Rules (45.11a) and (45.11b) with the following two rules:

$ (!a(e);P + E)
! a(e)7−−→
Σ,a:τ

P
(45.15a)

e valΣ,a:τ

$ (?a(x.P)+ E)
? a(e)7−−→
Σ,a:τ

[e/x]P
(45.15b)

Rule (45.15b) is non-deterministic in that it “guesses” the value, e, to be
received along channel a.

The characteristic feature of synchronous communication is that both
the sender and the receiver of the message are blocked awaiting the in-
teraction and are resumed after its completion. While it is natural to con-
sider that the receiver be continued on receipt of a message, it is less obvi-
ous that the sender should be informed of its receipt. In effect there is an

AUGUST 24, 2010 DRAFT 14:43



434 45.6 Channel Passing

implicit acknowledgement protocol whereby the chosen receiver (among
many executing concurrently) informs the sender of the receipt of its mes-
sage. Put in other terms, there is an implicit “backchannel” on which the
receiver signals the successful receipt of a message, and which is queried
by the sender to ensure that the message has been delivered. This suggests
that synchronous communication may be decomposed into a simpler asyn-
chronous send operation, which transmits a message on a channel without
waiting for its receipt, together with channel passing to transmit an acknowl-
edgement channel along with the message data.

Asynchronous communication is defined by removing the synchronous
send event from the process calculus, and adding a new form of process
that simply sends a message on a channel. The syntax of asynchronous
send is as follows:

Proc P ::= snd[τ][a](e) ! a(e) send

The process snd[τ][a](e) sends e on channel a, and then terminates. With-
out the synchronous send event, every event is, up to structural congru-
ence, a choice of zero or more read events. The statics of asychronous send
is given by the following rule:

Γ `Σ,a:τ e : τ

Γ `Σ,a:τ ! a(e) proc
(45.16)

The dynamics is similarly straightforward:

e valΣ

! a(e)
! a(e)7−−→

Σ
1

(45.17)

The rule for interprocess communication remains unchanged, since the
action associated with the asychronous send is the same as in the syn-
chronous case. One may regard a pending asynchronous send as a “buffer”
in which the message is held until a receiver is selected.

45.6 Channel Passing

An interesting case of interprocess communication arises when a process
may pass a (reference to a) channel to another. Doing so allows the pattern
of connections among processes to evolve dynamically as the processes ex-
ecute, rather than be fixed in advance by the declarations of channel names

14:43 DRAFT AUGUST 24, 2010



45.6 Channel Passing 435

within the processes themselves. For example, two processes, P and Q,
may share a channel, a, along which they may send and receive messages.
If the scope of a is limited to these processes, then no other process, R, may
communicate on that channel; it is, in effect, a private channel between P
and Q. Such a situation may be described schematically by the process
expression

ν(a:τ.P ‖Q) ‖ R,

in which the process R is excluded from the scope of the channel a, which,
however, encompasses the processes P and Q. The type τ, which is arbi-
trary, is the type of messages communicated between P and Q.

Suppose that P and Q wish to include R in their conversation. They
may do so by passing the channel a to R (and to no other process) so that
upon receipt of this channel, R may communicate along a with P and Q.
For this to be possible, there must be a common channel, b, that is shared
by P, Q, and R (and no other processes), and, moreover, the type of b must
be such that a channel carrying messages of type τ may be transmitted
along it. Thus we envision the following structure for the system of three
processes:

ν(b:τ chan.ν(a:τ.P ‖Q) ‖ R),

where the type τ chan is the type of channels carrying data of type τ to be
defined shortly.

To include R into their conversation, one of the processes P and Q, say
P, must transmit the private channel, a, to R along the common channel, b.
The process R must correspondingly be prepared to receive the channel a
along b, after which it can communicate with P and Q by sending data of
type τ along a. This situation may be described roughly as follows:

ν(b:τ chan.ν(a:τ.$ (!b(a);P′) ‖Q) ‖ $ (?b(x.R′))).

Ignoring, for the moment, the abuse of notation in which we regard a both
as a channel and as a value of type a chan, this expression represents the
situation in which the process P is prepared to send a along b, and the
process R is prepared to receive it, binding it to the variable, x.

Let us consider how this process may evolve. One possibility is to syn-
chronize the send and receive along b, transmitting the channel a from P to
R. The problem is that the scope of a excludes R! Here is where the concept
of scope extrusion, introduced in Section 45.4 on page 428, comes into play.
Using α-equivalence to choosing the channel name a to be distinct from the
channel name b and apart from any channel that may occur freely in P′, we

AUGUST 24, 2010 DRAFT 14:43



436 45.6 Channel Passing

may show that the above process is structurally equivalent to the process

ν(b:τ chan.ν(a:τ.$ (!b(a);P′) ‖Q ‖ $ (?b(x.R′)))),

in which the scope of a has been extruded to include R. We may then effect
a synchronous communication to obtain the process

ν(b:τ chan.ν(a:τ.P′ ‖Q ‖ [a/x]R′))

in which the channel a has been substituted for the variable x in the process
R′.

To make this example fully precise, we must redress the abuse of nota-
tion mentioned earlier. There are two issues to consider. First, a channel
name, which is a symbol, is not itself a value of channel type, but rather
may be turned into a value by forming a reference to it. Second, we intro-
duce primitive events for sending and receiving on a dynamically determined
reference to a channel, in addition to those already considered, which spec-
ify a statically determined channel. Thus channel references are the introduc-
tory forms of channel types, and the dynamic send and receive events are
the eliminatory forms.1

The syntax of channel types is given by the following grammar:

Typ τ ::= chan(τ) τ chan channel type
Exp e ::= ch[a] & a reference
Evt E ::= sndref[τ](e1; e2; P) !! (e1; e2);P send

rcvref[τ](e; x.P) ?? (e; x.P) receive

The events sndref[τ](e1; e2; P) and rcvref[τ](e; x.P) are dynamic ver-
sions of the events snd[τ][a](e; P) and rcv[τ][a](x.P) in which the chan-
nel is determined dynamically by evaluation of an expression, rather than
statically as a fixed parameter of the event.

The statics of channel references is given by the following rules:

Γ `Σ,a:τ & a : τ chan
(45.18a)

Γ `Σ e1 : τ chan Γ `Σ e2 : τ Γ `Σ P proc

Γ `Σ !! (e1; e2);P event
(45.18b)

1It may be helpful to compare channel types with reference types as described in Chap-
ters 39 and 40. Channels correspond to assignables, and channel types correspond to refer-
ences to assignables.

14:43 DRAFT AUGUST 24, 2010



45.6 Channel Passing 437

Γ `Σ e : τ chan Γ, x : τ `Σ P proc

Γ `Σ ?? (e; x.P) event
(45.18c)

The dynamics is given by the following rules, in which we have omitted
the obvious rules for evaluation of the expressions occurring within events
to focus attention on the crucial transitions:

e valΣ
$ (!! (& a; e);P + E) 7−−→

Σ,a:τ
$ (!a(e);P + E) (45.19a)

$ (?? (& a; x.P)+ E) 7−−→
Σ,a:τ

$ (?a(x.P)+ E) (45.19b)

These rules may be viewed as providing a dynamics for events themselves,
which have thus far been essentially static data structures representing a
choice of statically-given events. Once the referenced channel of a dynamic
send or receive event has been determined, the dynamic event transitions
to the appropriate static event, allowing for communication to occur on
that channel.

Returning now to the scenario discussed earlier, we may use channel
references to formulate a dynamically evolving pattern of communication.
The overall setup is described by the following schema:

ν(b:τ chan.ν(a:τ.$ (!b(& a);P′) ‖Q) ‖ $ (?b(x.R′))).

Thus, the value passed from P to R is a reference to the channel a, which is
substituted for the variable, x, within R′ upon synchronization of the two
processes. The process R′ can then use dynamic communication events to
send or receive messages along the channel referenced by x. For example,
R′ might have the form

$ (!! (x; e);R′′)

for some expression, e, of type τ. When & a is substituted for x as a result of
synchronization, the resulting process,

$ (!! (& a; e);R′′),

evolves to the process
$ (!a(e);R′′),

which is prepared to send e along the channel a. Scope extrusion ensures
that the channel a is visible to all three processes P, Q, and R, so that com-
munication along a among them is possible.

AUGUST 24, 2010 DRAFT 14:43



438 45.7 Universality

45.7 Universality

In the presence of both channel references and recursive types the process
calculus with communication is a universal programming language. One
way to prove this is to show that it is capable of encoding the untyped λ
calculus with a call-by-name dynamics (see Chapter 20). The main idea
of the encoding is to associate each untyped λ-term, u, a process that rep-
resents it. This encoding is defined by induction on the structure of the
untyped term, u. For the sake of the induction, the representation is de-
fined relative to a channel reference that represents the context in which
the term occurs. Since every term in the untyped λ-calculus is a function,
a context is a “call site” for the function consisting of an argument and the
return context for the result of the application. A context is represented by
a channel reference on which will be transmitted an argument and a return
context representing a call site for a λ-term. Arguments are represented by
a channel reference on which will be transmitted a context in which to exe-
cute the binding of that variable. Because of the by-name interpretation of
application, variables are represented by references to “servers” that listen
on a channel for a channel reference representing a call site, and activate
their bindings with that channel reference.

We will write u @ z, where u is an untyped λ-term and z is a channel
reference representing the context in which u is to be evaluated. The free
variables of u will be represented by channels on which we may pass a
channel reference representing a context. Thus, the channel reference z will
be a value of type σ, and a free variable, x, will be a value of type σ chan.
The type σ is chosen to satisfy the isomorphism

σ ∼= (σ chan× σ) chan.

That is, a context is a channel on which is passed an argument and another
context. An argument, in turn, is a channel on which is passed a context.

The encoding of untyped λ-terms as processes is given by the following
equations:

x @ z = !!(x; z)

λ x. u @ z = $ ?? (unfold(z); 〈x, z′〉.u @ z′)
u1(u2) @ z =

ν(a1:τ.(u1 @ fold(& a1)) ‖ ν(a:σ.∗ $ ? a(z2.u2 @ z2) ‖ !a1(〈& a, z〉)))

Here we have taken a few liberties with the syntax for the sake of read-
ability. The type τ stands for the type expression σ chan× σ. Second, we

14:43 DRAFT AUGUST 24, 2010



45.8 Exercises 439

use the asynchronous form of a dynamic send operation, since there is no
need to be aware of the receipt of the message. Third, we use a product
pattern, rather than explicit projections, in the dynamic receive to obtain
the components of a pair.

The use of static and dynamic communication operations in the trans-
lation merits careful explanation. The call site of a λ-term is determined
dynamically; one cannot predict at translation time the context in which
the term will be used. In particular, the binding of a variable may be used
at many different call sites, corresponding to the multiple possible uses of
that variable. On the other hand the channel associated to an argument
is determined statically. The server associated to the variable listens on a
statically determined channel for a context in which to evaluate its binding,
which, as just remarked, is determined dynamically.

As a quick check on the correctness of the representation, consider the
following derivation:

(λ x. x)(y) @ z 7→∗

ν(a1:τ.($ ? a1(〈x, z′〉.!!(x; z′))) ‖ ν(a:σ.∗ $ ? a(z2.!!(y; z2)) ‖ !a1(〈& a, z〉)))
7→∗ ν(a:σ.∗ $ ? a(z2.!!(y; z2)) ‖ !a(z))
7→∗ ν(a:σ.∗ $ ? a(z2.!!(y; z2)) ‖ !!(y; z))

Apart from the idle server process listening on channel a, this is just the
translation y @ z.

45.8 Exercises

AUGUST 24, 2010 DRAFT 14:43



440 45.8 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 46

Concurrent Algol

This chapter must be revised to cohere with the preceding chapter on process
calculus.

In this chapter we integrate concurrency into a full-scale programming
language based on the Modernized Algol language developed in Chap-
ter 39. But rather than taking assignables as primitive and considering how
to integrate them with concurrency, we instead derive assignables from the
more basic concepts of communication and synchronization developed in
Chapter 45. When considered in the context of a full-scale language, the
concept of a channel in process calculus is reduced to the concept of a dy-
namic class as described in Chapter 38. In particular a message is nothing
more than a classified value whose class is the “channel” on which the mes-
sage is sent. The message sender classifies the data with the channel, and
any potential recipient selects relevant messages by pattern matching.

46.1 Concurrent Algol

The language Concurrent Algol, or L{nat cmd msg⇀}, is a variant of Mod-
ernized Algol (as described in Chapter 39) in which mutation of assignables
is replaced by the more general concept of synchronized communication
among concurrent processes. The syntax of Concurrent Algol, with par-
tial function and natural number types omitted, is given by the following



442 46.1 Concurrent Algol

grammar:

Type τ ::= cmd(τ) τ cmd commands
chan(τ) τ chan channel
msg msg message

Expr e ::= do(m) dom command
ch[a] & a channel ref
msg(e1; e2) e1〈e2〉 message

Cmd m ::= ret e ret e return
bnd(e; x.m) bnd x← e ; m sequence
spawn(e) spawn(e) spawn
send(e) send e send
recv recv receive
chan[τ] chan new channel

The type cmd(τ) is just the same as for Idealized Algol; it is the type of sus-
pended commands. The type chan(τ) of channels is synonymous with the
type class(τ) of dynamic class references, with the slight difference that
the command chan[τ] allocates a new class and returns a reference to it.
The type msg of messages is synonymous with the type clsfd of dynamically
classified values. The expression msg(e1; e2) creates a message from a chan-
nel reference and a payload. The command spawn(e) spawns a process that
executes the encapsulated command given by e. The commands send(e)
and recv send and receive messages (in a sense to be detailed shortly).

The statics of Concurrent Algol consists of two judgements, Γ `Σ e : τ
and Γ `Σ m ∼ τ, specifying the well-formed expressions and commands,
respectively. These are defined similarly to the corresponding judgements
of Idealized Algol, with the following rules governing the distinctive con-
structs of the concurrent variant:

Γ `Σ,a:τ ch[a] : chan(τ)
(46.1a)

Γ `Σ e1 : chan(τ) Γ `Σ e2 : τ

Γ `Σ msg(e1; e2) : msg
(46.1b)

Γ `Σ e : cmd(unit)
Γ `Σ spawn(e) ∼ unit

(46.1c)

Γ `Σ e : msg
Γ `Σ send(e) ∼ unit

(46.1d)

Γ `Σ recv ∼ msg
(46.1e)

14:43 DRAFT AUGUST 24, 2010



46.1 Concurrent Algol 443

Γ `Σ chan ∼ chan(τ)
(46.1f)

The dynamics of Concurrent Algol is defined in terms of configurations
of processes as described by the following grammar:

Proc p ::= stop 1 idle
proc(m) {m} atomic
par(p1; p2) p1 ‖ p2 parallel
new[τ](a.p) ν(a:τ.p) new channel

A process is much as described in Chapter 45, except that there is an atomic
process, proc(m), executing the command m, among which are the com-
munication primitives of the language.

The judgement `Σ P proc is defined by the following rules:1

`Σ 1 proc
(46.2a)

`Σ m ∼ τ

`Σ {m} proc
(46.2b)

`Σ p1 proc Σ ` p2 proc

`Σ p1 ‖ p2 proc
(46.2c)

`Σ,a:τ p proc

`Σ ν(a:τ.p) proc
(46.2d)

Processes are identified up to structural congruence as described in Chap-
ter 45.

The dynamics of L{nat cmd msg⇀} is given by a labelled transition sys-
tem p α7−→

Σ
p′, where the action α is, for the moment, abstract. As in Chap-

ter 45 the action α is the action complementary to the action α. Concurrently
executing processes sychronize on complementary actions.

m 7−→
Σ

m′

{m} 7−→
Σ
{m′}

(46.3a)

p1
α7−→
Σ

p′1

p1 ‖ p2
α7−→
Σ

p′1 ‖ p2

(46.3b)

1We shall only have need of closed processes with no free variables.

AUGUST 24, 2010 DRAFT 14:43



444 46.1 Concurrent Algol

p1
α7−→
Σ

p′1 p2
α7−→
Σ

p′2

p1 ‖ p2 7−→
Σ

p′1 ‖ p′2
(46.3c)

p α7−→
Σ

p′ `Σ α action

ν(a:τ.p) α7−→
Σ

ν(a:τ.p′)
(46.3d)

stopped revision here

The typing rules for the above forms of expression are as follows:

Γ `Σ,a:τ & a : τ chan
(46.4a)

Γ `Σ never : τ event
(46.4b)

Γ `Σ e1 : τ event Γ `Σ e2 : τ event

Γ `Σ e1 or e2 : τ event
(46.4c)

Γ `Σ e : τ chan

Γ `Σ rcv(e) : τ event
(46.4d)

Γ `Σ e : τ event Γ, x : τ `Σ m ∼ τ′

Γ `Σ e as x in m : τ′ event
(46.4e)

Rule (46.4c) requires that both events in a choice return the same type to
ensure that the type of the overall event is well-defined.

The typing rules for the new forms of command are as follows:

Γ `Σ e : τ cmd

Γ `Σ spawn(e) ∼ τ chan
(46.5a)

Γ `Σ chan ∼ τ chan
(46.5b)

Γ `Σ e1 : τ chan Γ `Σ e2 : τ

Γ `Σ send(e1; e2) ∼ unit
(46.5c)

Γ `Σ e : τ event

Γ `Σ sync(e) ∼ τ
(46.5d)

Rule (46.5d) specifies that synchronization with an event of type τ returns
a value of that type.

14:43 DRAFT AUGUST 24, 2010



46.1 Concurrent Algol 445

The dynamics is given by rules reminiscent of those for the process cal-
culus. First, we must define structural congruence of events to ensure that
the ordering of events is immaterial, and to ensure that event wrappers are
reducible to a standard form as described in Lemma 46.1 on the next page
below. The judgement e1 ≡Σ e2, where `Σ e1 : τ event, `Σ e2 : τ event,
e1 valΣ, and e2 valΣ, states that event values e1 and e2 are structurally equiv-
alent. It is defined to be the strongest congruence closed under these rules:

`Σ e : τ event
never or e ≡Σ e (46.6a)

e1 or e2 ≡Σ e2 or e1
(46.6b)

e1 or (e2 or e3) ≡Σ (e1 or e2) or e3
(46.6c)

never as x in m ≡Σ never
(46.6d)

rcv(a) as x in ret x ≡Σ rcv(a)
(46.6e)

(e1 or e2) as x in m ≡Σ (e1 as x in m) or (e2 as x in m)
(46.6f)

(e as x1 in m1) as x2 in m2 ≡Σ e as x1 in bnd x2← dom1 ; m2
(46.6g)

Rules (46.6d) to (46.6g) specify how to normalize events that are sequenced
with a command.

The following normal form is crucial for the dynamic semantics:

Lemma 46.1. If `Σ e : τ event and e valΣ, then e ≡Σ e1 or . . . or ek, for some
k ≥ 0 such that the expression ei is of the form rcv(bi) as xi in mi for each
1 ≤ i ≤ k.

Proof. A simple induction on Rules (46.4).

Now, identifying processes and events up to structural congruence, the
dynamics is defined by the following labelled transitions:2

{a : spawn(dom)} 7−→
Σ

ν(b:τ.{a : ret (& b)} ‖ {b : m}) (46.7a)

2The obvious rules for the evaluation of event expressions are omitted here for the sake
of concision.

AUGUST 24, 2010 DRAFT 14:43



446 46.2 Exercises

{a : chan} 7−→
Σ

ν(b:τ.{a : ret (& b)}) (46.7b)

e valΣ
{a : send(& b; e)} 7−−→

Σ,b:τ
! b(e) ‖ {a : ret 〈〉} (46.7c)

e valΣ
{a : sync((rcv(b) as x in m) or e)} 7−−→

Σ,b:τ
? b(x.{a : m}) (46.7d)

Rule (46.7a) allocates a fresh channel on which the result of executing the
spawned command will be transmitted. Another process may synchro-
nize on the termination of the spawned process by reading from this chan-
nel. Rule (46.7b) allocates a new channel and returns a reference to it.
Rule (46.7c) performs an asynchronous send in parallel with returning a
trivial value to the calling process. Rule (46.7d) non-deterministically chooses
a read event, and commits to it reading on that channel. The wrapper is ex-
ecuted once a value is received on that channel.

Theorem 46.2 (Preservation). If `Σ p proc and p α7−→
Σ

p′, then `Σ p′ proc.

Proof. Straightforward induction on the dynamic semantics given by Rules (46.7).

There is no analogue of the progress theorem, since the statics of pro-
cesses does not guarantee that a process does not get stuck waiting for a
message that will never arrive.

46.2 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XVIII

Modularity





Chapter 47

Separate Compilation and
Linking

47.1 Linking and Substitution

47.2 Exercises



450 47.2 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 48

Basic Modules



452

14:43 DRAFT AUGUST 24, 2010



Chapter 49

Parameterized Modules



454

14:43 DRAFT AUGUST 24, 2010



Part XIX

Equivalence





Chapter 50

Equational Reasoning for T

The beauty of functional programming is that equality of expressions in a
functional language corresponds very closely to familiar patterns of math-
ematical reasoning. For example, in the language L{nat→} of Chapter 12
in which we can express addition as the function plus, the expressions

λ (x:nat. λ (y:nat. plus(x)(y)))

and
λ (x:nat. λ (y:nat. plus(y)(x)))

are equal. In other words, the addition function as programmed inL{nat→}
is commutative.

This may seem to be obviously true, but why, precisely, is it so? More
importantly, what do we even mean when we say that two expressions of a
programming language are equal in this sense? It is intuitively obvious that
these two expressions are not definitionally equivalent, because they cannot
be shown equivalent by symbolic execution. One may say that these two
expressions are definitionally inequivalent because they describe different
algorithms: one proceeds by recursion on x, the other by recursion on y.
On the other hand, the two expressions are interchangeable in any com-
plete computation of a natural number, because the only use we can make
of them is to apply them to arguments and compute the result. We say
that two functions are extensionally equivalent if they give equal results for
equal arguments—in particular, they agree on all possible arguments. Since
their behavior on arguments is all that matters for calculating observable
results, we may expect that extensionally equivalent functions are equal in
the sense of being interchangeable in all complete programs. Thinking of



458 50.1 Observational Equivalence

the programs in which these functions occur as observations of their behav-
ior, we say that the these functions are observationally equivalent. The main
result of this chapter is that observational and extensional equivalence coin-
cide for a variant of L{nat→} in which the successor is evaluated eagerly,
so that a value of type nat is a numeral.

50.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart!
This may seem tautological, but it is not, because it depends on what we
consider to be a means of telling expressions apart. What “experiment”
are we permitted to perform on expressions in order to distinguish them?
What counts as an observation that, if different for two expressions, is a
sure sign that they are different?

If we permit ourselves to consider the syntactic details of the expres-
sions, then very few expressions could be considered equal. For example,
if it is deemed significant that an expression contains, say, more than one
function application, or that it has an occurrence of λ-abstraction, then very
few expressions would come out as equivalent. But such considerations
seem silly, because they conflict with the intuition that the significance of
an expression lies in its contribution to the outcome of a computation, and
not to the process of obtaining that outcome. In short, if two expressions
make the same contribution to the outcome of a complete program, then
they ought to be regarded as equal.

We must fix what we mean by a complete program. Two considerations
inform the definition. First, the dynamics of L{nat→} is given only for
expressions without free variables, so a complete program should clearly
be a closed expression. Second, the outcome of a computation should be
observable, so that it is evident whether the outcome of two computations
differs or not. We define a complete program to be a closed expression of type
nat, and define the observable behavior of the program to be the numeral to
which it evaluates.

An experiment on, or observation about, an expression is any means of
using that expression within a complete program. We define an expression
context to be an expression with a “hole” in it serving as a placeholder for
another expression. The hole is permitted to occur anywhere, including
within the scope of a binder. The bound variables within whose scope the
hole lies are said to be exposed (to capture) by the expression context. These
variables may be assumed, without loss of generality, to be distinct from

14:43 DRAFT AUGUST 24, 2010



50.1 Observational Equivalence 459

one another. A program context is a closed expression context of type nat—
that is, it is a complete program with a hole in it. The meta-variable C
stands for any expression context.

Replacement is the process of filling a hole in an expression context, C,
with an expression, e, which is written C{e}. Importantly, the free vari-
ables of e that are exposed by C are captured by replacement (which is why
replacement is not a form of substitution, which is defined so as to avoid
capture). If C is a program context, then C{e} is a complete program iff
all free variables of e are captured by the replacement. For example, if
C = λ (x:nat. ◦), and e = x + x, then

C{e} = λ (x:nat. x + x).

The free occurrences of x in e are captured by the λ-abstraction as a result
of the replacement of the hole in C by e.

We sometimes write C{◦} to emphasize the occurrence of the hole in
C. Expression contexts are closed under composition in that if C1 and C2 are
expression contexts, then so is

C{◦} , C1{C2{◦}},

and we have C{e} = C1{C2{e}}. The trivial, or identity, expression context
is the “bare hole”, written ◦, for which ◦{e} = e.

The statics of expressions of L{nat→} is extended to expression con-
texts by defining the typing judgement

C : (Γ . τ) (Γ′ . τ′)

so that if Γ ` e : τ, then Γ′ ` C{e} : τ′. This judgement may be inductively
defined by a collection of rules derived from the statics of L{nat→} (see
Rules (12.1)). Some representative rules are as follows:

◦ : (Γ . τ) (Γ . τ) (50.1a)

C : (Γ . τ) (Γ′ . nat)
s(C) : (Γ . τ) (Γ′ . nat)

(50.1b)

C : (Γ . τ) (Γ′ . nat) Γ′ ` e0 : τ′ Γ′, x : nat, y : τ′ ` e1 : τ′

natrec C {z⇒ e0 | s(x) with y⇒ e1} : (Γ . τ) (Γ′ . τ′)
(50.1c)

Γ′ ` e : nat C0 : (Γ . τ) (Γ′ . τ′) Γ′, x : nat, y : τ′ ` e1 : τ′

natrec e {z⇒C0 | s(x) with y⇒ e1} : (Γ . τ) (Γ′ . τ′)
(50.1d)

AUGUST 24, 2010 DRAFT 14:43



460 50.1 Observational Equivalence

Γ′ ` e : nat Γ′ ` e0 : τ′ C1 : (Γ . τ) (Γ′, x : nat, y : τ′ . τ′)

natrec e {z⇒ e0 | s(x) with y⇒C1} : (Γ . τ) (Γ′ . τ′)
(50.1e)

C2 : (Γ . τ) (Γ′, x : τ1 . τ2)

λ (x:τ1. C2) : (Γ . τ) (Γ′ . τ1 → τ2)
(50.1f)

C1 : (Γ . τ) (Γ′ . τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ . τ) (Γ′ . τ′)
(50.1g)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ . τ) (Γ′ . τ2)

e1(C2) : (Γ . τ) (Γ′ . τ′)
(50.1h)

Lemma 50.1. If C : (Γ . τ) (Γ′ . τ′), then Γ′ ⊆ Γ, and if Γ ` e : τ, then
Γ′ ` C{e} : τ′.

Observe that the trivial context consisting only of a “hole” acts as the
identity under replacement. Moreover, contexts are closed under composi-
tion in the following sense.

Lemma 50.2. If C : (Γ . τ) (Γ′ . τ′), and C ′ : (Γ′ . τ′) (Γ′′ . τ′′), then
C ′{C{◦}} : (Γ . τ) (Γ′′ . τ′′).

Lemma 50.3. If C : (Γ . τ) (Γ′ . τ′) and x /∈ dom(Γ), then C : (Γ, x : σ . τ) (Γ′, x : σ . τ′).

Proof. By induction on Rules (50.1).

A complete program is a closed expression of type nat.

Definition 50.1. We say that two complete programs, e and e′, are Kleene equiv-
alent, written e ' e′, iff there exists n ≥ 0 such that e 7→∗ n and e′ 7→∗ n.

Kleene equivalence is evidently reflexive and symmetric; transitivity
follows from determinacy of evaluation. Closure under converse evalua-
tion also follows directly from determinacy. It is obviously consistent in
that 0 6' 1.

Definition 50.2. Suppose that Γ ` e : τ and Γ ` e′ : τ are two expressions of the
same type. We say that e and e′ are observationally equivalent, written e ∼= e′ :
τ [Γ], iff C{e} ' C{e′} for every program context C : (Γ . τ) (∅ . nat).

In other words, for all possible experiments, the outcome of an experiment
on e is the same as the outcome on e′. This is obviously an equivalence
relation.

14:43 DRAFT AUGUST 24, 2010



50.1 Observational Equivalence 461

A family of equivalence relations e1 E e2 : τ [Γ] is a congruence iff it is
preserved by all contexts. That is,

if e E e′ : τ [Γ], then C{e} E C{e′} : τ′ [Γ′]

for every expression context C : (Γ . τ) (Γ′ . τ′). Such a family of rela-
tions is consistent iff e E e′ : nat [∅] implies e ' e′.

Theorem 50.4. Observational equivalence is the coarsest consistent congruence
on expressions.

Proof. Consistency follows directly from the definition by noting that the
trivial context is a program context. Observational equivalence is obviously
an equivalence relation. To show that it is a congruence, we need only ob-
serve that type-correct composition of a program context with an arbitrary
expression context is again a program context. Finally, it is the coarsest such
equivalence relation, for if e E e′ : τ [Γ] for some consistent congruence E ,
and if C : (Γ . τ) (∅ . nat), then by congruence C{e} E C{e′} : nat [∅],
and hence by consistency C{e} ' C{e′}.

A closing substitution, γ, for the typing context Γ = x1 : τ1, . . . , xn : τn is
a finite function assigning closed expressions e1 : τ1, . . . , en : τn to x1, . . . , xn,
respectively. We write γ̂(e) for the substitution [e1, . . . , en/x1, . . . , xn]e, and
write γ : Γ to mean that if x : τ occurs in Γ, then there exists a closed
expression, e, such that γ(x) = e and e : τ. We write γ ∼= γ′ : Γ, where γ : Γ
and γ′ : Γ, to express that γ(x) ∼= γ′(x) : Γ(x) for each x declared in Γ.

Lemma 50.5. If e ∼= e′ : τ [Γ] and γ : Γ, then γ̂(e) ∼= γ̂(e′) : τ. Moreover, if
γ ∼= γ′ : Γ, then γ̂(e) ∼= γ̂′(e) : τ and γ̂(e′) ∼= γ̂′(e′) : τ.

Proof. Let C : (∅ . τ) (∅ . nat) be a program context; we are to show
that C{γ̂(e)} ' C{γ̂(e′)}. Since C has no free variables, this is equivalent
to showing that γ̂(C{e}) ' γ̂(C{e′}). Let D be the context

λ (x1:τ1. . . . λ (xn:τn. C{◦}))(e1) . . .(en),

where Γ = x1 : τ1, . . . , xn : τn and γ(x1) = e1, . . . , γ(xn) = en. By Lemma 50.3
on the facing page we have C : (Γ . τ) (Γ . nat), from which it follows
directly that D : (Γ . τ) (∅ . nat). Since e ∼= e′ : τ [Γ], we have D{e} '
D{e′}. But by construction D{e} ' γ̂(C{e}), and D{e′} ' γ̂(C{e′}), so
γ̂(C{e}) ' γ̂(C{e′}). Since C is arbitrary, it follows that γ̂(e) ∼= γ̂(e′) : τ.

Defining D′ similarly to D, but based on γ′, rather than γ, we may also
show that D′{e} ' D′{e′}, and hence γ̂′(e) ∼= γ̂′(e′) : τ. Now if γ ∼= γ′ : Γ,

AUGUST 24, 2010 DRAFT 14:43



462 50.2 Extensional Equivalence

then by congruence we have D{e} ∼= D′{e} : nat, and D{e′} ∼= D′{e′} :
nat. It follows that D{e′} ∼= D′{e′} : nat, and so, by consistency of ob-
servational equivalence, we have D{e′} ' D′{e′}, which is to say that
γ̂(e) ∼= γ̂′(e′) : τ.

Theorem 50.4 on the previous page licenses the principle of proof by coin-
duction: to show that e ∼= e′ : τ [Γ], it is enough to exhibit a consistent con-
gruence, E , such that e E e′ : τ [Γ]. It can be difficult to construct such a
relation. In the next section we will provide a general method for doing so
that exploits types.

50.2 Extensional Equivalence

The key to simplifying reasoning about observational equivalence is to ex-
ploit types. Informally, we may classify the uses of expressions of a type
into two broad categories, the passive and the active uses. The passive uses
are those that merely manipulate expressions without actually inspecting
them. For example, we may pass an expression of type τ to a function that
merely returns it. The active uses are those that operate on the expression
itself; these are the elimination forms associated with the type of that ex-
pression. For the purposes of distinguishing two expressions, it is only the
active uses that matter; the passive uses merely manipulate expressions at
arm’s length, affording no opportunities to distinguish one from another.

This leads to the definition of extensional equivalence alluded to in the
introduction.

Definition 50.3. Extensional equivalence is a family of relations e ∼ e′ : τ
between closed expressions of type τ. It is defined by induction on τ as follows:

e ∼ e′ : nat iff e ' e′

e ∼ e′ : τ1 → τ2 iff if e1 ∼ e′1 : τ1, then e(e1) ∼ e′(e′1) : τ2

The definition of extensional equivalence at type nat licenses the fol-
lowing principle of proof by nat-induction. To show that E (e, e′) whenever
e ∼ e′ : nat, it is enough to show that

1. E (0, 0), and

2. if E (n, n), then E (n + 1, n + 1).

14:43 DRAFT AUGUST 24, 2010



50.3 Extensional and Observational Equivalence . . . 463

This is, of course, justified by mathematical induction on n ≥ 0, where
e 7→∗ n and e′ 7→∗ n by the definition of Kleene equivalence.

Extensional equivalence is extended to open terms by substitution of
related closed terms to obtain related results. If γ and γ′ are two substitu-
tions for Γ, we define γ ∼ γ′ : Γ to hold iff γ(x) ∼ γ′(x) : Γ(x) for every
variable, x, such that Γ ` x : τ. Finally, we define e ∼ e′ : τ [Γ] to mean that
γ̂(e) ∼ γ̂′(e′) : τ whenever γ ∼ γ′ : Γ.

50.3 Extensional and Observational Equivalence Co-
incide

In this section we prove the coincidence of observational and extensional
equivalence.

Lemma 50.6 (Converse Evaluation). Suppose that e ∼ e′ : τ. If d 7→ e, then
d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Proof. By induction on the structure of τ. If τ = nat, then the result follows
from the closure of Kleene equivalence under converse evaluation. If τ =
τ1 → τ2, then suppose that e ∼ e′ : τ, and d 7→ e. To show that d ∼ e′ : τ,
we assume e1 ∼ e′1 : τ1 and show d(e1) ∼ e′(e′1) : τ2. It follows from the
assumption that e(e1) ∼ e′(e′1) : τ2. Noting that d(e1) 7→ e(e1), the result
follows by induction.

Lemma 50.7 (Consistency). If e ∼ e′ : nat, then e ' e′.

Proof. Immediate, from Definition 50.3 on the facing page.

Theorem 50.8 (Reflexivity). If Γ ` e : τ, then e ∼ e : τ [Γ].

Proof. We are to show that if Γ ` e : τ and γ ∼ γ′ : Γ, then γ̂(e) ∼ γ̂′(e) : τ.
The proof proceeds by induction on typing derivations; we consider a few
representative cases.

Consider the case of Rule (11.4a), in which τ = τ1 → τ2 and e =

λ (x:τ1. e2). Since e is a value, we are to show that

λ (x:τ1. γ̂(e2)) ∼ λ (x:τ1. γ̂′(e2)) : τ1 → τ2.

Assume that e1 ∼ e′1 : τ1; we are to show that [e1/x]γ̂(e2) ∼ [e′1/x]γ̂′(e2) :
τ2. Let γ2 = γ[x 7→ e1] and γ′2 = γ′[x 7→ e′1], and observe that γ2 ∼ γ′2 :
Γ, x : τ1. Therefore, by induction we have γ̂2(e2) ∼ γ̂′2(e2) : τ2, from which
the result follows directly.

AUGUST 24, 2010 DRAFT 14:43



464 50.3 Extensional and Observational Equivalence . . .

Now consider the case of Rule (12.1d), for which we are to show that

natrec(γ̂(e); γ̂(e0); x.y.γ̂(e1)) ∼ natrec(γ̂′(e); γ̂′(e0); x.y.γ̂′(e1)) : τ.

By the induction hypothesis applied to the first premise of Rule (12.1d), we
have

γ̂(e) ∼ γ̂′(e) : nat.

We proceed by nat-induction. It suffices to show that

natrec(z; γ̂(e0); x.y.γ̂(e1)) ∼ natrec(z; γ̂′(e0); x.y.γ̂′(e1)) : τ, (50.2)

and that

natrec(s(n); γ̂(e0); x.y.γ̂(e1)) ∼ natrec(s(n); γ̂′(e0); x.y.γ̂′(e1)) : τ,
(50.3)

assuming

natrec(n; γ̂(e0); x.y.γ̂(e1)) ∼ natrec(n; γ̂′(e0); x.y.γ̂′(e1)) : τ. (50.4)

To show (50.2), by Lemma 50.6 on the previous page it is enough to
show that γ̂(e0) ∼ γ̂′(e0) : τ. This is assured by the outer inductive hy-
pothesis applied to the second premise of Rule (12.1d).

To show (50.3), define

δ = γ[x 7→ n][y 7→ natrec(n; γ̂(e0); x.y.γ̂(e1))]

and
δ′ = γ′[x 7→ n][y 7→ natrec(n; γ̂′(e0); x.y.γ̂′(e1))].

By (50.4) we have δ ∼ δ′ : Γ, x : nat, y : τ. Consequently, by the outer induc-
tive hypothesis applied to the third premise of Rule (12.1d), and Lemma 50.6
on the preceding page, the required follows.

Corollary 50.9 (Termination). If e : τ, then there exists e′ val such that e 7→∗ e′.

Symmetry and transitivity of extensional equivalence are easily estab-
lished by induction on types; extensional equivalence is therefore an equiv-
alence relation.

Lemma 50.10 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and e ∼ e′ : τ [Γ],
then C0{e} ∼ C0{e′} : τ0 [Γ0].

14:43 DRAFT AUGUST 24, 2010



50.3 Extensional and Observational Equivalence . . . 465

Proof. By induction on the derivation of the typing of C0. We consider a rep-
resentative case in which C0 = λ (x:τ1. C2) so that C0 : (Γ . τ) (Γ0 . τ1 → τ2)
and C2 : (Γ . τ) (Γ0, x : τ1 . τ2). Assuming e ∼ e′ : τ [Γ], we are to show
that

C0{e} ∼ C0{e′} : τ1 → τ2 [Γ0],

which is to say

λ (x:τ1. C2{e}) ∼ λ (x:τ1. C2{e′}) : τ1 → τ2 [Γ0].

We know, by induction, that

C2{e} ∼ C2{e′} : τ2 [Γ0, x : τ1].

Suppose that γ0 ∼ γ′0 : Γ0, and that e1 ∼ e′1 : τ1. Let γ1 = γ0[x 7→ e1],
γ′1 = γ′0[x 7→ e′1], and observe that γ1 ∼ γ′1 : Γ0, x : τ1. By Definition 50.3 on
page 464 it is enough to show that

γ̂1(C2{e}) ∼ γ̂′1(C2{e′}) : τ2,

which follows immediately from the inductive hypothesis.

Theorem 50.11. If e ∼ e′ : τ [Γ], then e ∼= e′ : τ [Γ].

Proof. By Lemmas 50.7 on page 465 and 50.10 on the preceding page, and
Theorem 50.4 on page 463.

Corollary 50.12. If e : nat, then e ∼= n : nat, for some n ≥ 0.

Proof. By Theorem 50.8 on page 465 we have e ∼ e : τ. Hence for some
n ≥ 0, we have e ∼ n : nat, and so by Theorem 50.11, e ∼= n : nat.

Lemma 50.13. For closed expressions e : τ and e′ : τ, if e ∼= e′ : τ, then e ∼ e′ : τ.

Proof. We proceed by induction on the structure of τ. If τ = nat, consider
the empty context to obtain e ' e′, and hence e ∼ e′ : nat. If τ = τ1 → τ2,
then we are to show that whenever e1 ∼ e′1 : τ1, we have e(e1) ∼ e′(e′1) :
τ2. By Theorem 50.11 we have e1

∼= e′1 : τ1, and hence by congruence of
observational equivalence it follows that e(e1) ∼= e′(e′1) : τ2, from which
the result follows by induction.

Theorem 50.14. If e ∼= e′ : τ [Γ], then e ∼ e′ : τ [Γ].

AUGUST 24, 2010 DRAFT 14:43



466 50.4 Some Laws of Equivalence

Proof. Assume that e ∼= e′ : τ [Γ], and that γ ∼ γ′ : Γ. By Theorem 50.11
on the preceding page we have γ ∼= γ′ : Γ, so by Lemma 50.5 on page 463
γ̂(e) ∼= γ̂′(e′) : τ. Therefore, by Lemma 50.13 on the preceding page, γ̂(e) ∼ γ̂(e′) :
τ.

Corollary 50.15. e ∼= e′ : τ [Γ] iff e ∼ e′ : τ [Γ].

Theorem 50.16. If Γ ` e ≡ e′ : τ, then e ∼ e′ : τ [Γ], and hence e ∼= e′ : τ [Γ].

Proof. By an argument similar to that used in the proof of Theorem 50.8 on
page 465 and Lemma 50.10 on page 466, then appealing to Theorem 50.11
on the previous page.

Corollary 50.17. If e ≡ e′ : nat, then there exists n ≥ 0 such that e 7→∗ n and
e′ 7→∗ n.

Proof. By Theorem 50.16 we have e ∼ e′ : nat and hence e ' e′.

50.4 Some Laws of Equivalence

In this section we summarize some useful principles of observational equiv-
alence for L{nat→}. For the most part these may be proved as laws of
extensional equivalence, and then transferred to observational equivalence
by appeal to Corollary 50.15. The laws are presented as inference rules with
the meaning that if all of the premises are true judgements about observa-
tional equivalence, then so are the conclusions. In other words each rule is
admissible as a principle of observational equivalence.

50.4.1 General Laws

Extensional equivalence is indeed an equivalence relation: it is reflexive,
symmetric, and transitive.

e ∼= e : τ [Γ] (50.5a)

e′ ∼= e : τ [Γ]
e ∼= e′ : τ [Γ]

(50.5b)

e ∼= e′ : τ [Γ] e′ ∼= e′′ : τ [Γ]
e ∼= e′′ : τ [Γ]

(50.5c)

14:43 DRAFT AUGUST 24, 2010



50.4 Some Laws of Equivalence 467

Reflexivity is an instance of a more general principle, that all defini-
tional equivalences are observational equivalences.

Γ ` e ≡ e′ : τ
e ∼= e′ : τ [Γ] (50.6a)

This is called the principle of symbolic evaluation.
Observational equivalence is a congruence: we may replace equals by

equals anywhere in an expression.

e ∼= e′ : τ [Γ] C : (Γ . τ) (Γ′ . τ′)

C{e} ∼= C{e′} : τ′ [Γ′]
(50.7a)

Equivalence is stable under substitution for free variables, and substi-
tuting equivalent expressions in an expression gives equivalent results.

Γ ` e : τ e2 ∼= e′2 : τ′ [Γ, x : τ]

[e/x]e2 ∼= [e/x]e′2 : τ′ [Γ]
(50.8a)

e1
∼= e′1 : τ [Γ] e2 ∼= e′2 : τ′ [Γ, x : τ]

[e1/x]e2 ∼= [e′1/x]e′2 : τ′ [Γ]
(50.8b)

50.4.2 Extensionality Laws

Two functions are equivalent if they are equivalent on all arguments.

e(x) ∼= e′(x) : τ2 [Γ, x : τ1]

e ∼= e′ : τ1 → τ2 [Γ]
(50.9)

Consequently, every expression of function type is equivalent to a λ-
abstraction:

e ∼= λ (x:τ1. e(x)) : τ1 → τ2 [Γ] (50.10)

50.4.3 Induction Law

An equation involving a free variable, x, of type nat can be proved by in-
duction on x.

[n/x]e ∼= [n/x]e′ : τ [Γ] (for every n ∈N)

e ∼= e′ : τ [Γ, x : nat]
(50.11a)

To apply the induction rule, we proceed by mathematical induction on
n ∈N, which reduces to showing:

AUGUST 24, 2010 DRAFT 14:43



468 50.5 Exercises

1. [z/x]e ∼= [z/x]e′ : τ [Γ], and

2. [s(n)/x]e ∼= [s(n)/x]e′ : τ [Γ], if [n/x]e ∼= [n/x]e′ : τ [Γ].

50.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 51

Equational Reasoning for PCF

In this Chapter we develop the theory of observational equivalence for
L{nat⇀}, with an eager interpretation of the type of natural numbers.
The development proceeds long lines similar to those in Chapter 50, but is
complicated by the presence of general recursion. The proof depends on
the concept of an admissible relation, one that admits the principle of proof by
fixed point induction.

51.1 Observational Equivalence

The definition of observational equivalence, along with the auxiliary notion
of Kleene equivalence, are defined similarly to Chapter 50, but modified to
account for the possibility of non-termination.

The collection of well-formed L{nat⇀} contexts is inductively defined
in a manner directly analogous to that in Chapter 50. Specifically, we de-
fine the judgement C : (Γ . τ) (Γ′ . τ′) by rules similar to Rules (50.1),
modified for L{nat⇀}. (We leave the precise definition as an exercise for
the reader.) When Γ and Γ′ are empty, we write just C : τ  τ′.

A complete program is a closed expression of type nat.

Definition 51.1. We say that two complete programs, e and e′, are Kleene equiv-
alent, written e ' e′, iff for every n ≥ 0, e 7→∗ n iff e′ 7→∗ n.

Kleene equivalence is easily seen to be an equivalence relation and to
be closed under converse evaluation. Moreover, 0 6' 1, and, if e and e′ are
both divergent, then e ' e′.

Observational equivalence is defined as in Chapter 50.



470 51.2 Extensional Equivalence

Definition 51.2. We say that Γ ` e : τ and Γ ` e : τ are observationally, or
contextually, equivalent iff for every program context C : (Γ . τ) (∅ . nat),
C{e} ' C{e′}.

Theorem 51.1. Observational equivalence is the coarsest consistent congruence.

Proof. See the proof of Theorem 50.4 on page 463.

Lemma 51.2 (Substitution and Functionality). If e ∼= e′ : τ [Γ] and γ : Γ,
then γ̂(e) ∼= γ̂(e′) : τ. Moreover, if γ ∼= γ′ : Γ, then γ̂(e) ∼= γ̂′(e) : τ and
γ̂(e′) ∼= γ̂′(e′) : τ.

Proof. See Lemma 50.5 on page 463.

51.2 Extensional Equivalence

Definition 51.3. Extensional equivalence, e ∼ e′ : τ, between closed expres-
sions of type τ is defined by induction on τ as follows:

e ∼ e′ : nat iff e ' e′

e ∼ e′ : τ1 → τ2 iff e1 ∼ e′1 : τ1 implies e(e1) ∼ e′(e′1) : τ2

Formally, extensional equivalence is defined as in Chapter 50, except
that the definition of Kleene equivalence is altered to account for non-termination.
Extensional equivalence is extended to open terms by substitution. Specif-
ically, we define e ∼ e′ : τ [Γ] to mean that γ̂(e) ∼ γ̂′(e′) : τ whenever
γ ∼ γ′ : Γ.

Lemma 51.3 (Strictness). If e : τ and e′ : τ are both divergent, then e ∼ e′ : τ.

Proof. By induction on the structure of τ. If τ = nat, then the result follows
immediately from the definition of Kleene equivalence. If τ = τ1 → τ2,
then e(e1) and e′(e′1) diverge, so by induction e(e1) ∼ e′(e′1) : τ2, as re-
quired.

Lemma 51.4 (Converse Evaluation). Suppose that e ∼ e′ : τ. If d 7→ e, then
d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

14:43 DRAFT AUGUST 24, 2010



51.3 Extensional and Observational Equivalence . . . 471

51.3 Extensional and Observational Equivalence Co-
incide

As a technical convenience, we enrich L{nat⇀} with bounded recursion,
with abstract syntax fixm[τ](x.e) and concrete syntax fixm x:τ is e, where
m ≥ 0. The statics of bounded recursion is the same as for general recur-
sion:

Γ, x : τ ` e : τ

Γ ` fixm[τ](x.e) : τ
. (51.1a)

The dynamics of bounded recursion is defined as follows:

fix0[τ](x.e) 7→ fix0[τ](x.e) (51.2a)

fixm+1[τ](x.e) 7→ [fixm[τ](x.e)/x]e (51.2b)

If m is positive, the recursive bound is decremented so that subsequent uses
of it will be limited to one fewer unrolling. If m reaches zero, the expression
steps to itself so that the computation diverges with no result.

The key property of bounded recursion is the principle of fixed point
induction, which permits reasoning about a recursive computation by in-
duction on the number of unrollings required to reach a value. The proof
relies on compactness, which will be stated and proved in Section 51.4 on
page 476 below.

Theorem 51.5 (Fixed Point Induction). Suppose that x : τ ` e : τ. If

(∀m ≥ 0) fixm x:τ is e ∼ fixm x:τ is e′ : τ,

then fix x:τ is e ∼ fix x:τ is e′ : τ.

Proof. Define an applicative context, A, to be either a hole, ◦, or an appli-
cation of the form A(e), where A is an applicative context. (The typing
judgement A : ρ τ is a special case of the general typing judgment for
contexts.) Define extensional equivalence of applicative contexts, written
A ≈ A′ : ρ τ, by induction on the structure of A as follows:

1. ◦ ≈ ◦ : ρ ρ;

2. ifA ≈ A′ : ρ τ2 → τ and e2 ∼ e′2 : τ2, thenA(e2) ≈ A′(e′2) : ρ τ.

We prove by induction on the structure of τ, if A ≈ A′ : ρ τ and

for every m ≥ 0, A{fixm x:ρ is e} ∼ A′{fixm x:ρ is e′} : τ, (51.3)

AUGUST 24, 2010 DRAFT 14:43



472 51.3 Extensional and Observational Equivalence . . .

then
A{fix x:ρ is e} ∼ A′{fix x:ρ is e′} : τ. (51.4)

Choosing A = A′ = ◦ (so that ρ = τ) completes the proof.
If τ = nat, then assume that A ≈ A′ : ρ nat and (51.3). By Defini-

tion 51.3 on page 472, we are to show

A{fix x:ρ is e} ' A′{fix x:ρ is e′}.

By Corollary 51.14 on page 479 there exists m ≥ 0 such that

A{fix x:ρ is e} ' A{fixm x:ρ is e}.

By (51.3) we have

A{fixm x:ρ is e} ' A′{fixm x:ρ is e′}.

By Corollary 51.14 on page 479

A′{fixm x:ρ is e′} ' A′{fix x:ρ is e′}.

The result follows by transitivity of Kleene equivalence.
If τ = τ1 ⇀ τ2, then by Definition 51.3 on page 472, it is enough to show

A{fix x:ρ is e}(e1) ∼ A′{fix x:ρ is e′}(e′1) : τ2

whenever e1 ∼ e′1 : τ1. Let A2 = A(e1) and A′2 = A′(e′1). It follows
from (51.3) that for every m ≥ 0

A2{fixm x:ρ is e} ∼ A′2{fixm x:ρ is e′} : τ2.

Noting that A2 ≈ A′2 : ρ τ2, we have by induction

A2{fix x:ρ is e} ∼ A′2{fix x:ρ is e′} : τ2,

as required.

Lemma 51.6 (Reflexivity). If Γ ` e : τ, then e ∼ e : τ [Γ].

Proof. The proof proceeds along the same lines as the proof of Theorem 50.8
on page 465. The main difference is the treatment of general recursion,
which is proved by fixed point induction. Consider Rule (13.1g). Assuming
γ ∼ γ′ : Γ, we are to show that

fix x:τ is γ̂(e) ∼ fix x:τ is γ̂′(e) : τ.

14:43 DRAFT AUGUST 24, 2010



51.3 Extensional and Observational Equivalence . . . 473

By Theorem 51.5 on page 473 it is enough to show that, for every m ≥ 0,

fixm x:τ is γ̂(e) ∼ fixm x:τ is γ̂′(e) : τ.

We proceed by an inner induction on m. When m = 0 the result is imme-
diate, since both sides of the desired equivalence diverge. Assuming the
result for m, and applying Lemma 51.4 on page 472, it is enough to show
that γ̂(e1) ∼ γ̂′(e1) : τ, where

e1 = [fixm x:τ is γ̂(e)/x]γ̂(e), and (51.5)

e′1 = [fixm x:τ is γ̂′(e)/x]γ̂′(e). (51.6)

But this follows directly from the inner and outer inductive hypotheses.
For by the outer inductive hypothesis, if

fixm x:τ is γ̂(e) ∼ fixm x:τ is γ̂′(e) : τ,

then

[fixm x:τ is γ̂(e)/x]γ̂(e) ∼ [fixm x:τ is γ̂′(e)/x]γ̂′(e) : τ.

But the hypothesis holds by the inner inductive hypothesis, from which the
result follows.

Symmetry and transitivity of eager extensional equivalence are easily
established by induction on types, noting that Kleene equivalence is sym-
metric and transitive. Eager extensional equivalence is therefore an equiv-
alence relation.

Lemma 51.7 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and e ∼ e′ : τ [Γ], then
C0{e} ∼ C0{e′} : τ0 [Γ0].

Proof. By induction on the derivation of the typing of C0, following along
similar lines to the proof of Lemma 51.6 on the facing page.

Logical equivalence is consistent, by definition. Consequently, it is con-
tained in observational equivalence.

Theorem 51.8. If e ∼ e′ : τ [Γ], then e ∼= e′ : τ [Γ].

Proof. By consistency and congruence of extensional equivalence.

Lemma 51.9. If e ∼= e′ : τ, then e ∼ e′ : τ.

AUGUST 24, 2010 DRAFT 14:43



474 51.4 Compactness

Proof. By induction on the structure of τ. If τ = nat, then the result is im-
mediate, since the empty expression context is a program context. If τ =
τ1 → τ2, then suppose that e1 ∼ e′1 : τ1. We are to show that e(e1) ∼ e′(e′1) :
τ2. By Theorem 51.8 on the previous page e1

∼= e′1 : τ1, and hence by
Lemma 51.2 on page 472 e(e1) ∼= e′(e′1) : τ2, from which the result follows
by induction.

Theorem 51.10. If e ∼= e′ : τ [Γ], then e ∼ e′ : τ [Γ].

Proof. Assume that e ∼= e′ : τ [Γ]. Suppose that γ ∼ γ′ : Γ. By Theo-
rem 51.8 on the previous page we have γ ∼= γ′ : Γ, and so by Lemma 51.2
on page 472 we have

γ̂(e) ∼= γ̂′(e′) : τ.

Therefore by Lemma 51.9 on the previous page we have

γ̂(e) ∼ γ̂′(e′) : τ.

Corollary 51.11. e ∼= e′ : τ [Γ] iff e ∼ e′ : τ [Γ].

51.4 Compactness

The principle of fixed point induction is derived from a critical property of
L{nat⇀}, called compactness. This property states that only finitely many
unwindings of a fixed point expression are needed in a complete evaluation
of a program. While intuitively obvious (one cannot complete infinitely
many recursive calls in a finite computation), it is rather tricky to state and
prove rigorously.

The proof of compactness (Theorem 51.13 on page 478) makes use of
the stack machine for L{nat⇀} defined in Chapter 31, augmented with
the following transitions for bounded recursive expressions:

k . fix0 x:τ is e 7→ k . fix0 x:τ is e (51.7a)

k . fixm+1 x:τ is e 7→ k . [fixm x:τ is e/x]e (51.7b)

It is straightforward to extend the proof of correctness of the stack machine
(Corollary 31.4 on page 275) to account for bounded recursion.

14:43 DRAFT AUGUST 24, 2010



51.4 Compactness 475

To get a feel for what is involved in the compactness proof, consider
first the factorial function, f , in L{nat⇀}:

fix f:nat⇀ nat isλ (x:nat. ifz x {z⇒ s(z) | s(x′)⇒ x ∗ f(x′)}).

Obviously evaluation of f(n) requires n recursive calls to the function it-
self. This means that, for a given input, n, we may place a bound, m, on the
recursion that is sufficient to ensure termination of the computation. This
can be expressed formally using the m-bounded form of general recursion,

fixm f:nat⇀ nat isλ (x:nat. ifz x {z⇒ s(z) | s(x′)⇒ x ∗ f(x′)}).

Call this expression f (m). It follows from the definition of f that if f(n) 7→∗
p, then f (m)(n) 7→∗ p for some m ≥ 0 (in fact, m = n suffices).

When considering expressions of higher type, we cannot expect to get
the same result from the bounded recursion as from the unbounded. For
example, consider the addition function, a, of type τ = nat⇀ (nat⇀ nat),
given by the expression

fix p:τ isλ (x:nat. ifz x {z⇒ id | s(x′)⇒ s ◦ (p(x′))}),

where id = λ (y:nat. y) is the identity, e′ ◦ e = λ (x:τ. e′(e(x))) is compo-
sition, and s = λ (x:nat. s(x)) is the successor function. The application
a(n) terminates after three transitions, regardless of the value of n, result-
ing in a λ-abstraction. When n is positive, the result contains a residual copy
of a itself, which is applied to n− 1 as a recursive call. The m-bounded ver-
sion of a, written a(m), is also such that a(m)() terminates in three steps,
provided that m > 0. But the result is not the same, because the residuals
of a appear as a(m−1), rather than as a itself.

Turning now to the proof of compactness, it is helpful to introduce some
notation. Suppose that x : τ ` ex : τ for some arbitrary abstractor x.ex.
Define f (ω) = fix x:τ is ex, and f (m) = fixm x:τ is ex, and observe that
f (ω) : τ and f (m) : τ for any m ≥ 0.

The following technical lemma governing the stack machine permits
the bound on “passive” occurrences of a recursive expression to be raised
without affecting the outcome of evaluation.

Lemma 51.12. If [ f (m)/y]k . [ f (m)/y]e 7→∗ ε / n, where e 6= y, then [ f (m+1)/y]k .
[ f (m+1)/y]e 7→∗ ε / n.

Proof. By induction on the definition of the transition judgement forK{nat⇀}.

AUGUST 24, 2010 DRAFT 14:43



476 51.4 Compactness

Theorem 51.13 (Compactness). Suppose that y : τ ` e : nat where y /∈ f (ω).
If [ f (ω)/y]e 7→∗ n, then there exists m ≥ 0 such that [ f (m)/y]e 7→∗ n.

Proof. We prove simultaneously the stronger statements that if

[ f (ω)/y]k . [ f (ω)/y]e 7→∗ ε / n,

then for some m ≥ 0,

[ f (m)/y]k . [ f (m)/y]e 7→∗ ε / n,

and
[ f (ω)/y]k / [ f (ω)/y]e 7→∗ ε / n

then for some m ≥ 0,

[ f (m)/y]k / [ f (m)/y]e 7→∗ ε / n.

(Note that if [ f (ω)/y]e val, then [ f (m)/y]e val for all m ≥ 0.) The result
then follows by the correctness of the stack machine (Corollary 31.4 on
page 275).

We proceed by induction on transition. Suppose that the initial state is

[ f (ω)/y]k . f (ω),

which arises when e = y, and the transition sequence is as follows:

[ f (ω)/y]k . f (ω) 7→ [ f (ω)/y]k . [ f (ω)/x]ex 7→∗ ε / n.

Noting that [ f (ω)/x]ex = [ f (ω)/y][y/x]ex, we have by induction that there
exists m ≥ 0 such that

[ f (m)/y]k . [ f (m)/x]ex 7→∗ ε / n.

By Lemma 51.12 on the previous page

[ f (m+1)/y]k . [ f (m)/x]ex 7→∗ ε / n

and we need only observe that

[ f (m+1)/y]k . f (m+1) 7→ [ f (m+1)/y]k . [ f (m)/x]ex

to complete the proof. If, on the other hand, the initial step is an unrolling,
but e 6= y, then we have for some z /∈ f (ω) and z 6= y

[ f (ω)/y]k . fix z:τ is dω 7→ [ f (ω)/y]k . [fix z:τ is dω/z]dω 7→∗ ε / n.

14:43 DRAFT AUGUST 24, 2010



51.5 Co-Natural Numbers 477

where dω = [ f (ω)/y]d. By induction there exists m ≥ 0 such that

[ f (m)/y]k . [fix z:τ is dm/z]dm 7→∗ ε / n,

where dm = [ f (m)/y]d. But then by Lemma 51.12 on page 477 we have

[ f (m+1)/y]k . [fix z:τ is dm+1/z]dm+1 7→∗ ε / n,

where dm+1 = [ f (m+1)/y]d, from which the result follows directly.

Corollary 51.14. There exists m ≥ 0 such that [ f (ω)/y]e ' [ f (m)/y]e.

Proof. If [ f (ω)/y]e diverges, then taking m to be zero suffices. Otherwise,
apply Theorem 51.13 on the preceding page to obtain m, and note that the
required Kleene equivalence follows.

51.5 Co-Natural Numbers

In Chapter 13 we considered a variation of L{nat⇀} with the co-natural
numbers, conat, as base type. This is achieved by specifying that s(e) val
regardless of the form of e, so that the successor does not evaluate its ar-
gument. Using general recursion we may define the infinite number, ω, by
fix x:conat is s(x), which consists of an infinite stack of successors. Since
the successor is intepreted lazily, ω evaluates to a value, namely s(ω), its
own successor. It follows that the principle of mathematical induction is
not valid for the co-natural numbers. For example, the property of being
equivalent to a finite numeral is satisfied by zero and is closed under suc-
cessor, but fails for ω.

In this section we sketch the modifications to the preceding develop-
ment for the co-natural numbers. The main difference is that the definition
of extensional equivalence at type conat must be formulated to account
for laziness. Rather than being defined inductively as the strongest relation
closed under specified conditions, we define it coinductively as the weakest
relation consistent two analogous conditions. We may then show that two
expressions are related using the principle of proof by coinduction.

If conat is to continue to serve as the observable outcome of a compu-
tation, then we must alter the meaning of Kleene equivalence to account
for laziness. We adopt the principle that we may observe of a computa-
tion only its outermost form: it is either zero or the successor of some other
computation. More precisely, we define e ' e′ iff (a) if e 7→∗ z, then e′ 7→∗ z,
and vice versa; and (b) if e 7→∗ s(e1), then e′ 7→∗ s(e′1), and vice versa. Note

AUGUST 24, 2010 DRAFT 14:43



478 51.5 Co-Natural Numbers

well that we do not require anything of e1 and e′1 in the second clause. This
means that 1 ' 2, yet we retain consistency in that 0 6' 1.

Corollary 51.14 on the preceding page can be proved for the co-natural
numbers by essentially the same argument.

The definition of extensional equivalence at type conat is defined to
be the weakest equivalence relation, E , between closed terms of type conat

satisfying the following conat-consistency conditions: if e E e′ : conat, then

1. If e 7→∗ z, then e′ 7→∗ z, and vice versa.

2. If e 7→∗ s(e1), then e′ 7→∗ s(e′1) with e1 E e′1 : conat, and vice versa.

It is immediate that if e ∼ e′ : conat, then e ' e′, and so extensional equiv-
alence is consistent. It is also strict in that if e and e′ are both divergent
expressions of type conat, then e ∼ e′ : conat—simply because the preced-
ing two conditions are vacuously true in this case.

This is an example of the more general principle of proof by conat-
coinduction. To show that e ∼ e′ : conat, it suffices to exhibit a relation,
E , such that

1. e E e′ : conat, and

2. E satisfies the conat-consistency conditions.

If these requirements hold, then E is contained in extensional equivalence
at type conat, and hence e ∼ e′ : conat, as required.

As an application of conat-coinduction, let us consider the proof of The-
orem 51.5 on page 473. The overall argument remains as before, but the
proof for the type conat must be altered as follows. Suppose that A ≈ A′ :
ρ conat, and let a = A{fix x:ρ is e} and a′ = A′{fix x:ρ is e′}. Writ-
ing a(m) = A{fixm x:ρ is e} and a′(m) = A′{fixm x:ρ is e′}, assume that

for every m ≥ 0, a(m) ∼ a′(m) : conat.

We are to show that
a ∼ a′ : conat.

Define the functions pn for n ≥ 0 on closed terms of type conat by the
following equations:

p0(d) = d

p(n+1)(d) =

{
d′ if pn(d) 7→∗ s(d′)
undefined otherwise

14:43 DRAFT AUGUST 24, 2010



51.6 Exercises 479

For n ≥ 0, let an = pn(a) and a′n = pn(a′). Correspondingly, let a(m)
n =

pn(a(m)) and a′n
(m) = pn(a(m)

n ). Define E to be the strongest relation such
that an E a′n : conat for all n ≥ 0. We will show that the relation E satis-
fies the conat-consistency conditions, and so it is contained in extensional
equivalence. Since a E a′ : conat (by construction), the result follows im-
mediately.

To show that E is conat-consistent, suppose that an E a′n : conat for
some n ≥ 0. We have by Corollary 51.14 on page 479 an ' a(m)

n , for some
m ≥ 0, and hence, by the assumption, an ' a′n

(m), and so by Corollary 51.14
on page 479 again, a′n

(m) ' a′n. Now if an 7→∗ s(bn), then a(m)
n 7→∗ s(b(m)

n )

for some b(m)
n , and hence there exists b′n

(m) such that a′n
(m) 7→∗ b′n

(m), and so
there exists b′n such that a′n 7→∗ s(b′n). But bn = pn+1(a) and b′n = pn+1(a′),
and we have bn E b′n : conat by construction, as required.

51.6 Exercises

1. Call-by-value variant, with recursive functions.

AUGUST 24, 2010 DRAFT 14:43



480 51.6 Exercises

14:43 DRAFT AUGUST 24, 2010



Chapter 52

Parametricity

The motivation for introducing polymorphism was to enable more pro-
grams to be written — those that are “generic” in one or more types, such
as the composition function given in Chapter 23. Then if a program does
not depend on the choice of types, we can code it using polymorphism.
Moreover, if we wish to insist that a program can not depend on a choice
of types, we demand that it be polymorphic. Thus polymorphism can be
used both to expand the collection of programs we may write, and also to
limit the collection of programs that are permissible in a given context.

The restrictions imposed by polymorphic typing give rise to the expe-
rience that in a polymorphic functional language, if the types are correct,
then the program is correct. Roughly speaking, if a function has a poly-
morphic type, then the strictures of type genericity vastly cut down the set
of programs with that type. Thus if you have written a program with this
type, it is quite likely to be the one you intended!

The technical foundation for these remarks is called parametricity. The
goal of this chapter is to give an account of parametricity for L{→∀} under
a call-by-name interpretation.

52.1 Overview

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀(t.t→ t). What function
could it be? When instantiated at a type τ it should evaluate to a function
g of type τ → τ that, when further applied to a value v of type τ returns
a value v′ of type τ. Since f is polymorphic, g cannot depend on v, so v′



482 52.2 Observational Equivalence

must be v. In other words, g must be the identity function at type τ, and f
must therefore be the polymorphic identity.

Suppose that f is a function of type ∀(t.t). What function could it be?
A moment’s thought reveals that it cannot exist at all! For it must, when
instantiated at a type τ, return a value of that type. But not every type has
a value (including this one), so this is an impossible assignment. The only
conclusion is that ∀(t.t) is an empty type.

Let N be the type of polymorphic Church numerals introduced in Chap-
ter 23, namely ∀(t.t→ (t→ t)→ t). What are the values of this type?
Given any type τ, and values z : τ and s : τ → τ, the expression

f[τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in one-to-one correspondence with the natu-
ral numbers.

52.2 Observational Equivalence

The definition of observational equivalence given in Chapters 50 and 51 is
based on identifying a type of answers that are observable outcomes of com-
plete programs. Values of function type are not regarded as answers, but
are treated as “black boxes” with no internal structure, only input-output
behavior. In L{→∀}, however, there are no (closed) base types! Every type
is either a function type or a polymorphic type, and hence no types suitable
to serve as observable answers.

One way to manage this difficulty is to augment L{→∀} with a base
type of answers to serve as the observable outcomes of a computation. The
only requirement is that this type have two elements that can be immedi-
ately distinguished from each other by evaluation. We may achieve this
by enriching L{→∀} with a base type, 2, containing two constants, tt and
ff, that serve as possible answers for a complete computation. A complete
program is a closed expression of type 2.

Kleene equivalence is defined for complete programs by requiring that
e ' e′ iff either (a) e 7→∗ tt and e′ 7→∗ tt; or (b) e 7→∗ ff and e′ 7→∗ ff.

14:43 DRAFT AUGUST 24, 2010



52.2 Observational Equivalence 483

This is obviously an equivalence relation, and it is immediate that tt 6'
ff, since these are two distinct constants. As before, we say that a type-
indexed family of equivalence relations between closed expressions of the
same type is consistent if it implies Kleene equivalence at the answer type,
2.

To define observational equivalence, we must first define the concept of
an expression context for L{→∀} as an expression with a “hole” in it. More
precisely, we may give an inductive definition of the judgement

C : (∆; Γ . τ) (∆′; Γ′ . τ′),

which states that C is an expression context that, when filled with an ex-
pression ∆; Γ ` e : τ yields an expression ∆′; Γ′ ` C{e} : τ. (We leave the
precise definition of this judgement, and the verification of its properties,
as an exercise for the reader.)

Definition 52.1. Two expressions of the same type are observationally equiva-
lent, written e ∼= e′ : τ [∆; Γ], iff C{e} ' C{e′}whenever C : (∆; Γ . τ) (∅ . 2).

Lemma 52.1. Observational equivalence is the coarsest consistent congruence.

Proof. The composition of a program context with another context is itself
a program context. It is consistent by virtue of the empty context being a
program context.

Lemma 52.2.

1. If e ∼= e′ : τ [∆, t; Γ] and ρ type, then [ρ/t]e ∼= [ρ/t]e′ : [ρ/t]τ [∆; [ρ/t]Γ].

2. If e ∼= e′ : τ [∅; Γ, x : σ] and d : σ, then [d/x]e ∼= [d/x]e′ : τ [∅; Γ].
Moreover, if d ∼= d′ : σ, then [d/x]e ∼= [d′/x]e : τ [∅; Γ], and similarly for
e′.

Proof. 1. Let C : (∆; [ρ/t]Γ . [ρ/t]τ) (∅ . 2) be a program context. We
are to show that

C{[ρ/t]e} ' C{[ρ/t]e′}.

Since C is closed, this is equivalent to

[ρ/t]C{e} ' [ρ/t]C{e′}.

Let C ′ be the context Λ(t.C{◦})[ρ], and observe that

C ′ : (∆, t; Γ . τ) (∅ . 2).

AUGUST 24, 2010 DRAFT 14:43



484 52.3 Logical Equivalence

Therefore, from the assumption,

C ′{e} ' C ′{e′}.

But C ′{e} ' [ρ/t]C{e}, and C ′{e′} ' [ρ/t]C{e′}, from which the re-
sult follows.

2. By an argument essentially similar to that for Lemma 50.5 on page 463.

52.3 Logical Equivalence

In this section we introduce a form of logical equivalence that captures the
informal concept of parametricity, and also provides a characterization of
observational equivalence. This will permit us to derive properties of ob-
servational equivalence of polymorphic programs of the kind suggested
earlier.

The definition of logical equivalence for L{→∀} is somewhat more
complex than for L{nat→}. The main idea is to define logical equiva-
lence for a polymorphic type, ∀(t.τ) to satisfy a very strong condition that
captures the essence of parametricity. As a first approximation, we might
say that two expressions, e and e′, of this type should be logically equiva-
lent if they are logically equivalent for “all possible” interpretations of the
type t. More precisely, we might require that e[ρ] be related to e′[ρ] at
type [ρ/t]τ, for any choice of type ρ. But this runs into two problems, one
technical, the other conceptual. The same device will be used to solve both
problems.

The technical problem stems from impredicativity. In Chapter 50 logi-
cal equivalence is defined by induction on the structure of types. But when
polymorphism is impredicative, the type [ρ/t]τ might well be larger than
∀(t.τ)! At the very least we would have to justify the definition of logical
equivalence on some other grounds, but no criterion appears to be avail-
able. The conceptual problem is that, even if we could make sense of the
definition of logical equivalence, it would be too restrictive. For such a def-
inition amounts to saying that the unknown type t is to be interpreted as
logical equivalence at whatever type it turns out to be when instantiated.
To obtain useful parametricity results, we shall ask for much more than
this. What we shall do is to consider separately instances of e and e′ by types
ρ and ρ′, and treat the type variable t as standing for any relation (of some
form) between ρ and ρ′. One may suspect that this is asking too much: per-
haps logical equivalence is the empty relation! Surprisingly, this is not the

14:43 DRAFT AUGUST 24, 2010



52.3 Logical Equivalence 485

case, and indeed it is this very feature of the definition that we shall exploit
to derive parametricity results about the language.

To manage both of these problems we will consider a generalization of
logical equivalence that is parameterized by a relational interpretation of
the free type variables of its classifier. The parameters determine a sepa-
rate binding for each free type variable in the classifier for each side of the
equation, with the discrepancy being mediated by a specified relation be-
tween them. This permits us to consider a notion of “equivalence” between
two expressions of different type—they are equivalent, modulo a relation
between the interpretations of their free type variables.

We will restrict attention to a certain collection of “admissible” binary
relations between closed expressions. The conditions are imposed to ensure
that logical equivalence and observational equivalence coincide.

Definition 52.2 (Admissibility). A relation R between expressions of types ρ
and ρ′ is admissible, written R : ρ↔ ρ′, iff it satisfies two requirements:

1. Respect for observational equivalence: if R(e, e′) and d ∼= e : ρ and d′ ∼= e′ :
ρ′, then R(d, d′).

2. Closure under converse evaluation: if R(e, e′), then if d 7→ e, then R(d, e′)
and if d′ 7→ e′, then R(e, d′).

The second of these conditions will turn out to be a consequence of the first,
but we are not yet in a position to establish this fact.

The judgement δ : ∆ states that δ is a type substitution that assigns a
closed type to each type variable t ∈ ∆. A type substitution, δ, induces a
substitution function, δ̂, on types given by the equation

δ̂(τ) = [δ(t1), . . . , δ(tn)/t1, . . . , tn]τ,

and similarly for expressions. Substitution is extended to contexts point-
wise by defining δ̂(Γ)(x) = δ̂(Γ(x)) for each x ∈ dom(Γ).

Let δ and δ′ be two type substitutions of closed types to the type vari-
ables in ∆. A relation assignment, η, between δ and δ′ is an assignment of
an admissible relation η(t) : δ(t)↔ δ′(t) to each t ∈ ∆. The judgement
η : δ↔ δ′ states that η is a relation assignment between δ and δ′.

Logical equivalence is defined in terms of its generalization, called para-
metric logical equivalence, written e ∼ e′ : τ [η : δ↔ δ′], defined as follows.

AUGUST 24, 2010 DRAFT 14:43



486 52.3 Logical Equivalence

Definition 52.3 (Parametric Logical Equivalence). The relation e ∼ e′ : τ [η :
δ↔ δ′] is defined by induction on the structure of τ by the following conditions:

e ∼ e′ : t [η : δ↔ δ′] iff η(t)(e, e′)
e ∼ e′ : 2 [η : δ↔ δ′] iff e ' e′

e ∼ e′ : τ1 → τ2 [η : δ↔ δ′] iff e1 ∼ e′1 : τ1 [η : δ↔ δ′] implies
e(e1) ∼ e′(e′1) : τ2 [η : δ↔ δ′]

e ∼ e′ : ∀(t.τ) [η : δ↔ δ′] iff for every ρ, ρ′, and every R : ρ↔ ρ′,
e[ρ] ∼ e′[ρ′] : τ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]]

Logical equivalence is defined in terms of parametric logical equiva-
lence by considering all possible interpretations of its free type- and ex-
pression variables. An expression substitution, γ, for a context Γ, written
γ : Γ, is an substitution of a closed expression γ(x) : Γ(x) to each vari-
able x ∈ dom(Γ). An expression substitution, γ : Γ, induces a substitution
function, γ̂, defined by the equation

γ̂(e) = [γ(x1), . . . , γ(xn)/x1, . . . , xn]e,

where the domain of Γ consists of the variables x1, . . . , xn.
The relation γ ∼ γ′ : Γ [η : δ↔ δ′] is defined to hold iff dom(γ) =

dom(γ′) = dom(Γ), and γ(x) ∼ γ′(x) : Γ(x) [η : δ↔ δ′] for every variable,
x, in their common domain.

Definition 52.4 (Logical Equivalence). The expressions ∆; Γ ` e : τ and ∆; Γ `
e′ : τ are logically equivalent, written e ∼ e′ : τ [∆; Γ] iff for every assigment
δ and δ′ of closed types to type variables in ∆, and every relation assignment η :
δ↔ δ′, if γ ∼ γ′ : Γ [η : δ↔ δ′], then γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e′)) : τ [η : δ↔ δ′].

When e, e′, and τ are closed, then this definition states that e ∼ e′ : τ iff
e ∼ e′ : τ [∅ : ∅↔ ∅], so that logical equivalence is indeed a special case
of its generalization.

Lemma 52.3 (Closure under Converse Evaluation). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Proof. By induction on the structure of τ. When τ = t, the result holds by
the definition of admissibility. Otherwise the result follows by induction,
making use of the definition of the transition relation for applications and
type applications.

Lemma 52.4 (Respect for Observational Equivalence). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d ∼= e : δ̂(τ) and d′ ∼= e′ : δ̂′(τ), then d ∼ d′ : τ [η : δ↔ δ′].

14:43 DRAFT AUGUST 24, 2010



52.3 Logical Equivalence 487

Proof. By induction on the structure of τ, relying on the definition of ad-
missibility, and the congruence property of observational equivalence. For
example, if τ = ∀(t.σ), then we are to show that for every R : ρ↔ ρ′,

d[ρ] ∼ d′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]].

Since observational equivalence is a congruence, d[ρ] ∼= e[ρ] : [ρ/t]δ̂(σ),
d′[ρ] ∼= e′[ρ] : [ρ′/t]δ̂′(σ). From the assumption it follows that

e[ρ] ∼ e′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]],

from which the result follows by induction.

Corollary 52.5. The relation e ∼ e′ : τ [η : δ↔ δ′] is an admissible relation
between closed types δ̂(τ) and δ̂′(τ).

Proof. By Lemmas 52.3 on the preceding page and 52.4 on the facing page.

Logical Equivalence respects observational equivalence.

Corollary 52.6. If e ∼ e′ : τ [∆; Γ], and d ∼= e : τ [∆; Γ] and d′ ∼= e′ : τ [∆; Γ],
then d ∼ d′ : τ [∆; Γ].

Proof. By Lemma 52.2 on page 485 and Corollary 52.5.

Lemma 52.7 (Compositionality). Suppose that

e ∼ e′ : τ [η[t 7→ R] : δ[t 7→ δ̂(ρ)]↔ δ′[t 7→ δ̂′(ρ)]],

where R : δ̂(ρ)↔ δ̂′(ρ) is such that R(d, d′) holds iff d ∼ d′ : ρ [η : δ↔ δ′].
Then e ∼ e′ : [ρ/t]τ [η : δ↔ δ′].

Proof. By induction on the structure of τ. When τ = t, the result is imme-
diate from the definition of the relation R. When τ = t′ 6= t, the result
holds vacuously. When τ = τ1 → τ2 or τ = ∀(u.τ), where without loss of
generality u 6= t and u /∈ ρ, the result follows by induction.

Despite the strong conditions on polymorphic types, logical equiva-
lence is not overly restrictive—every expression satisfies its constraints.
This result is sometimes called the parametricity theorem.

Theorem 52.8 (Parametricity). If ∆; Γ ` e : τ, then e ∼ e : τ [∆; Γ].

AUGUST 24, 2010 DRAFT 14:43



488 52.3 Logical Equivalence

Proof. By rule induction on the statics of L{→∀} given by Rules (23.2).
We consider two representative cases here.

Rule (23.2d) Suppose δ : ∆, δ′ : ∆, η : δ↔ δ′, and γ ∼ γ′ : Γ [η : δ↔ δ′].
By induction we have that for all ρ, ρ′, and R : ρ↔ ρ′,

[ρ/t]γ̂(δ̂(e)) ∼ [ρ′/t]γ̂′(δ̂′(e)) : τ [η∗ : δ∗ ↔ δ′∗],

where η∗ = η[t 7→ R], δ∗ = δ[t 7→ ρ], and δ′∗ = δ′[t 7→ ρ′]. Since

Λ(t.γ̂(δ̂(e)))[ρ] 7→∗ [ρ/t]γ̂(δ̂(e))

and
Λ(t.γ̂′(δ̂′(e)))[ρ′] 7→∗ [ρ′/t]γ̂′(δ̂′(e)),

the result follows by Lemma 52.3 on page 488.

Rule (23.2e) Suppose δ : ∆, δ′ : ∆, η : δ↔ δ′, and γ ∼ γ′ : Γ [η : δ↔ δ′].
By induction we have

γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e)) : ∀(t.τ) [η : δ↔ δ′]

Let ρ̂ = δ̂(ρ) and ρ̂′ = δ̂′(ρ). Define the relation R : ρ̂↔ ρ̂′ by R(d, d′)
iff d ∼ d′ : ρ [η : δ↔ δ′]. By Corollary 52.5 on the preceding page,
this relation is admissible.

By the definition of logical equivalence at polymorphic types, we ob-
tain

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : τ [η[t 7→ R] : δ[t 7→ ρ̂]↔ δ′[t 7→ ρ̂′]].

By Lemma 52.7 on the previous page

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : [ρ/t]τ [η : δ↔ δ′]

But

γ̂(δ̂(e))[ρ̂] = γ̂(δ̂(e))[δ̂(ρ)] (52.1)

= γ̂(δ̂(e[ρ])), (52.2)

and similarly

γ̂′(δ̂′(e))[ρ̂′] = γ̂′(δ̂′(e))[δ̂′(ρ)] (52.3)

= γ̂′(δ̂′(e[ρ])), (52.4)

from which the result follows.

14:43 DRAFT AUGUST 24, 2010



52.4 Parametricity Properties 489

Corollary 52.9. If e ∼= e′ : τ [∆; Γ], then e ∼ e′ : τ [∆; Γ].

Proof. By Theorem 52.8 on page 489 e ∼ e : τ [∆; Γ], and hence by Corol-
lary 52.6 on page 489, e ∼ e′ : τ [∆; Γ].

Lemma 52.10 (Congruence). If e ∼ e′ : τ [∆; Γ] and C : (∆; Γ . τ) (∆′; Γ′ . τ′),
then C{e} ∼ C{e′} : τ [∆′; Γ′].

Proof. By induction on the structure of C, following along very similar lines
to the proof of Theorem 52.8 on page 489.

Lemma 52.11 (Consistency). Logical equivalence is consistent.

Proof. Follows immediately from the definition of logical equivalence.

Corollary 52.12. If e ∼ e′ : τ [∆; Γ], then e ∼= e′ : τ [∆; Γ].

Proof. By Lemma 52.11 Logical equivalence is consistent, and by Lemma 52.10,
it is a congruence, and hence is contained in observational equivalence.

Corollary 52.13. Logical and observational equivalence coincide.

Proof. By Corollaries 52.9 and 52.12.

If d : τ and d 7→ e, then d ∼ e : τ, and hence by Corollary 52.12, d ∼= e : τ.
Therefore if a relation respects observational equivalence, it must also be
closed under converse evaluation. This shows that the second condition
on admissibility is redundant, though it cannot be omitted at such an early
stage.

52.4 Parametricity Properties

The parametricity theorem enables us to deduce properties of expressions
of L{→∀} that hold solely because of their type. The stringencies of para-
metricity ensure that a polymorphic type has very few inhabitants. For
example, we may prove that every expression of type ∀(t.t→ t) behaves
like the identity function.

Theorem 52.14. Let e : ∀(t.t→ t) be arbitrary, and let id be Λ(t.λ (x:t. x)).
Then e ∼= id : ∀(t.t→ t).

AUGUST 24, 2010 DRAFT 14:43



490 52.4 Parametricity Properties

Proof. By Corollary 52.13 on the preceding page it is sufficient to show that
e ∼ id : ∀(t.t→ t). Let ρ and ρ′ be arbitrary closed types, let R : ρ↔ ρ′ be
an admissible relation, and suppose that e0 R e′0. We are to show

e[ρ](e0) R id[ρ](e′0),

which, given the definition of id, is to say

e[ρ](e0) R e′0.

It suffices to show that e[ρ](e0) ∼= e0 : ρ, for then the result follows by the
admissibility of R and the assumption e0 R e′0.

By Theorem 52.8 on page 489 we have e ∼ e : ∀(t.t→ t). Let the re-
lation S : ρ↔ ρ be defined by d S d′ iff d ∼= e0 : ρ and d′ ∼= e0 : ρ. This is
clearly admissible, and we have e0 S e0. It follows that

e[ρ](e0) S e[ρ](e0),

and so, by the definition of the relation S, e[ρ](e0) ∼= e0 : ρ.

In Chapter 23 we showed that product, sum, and natural numbers types
are all definable in L{→∀}. The proof of definability in each case consisted
of showing that the type and its associated introduction and elimination
forms are encodable in L{→∀}. The encodings are correct in the (weak)
sense that the dynamics of these constructs as given in the earlier chapters
is derivable from the dynamics of L{→∀} via these definitions. By taking
advantage of parametricity we may extend these results to obtain a strong
correspondence between these types and their encodings.

As a first example, let us consider the representation of the unit type,
unit, in L{→∀}, as defined in Chapter 23 by the following equations:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ (x:r. x))

It is easy to see that 〈〉 : unit according to these definitions. But this merely
says that the type unit is inhabited (has an element). What we would like
to know is that, up to observational equivalence, the expression 〈〉 is the
only element of that type. But this is precisely the content of Theorem 52.14
on the preceding page! We say that the type unit is strongly definable within
L{→∀}.

14:43 DRAFT AUGUST 24, 2010



52.4 Parametricity Properties 491

Continuing in this vein, let us examine the definition of the binary prod-
uct type in L{→∀}, also given in Chapter 23:

τ1 × τ2 = ∀(r.(τ1 → τ2 → r)→ r)
〈e1, e2〉 = Λ(r.λ (x:τ1 → τ2 → r. x(e1)(e2)))

e · l = e[τ1](λ (x:τ1. λ (y:τ2. x)))
e · r = e[τ2](λ (x:τ1. λ (y:τ2. y)))

It is easy to check that 〈e1, e2〉 · l ∼= e1 : τ1 and 〈e1, e2〉 · r ∼= e2 : τ2 by a direct
calculation.

We wish to show that the ordered pair, as defined above, is the unique
such expression, and hence that Cartesian products are strongly definable
in L{→∀}. We will make use of a lemma governing the behavior of the ele-
ments of the product type whose proof relies on Theorem 52.8 on page 489.

Lemma 52.15. If e : τ1 × τ2, then e ∼= 〈e1, e2〉 : τ1 × τ2 for some e1 : τ1 and
e2 : τ2.

Proof. Expanding the definitions of pairing and the product type, and ap-
plying Corollary 52.13 on page 491, we let ρ and ρ′ be arbitrary closed types,
and let R : ρ↔ ρ′ be an admissible relation between them. Suppose further
that

h ∼ h′ : τ1 → τ2 → t [η : δ↔ δ′],

where η(t) = R, δ(t) = ρ, and δ′(t) = ρ′ (and are each undefined on t′ 6= t).
We are to show that for some e1 : τ1 and e2 : τ2,

e[ρ](h) ∼ h′(e1)(e2) : t [η : δ↔ δ′],

which is to say
e[ρ](h) R h′(e1)(e2).

Now by Theorem 52.8 on page 489 we have e ∼ e : τ1 × τ2. Define the
relation S : ρ↔ ρ′ by d S d′ iff the following conditions are satisfied:

1. d ∼= h(d1)(d2) : ρ for some d1 : τ1 and d2 : τ2;

2. d′ ∼= h′(d′1)(d′2) : ρ′ for some d′1 : τ1 and d′2 : τ2;

3. d R d′.

This is clearly an admissible relation. Noting that

h ∼ h′ : τ1 → τ2 → t [η′ : δ↔ δ′],

AUGUST 24, 2010 DRAFT 14:43



492 52.4 Parametricity Properties

where η′(t) = S and is undefined for t′ 6= t, we conclude that e[ρ](h) S
e[ρ′](h′), and hence

e[ρ](h) R h′(d′1)(d′2),

as required.

Now suppose that e : τ1 × τ2 is such that e · l ∼= e1 : τ1 and e · r ∼= e2 : τ2.
We wish to show that e ∼= 〈e1, e2〉 : τ1 × τ2. From Lemma 52.15 on the pre-
ceding page it is easy to deduce that e ∼= 〈e · l, e · r〉 : τ1 × τ2 by congruence
and direct calculation. Hence, by congruence we have e ∼= 〈e1, e2〉 : τ1 × τ2.

By a similar line of reasoning we may show that the Church encoding
of the natural numbers given in Chapter 23 strongly defines the natural
numbers in that the following properties hold:

1. natiter z {z⇒e0 | s(x)⇒e1} ∼= e0 : ρ.

2. natiter s(e) {z⇒e0 | s(x)⇒e1} ∼= [natiter e {z⇒e0 | s(x)⇒e1}/x]e1 :
ρ.

3. Suppose that x : nat ` r(x) : ρ. If

(a) r(z) ∼= e0 : ρ, and
(b) r(s(e)) ∼= [r(e)/x]e1 : ρ,

then for every e : nat, r(e) ∼= natiter e {z⇒e0 | s(x)⇒e1} : ρ.

The first two equations, which constitute weak definability, are easily estab-
lished by calculation, using the definitions given in Chapter 23. The third
property, the unicity of the iterator, is proved using parametricity by show-
ing that every closed expression of type nat is observationally equivalent
to a numeral n. We then argue for unicity of the iterator by mathematical
induction on n ≥ 0.

Lemma 52.16. If e : nat, then either e ∼= z : nat, or there exists e′ : nat such
that e ∼= s(e′) : nat. Consequently, there exists n ≥ 0 such that e ∼= n : nat.

Proof. By Theorem 52.8 on page 489 we have e ∼ e : nat. Define the relation
R : nat↔ nat to be the strongest relation such that d R d′ iff either d ∼= z :
nat and d′ ∼= z : nat, or d ∼= s(d1) : nat and d′ ∼= s(d′1) : nat and d1 R d′1.
It is easy to see that z R z, and if e R e′, then s(e) R s(e′). Letting zero = z

and succ = λ (x:nat. s(x)), we have

e[nat](zero)(succ) R e[nat](zero)(succ).

The result follows by the induction principle arising from the definition of
R as the strongest relation satisfying its defining conditions.

14:43 DRAFT AUGUST 24, 2010



52.5 Exercises 493

52.5 Exercises

AUGUST 24, 2010 DRAFT 14:43



494 52.5 Exercises

14:43 DRAFT AUGUST 24, 2010



Part XX

Appendices





Appendix A

Mathematical Preliminaries

A.1 Finite Sets and Maps

A.2 Families of Sets



498 A.2 Families of Sets

14:43 DRAFT AUGUST 24, 2010


	Preface
	I Judgements and Rules
	Inductive Definitions
	Judgements
	Inference Rules
	Derivations
	Rule Induction
	Iterated and Simultaneous Inductive Definitions
	Defining Functions by Rules
	Modes
	Exercises

	Hypothetical Judgements
	Derivability
	Admissibility
	Hypothetical Inductive Definitions
	Exercises

	Syntactic Objects
	Abstract Syntax Trees
	Abstract Binding Trees
	Parameterization

	Generic Judgements
	Rule Schemes
	Generic Derivability
	Generic Inductive Definitions
	Parametric Derivability
	Exercises


	II Levels of Syntax
	Concrete Syntax
	Strings Over An Alphabet
	Lexical Structure
	Context-Free Grammars
	Grammatical Structure
	Ambiguity
	Exercises

	Abstract Syntax
	Hierarchical and Binding Structure
	Parsing Into Abstract Syntax Trees
	Parsing Into Abstract Binding Trees
	Exercises


	III Statics and Dynamics
	Statics
	Syntax
	Type System
	Structural Properties
	Exercises

	Dynamics
	Transition Systems
	Structural Dynamics
	Contextual Dynamics
	Equational Dynamics
	Exercises

	Type Safety
	Preservation
	Progress
	Run-Time Errors
	Exercises

	Evaluation Dynamics
	Evaluation Dynamics
	Relating Structural and Evaluation Dynamics
	Type Safety, Revisited
	Cost Dynamics
	Exercises


	IV Function Types
	Function Definitions and Values
	First-Order Functions
	Higher-Order Functions
	Evaluation Dynamics and Definitional Equivalence
	Dynamic Scope
	Exercises

	Gödel's System T
	Statics
	Dynamics
	Definability
	Non-Definability
	Exercises

	Plotkin's PCF
	Statics
	Dynamics
	Definability
	Co-Natural Numbers
	Exercises


	V Finite Data Types
	Product Types
	Nullary and Binary Products
	Finite Products
	Primitive and Mutual Recursion
	Exercises

	Sum Types
	Binary and Nullary Sums
	Finite Sums
	Applications of Sum Types
	Void and Unit
	Booleans
	Enumerations
	Options

	Exercises

	Pattern Matching
	A Pattern Language
	Statics
	Dynamics
	Exhaustiveness and Redundancy
	Match Constraints
	Enforcing Exhaustiveness and Redundancy
	Checking Exhaustiveness and Redundancy

	Exercises

	Generic Programming
	Introduction
	Type Operators
	Generic Extension
	Exercises


	VI Infinite Data Types
	Inductive and Co-Inductive Types
	Motivating Examples
	Statics
	Types
	Expressions

	Dynamics
	Exercises

	Recursive Types
	Solving Type Isomorphisms
	Recursive Data Structures
	Self-Reference
	Exercises


	VII Dynamic Types
	The Untyped -Calculus
	The -Calculus
	Definability
	Scott's Theorem
	Untyped Means Uni-Typed
	Exercises

	Dynamic Typing
	Dynamically Typed PCF
	Variations and Extensions
	Critique of Dynamic Typing
	Exercises

	Hybrid Typing
	A Hybrid Language
	Optimization of Dynamic Typing
	Static ``Versus'' Dynamic Typing
	Reduction to Recursive Types


	VIII Variable Types
	Girard's System F
	System F
	Polymorphic Definability
	Products and Sums
	Natural Numbers

	Parametricity Overview
	Restricted Forms of Polymorphism
	Predicative Fragment
	Prenex Fragment
	Rank-Restricted Fragments

	Exercises

	Abstract Types
	Existential Types
	Statics
	Dynamics
	Safety

	Data Abstraction Via Existentials
	Definability of Existentials
	Representation Independence
	Exercises

	Constructors and Kinds
	Statics
	Adding Constructors and Kinds
	Substitution
	Exercises

	Indexed Families of Types
	Type Families
	Exercises


	IX Subtyping
	Subtyping
	Subsumption
	Varieties of Subtyping
	Numeric Types
	Product Types
	Sum Types

	Variance
	Product Types
	Sum Types
	Function Types
	Recursive Types

	Safety for Subtyping
	Exercises

	Singleton and Dependent Kinds
	Informal Overview


	X Classes and Methods
	Dynamic Dispatch
	The Dispatch Matrix
	Method-Based Organization
	Class-Based Organization
	Self-Reference
	Irregular Systems
	Exercises

	Inheritance
	Subclasses and Submethods
	Inheritance and Subtyping
	Exercises


	XI Control Effects
	Control Stacks
	Machine Definition
	Safety
	Correctness of the Control Machine
	Completeness
	Soundness

	Exercises

	Exceptions
	Failures
	Exceptions
	Exception Type
	Encapsulation
	Exercises

	Continuations
	Informal Overview
	Semantics of Continuations
	Coroutines
	Exercises


	XII Types and Propositions
	Constructive Logic
	Constructive Semantics
	Constructive Logic
	Rules of Provability
	Rules of Proof

	Propositions as Types
	Exercises

	Classical Logic
	Classical Logic
	Provability and Refutability
	Proofs and Refutations

	Deriving Elimination Forms
	Proof Dynamics
	Law of the Excluded Middle
	Exercises


	XIII Symbols
	Symbols
	Symbol Declaration
	Stack-Like Dynamics
	Heap-Like Dynamics

	Symbolic References
	Statics
	Dynamics
	Safety

	Exercises

	Fluid Binding
	Statics
	Dynamics
	Type Safety
	Some Subtleties
	Fluid References
	Exercises

	Dynamic Classification
	Dynamic Classes
	Statics
	Dynamics
	Safety

	Defining Dynamic Classes
	Classifying Secrets
	Exercises


	XIV Storage Effects
	Modernized Algol
	Basic Commands
	Statics
	Dynamics
	Safety

	Some Programming Idioms
	Typed Commands and Typed Assignables
	Capabilities and References
	Exercises

	Mutable Data Structures
	Free Assignables
	Free References
	Safety
	Integrating Commands and Expressions
	Exercises


	XV Laziness
	Lazy Evaluation
	Need Dynamics
	Safety
	Lazy Data Structures
	Suspensions
	Exercises

	Polarization
	Polarization
	Focusing
	Statics
	Dynamics
	Safety
	Definability
	Exercises


	XVI Parallelism
	Nested Parallelism
	Binary Fork-Join
	Cost Dynamics
	Multiple Fork-Join
	Provably Efficient Implementations
	Exercises

	Futures and Speculation
	Futures
	Statics
	Sequential Dynamics

	Suspensions
	Statics
	Sequential Dynamics

	Parallel Dynamics
	Applications of Futures
	Exercises


	XVII Concurrency
	Process Calculus
	Actions and Events
	Interaction
	Replication
	Private Channels
	Communication
	Channel Passing
	Universality
	Exercises

	Concurrent Algol
	Concurrent Algol
	Asynchronous Communication
	Exercises


	XVIII Modularity
	Separate Compilation and Linking
	Linking and Substitution
	Exercises

	Basic Modules
	Parameterized Modules

	XIX Equivalence
	Equational Reasoning for T
	Observational Equivalence
	Extensional Equivalence
	Extensional and Observational Equivalence Coincide
	Some Laws of Equivalence
	General Laws
	Extensionality Laws
	Induction Law

	Exercises

	Equational Reasoning for PCF
	Observational Equivalence
	Extensional Equivalence
	Extensional and Observational Equivalence Coincide
	Compactness
	Co-Natural Numbers
	Exercises

	Parametricity
	Overview
	Observational Equivalence
	Logical Equivalence
	Parametricity Properties
	Exercises


	XX Appendices
	Mathematical Preliminaries
	Finite Sets and Maps
	Families of Sets



