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Abstract

Curriculum learning has shown promising im-
provements in multiple domains by training
machine learning models from easy samples to
hard ones. Previous works which either design
rules or train models for scoring the difficulty
highly rely on task-specific expertise, and can-
not generalize. Inspired by the “easy-to-hard”
intuition, we propose to do in-sample curricu-
lum learning for natural language generation
tasks. Our learning strategy starts training the
model to generate the last few words, i.e., do
sequence completion, and gradually extends to
generate the whole output sequence. Compre-
hensive experiments show that it generalizes
well to different tasks and achieves significant
improvements over strong baselines.

1 Introduction

Curriculum learning (CL) proposed by Bengio et al.
(2009) provides performance improvements on a
number of machine learning tasks. It mimics the
learning process of humans by training models with
samples in a more meaningful order, i.e., from the
easy ones to the hard ones. Therefore, ranking
training samples by difficulty lies in the core of CL,
which is also the key challenge when it’s applied
to natural language generation (NLG) tasks.

Previous work on CL for NLG focuses on mea-
suring the difficulty of training samples in two
ways. One is to resort to human-crafted rules
based on various linguistic features and human
observations (Liu et al., 2018; Kocmi and Bo-
jar, 2017). The other uses models either trained
from outside data or the same data but in previous
epochs/steps (Zhou et al., 2020; Kumar et al., 2019;
Shen and Feng, 2020). Either way seeks to produce
a numeric score for each training sample relying
on domain expertise so that it can be ranked, mak-
ing it difficult to generalize to different tasks. For
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example, summarization focuses more on generat-
ing concise outputs while style transfer emphasizes
style changes. So the former should pay attention
to the ratio between the lengths of the output and
the input (the more compressed the more difficult),
while the latter should focus on differences in style
between the input and output (the more different
the more difficult). Designing a comprehensive
or universal scoring function is difficult or even
impossible under this definition of CL.

In this paper, we propose an alternative to
sample-wise CL, which we call in-sample CL
(ICL). ICL re-orders the learning sequence within
the sample. One particular ICL re-ordering strat-
egy which we find effective is to predict the last
few tokens given a long prefix first from the origi-
nal output, and then gradually increase the number
of tokens at the end while shortening the prefix,
to create an easy-to-hard training order. Such a
curriculum learning strategy focuses more on the
difficulty of language generation itself, leading to
a better generalization ability among tasks.

Actually, we are not the first to propose the idea
of ICL. Liang et al. (2021) introduced the notion
of “token-wise curriculum learning(TCL)”. Illus-
trations of TCL, ICL and the traditional CL are
shown in Figure 1. Their work considers gener-
ating the first few tokens in the output sequence
to be easier than generating a longer sequence in
the output. Based on this idea, they proposed a
“hard” version of TCL that creates training samples
of increasing output length by cutting the sentences
short. In this way, TCL is similar to data augmenta-
tion with incomplete and even “incorrect” samples,
while our ICL considers each training sample in
full length. A “soft” version of TCL that places
decaying weights on the end tokens instead of cut-
ting short is introduced as a mitigation to avoid in-
complete samples, which was proved to uniformly
outperform the “hard” version.

To validate the advantage of ICL, we conduct ex-
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Figure 1: Illustrations of the main ideas of traditional sample-wise CL, Liang et al. (2021)’s TCL and our ICL.
Green box refers to samples in different difficulty levels. The darker, the harder. “T” refers to a known token while
“_” refer to a token to be generated in the output sequence of a sample during training.

tensive experiments on a range of natural language
generation tasks, including reading comprehension,
dialogue summarization, style transfer, question
generation and news summarization, with different
backbone models, such as BART, UniLM and GPT-
2. The results show the favorable performance of
ICL over the strong baselines.

In a word, our contributions are:

• We propose an improved in-sample curricu-
lum learning strategy for text generation by
doing sequence completion (Section 2.1).

• We propose a novel ICL learning algorithm
(Section 2.2). Together with our sequence
completion ICL curriculum, it achieves signif-
icant improvements over the strong baselines
on different NLG tasks, demonstrating strong
generalization ability (Section 3).

• Our approach can be combined with tradi-
tional CL for further performance gains (Sec-
tion 4.3).

2 Approach

We present an ICL strategy in the context of the
vanilla sequence-to-sequence (Seq2Seq) training
objective with a detailed learning algorithm.

2.1 ICL by Sequence Completion
Today, NLG tasks are generally solved by Seq2Seq
models, especially the pre-trained language mod-
els. Vanilla Seq2Seq models are trained to predict
the output Y = {y1, ..., yn} given the input X by
minimizing the negative log-likelihood:

Lorig = − 1

n

n∑
t=1

logP (yt|y<t, X) (1)

Traditional CL manipulates the selection of training
pair (X,Y ) from easier pairs to harder ones for
different tasks with this vanilla loss function.

In contrast, ICL digs into the output sequence
itself and exploits the difficulty of language gener-
ation within each training sample. We segment Y
into two sub-sequences by a cutting point c, where
1 ≤ c ≤ n. The sub-sequence before c is called
the prefix, and the one after (and including) c is
the target. According to the Shannon Information
Theory, the entropy goes down when more related
information is given. Thus, the difficulty of the
sequence completion task that generates the target
will decrease when a longer prefix is given. In other
words, we can manipulate c to vary the difficulty
of samples during training.

Based on this intuition, we modify the vanilla
loss as:

Licl = −
1

n− c+ 1

n∑
t=c

logP (yt|y<t, X) (2)

i.e., given X and the prefix as inputs to the en-
coder and decoder respectively, we only calculate
the loss for predicting the target. At the beginning
of the training process, we use a larger c to train the
model to predict the target with only the last few
words. Then, we gradually decrease c, until the
prefix reduces to an empty sequence. In this way,
the model grows stronger with more difficult gen-
eration objectives and learns to generate the whole
output in the end. An illustration is in Figure 2.

Decoder
(during training)

……

!! !"=EOS

BOS !!#$ !!#%

…

… … !"#%
prefix

target

Figure 2: The decoder of a NLG model. BOS and EOS
are special tokens representing the beginning and the
end of the output. It’s suitable for both encoder-decoder
and decoder-only models.



2.2 ICL Algorithm

Since the output length varies from sample to sam-
ple, it’s hard to set c as a constant for all samples.
If so, samples with short outputs will be neglected
when c is large at the beginning, and the model
will eventually bias to training samples with long
outputs as they are shown more times. In light of
this, we proposed to determine c sample by sample
relative to their output lengths.

We define a start point pstart and a stride s for
controlling c, where 0 ≤ pstart, s ≤ 1. The train-
ing process starts with:

c = n× pstart (3)

After each epoch or a number of updating steps,
we validate the model on the validation set. If
the performance on the validation set no longer
increases, we introduce a more difficult generation
task by removing s from pprev:

pnew =

{
pprev − s, if pprev > s

0, else

and update c by Equation 3. The training process
terminates until there are no improvements on the
validation set with c equaling 0. More details are
included in Algorithm 1.

Algorithm 1 The ICL training algorithm.
Input: the model to be fine-tuned Min, the training set Dt,
the validation set Dv

Parameter: a start point pstart, a stride s
Output: the final model Mout

1: procedure ICL(Min, Dt, Dv, pstart, s)
2: p = pstart
3: Mout = Min

4: for training epoch e = 1, ... do
5: . Training process
6: for training steps in an epoch do
7: Randomly sample a batch B from Dt

8: for Each sample (X,Y ) in B do
9: c = n× p

10: Calculate Licl by Eq. 2
11: end for
12: Update Min based on 1

|B|
∑
|B| Licl

13: end for
14: . Validation process
15: Calculate Min’s performance on Dv .
16: if Min gets improvements on Dv then
17: Mout = Min

18: else
19: Update p according to Eq. 3
20: end if
21: end for
22: return Mout

23: end procedure

3 Experiment

In this section, we first present the experimental
setups for different tasks. Then, we show the quan-
titative and qualitative results together with com-
prehensive analysis and case studies.

3.1 Experimental Setups
We did experiments on five commonly-researched
natural language generation tasks as follows:

Reading comprehension is the task that answer-
ing questions about a piece of text. We use the
DREAM dataset (Sun et al., 2019) where questions
are about corresponding dialogues and the answer
is a complete sentence in natural language. We
neglect the negative choices in the original dataset
and formulate it as a NLG task. We adopt the
pre-trained language model BART 1 (Lewis et al.,
2020) as the baseline. The generated answers are
evaluated by BLEU scores (Papineni et al., 2002)
widely used for QA systems, together with Meteor
and Rouge-L F1 (Fabbri et al., 2021). We eval-
uate the model after each training epoch and the
early-stop patience will be added 1 if there is no
improvement in the perplexity on the validation set.
The training process terminates when the early-stop
patience equals or is larger than 3. During the in-
ference, the minimum and maximum output length
are set to 5 and 100, with no_repeat_ngram_size=3,
length_penalty=1.0 and num_beams=4.

Dialogue summarization is to generate a con-
cise summary covering the salient information in
the input dialogue. The preceding model BART
has shown to be a strong baseline for this task.We
experiment with SAMSum dataset (Gliwa et al.,
2019) for daily-chat dialogues. The generated sum-
maries are evaluated by comparing with the refer-
ence through evaluation metrics, including Rouge-
1/2/L F1 scores (Lin, 2004), Meteor (Banerjee and
Lavie, 2005) and BertScore F1. The parameters are
the same as reading comprehension, except that the
early-stop is activated if there is no improvement
according to the Rouge-2 F1 score.

Style transfer preserves the semantic meaning
of a given sentence while modifying its style, such
as positive to negative, formal to informal, etc. We
adopt the Shakespeare author imitation dataset (Xu
et al., 2012), containing William Shakespeare’s
original plays and corresponding modernized ver-
sions. Krishna et al. (2020) proposed to do unsuper-
vised style transfer by training paraphrase models

1https://huggingface.co/facebook/bart-large

https://huggingface.co/facebook/bart-large


Task Dataset Model #Train #Val #Test Input Output Avg Std
Reading Comprehension DREAM BART 6,116 2,040 2,041 “Q:”+ question + dialogue answer 5.59 2.61
Dialogue Summarization SAMSum BART 14,732 818 819 dialogue summary 24.99 13.06

Style Transfer Shakespeare STRAP 36,790 2,436 2,924 original modern 11.63 8.19(GPT-2) /modern /original
Question Generation SQuAD1.1 UniLM 75,722 10,570 11,877 passage + [SEP] + answer question 13.09 4.27
News Summarization CNNDM BART 287,227 13,368 11,490 document summary 70.97 29.59

Table 1: A summary of tasks and datasets. #Train, #Val and #Test refers to the number of samples in the corre-
sponding dataset. Avg and Std are the statistics for the number of output tokens. “+” is the concatenation operation.

based on the GPT-2 language model (Radford et al.,
2019). We re-implemented their approach STRAP.
Evaluation metrics include transfer accuracy(ACC),
semantic similarity(SIM), Fluency(FL) and two ag-
gregation metrics, i.e., geometric averaging(GM)
and their proposed J(·) metric 2. In the training
stage, we evaluate the model after updating every
500 steps. The perplexity on the validation set is
used to activate the early-stop which equals 3. The
inference is done as default.

Question generation (Zhou et al., 2017) aims at
generating a question given an input document and
its corresponding answer span. SQuAD 1.1 (Ra-
jpurkar et al., 2016) is generally used for evalua-
tion. We adopt the data split as in (Du et al., 2017)
and fine-tune the pre-trained UniLM (Dong et al.,
2019) as the strong baseline. Generated questions
are evaluated by metrics including BLEU-1/2/3/4,
Meteor and Rouge-L with the provided scripts. The
model is evaluated every 1000 steps and the early-
stop equaling 5 is associated with the perplexity on
the validation set. Other parameters are unchanged
following the official guideline.

News summarization differs from dialogue
summarization where the input is a document in-
stead of a dialogue. We adopt the same strong
baseline BART and evaluation metrics as dialogue
summarization. Experiments are done with CN-
NDM dataset (Hermann et al., 2015) consisting of
news articles and multi-sentence summaries. The
model is evaluated every 3000 steps and the early-
stop equaling 3 is associated with the Rouge-2 on
the validation set. During the inference, the mini-
mum and maximum output length is set to 45 and
140 respectively, with no_repeat_ngram_size=3,
length_penalty=2.0 and num_beams=4 3.

A summary of these tasks is in Table 1 and

2GM calculate the geometric mean of the corpus-level
ACC, SIM and FL. J(·) first calculates the multiplication of
sample-level ACC, SIM and FL, then get the average score
across the test corpus.

3Inference parameters are borrowed from https:
//github.com/pytorch/fairseq/blob/main/examples/
bart/summarize.py.

the specific packages we adopted are in the Ap-
pendix. For fair comparisons, we re-implement
these baselines on our machine. Then, we fur-
ther arm them with different in-sample curriculum
settings without changing corresponding hyper-
parameters. Specifically, we distinguish Liang et al.
(2021)’s work and our method in detail from two
aspects, including the curriculum criterion denoted
by SG or SC and the training algorithm denoted
by TCL or ICL 4, which results in the following 4
combinations:

• TCL-SG: the token-wise curriculum learning
algorithm(TCL) with sub-sequence genera-
tion(SG) criterion proposed by Liang et al.
(2021) with their best soft setting. The hyper-
parameters are set as γ0 = 0.7 and α0 = 25
following the original paper.

• TCL-SC: we modified the TCL-SG by incor-
porating our sequence completion(SC) crite-
rion in Section 2 with the hard setting 5 where
λ0 = 0.1 following the original paper.

• ICL-SG: we implemented the SG criterion by
using our ICL algorithm in Section 2 which
calculating the loss with 1 ≤ t ≤ c in (2).

• ICL-SC: our final approach. Both TCL-SC
and ICL-SG are ablations for it. The settings
of newly introduced pstart and s are specified
and discussed in Section 4.2.

All of the approaches are trained with the same
max training epochs with the early-stop for prevent-
ing from over-fitting. The experiments are done on
a single RTX 3090 with 24G GPU memory. The re-
sults are averaged over three runs. We open-source
all of codes and results at https://github.com/
JiaQiSJTU/InsampleCurriculumLearning.

4In the rest sections, we use TCL and ICL to refer to the
corresponding training algorithms specifically.

5The soft setting will hurt our ordering criterion according
to preliminary studies in Appendix.

https://github.com/pytorch/fairseq/blob/main/examples/bart/summarize.py
https://github.com/pytorch/fairseq/blob/main/examples/bart/summarize.py
https://github.com/pytorch/fairseq/blob/main/examples/bart/summarize.py
https://github.com/JiaQiSJTU/InsampleCurriculumLearning
https://github.com/JiaQiSJTU/InsampleCurriculumLearning


Method B1 B2 B3 B4 Met RL
w/o CL 32.03 16.01 8.77 4.80 19.84 38.89
TCL-SG 32.35 16.38 8.86 4.69 19.95 39.27
TCL-SC 33.44 16.90 8.93 4.66 20.45 40.55
ICL-SG 32.80 16.32 8.88 4.75 19.96 39.72
ICL-SC 33.99 17.43 9.18 4.64 20.60 40.78

(a) Reading Comprehension

Method R1 R2 RL Met BertS
w/o CL 51.88 27.30 42.77 24.75 71.38
TCL-SG 52.43 27.65 43.56 25.17 71.86
TCL-SC 52.69 28.28 43.89 25.08 71.95
ICL-SG 52.95 28.07 43.91 25.67 72.01
ICL-SC 53.07 28.23 43.83 26.12 72.17

(b) Dialogue Summarization

Method ACC SIM FL GM J
w/o CL 70.49 55.70 85.98 69.63 33.72
TCL-SG 76.09 53.79 82.97 69.76 34.02
TCL-SC 73.27 54.84 85.49 70.03 34.56
ICL-SG 74.60 55.75 84.89 70.68 35.64
ICL-SC 73.72 55.91 86.30 70.60 35.81

(c) Style Transfer.

Method B1 B2 B3 B4 Met RL
w/o CL 50.36 35.81 27.46 21.62 24.56 50.88
TCL-SG 50.47 35.96 27.57 21.69 24.66 50.76
TCL-SC 50.48 36.04 27.67 21.79 24.70 51.17
ICL-SG 50.89 36.28 27.83 21.92 24.82 51.16
ICL-SC 51.02 36.39 27.90 21.96 24.90 51.29

(d) Question Generation

Method R1 R2 RL Met BertS
w/o CL 43.07 20.01 35.94 21.44 63.72
TCL-SG 43.03 20.19 36.22 19.58 63.84
TCL-SC 43.63 20.69 36.70 19.84 64.18
ICL-SG 43.76 20.81 36.88 19.69 64.31
ICL-SC 43.60 20.66 36.73 19.64 64.20

(e) News Summarization

Table 2: Results on different NLG tasks. w/o CL and
TCL-SG are two previous strong baselines. Both TCL-
SC and ICL-SG are variations of our final approach
ICL-SC. Scores underlined of ICL-SC are statistically
significantly better than both baselines in the first two
lines with p < 0.05 according to the t-test.

3.2 Automatic Evaluations on Different Tasks

The performances on different NLG tasks are
shown in Table 2. These tasks not only focus on
solving different problems, but also has a various
amount of training data as well as output lengths
according to Table 1. Besides, the basic models are
also different, including BART, GPT-2 and UniLM.
Our approach ICL-SC achieves significant im-
provements over the strong baselines among dif-
ferent tasks on most evaluation metrics, which
shows that our method not only works well, but
also has strong generalization abilities. It should be
noted that GM and J are two comprehensive evalu-
ation metrics for style transfer, with our approach
topping the ranks with significant improvements.

To disentangle factors of learning curriculum
and training algorithms, we conduct variations of
ICL-SC for detailed comparisons to TCL-SG. More

observations are as follows.
∗-SC outperforms ∗-SG for both training algo-

rithms, showing that our proposed sequence com-
pletion curriculum is a more effective way of do-
ing curriculum learning within a single sample.
The only exception is that ICL-SG performs bet-
ter than ICL-SC for news summarization in Table
2e. The reason is that multi-sentence summaries
in CNNDM are more extractive and cover differ-
ent salient information in each sentence. Human
agreement on salient information is relatively low
as shown in Table 3. Consequently, the prefix of a
summary can also be a reasonable and more con-
cise reference summary with one or more complete
sentences. The nature of ∗-SG happens to take
advantage of this property.

ICL-∗ is better than TCL-∗ with better per-
formance and less computational costs. For TCL
training algorithm adopted in Liang et al. (2021), it
separates the whole training process into curricu-
lum and ordinary training. The curriculum length is
an important hyper-parameter that is required to be
estimated by finishing the training of the baseline
model and computing the number of steps it takes
to reach approximately 70% of final scores. It inten-
sively aggravates the computational costs. Besides,
this estimation rule can not generalize well to dif-
ferent tasks (More in Appendix). We choose to set
curriculum steps to 2 or 3 epochs, approximately
to the same amount of samples with different dif-
ficulty levels in ICL-SC. Taking dialogue summa-
rization as an example, TCL-SG takes around 15.67
epochs (6 for the curriculum step estimation, 3 for
curriculum and 6.67 for ordinary training) while
our ICL-SC takes only 11.67 epochs to get the final
results (More in Appendix). In a word, our ICL-∗
do the curriculum and ordinary training in a uni-
fied manner, requiring less computational costs in
total. Moreover, ICL-∗ moves to the next difficulty
level after the model has fully been trained on that
judging by the performance on the validation set,
which is more similar to the education process in
real life and leads to better results.

3.3 Human Evaluations

To further prove the improvement of our approach,
we hired three proficient English speakers for hu-
man evaluation. 100 samples from the test set of
each task are randomly selected, ignoring the ones
with totally same generations among three models,
including the vanilla model, TCL-SG and ICL-SC.



The original input, reference output and three gen-
erations are shown to annotators together, while
the order of the three generations is unknown and
different among samples. 3-point Likert Scale is
adopted for scoring each generation (Gliwa et al.,
2019), where [5, 3, 1] represent excellent, moderate
and disappointing results respectively. The average
scores and annotator agreements are in Table 3.

Tasks w/o CL TCL-SG ICL-SC Agree
Reading Comprehension 3.42 3.39 3.94 0.64
Dialog Summarization 3.01 3.51 3.6 0.41
Style Transfer 2.85 2.67 3.02 0.43
Question Generation 3.77 3.81 3.93 0.40
News Summarization 3.13 3.04 3.43 0.23

Table 3: Human evaluations. The agreement (Agree) is
calculated by Fleiss Kappa.

The Fleiss Kappa on the first four tasks indicates
moderate agreements. It shows the promising im-
provement of ICL-SC over the vanilla model and
TCL-SG, which is consistent with the conclusion
based on automatic metrics. The poor agreement
on news summarization reflects the diverse con-
cerns of summarization from different annotators.

The drop of TCL-SG over the baseline on style
transfer is apparent. Although TCL-SG achieves
significant improvements in accuracy, the gener-
ated contents with less semantic similarities and
poor fluency are not preferred by annotators. Ex-
amples will be discussed in Section 3.4.

3.4 Case Studies
We show some cases in Table 4.

In the first case from reading comprehension,
our ICL-SC reasoned correctly while the base-
line model raised a wrong answer. TCL-SG also
answered incorrectly by merging both keywords.
Such ability is not suitable for generating a precise
answer. In contrast, ICL-SC successfully incorpo-
rated more salient information in a single sentence
for dialogue summarization, which performs better
than both baselines. The vanilla model did poorly
on coreference resolution among dialogue utter-
ances and generated “this” without a clear referent.
ICL-SC also generated a more accurate question in
Table 4d compared with strong baselines, although
it’s not the same as the reference.

For transferring style from modern to Shake-
speare’s style, the model generated results are all
acceptable while ICL-SC performs slightly better
for being more polite. Both TCL-SG and ICL-
SC even generated the more professional word
“prithee” which is widely used in Shakespeare’s

Dialogue

M: ... So health is more valuable than anything else. No
matter how much money we have, ...

W: ... honors can never equal good health either.
M: ... we should try our best to keep us as healthy as possible.

Question Which of the following did the man think the most impor-
tant?

Reference Good health.
w/o CL Honors.
TCL-SG Honors and health.
ICL-SC Health.

(a) Reading comprehension

Dialogue
Mike: <file_photo> woke up like this :/
Emma: omg what is this??? allergy?
Mike: no idea... probably... but no idea to what :/

Reference Mike suspects he might have had an allergic reaction to
something.

w/o CL Mike woke up like this.
TCL-SG Mike has an allergic reaction.
ICL-SC Mike woke up with an allergic reaction.

(b) Dialogue summarization

Modern Excuse me , sir , do you know how to read ?
Original I pray , sir , can you read ?
w/o CL I pray you , can you read ?
TCL-SG I prithee , read ?
ICL-SC I prithee , sir , can you read ?

Original My dismal scene I needs must act alone .
Modern In my desperate situation , I have to act alone .
w/o CL I have to act alone in my gloomy scene .
TCL-SG It’s my own fault , my own fault , that I’m the one who’s

in a d
ICL-SC I have to act alone in my gloomy scene .

(c) Style Transfer

Document Plymouth is home to Plymouth Argyle F.C., who play in the
fourth tier of English football league known as Football
League Two. ...

Answer Football League Two
Reference What level of the football league does Plymouth Argyle F.C.

operate in?
w/o CL What is the fourth tier of English football league ?
TCL-SG What is the fourth tier of English football ?
ICL-SC What is the fourth tier of English football league called ?

(d) Question Generation

Document a man has been arrested ... an imam found dead in his car . ||
abdul hadi arwani was found slumped in the back seat of his
black volkswagen passat on tuesday morning in wembley ,
north west london . || the 48-year-old syrian national was
an outspoken critic of the assad regime and ‘ actively ’ cam-
paigned against extremist , his family have since revealed . ||
on monday morning scotland yard confirmed that a 46-year-
old had been arrested in brent , north west london , on sus-
picion of conspiracy to murder || ... || he is being questioned
... while officers ... for witnesses || ... || counter-terrorism
investigators were drafted ...

Reference abdul hadi arwani was found dead in his car on tuesday in
wembley . counter terrorism police were drafted in to lead in-
vestigation into death . a 46-year-old man has been arrested
on suspicion of conspiracy to murder .

w/o CL abdul ... london. The 48 ... revealed. A man ... car.
TCL-SG abdul ... london. the 48... revealed. on monday ... arrested

on suspicion of conspiracy to murder. he ... witnesses.
ICL-SC abdul ... back seat of his car in wembley. the syrian national

was ... assad regime. a 46-year-old man has been arrested
on suspicion of conspiracy to murder. he ... witnesses.

(e) News Summarization

Table 4: Case studies. Keywords are in bold. Doubt-
ful generations are italic. ‘||” marks sentence bound-
aries. Unnecessary words in the document and identi-
cal words among generations are folded with “...”.



time. A bad case is the second case of Table 4c.
ICL-SC didn’t make any improvements over the
baseline. TCL-SG even got out of control.

Generated summaries in Table 4e cover differ-
ent parts of information in the original document.
The vanilla output is just a reordering of the first
three sentences. ICL-SC did better by omitting too
detailed content compared to the two baselines.

In a word, the results show that ICL-SC can
capture the characteristics of different tasks
and do better language modeling. Besides, by
comparing the improvements among these five
tasks with different output length, we conclude that
our ICL-SC is more competitive with tasks hav-
ing shorter outputs. Long outputs, such as sum-
maries in news summarization, bring additional
difficulties on the arrangement of multiple salient
contents and cross-sentence relations, which can’t
be well solved with such a simple in-sample cur-
riculum and will be considered in the future.

4 Analysis

For a better understanding of ICL-SC, we did com-
prehensive ablation studies and combined it with
the traditional CL. The experiments in this section
are done on dialogue summarization, which is rep-
resentative due to the medium output length.

4.1 Ablations on the Training Strategy
To examine the design of decreasing the prefix for
ICL-SC, we introduce the alternatives as follows:

• Decrease refers to the Algorithm 1. Taking
pstart = 0.6 and s = 0.3 as an example, the
prefix percentage p varies as 0.6 → 0.3 →
0.0 during training.

• Increase means that we gradually increase
the length of prefix by increase p following
0.0→ 0.3→ 0.6.

• Random is that we randomly pick p from the
set {0.0, 0.3, 0.6} in this example.

Strategy R1 R2 RL Met BertS
Decrease 53.07 28.23 43.83 26.12 72.17
Increase 51.43 27.35 42.97 24.32 71.25
Random 51.80 27.69 43.27 24.59 71.51

Table 5: Ablations on ICL strategies. The starting point
and the stride are 0.6 and 0.3 respectively.

The results are shown in Table 5, with Decrease
ranking first and Increase ranking the worst. De-
crease significantly outperforms other ablations,

showing that our sequence completion criterion of
shrinking the prefix does work by means of learn-
ing from easy to hard.

4.2 Parameter Search of the Starting Point
and the Stride

To better understand how the ICL-SC manipulates
the difficulty of samples during the training process,
we further did experiments on different settings of
two newly-introduced hyper-parameters pstart and
s. The results are in Figure 3.
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Figure 3: Parameter search of the starting point pstart
and the stride s. The “w/o” CL representing the BART
baseline is drawn for comparison.

We can see that the performance drops with ei-
ther a too large or too small pstart. The former one
starts training with only predicting the last 1 or 2
tokens according to the average length of reference
output shown in Table 1. Most of the time, they are
punctuation marks that do not carry any important
semantic information, leading to a bad warm-up.
The latter one requires the model to predict more
than half of the output, which are too difficult as a
beginning learning target. Besides, a larger pstart
which is divisible by s is more competitive.

The trend is the same for using different stride
values. The performance drops with s equaling 0.1
or 0.6. The smaller ones lead to too tiny changes,
which not only excessively prolongs the required
training time but also leads to server outfitting on
the training set. The larger ones greatly enlarge the
gap between training targets which degrades to 0.0
directly. It also harms the performances.

In a word, the training should start with a
medium difficulty training objective and the gap
between training objectives shouldn’t be too large.
Both parameters are closely related to the out-
put length of different tasks. We suggest using
(pstart = 0.6, s = 0.3) for NLG tasks with multi-
sentence outputs, and (pstart = 0.5, s = 0.5) for
NLG tasks with single-sentence outputs. All of our
experiments are done based on this guideline.



4.3 Combinations with the Traditional CL

Since our ICL-SC is orthogonal to sample-wise CL
and designing an appropriate sample-wise curricu-
lum is not easy, we choose dialogue summarization
as a representative task, design several traditional
CL strategies empirically, and further apply our
ICL-SC on top of them for comparisons. 4 differ-
ent traditional CL strategies are as follows:

• Input length (InLen) refers to the number of
tokens in the input dialogue. The longer a
dialogue is, the more complex a sample is.

• Output length (OutLen) is the number of
tokens in a reference summary, which is also
proportional to the difficulty of a sample.

• Compression ratio (CompR) equals the out-
put length divided by the input length. More
compressed training pairs are harder.

• Abstractiveness (Abstr) represents the per-
centage of novel words in the reference sum-
mary which are not in the dialogue. We mea-
sure it by Rouge-2 recall, which is inversely
proportional to the difficulty level.

Method R1 R2 RL Met BertS
w/o CL 51.88 27.30 42.77 24.75 71.38
ICL-SC 53.07 28.23 43.83 26.12 72.17
InLen 52.19 27.73 43.50 25.57 71.73
InLen+ 52.56 27.60 43.43 25.77 71.92
OutLen 41.38 20.88 31.77 27.95 67.21
OutLen+ 43.96 22.14 33.05 26.39 67.64
CompR 39.68 19.28 34.73 14.41 65.96
CompR+ 41.59 20.78 36.62 15.22 67.19
Abstr 44.61 20.10 36.93 17.34 68.29
Abstr+ 44.41 20.64 37.29 17.25 68.33

Table 6: Performaces with traditional CL strategies.
“+” represents experiments further armed with ICL-SC.

The results based on the ordered training sam-
ples according to these intuitive CL strategies are
shown in Table 6. It shows that only InLen im-
proves the vanilla model, but it still lags behind the
pure ICL-SC. Other strategies failed mainly due
to the low data quality at the beginning or the end
of training. Taking Abstr as an example, samples
with the highest Rouge-2 recall are gathered at the
beginning where their inputs and outputs are al-
most the same. This leads to a bad initialization for
models learning the summarization ability.

Besides, some strategies are incompatible, such
as OutLen and CompR. Samples with the shortest
output length are always too compressed. There-
fore, developing a comprehensive score for a better

ranking is difficult. It should be also noticed that
most of these strategies are designed for summa-
rization, which are not suitable for generalization.

In a word, it’s hard to develop a comprehensive
strategy for one task or a unified strategy for dif-
ferent NLG tasks with traditional CL. ICL-SC not
only outperforms these CL strategies, but also im-
proves them when easily combined.

5 Related Work

Natural language generation has received great
attention with deep neural networks, especially
pre-trained language models. It refers to the task
where expected outputs for different purposes are
in natural language (Dong et al., 2022). The inher-
ent characteristic of having more than one correct
output given the same input is the core challenge
of solving this kind of task, especially for evalua-
tion (Singh et al., 2018).

Curriculum learning (Bengio et al., 2009)
boost models’ performances in a range of machine
learning areas (Liu et al., 2021; Varshney et al.,
2022) by reordering the training samples. It meets
great obstacles when applying to NLG tasks as it’s
hard to evaluate the difficulties of training sam-
ples. Different rules are developed for different
tasks (Platanios et al., 2019; Chang et al., 2021).
For example, (Liu et al., 2018) measures the com-
plexity of question-answering pairs from the view
of frequency and grammar simply for answers.
(Kocmi and Bojar, 2017) focuses more on POS
features and the length of translation pairs. Other
works utilize additional models or targeting models
in the previous training step (Zhang et al., 2018).
Shen and Feng (2020) reorder samples by the ac-
curacy from an independent emotion classifier for
response generation. However, such salient fea-
tures do not always exist or can be well classified.
There is also work (Zhou et al., 2020) using either
the reference perplexity or generations evaluated by
corresponding metrics for ranking during training,
while these scores are not ideal due to the one-to-
many characteristic of NLG. Thus, designing a CL
strategy generalizing well for NLG is difficult.

Instead of figuring out the oracle scoring func-
tion for training samples, we propose to measure
the language generation difficulty within a sample.
Liang et al. (2021) did something similar though
their approach amounts to data augmentation by
doing sub-sequence generation, which is not ex-
actly curriculum learning. We, on the other hand,



train on the original sample with a decreasing prefix
length and thus learn from easy to hard.

6 Conclusion

This paper defines a new kind of curriculum learn-
ing strategy for NLG tasks called in-sample curricu-
lum learning (ICL) by manipulating the difficulty
of training within a training sample instead of rank-
ing among samples. We propose the ICL algorithm
with the sequence completion curriculum which
boosts the performance of strong baselines on a
wide range of tasks, showing the effectiveness and
strong generalization ability of our approach. More
training strategies under ICL digging the inherent
difficulties of generating a language sequence are
expected in the future.

Limitations

Tasks w/o CL TCL-SG ICL-SC
Reading Comprehension 6.67 ep 13.00 ep 7.67 ep
Dialog Summarization 6.00 ep 15.67 ep 11.67 ep
Style Transfer 6.50k st 14.78k st 9.67k st
Question Generation 17.67k st 37.73k st 21.00k st
News Summarization 21.00k st 47.20k st 36.00k st

Table 7: Average number of training steps for different
approaches. “ep” and “st” are short for “epochs” and
“steps” respectively.

One limitation of our approach is that in-sample
curriculum learning methods (both TCL-SG and
ICL-SC) always incur extra overhead during train-
ing compared with the vanilla model shown in Ta-
ble 7. Nevertheless, the inference time of different
approaches is the same as the vanilla model. In a
word, it’s worthwhile because (1) ICL-SC can per-
form significantly better than both baselines with-
out additional computational requirements during
inference in real applications; (2) ICL-SC doesn’t
rely on task-specific expertise and has strong gen-
eralization ability.

Due to the limited computational resources, we
were unable to do experiments on machine trans-
lation. According to the implementation details
in Liang et al. (2021), all of their machine transla-
tion experiments were done on 32G NVIDIA V100
GPUs which are much more powerful than a single
RTX 3090. Even for the low resource setting with
around 133K to 612K training samples, they used
dynamic batching with 4096 maximum tokens and
trained for 60 epochs. This will either lead to an
out-of-memory error or take us several weeks or
even months to get the results of a single run on our

machine. Instead, we tried our best to cover a range
of representative natural language generation tasks
and corresponding datasets with different charac-
teristics, such as sizes and output lengths (Table
1).
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A Packages used for Baselines

The packages we adopted to re-implement the base-
line are listed as follows:

Reading Comprehension

• Dataset: https://github.com/nlpdata/
dream/tree/master/data

• Baseline Code: https://github.com/
huggingface/transformers

• Evaluation Metric: https://github.
com/tensorflow/nmt/blob/master/nmt/
scripts/bleu.py

Dialogue Summarization

• Dataset: https://arxiv.org/src/1911.
12237v2/anc/corpus.7z

• Baseline Code: https://github.com/
huggingface/transformers

• Evaluation Metric: https://github.
com/pltrdy/files2rouge; https:
//github.com/Yale-LILY/SummEval

Style Transfer

• Dataset: https://github.
com/martiansideofthemoon/
style-transfer-paraphrase

• Baseline Code: https://github.
com/martiansideofthemoon/
style-transfer-paraphrase

• Evaluation Metric: https://
github.com/martiansideofthemoon/
style-transfer-paraphrase

Question Generation

• Dataset: https://github.com/microsoft/
unilm/tree/master/unilm-v1

• Baseline Code: https://github.
com/microsoft/unilm/tree/master/
unilm-v1

• Evaluation Metric: https://github.
com/microsoft/unilm/tree/master/
unilm-v1

News Summarization

• Dataset: https://drive.google.com/
file/d/0BzQ6rtO2VN95a0c3TlZCWkl3aU0/
view?resourcekey=
0-toctC3TNM1vffPCZ7XT0JA

• Baseline Code: https://github.com/
huggingface/transformers

• Evaluation Metric: https://github.
com/pltrdy/files2rouge; https:
//github.com/Yale-LILY/SummEval

B Preliminary Studies on TCL

Preliminary studies on dialogue summarization for
TCL under different settings are shown in Table 8.
We can see that the “soft” setting does help the TCL
with sub-sequence generation curricula, which is
consistent with the results in Liang et al. (2021).
Results are opposite for TCL with our proposed
sequence completion curricula. The “soft” setting
considering the loss from prefix tokens actually
hurts the intuition that “the shorter the target is, the
easier the tasks is”. As a result, SC-hard performs
better than SC-soft.

R1 R2 RL Met BertS
w/o CL 51.88 27.30 42.77 24.75 71.38
SG-hard 50.70 27.31 43.00 23.47 70.85
SG-soft 52.43 27.65 43.56 25.17 71.86
SC-hard 52.69 28.28 43.89 25.08 71.95
SC-soft 51.39 27.53 43.06 23.84 71.35

Table 8: Ablations on TCL learning algorithm with dif-
ferent settings.

Experiments on the sensitivity of curriculum step
in TCL-SG (Liang et al., 2021) are in Table 9. It
consistently has improvements on dialogue sum-
marization compared with the baseline. However,
the performances also vary a lot with different
curriculum steps, especially on R1, Meteor and
BertScore. The estimation rule proposed in Liang
et al. (2021) of computing the number of steps it
takes to reach approximately 70% of final scores
doesn’t perform well for dialogue summarization.
So, we choose to set curriculum steps to 3 epochs
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for dialogue summarization and news summariza-
tion, and 2 epochs for reading comprehension and
style transfer, which not only achieve better results,
but also are fairer for comparisons. For news sum-
marization, we still adopted their estimation rule
and trained with 5200 curriculum steps.

Curriculum Step R1 R2 RL Met BertS
w/o CL 51.88 27.30 42.77 24.75 71.38
1 epoch 52.48 27.86 43.47 25.50 71.83

1.58 epoch(70%) 51.89 27.64 43.51 24.37 71.55
2 epoch 51.93 27.75 43.37 24.73 71.57
3 epoch 52.43 27.65 43.56 25.17 71.85

Table 9: Performances on TCL-SG with different cur-
riculum steps.


