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Abstract

As e-commerce platforms develop different
business lines, a special but challenging prod-
uct categorization scenario emerges, where
there are multiple domain-specific category
taxonomies and each of them evolves dynam-
ically over time. In order to unify the cate-
gorization process and ensure efficiency, we
propose a two-stage taxonomy-agnostic frame-
work that relies solely on calculating the se-
mantic relatedness between product titles and
category names in the vector space. To further
enhance domain transferability and better ex-
ploit cross-domain data, we design two plug-
in modules: a heuristic mapping scorer and a
pretrained contrastive ranking module with the
help of “meta concepts”, which represent key-
word knowledge shared across domains. Com-
prehensive offline experiments show that our
method outperforms strong baselines on three
dynamic multi-domain product categorization
(DMPC) tasks, and online experiments re-
confirm its efficacy with a 5% increase on sea-
sonal purchase revenue. Related datasets are
released1.

1 Introduction

Product categorization (Ding et al., 2002) is a spe-
cialized text classification task that classifies prod-
uct titles or descriptions into a pre-defined taxon-
omy of categories. As businesses expand, major
e-commerce platforms (e.g., Amazon and Alibaba)
are encountering increasingly complex scenarios,
where there are multiple domain-specific category
taxonomies and each of them evolves dynamically

∗ Equal contribution.
†† Corresponding author.

1Datasets associated with this paper are released at https:
//github.com/ze-lin/TaLR.

over time. We define it as Dynamic Multi-Domain
Product Categorization (DMPC), which simul-
taneously considers the following multi-domain
taxonomies and taxonomy evolving challenges.

In real-world businesses, e-commerce platforms
usually maintain multiple business lines with rel-
atively independent taxonomies. These business
lines are catering for different customer demands
or specific domain applications, for example, one
provides express delivery while another specializes
in low-price bargains. Multiple business domains
correspond to different category taxonomy struc-
tures, with various depths and distinct literal expres-
sions of category names. Conventional industry ap-
proaches train separate classifiers on each domain,
which under-utilize the cross-domain data and their
shared knowledge while raising the expenses of
maintenance. Meanwhile, with the expansion and
reorganization of businesses, each category taxon-
omy keeps evolving as well, where old categories
might be deleted or integrated and new categories
are possibly added. Conventional multi-class clas-
sifiers need to be re-trained every time taxonomy
changes, which disrupts the operation and further
diminishes the maintenance efficiency.

To mitigate taxonomy evolving issues, intu-
itively, we reformulate the canonical text classifica-
tion problem as a text relevance matching problem.
Moreover, to ensure both accuracy and online effi-
ciency, we propose a two-stage Taxonomy-agnostic
Label Retrieval (TaLR) framework (see Figure 1)
capturing semantic similarity between a product
title and its corresponding category names in the
vector space, where candidate categories are first
retrieved and then reranked for the final predic-
tion. This reformulation is especially beneficial for
evolving and newly added (zero-shot) categories as

https://github.com/ze-lin/TaLR
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textual semantics are incorporated.
To leverage cross-domain data in multi-domain

taxonomies challenge, we devise two plug-in mod-
ules in both stages to enhance TaLR’s domain
transferability. These modules are centralized with
“meta concepts” that appear in the product titles,
which represent fine-grained keyword knowledge
shared across domains (Appendix B). As is shown
in Figure 1, in the retrieval stage, besides the dense
retrieval based on vector similarity (dense scorer),
the statistical co-occurrence probability between
meta concepts and category labels are exploited
as well (mapping scorer) . In the reranking stage,
meta concepts are incorporated with category la-
bels as supervision signals for the contrastive pre-
training of the scoring model (matching scorer).
While the mapping scorer complements the super-
ficial semantic dense retrieval with cross-domain
commonsense knowledge, contrastive pretraining
directly optimizes the vector space improving inter-
domain alignment and uniformity. Details are given
in Section 2.2 and Section 2.4.

In summary, our contributions are: (1) For the
first time, we address the DMPC problem and
release the corresponding multi-domain datasets in
Chinese. (2) We propose a unified TaLR framework
equipped with two well-designed plug-in modules
empowered with meta concepts, which is robust
and efficient against the two challenges in DMPC
problem. (3) Offline experiments on our annotated
real-world DMPC datasets show TaLR’s ability
to effectively transfer knowledge across domains
and generalize to new domains. The unified TaLR
outperforms three separately-trained SOTA classi-
fiers by 1.65% on overall accuracy and maintains
satisfactory accuracy in taxonomy evolving condi-
tions. Online experiments reaffirm its efficacy with
a 5% increase in seasonal purchase revenue.

2 Proposed Framework

∀i ∈ [1, n] domains, given a taxonomy Gi with
depth of di and m leaf nodes, the path from root
to leaf node forms the text which is regarded as
hierarchical category label y(j)

i (j ∈ [1,m]). For an
input product title Xi along with its meta concept
labels {λk}, our task is to output the correct cat-
egory label it belongs to. Note that only one leaf
category will be the correct answer. Detailed task
formulation refers to Appendix A.

Our TaLR framework is structured into two
stages: Retrieval and Reranking, as illustrated in

Figure 1. We will zoom into each component of
this framework.

2.1 Dense Scorer
We first train a dual-encoder to represent both cate-
gories and product titles in the vector space.

Negative sampling In the original text classifica-
tion problem, each product title Xi has exactly one
positive category label yi. However in our reformu-
lation, text relevance matching models need nega-
tive category labels during training, otherwise they
would not succesfully converge. For each (Xi, yi)
pair, we prepare to construct the training examples
S from multiple taxonomies by sampling (N − 1)
negative categories. Instead of randomly chosen,
“hard” negative examples are more informative for
better convergence. Inspired by teacher-student
paradigm (Hinton et al., 2015), we adopt a teacher
classifier-based sampling strategy to sample strong
negative categories for dual-encoder learning.

For each training dataset Si of taxonomy Gi, we
split it in k-fold manner, then take turns to train
k BERT classifiers on every k−1

k data , with the
remain 1

k data as the development set. The m-class
classifiers are optimized with the typical m-class
cross-entropy loss. The k classifiers would infer-
ence (N−1) most possible but not correct category
labels concurrently in their corresponding develop-
ment sets, and their results with ground truth pos-
itive labels constitutes the point-wise training set
for the following dual-encoder training.

Dual-encoder training We adopt a siamese net-
work architecture (Reimers and Gurevych, 2019)
where the encoder respectively extracts the fixed-
sized embeddings of product titles Xi and category
names ŷi which are denoted as ux and vy . To
better align the embedding of ux and vy, we use
Circle Loss (Sun et al., 2020) which allows each
similarity score to optimize at its own pace. We
simplify it as:

L = log

(
1 +

∑
S

eα(cos(u+
x ,v

+
y )−cos(u−x ,v−y ))

)
,

(1)
where α is the hyper-parameter, and +,− denotes
the positive and negative samples in S respectively.
We also compare this loss function with other alter-
natives in Appendix D.1.

Candidates retrieval We can quickly derive rel-
evant category label embeddings given an incoming
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Figure 1: An overview of TaLR framework, containing Retrieval and Reranking stages. We show an example from
our released dataset, in which the input is a product title with its meta concepts, and the output is its corresponding
hierarchical category. In Retrieval stage, two lists of category candidates are sampled from mapping scorer and
dense scorer. In the Reranking stage, merged category candidates are ranked by a matching scorer with contrastive
information. Dark dashes refer to plug-in modules.

product title embedding, with one-vs-all similarity
measurement like cosine-similarity implemented
by Approximate Nearest Neighbor (ANN) tech-
niques targeting time efficiency. Based on this, we
can readily collect top-k candidate list Cvec.

2.2 Mapping Scorer
Dense scorer usually prioritizes semantic related-
ness of literal expressions, neglecting the common-
sense co-occurrence probability that lies within
cross-domain training data. For example, “Sunrise
Roses 500g” is often recognized as [Flower] by
semantic matching algorithms, however, it is actu-
ally a variety of [Grape]. Therefore we introduce a
mapping scorer in Retrieval stage capturing such
commonsense knowledge to complement the above
dense-retrieved candidates.

Mapping algorithm The shared meta concept
setM is constructed by hybrid NER-related tech-
niques. Details are in Appendix B. We can re-
gard “meta concept” as a kind of keyword knowl-
edge because they usually contain very concrete
and accurate information. In our released datasets,
one product title X is tagged with one or more
meta concepts Λ = {λ1, λ2, ...λk} fromM. For
example, “Haagen-Dazs Red Wine Flavor Ice
Cream” is tagged with 〈RedWine〉, 〈Icecream〉,
〈HaagenDazs〉 as meta concepts.

Given product title X and a category label ŷ,
our heuristic strategy establishes X → ŷ mapping
as conditional co-occurrence probability P (ŷ|X).
First, we model this conditional probability for
each category ŷ as:

P (ŷ|X) = P (ŷ|λ1, λ2, ...λk)

= max
1≤i≤k

P (ŷ|λi). (2)

Here we aggregate P (ŷ|λ1, λ2, ...λk) with the max-

imum value among multiple λi referring to the
same ŷ. Each P (ŷ|λi) is collected from training
data distributions:

P (ŷ|λi) =
P (ŷ, λi)

P (λi)
=
ν(ŷ, λi)

ν(λi)
, (3)

where ν denotes the frequency in training data.
Then, we collect candidate listCrule by empirically
setting a threshold of P (ŷ|X) > 0.5 to ensure both
retrieval quantity and quality.

Candidates merging When retrieved candidates
from the dense scorer and mapping scorer are pre-
pared, we need to combine the two lists of candi-
dates. Our concept-first strategy prioritizes candi-
dates from Crule. It puts at most 10 top candidates
(usually less than 10) from Crule into Cunion, then
keeps filling it with top candidates from Cvec until
its size reaches 10.

2.3 Matching Scorer

To further measure the relatedness of product titles
and category names with mutual interactions, we
train a matching scorer in Reranking stage. During
training, given a product title X and its retrieved
candidates Cunion = {c1, c2, ...cl}, we concate-
nate tokenized sequences of X and each of these
ci ∈ Cunion with a [SEP] token as the input to
BERT-based model. The ground truth label is 1 if ci
is the correct candidate otherwise 0. Optimization
is followed with binary cross-entropy loss. Dur-
ing inference, the model gives similarity scores for
each (X , ci) pair, and the candidate with the highest
similarity score would be our predicted category.

2.4 Contrastive Pretraining

For multi-domain taxonomies, category classes
vary from one taxonomy to another. Despite the



assorted expressions of category classes among
different domain taxonomies, we find their fine-
grained concepts of products seldom shift. While
previous retrieval stage pursues the recall of candi-
dates and focuses less on class discrimination, the
cross-encoder in Reranking stage possibly suffers
from indistinguishable categories. Inspired by the
supervised derivative of contrastive learning (Wang
et al., 2021), we restrict the formation of posi-
tive pairs ensuring they not only share the same
category class with X but also have at least one
meta concept in common with X , otherwise they
would be considered negative. This setting is tai-
lored for the multi-domain taxonomies challenge
pursuing cross-domain alignment and uniformity,
where inter-concept semantics are tied closer and
intra-concept ones are further distinguished.

Given a product title X with label y and tagged
meta concept set Λ, we encode X as vector u and
group encoded product titles as positive vector sam-
ples {vy,Λ1

1 ,vy,Λ2
2 , ...,vy,ΛD

D }, which are labeled
with the same y and share an overlapped concept
set Λd with Λ. We use BERT as the encoder back-
bone and tune its parameters with group contrast
loss:

LGC = − 1

D

D∑
d=1

log
exp(u · vy,Λd

d /τ)

Pos+Neg
.

Pos =
D∑
d=1

exp(u · vy,Λd
d /τ),

Neg =
D∑
y′,Λ′

exp(u · vy′,Λ′/τ),

(4)

where y′,Λ′ denotes samples with either different
label y′ with y or non-overlapping meta concept
set Λ′ with Λ. The BERT model after contrastive
pretraining can be used in matching scorer during
Reranking stage in Section 2.3.

3 Dynamic Multi-Domain Datasets

3.1 Static Multi-domain Datasets
We select 3 business lines from our e-commerce
platform: QuickDelivery (QD, targeting fast de-
livery), BargainHunters (BH, targeting low price),
FreshGrocery (FG, targeting fresh vegetables).
These data instances are collected from the real-
world business, where the product titles are mostly
assigned by sellers from the platform and the cat-
egory labels stem from three pre-defined business
taxonomies. We recruit experienced annotators to

manually classify the products Xi into assorted cat-
egories yi, with 1% sampling to guarantee annota-
tion accuracy. Data groups with over 95% accuracy
in quality checking are used in our final datasets.
Meanwhile, Xi is tagged with concepts {λk} fol-
lowing the Appendix B.

Table 1: Statistics for multi-domain datasets

Dataset # training # test # classes depth

QD 99k 11k 1987 3
BH 31k 5k 2632 4
FG 28k 3k 1065 4

1 # classes: the total distinct leaf nodes.
2 depth: the depth of categorical taxonomy tree.

Statistics of three datasets are listed in Table 1.
Each sample in the three datasets has exactly one
ground truth category. Varied class numbers and hi-
erarchy depths of different taxonomies pose bigger
challenges for multi-domain knowledge sharing.

3.2 Dynamic Test Set

To verify the generalizability of TaLR on zero-
shot scenarios, we further construct two taxon-
omy evolving derivatives of the QD test set. (ii)
QD-integrate: During a production business ad-
justment, 127 classes in the original taxonomy are
integrated or replaced by similar categories, which
affects 1371 samples in the original test set to form
this subset. (i) QD-divide: 22 category nodes from
the original QD taxonomy are divided into two or
more nodes. 495 samples in the original test set
suffer from this evolution.

3.3 Meta Concept Set

Beyond the category labels, each product title is
associated with a list of meta concepts from a set
M including over 30k entities covering the most
fine-grained concepts in product titles. The tagging
step X → {λ1, λ2, ...λk} is accomplished by an
industrial Label Tagging System that exploits het-
erogeneous approaches. Details are in Appendix B.

4 Experiments

In this section, we discuss experimental results un-
der static multi-domain settings and dynamic (tax-
onomy evolving & new taxonomy) conditions. A
brief comparison of time efficiency between TaLR
and simple Reranking is also included.



4.1 Baselines

We implement several baseline methods based on
single-domain, multi-domain, and dynamic scenar-
ios. To ensure fair comparisons, we also experiment
concatenating product titles with meta concept text
as input for some competitive baselines. Note that
all the strong baselines are practicable in our online
production environment, and those with unbear-
able space or time complexity are not considered.
Works holding different assumptions (e.g. neces-
sitate multi-label or not support Chinese) with us
are not considered either. Finally, we deploy and
benchmark the following common baselines:

Flat Classifier TF-IDF&LR represents product
titles with TF-IDF weighted dense vectors, and
executes classification with Logistic Regression.
FastText (Bojanowski et al., 2017) is a common
baseline adopted in online product categorization
challenges. BERT classifier is used as the strong
baseline in both single-domain and multi-domain
(trained with multi-task learning) settings.

Hierarchical Classifier HMCN (Wehrmann
et al., 2018) and HiMatch (Chen et al., 2021)
leverage hierarchical information from taxonomy
to guide the classification process, and we use
BERT as a text encoder in both approaches. XR-
Linear and XR-Transformer are two derivatives
of PECOS (Yu et al., 2022) framework for ex-
treme classification, which achieve competitive
performance in most open product categorization
datasets.

4.2 Experimental Setup

We mix up training data from three datasets to train
the unified TaLR. We use accuracy score as the
evaluation metric to meet real-world business de-
mands. Accuracy mathematically equals to Micro-
F1 score in a single-label multi-class classification
problem. More details can be found in Appendix C.

4.3 Overall Results

The overall accuracy score is shown in Table 2.
Since traditional single-domain approaches cannot
tackle multi-domain taxonomies, we train sepa-
rate models on each business respectively. Among
methods targeting one static taxonomy, hierarchi-
cal classifiers generally perform better than flat
classifiers with the aid of taxonomy structure in-
formation. However, because these methods can
only handle one static taxonomy, they not only suf-
fer from efforts to maintain different models for

Table 2: The accuracy of baselines and our TaLR frame-
work with variants on static multi-domain datasets. The
best results are bolded, and the best baseline results are
starred. Overall accuracy is the weighted average w.r.t
respective test set size. MS: mapping scorer, CL: con-
trastive learning.

Methods Overall QD BH FG

Separate models

TF-IDF&LR 69.51 69.93 68.23 69.95
FastText 74.62 74.01 71.68 80.82
BERT 83.49 84.82 79.93∗ 84.23
BERT+♠ 83.01 86.45 79.02 75.32
HMCN-F-BERT 82.14 83.72 77.09 84.25
HiMatch-BERT 84.08 86.12 77.38 84.19
HiMatch-BERT+♠ 83.75 87.26∗ 77.26 78.53
XR-Linear 76.57 75.27 77.91 78.95
XR-Transformer 84.58∗ 79.74 79.23 84.58∗

XR-Transformer+♠ 81.45 85.34 74.59 78.53

(a): TaLR 85.90 87.88 81.92 85.09

Unified model

BERT Multi-task 68.00 80.27 50.28 44.29
BERT Multi-task+♠ 67.79 81.37 49.77 39.83
(b): TaLR 86.23 88.16 82.48 85.25

TaLR ablation test

(c): (b) (-) CL 85.26 86.83 81.75 85.13
(d): (b) (-) MS 84.63 86.59 80.13 84.71
(e): (b) (-) CL&MS 82.82 83.85 79.15 84.71
(f): (b) (-) CL&MS +♠ 84.38 87.43 80.64 79.77
♠ concatenate concept text after product title
(-) ablate cretain modules

each domain but also fail to leverage multi-domain
data. While the multi-task BERT is able to train
and infer on three domains within one model, it
performs even worse than TF-IDF&LR on BH and
FG. One possible reason is that the multi-task ap-
proach relies heavily on the weighting of losses,
and if the task-specific training data distribution
varies significantly, one task might dominate the
joint distribution and constrain the optimization of
other tasks. Simply concatenating meta concepts
to titles does not always take effect, and this is
expected since concatenated tokens implicitly con-
tribute to the joint representation of one sentence
(e.g. self-attention in transformer), which proves
to be inferior to our explicit usage of statistical
mapping and contrastive grouping.

For our proposed framework TaLR, variant (a)
already outperforms other baselines in separate
model training paradigm, while TaLR (b) further
achieves even higher accuracy when jointly trained
on the mixed multi-domain data where the multi-
task BERT fails, verifying TaLR’s efficacy on
multi-domain taxonomies. We assume that the



measurement of semantic relatedness is transfer-
able on either business domain, and their shared
knowledge could be integrated via contrastive pre-
training as well. Therefore, the unified training
helps improving the performance on each respec-
tive domain instead of conflicting each other as
BERT multi-task does.

From the ablation tests, we can observe the ef-
fectiveness of the two plug-in modules in our TaLR
framework from row (c) and (d), and the contribu-
tion of these two modules are orthogonal. Remov-
ing the mapping scorer in (d) drops the overall accu-
racy most, while removing contrastive pretraining
in (c) results in its inferior performance than (a) as
well. This indicates both modules are indispensable
for the enhancement of exploiting multi-domain
data. From (e)→(f), concatenating meta concepts
somehow improves the overall performance, but (f)
still loses to (b). This reaffirms our above assump-
tion that our usage of meta concepts is superior to
simple concatenation. To further analyze the effects
of the two plug-in modules, we conduct Case Study
in Appendix D.2.

4.4 Time Consumption

To meet online deployment requirement, the infer-
ence time consumption (seconds cost for each in-
stance) needs to be considered. We compare TaLR
with the vanilla model (single BERT cross-encoder)
on the three datasets in Figure 2. On the one hand,
the inference speed of TaLR is much faster (4 times
faster for FG and 10 times faster for BH) than
vanilla model owing to the Retrieval stage. On the
other hand, the time consumption per item of TaLR
increases almost linearly along with the number
of classes, while for vanilla model the overhead
grows more sharply, revealing the time efficiency
of TaLR when the class number scales up.
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Figure 2: Accuracy results and inference time consump-
tion when the number of classes grows.

4.5 Dynamic Test Set Experiment

In order to evaluate the ability of our framework
on taxonomy evolving challenge, we use TaLR
trained on the original multi-domain datasets to
directly infer on two dynamic test sets. The vanilla
BERT without any finetuning is a naive baseline
BERT-matching. The BERT fine-tuned with few-
shot new data (1%) is a strong baseline BERT-
few-shot. Here “before” denotes the subset from
the original test set and “after” denotes the subset
with the same product titles but evolved categories.
From the listed accuracy “before” and “after” tax-
onomy evolving in Table 3, we can conclude that
TaLR sustains satisfactory accuracy compared with
its strong counterpart trained with 1% extra data.

Table 3: The accuracy on two dynamic test sets. ∆ is
the change of accuracy after evolving. The best “after”
scores and least drop ∆ are bolded.

Methods QD−divide QD−integrate
Before After ∆ Before After ∆

BERT-matching 6.66 11.95 +5.29 13.39 2.23 -11.16
BERT-few-shot 90.51 43.54 -46.96 86.79 50.16 -36.53

TaLR 90.11 69.71 -20.40 85.20 81.48 -3.72

4.6 Extrapolating Results on New Taxonomy

Consider an extreme taxonomy evolving condi-
tion when a new business line emerges, a robust
model is supposed to categorize incoming products
based on the brand-new taxonomy.

Table 4: The accuracy of TaLR on the new taxonomy.

Methods QD BH FG

BERT-matching 9.00 11.23 4.03
BERT-few-shot 43.29 35.19 29.80

TaLR 60.57 65.45 62.69
(-) contrastive 56.71 64.99 60.79
(-) mapping scorer 56.25 64.65 59.29

We deploy our experiments in a zero-shot man-
ner, where we take turns to train TaLR on either
two business data and test its performance on the
remaining business. TaLR still outperforms BERT-
few-shot. This shows TaLR’s preeminent transfer-
ability with the reformulation of textual semantic
matching, which helps improving user experience
in this cold-start scenario. Each component in the
ablation test verifies its effectiveness as well.



4.7 Online Experiment
We conduct online experiments on one downstream
task where TaLR’s domain-independent category
recognition ability helps transfer user preferences
from other domains and contributes to a more accu-
rate recommendation. When TaLR is incorporated
in the recommendation system, customer seasonal
purchase revenue increases significantly over 5%.

5 Conclusion

To tackle DMPC problem, we propose a uni-
fied TaLR framework with two plug-in modules
empowered with cross-domain meta concepts.
With comprehensive experiments on real-world
DMPC datasets, results under both multi-domain
and taxonomy evolving conditions exhibit the trans-
ferability and maintenance efficiency of TaLR.
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A Dynamic Multi-Domain Problem

We clarify the DMPC problem as follows. Given
a set G of n relatively independent label taxonomies
at initial time t0

{G1, G2, G3, ..., Gn},

each of which correlates with a domain-specific
product categorization task. The taxonomy of prod-
uct categories Gi is tree-structured with depth di,
and it contains mi category leaf nodes:

{y(1)
i , y

(2)
i , y

(3)
i , ..., y

(mi)
i } ⊆ Gi.

Part of the nodes is enrolling in a dynamic trending.
As time goes t>0, the category node y(a)

i of a cer-
tain product might be divided into two categories
y

(a1)
i and y

(a2)
i or integrated with another cate-

gory y(b)
i to form y

(ab)
i . The emergence of a new

category node y(m+1)
i with corresponding product

titles is also possible. In addition, an emerging tax-
onomy Gn+1 may sprout when a new business is
cultivated.

A single product categorization task on taxon-
omy Gi (i = 1) is a traditional classification task,
in which the training data and test data are orga-
nized in tuples

S = {(X(1)
i , y

(1)
i ), ..., (X

(mi)
i , y

(mi)
i ), ...}.

EachXi in S represents the title of one product and
yi is the corresponding class node in the categorical
taxonomy tree.

In DMPC problem, when i ≥ 2, to unify the
training data and the inference procedure cross Gi,
we reformulate classification as the matching be-
tween Xi and yi. While traditional classifiers re-
gard yi as meaningless label ordinals, we instead
treat them along the path of top-bottom taxonomy
nodes equivalently with the product title as free
text. In this reformulated text semantic similarity
matching task, the data samples are:

Si = {(X(1)
i , y

(1)
i , Y

(1)
1

), ...,

(X
(mi)
i , y

(mi)
i , Y

(mi)
1

), ...},

S = {S1,S2, ...,Si},

where Y1 ∈ {0, 1} is an indicator denoting whether
the text pair Xi and yi is matched (Y1 = 1) or not
(Y1 = 0).



B Details of Meta Concept Set
Construction and Tagging

Meta concepts are fine-grained tags that have been
widely used in industrial knowledge graphs (e.g.
Amazon (Dong et al., 2020), Walmart (Xu et al.,
2020), Alibaba (Luo et al., 2020)). Details of meta
concept construction and tagging are listed below.
We will use “concept" instead of “meta concept”
for brevity.

B.1 Concept Set Construction
Concept set construction is conducted in a semi-
supervised manner. First, we use a domain-specific
named entity recognition (NER) model to mine
fine-grained entities from product titles. These en-
tities are complemented with queries from search
engine and cumulated knowledge from experts to
form the initial pool of concepts. Based on that, we
use a naive classifier to pick-up high-quality con-
cepts with high search frequency or broad product
coverage. Then, manual annotation is performed on
the remaining 20k entities, achieving 95% accuracy
in quality checking. Finally, we collect over 30k
concepts covering the most fine-grained knowledge
in product titles.

B.2 Concept Tagging
Concept tagging is comprised of two stages.

The first stage is concept recall. In order to find
candidate concepts for each product, we adopt three
approaches: NER, knowledge reduction and se-
mantic recall. First, seed candidates are found by
NER on product titles. Second, we extend seed
candidates with their neighbors in commonsense
knowledge graphs, such as synonyms and brand-
concept relations (some brands sell specific prod-
ucts). Third, for those products without seed candi-
dates, we use Sentence-BERT to retrieve concepts
by textual semantics. The low-quality concepts re-
called will be filtered in the next stage, i.e. concept
classification.

The second stage is concept classification. Based
on the candidates collected in the previos stage, we
train a binary classifier to filter out concepts which
attain low relevance score with product titles. The
classifier is fine-tuned with knowledge integration
which will be introduced in our successive work.

C Implementation Details

For fair comparisons, all the “BERT” abbreviations
mentioned in this work are Google BERT-base pre-

trained on Chinese corpus. For TF-IDF and Fast-
Text baselines, We use jieba 2 toolkit to generate
Chinese word segments and tune hyper-parameters
on each dataset respectively. BERT-related models
are initialized from the pretrained Google BERT-
base (Chinese) and tuned with 2e-5 learning rate,
512 batch size, 32 sequence length, except that
the cross-encoder BERT in Reranking stage ex-
tends the sequence length to 64. All BERT related
appoaches are trained 40 epochs while multi-task
baseline trained at most 120 epochs.

Table 5: Examples from the three Datasets

Product title Taxonomy path

QD

Towel gourd 1 pcs
& soy bean 150g

Vegetable→Mixed Product
→ Vegetables mixture

Concepts:{〈soy bean〉, 〈towel gourd〉}

BH

Fresh bamboo shoots
(dig from mountains)

Vegetable/Fruit→ Vegetable
→ Tubers→ Bamboo

Concepts:{〈bamboo shoot〉, 〈native product〉}

FG

Butter leaf lettuce 100g Fresh→ Vegetable→
Leaf→ Lettuce

Concepts:{〈lettuce〉, 〈butter lettuce〉}

D Experiment Analysis

D.1 Details of Dense Scorer

In Retrieval stage, it is encouraged to exploit the
potential candidates as accurately as possible, oth-
erwise the latter Reranking stage would never make
right predictions if the true label is not covered by
the retrieved candidates. Hence we use HR@k to
measure the retrieval performance.

We compare several alternatives of the loss func-
tion for Dense Scorer, specifically, different ap-
proaches for (ux,vy) similarity measurement. The
loss used in Eq. (1) is termed as Cosent loss3. Be-
sides this, one straightforward method is to com-
pute the cosine similarity between vector ux and
vy and optimize the model using vanilla binary
cross entropy loss.

δ = cos(ux,vy) =
< ux,vy >

||ux|| ||vy||
, (5)

2https://github.com/fxsjy/jieba
3This name is after https://kexue.fm/archives/8847

https://github.com/fxsjy/jieba
https://kexue.fm/archives/8847
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Figure 3: The retrieval results of the vector-based unit
over different loss functions.

Lbce = −
∑
S

Y1 log(δ)+(1−Y1) log(1−δ), (6)

where Y1 is the binary class. For the sake of the
alignment between embedding ux and vy, we also
refer to the classification objective function in
SBERT (Reimers and Gurevych, 2019).

o = softmax(Wo(ux,vy, |ux − vy|)), (7)

where Wo ∈ R3l×2 is the weighting parameter to
project the concatenation of ux, vy and the element-
wise difference |ux − vy| to binary classes. l is the
dimension of embeddings. The second element in
vector o can be regarded as the probability whether
ux and vy are matched or not, hence we can adopt
the same binary cross entropy loss function in Eq.
(6) to optimize the model.

In Figure 3, as k goes on, the HR score increases,
and the model trained with Cosent loss is consis-
tently better than others, while the model trained
with SBERT loss performs unstably, sometimes
worse than Cosine loss. One explanation is that
comparing with Cosine loss and SBERT loss, the
Cosent loss focuses on the positive-versus-negative
pairwise optimization, which means the model only
cares for the relative order of the prediction results
instead of the specific value. And this setting brings
consistent recall of candidates.

D.2 Case Study
For product “New Farmerr walnut flavored
sunflower seed 160g” which should be catego-
rized into [Sunflower Seed], TaLR without con-
trastive learning wrongly assign it to [Walnuts];
When concept “sunflower seed” is incorporated
in contrastive pretraining, TaLR is capable of
distinguishing the right answer. For product

“CELSIUSr cola flavored 300ml” which should be-
long to [Sports Drink], TaLR without mapping
scorer wrongly label it as [Cola]; When concept

“CELSIUSr” is engaged in retrieval, TaLR could
finally sort out the answer.

E Related Work

E.1 Large-Scale Taxonomy Classification

Text classification with a large hierarchy of classes
attracts attention and has been studied with the
evolving of LSHTC (Partalas et al., 2015) Chal-
lenge, which includes over 12000 categories. DiS-
MEC (Babbar and Schölkopf, 2017) devises one-
vs-all linear classifiers with explicit control of
model size. HMCN (Wehrmann et al., 2018) dis-
covers hierarchical information by jointly optimiz-
ing local and global loss functions. HiMatch (Chen
et al., 2021) encodes the complex structure of the
label hierarchy as well as the input text, to capture
the text-label semantics relationship. PECOS (Yu
et al., 2022) ranks output classes with hierarchi-
cal clustering, and the semantics of categories are
incorporated as well. These methods assume that
label taxonomies are stable, neglecting that taxon-
omy evolves gradually.

E.2 Product Categorization

Product categorization is a hierarchical text clas-
sification task assigning categories to product in-
stances.

Approaches in early times are centralized with
text features and basic machine learning algorithms.
(Ding et al., 2002) introduces KNN and Naive
Bayes to the field of product categorization, while
(Yu et al., 2012) conducts experiments using TF-
IDF with an SVM classifier. Restricted by the bag-
of-words paradigm, these methods lack the ability
to represent text with contextual semantics.

Neural network based methods prevail since
2013. (Ha et al., 2016) proposes an end-to-end
deep learning model composed of multiple RNNs
and fully-connected layers, which exhibits a sig-
nificant advantage over traditional bag-of-words
approaches. (Das et al., 2016) conducts a compar-
ison between linear, CNN, and gradient boosting
models. Multi-CNN and multi-LSTM are applied
in (Krishnan and Amarthaluri, 2019) combining
structured and unstructured attributes of products.
(Chen et al., 2019) utilizes several convolutional ap-
proaches for a better representation of words, and
they further adopt literal matching between product
content and category label texts to deal with new
categories. However, they do not consider the more
complicated category divide situation.



Recent studies follow the pretrain-finetune
paradigm since the great success of BERT (Devlin
et al., 2019). (Lee et al., 2020) uses the Camem-
BERT pretrained on French corpus as text encoder
in SIGIR 2020 Challenge. (Yang et al., 2020) ex-
ploits BERT with a dynamic masking strategy and
achieves first place on the 2020 Semantic Web
Challenge.

Apart from end-to-end classification approaches,
(Hasson et al., 2021; Li et al., 2018) adopts hierar-
chical Seq2seq models for product categorization.
Nonetheless, their models need to be re-trained
whenever category taxonomy vocabulary changes.

E.3 Incremental Learning
Class incremental learning resolves the problem
that the classes increase progressively in a stream,
and the classifier should continuously learn the in-
coming classes while sustaining accuracy on the
seen classes as well. iCaRL (Rebuffi et al., 2017)
is proposed to circumvent the catastrophic forget-
ting problem by storing the information of previous
classes. (Xu et al., 2019) extends incremental learn-
ing as an open-world learning problem, where a
model rejects unseen classes instead of assigning
them into the seen class vocabulary. However, in
their open-world learning setting, other taxonomy
evolving situations (like split and merge) and multi-
domain taxonomies are not taken into considera-
tion.


