ARTIFICIAL
INTELLIGENCE

ENGINEERING

ELSEVIE Artificial Intelligence in Engineering 15 (2001) 281-295

www.elsevier.com/locate/aieng

Heuristic methods for vehicle routing problem with time windows

K.C. Tan™*, L.H. Lee®, Q.L. Zhu®, K. Ou®

*Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
*Department of Industrial and Systems Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Received 7 September 2000; accepted 20 December 2000

Abstract

This paper documents our investigation into various heuristic methods to solve the vehicle routing problem with time windows (VRPTW)
to near optimal solutions. The objective of the VRPTW is to serve a number of customers within predefined time windows at minimum cost
(in terms of distance travelled), without violating the capacity and total trip time constraints for each vehicle. Combinatorial optimisation
problems of this kind are non-polynomial-hard (NP-hard) and are best solved by heuristics. The heuristics we are exploring here are mainly
third-generation artificial intelligent (Al) algorithms, namely simulated annealing (SA), Tabu search (TS) and genetic algorithm (GA). Based
on the original SA theory proposed by Kirkpatrick and the work by Thangiah, we update the cooling scheme and develop a fast and efficient
SA heuristic. One of the variants of Glover’s TS, strict Tabu, is evaluated and first used for VRPTW, with the help of both recency and
frequency measures. Our GA implementation, unlike Thangiah’s genetic sectoring heuristic, uses intuitive integer string representation and
incorporates several new crossover operations and other advanced techniques such as hybrid hill-climbing and adaptive mutation scheme.
We applied each of the heuristics developed to Solomon’s 56 VRPTW 100-customer instances, and yielded 18 solutions better than or
equivalent to the best solution ever published for these problems. This paper is also among the first to document the implementation of all the
three advanced Al methods for VRPTW, together with their comprehensive results. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Vehicle routing problem; Time windows; Combinatorial optimisation; Heuristics; Simulated annealing; Tabu search; Genetic algorithm

1. Introduction

Logistics may be defined as ‘the provision of goods and
services from a supply point to various demand points’ [2].
A complete logistic system involves transporting raw
materials from a number of suppliers or vendors, delivering
them to the factory plant for manufacturing or processing,
movement of the products to various warehouses or depots
and eventually distribution to customers. Both the supply
and distribution procedures require effective transportation
management. Good transportation management can practi-
cally save a private company a considerable portion of its
total distribution cost. Potential cost savings constitute:
lowered trucking cost due to more optimal routes and
shorter distances, reduced in-house space and related
costs, less penalty incurred due to untimely delivery. One
of the most significant measures of transportation manage-
ment is effective vehicle routing. Optimising of routes for
vehicles given various constraints is the origin of vehicle
routing problems (VRPs).

Fig. 1 describes a typical VRP. The solution includes two

* Corresponding author.

routes: Depot — 7 — 8 — 9 — 11 — 12 — Depot; Depot —
2—-3—>1—>4—5—6— 10— Depot. Sometimes the
depot is denoted as 0. The vehicle routing problem with
time windows (VRPTW) is a well-known non-polynomial-
hard (NP-hard) problem, which is an extension of normal
VRPs, encountered very frequently in making decisions
about the distribution of goods and services. The problem
involves a fleet of vehicles set off from a depot to serve a
number of customers, at different geographic locations, with
various demands and within specific time windows before
returning to the depot. The objective of the problem is to
find routes for the vehicles to serve all the customers at a
minimal cost (in terms of travel distance, etc.) without
violating the capacity and travel time constraints of the
vehicles and the time window constraints set by the cus-
tomers. To date, there is no consistent optimising algorithm
that solves the problem exactly using mathematical
programming. Instead, many heuristic methods have been
designed to solve VRPTW to near optima.

In Marshall Fisher’s survey [4], he categorised vehicle
routing methods into three generations. The first generation
was simple heuristics developed in the 1960s and 1970s,
which were mainly based on local search or sweep.

0954-1810/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0954-1810(01)00005-X

282 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

Fig. 1. A vehicle routing problem: a single depot VRP with 12 customers.
Each route starts from depot, visiting customers and ends at depot.

Since these earlier studies were not well documented, it
is hard to compare the results they obtained 30 years
ago with the more recent solutions. The second genera-
tion, mathematical programming based heuristics, were
near-optimisation algorithms that are very different from
normal heuristics. These include the generalised assign-
ment problems and set partitioning to approximate the
VRP. Their results are usually superior to that of simple
heuristics [4,20]. In fact for linear objective functions,
some of these techniques are able to stretch to the
optima. The third generation, or the one that is currently
undergoing heavy research is exact optimisation
algorithms and artificial intelligence methods. Among
these, the most successful optimisation algorithms are
K-tree, Lagrangian relaxation, etc., while the top Al repre-
sentatives in VRPTW are simulated annealing (SA), Tabu
search (TS) and genetic algorithms (GAs). These algorithms
are discussed briefly as follows:

Kolen et al. [10] presented the method of branch and
bound, which is among the first optimisation algorithms
for VRPTW. The method calculates lower bounds using
dynamic programming and state space relaxation.
Branching decisions are taken on route-customer alloca-
tions. The method has successfully solved the problem
involving 15 customers. Fisher [3] introduces an opti-
misation algorithm in which lower bounds are obtained
from a relaxation based on a generalisation of spanning
trees called K-trees. Capacity constraints are handled by
introducing a constraint requiring that some set S, S C C,
of the set of customers must be served by at least k(S)
vehicles. This constraint is Lagrangian relaxed and the
resulting problem is still a K-tree problem with modified
arc costs. Time window constraints are treated similarly.
A constraint, requiring that not all arcs in a time violating
path can be used, is generated and Lagrangian relaxed. The
method has solved some of the 100-customer Solomon
benchmark problems [18].

One of the effective approaches at present is the shortest
path composition. The fundamental observation is, the only
constraint which ‘links’ the vehicles together is that each
customer in the network must be visited only once. The
problem that consists of the rest of the constraints is an
elementary shortest path problem with time windows and
capacity constraints (ESPPTWCC) for each vehicle.
Although this problem is strictly NP-hard, there are a few
efficient dynamic programming algorithms for the slightly
relaxed programs. Two decompositions have been investi-
gated computationally, namely Dantzig—Wolfe decomposi-
tion and variable splitting. Desrochers et al. [25]
implemented Dantzig—Wolfe decomposition, and solved
up to some of the 100-customer Solomon benchmark
problems. Researchers at Technical University of Denmark
[9], on the other hand, suggested using variable splitting to
solve the VRPTW with similar performance.

Thangiah et al. [21] developed a A-interchange local
search descent (LSD) method that uses a systematic
insertion and swapping of customers between routes,
defined as A-interchange operators. Due to computation
burden, only l-interchange and 2-interchange are
commonly used, which allows up to one or two custo-
mers to be inserted or swapped at one time. Although it
is a fast algorithm, the performance is poor without the
help from other heuristics. SA, first proposed by Kirk-
patrick [8], searches the solution space by simulating
the annealing process in metallurgy. The algorithm
jumps to distant location in the search space initially.
The step of the jumps is reduced as time goes on or as
the temperature ‘cools’. Eventually, the process will
turn into a LSD method. Osman [14] has applied SA
to solve the VRP by moving one customer from one
route to another or exchanging two customers from two
routes. TS is a memory-based search strategy that
chooses the best solution contained in N(S) that does
not violate certain restrictions that prevent cycling.
Usually, these restrictions are stored as queues in a
structure called a Tabu list. Typical restrictions prevent
making a move that has been done within the last ¢
iterations, and a solution that has been encountered in
the last ¢ iterations is usually forbidden as well. TS
stops after a fixed number of iterations. Gerdreau et
al. applied TS using a neighbourhood that can be
constructed by moving a single customer from one route
to another. Osman and Talliard [14] used a neighbourhood
that consists of all solutions obtained from inserting a
customer and swapping two customers.

Holland developed the GA [7] method that codes the
VRPTW solutions in forms of bit strings or chromosomes.
The method starts with a population of random chromo-
somes. Fitter chromosomes are then selected to undergo a
crossover and mutation process, as to produce children
which are different from the parents but inherit certain
genetic traits from the parents. This process is continued
until a fixed number of generations has been reached or

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 283

the evolution has converged. Thangiah [22] devised a
genetic sectoring heuristic with special genetic representation
that keeps the polar angle offset in the genes. The algorithm
follows a cluster-first, route-second philosophy and solved
100-customer Solomon problems to near optima. Prinetto et
al. [16] proposed a hybrid GA for the travelling salesman
problem (TSP) in which 2-opt and Or-opt were incorporated
with the GA. Blanton and Wainwright [1] presented two
new crossover operators, merge cross #1 and merge cross
#2, which are superior to traditional crossover operators.
Shaw [17] presented large neighbourhood search (LNS),
a method in constraint programming, to solve VRPTW.
Relatedness plays a very important part in the selection of
customer to remove and re-insert into the configuration
using a constraint-based tree search. Shaw applied limited
discrepancy search during the tree search to re-insert visits.
The results were competitive to those obtained using opera-
tions research meta-heuristics.

In this paper, we further investigate and develop
various advanced AI techniques including SA, TS and
GA to effectively solve the VRPTW to near optimal
solutions. Based on the original SA theory proposed
by Kirkpatrick [8] and the work by Thangiah [21], we
update the cooling scheme and develop a fast and effi-
cient SA heuristic. One of the variants of Glover’s TS,
strict Tabu, is evaluated and first used for VRPTW,
with the help of both recency and frequency measures.
Our GA implementation, unlike Thangiah’s genetic
sectoring heuristic [21], uses an intuitive integer string
representation and incorporates several new crossover
operations and other advanced techniques such as
hybrid hill-climbing and adaptive mutation scheme.
We have tested our heuristics with all 56 Solomon’s
VRPTW instances and obtained complete results for
these problem sets. There are totally four heuristics
tested on the instances: 2-interchange method, SA,
Tabu and GA. Their average performances are
compared with the best-known solutions in the litera-
ture. From the result analysis, our TS and GA are
already close to the best ways of solving VRPTW.
Totally, we found 18 solutions better than or equivalent
to the best-known results. The discussion of results is
given in Section 8. In this paper, we give a mathema-
tical model of VRPTW, followed by the design and
implementation of the heuristics. The computational
results are presented and discussed in the final part of
the paper.

2. Problem formulation

This section describes the notation and features that are
common through this paper. The VRPTW constraints
consist of a set of identical vehicles, a central depot node,
a set of customer nodes and a network connecting the depot
and customers. There are N + 1 customers and K vehicles.

The depot node is denoted as customer 0. Each arc in the
network represents a connection between two nodes and
also indicates the direction it travels. Each route starts
from the depot, visits customer nodes and then returns to
the depot. The number of routes in the network is equal to
the number of vehicles used. One vehicle is dedicated to one
route. A cost ¢; and a travel time #; are associated with each
arc of the network.

In Solomon’s 56 VRPTW 100-customer instances, all
distances are represented by Euclidean distance, and the
speed of all vehicles is assumed to be unity. That is, it
takes one unit of time to travel one unit of distance.
This assumption makes the problem simpler, because
numerically the travel cost ¢, the travel time t; and the
Euclidean distance between the customer nodes equal
each other.

Each customer in the network can be visited only
once by one of the vehicles. Every vehicle has the
same capacity ¢, and each customer has a varying
demand m;. g, must be greater or equal to the summa-
tion of all demands on the route travelled by vehicle k,
which means that no vehicles can be overloaded. The
time window constraint is denoted by a predefined time
interval, given an earliest arrival time and latest arrival
time. The vehicles must arrive at the customers not later
than the latest arrival time, if vehicles arrive earlier
than the earliest arrival time, waiting occurs. Each
customer also imposes a service time to the route,
taking consideration of the loading/unloading time of
goods. In Solomon’s instances, the service time is assumed
to be unique regardless of the load quantity needed to be
handled. Vehicles are also supposed to complete their indi-
vidual routes within a total route time, which is essentially
the time window of the depot.

There are three types of principal decision variables
in VRPTW. The principal decision variable x;; (i,j €
{0,1,2,...,N}; ke {1,2,....,K}; i #j) is 1 if vehicle k
travels from customer i to customer j, and O otherwise.
The decision variable ¢; denotes the time when a vehicle
arrives at the customer, and w; denotes the waiting time
at node i. The objective is to design a network that
satisfies all constraints, at the same time minimising the
total travel cost. The model is mathematically formulated
below:

Principal decision variables:

t arrival time at node i
w; wait time at node i

X € {0, 1}, 0 if there is no arc from node i to node j, and
1 otherwise. i # j; i,j € {0,1,2,...,N}.
Parameters:

total number of vehicles

total number of customers

Vi any arbitrary real number

d;; Euclidean distance between node i and node j

K
N

284 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

Cjj cost incurred on arc from node i to j

1 travel time between node i and j

m; demand at node i

qi capacity of vehicle k

e earliest arrival time at node i

l; latest arrival time at node i

fi service time at node i

I8 maximum route time allowed for vehicle k&
N N K

Minimise Z Z Z CijXijk @))
i=0 j=04#i k=1

subject to:

K N
> D=k

=1 j=1

fori=20 2)

~

fori=20 and
=1 ,:1 3)
k€ {1,..,K)}
K N
Z Z xp =1 fori € {l,...N})
k=1 j=0,#
K N
> > xp=1 forj€(l,...N) 5)
k=1 i=0,i#j
N N
Smi > xp=q fork € (1,...K} (6)
i=1 Jj=047#i

N N
D xplytfitw)=n fork€({l,....K} (7)

i=0 j=0,ji
ly=wy=Jfo= (®)
K N
D> xpl i+ fitw) =1 forj € {1,...,N} 9)
k=1 i=0,i#j

S([,+Wl)§ll fori € {1,,N} (10)

Formula (1) is the objective function of the problem.
Constraint (2) specifies there are maximum K routes going
out of the depot. Eq. (3) makes sure every route starts and
ends at the central depot. Egs. (4) and (5) define that every
customer node can be visited only once by one vehicle.
Eq. (6) is the capacity constraint. Eq. (7) is the maximum
travel time constraint. Constraints (8)—(10) define the time
windows. These formulas completely specify the feasible
solutions for VRPTW.

3. An initial solution

Most heuristic search strategies involve finding an initial
feasible solution and then improving on that solution using
local or global optimisation techniques. Here, we make use
of the push forward insertion heuristic (PFIH), first intro-
duced by Solomon [18] in 1987 as a method to create an
initial route configuration. PFIH is an efficient method to
insert customers into new routes.

The procedure is easy and straightforward. The method
tries to insert the customer between all the edges in the
current route. It selects the edge that has the lowest addi-
tional insertion cost. The feasibility check tests all the
constraints including time windows and load capacity.
Only feasible insertions will be accepted. When the current
route is full, PFIH will start a new route and repeat the
procedure until all the customers are routed. Usually,
PFIH gives a reasonably good feasible solution in terms
of the number of vehicles used. This initial number of
vehicles provides an upper bound for the number of routes
in the solution.

PFIH serves the role of constructing route configuration
for VRPTW. It is an efficient method to obtain feasible
solutions. The detail information can be obtained from
Solomon’s paper [18].

4. Local search with A-interchange

The effectiveness of any iterative local search method is
determined by the efficiency of the generation mechanism
and the way the neighbourhood is searched. A A-inter-
change generation mechanism was introduced by Osman
and Christofides [13] for the capacitated clustering problem.
It is based on customer interchange between sets of vehicle
routes and has been successfully implemented with a special
data structure to other problems by Osman [14], Thangiah
[20], etc.

The local search procedure is conducted by interchan-
ging customer nodes between routes. For a chosen pair
of routes, the searching order for the customers to be
interchanged needs to be defined, either systematically
or randomly. In this paper, we only consider the cases
A = 2, which means that maximum two customer nodes
may be interchanged between routes. Based on the
number of A, there are totally eight interchange opera-
tors are defined: (0,1), (1,0), (1,1), (0,2), (2,0), (2,1),
(1,2), (2,2). The operator (1,2) on a route pair (R,
R,y indicates a shift of two customers from R, to R,
and a shift of one customer from R, to Ry The other
operators are defined similarly. For a given operator, the
customers are considered sequentially along the routes.
In both the shift and interchange process, only improved
solutions are accepted if the move results in the reduction of
the total cost.

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 285

There are two strategies to select between candidate
solutions:

1. The first-best (FB) strategy will select the first solution in
N, (S), the neighbourhood of the current solution, that
results in a decrease in cost.

2. The global-best (GB) strategy will search all solutions in
Ny (S), where N, (S) means the neighbourhood of current
solution under A-interchange operation. GB will select
the one, which will result in the maximum decrease in
cost.

In the following we describe the A-interchange LSD
method. LSD starts from an initial feasible solution obtained
by the PFIH. The PFIH solution is further improved using
the A-interchange mechanism for a given number of itera-
tions. The procedure of the A-interchange LSD is shown
below.

Algorithm 1. Local search descent method

LSD-1: Obtain a feasible solution S for the VRPTW using
the PFIH.
LSD-2: Select a solution S’ € N,(S).
LSD-3: If {C(S") < C(S)}, then
accept S’ and go to LSD-2,
else go to LSD-4.
LSD-4: If {neighbourhood of N,(S) has been completely
searched: there are no moves
that will result in a lower cost} then go to LSD-5
else go to LSD-2.
LSD-5: Stop with the LSD solution.

The LSD result is dependent on the initial feasible solu-
tion. GB usually achieves better results than FB because it
keeps track of all the improving moves but incurs more
expensive computation time. On the other hand, LSD—FB
is a blind search that accepts the FB result. In this paper, we
implemented 2-interchange GB.

5. Simulated annealing

SA is a stochastic relaxation technique that finds its
origin in statistical mechanics [11]. The SA methodology
is analogous to the annealing processing of solids. In order
to avoid the meta-stable states produced by quenching,
metals are often cooled very slowly, which allows them
time to order themselves into stable, structurally strong,
low energy configurations. This process is called annealing.
This analogy can be used in combinatorial optimisation with
the states of the solids corresponding to the feasible solu-
tion, the energy at each state to the improvement in objec-
tive function and the minimum energy being the optimal
solution [8]. SA involves a process in which the temperature
is gradually reduced during the simulation. Often, the
system is first heated and then cooled. Thus, the system is
given the opportunity to surmount energetic barriers in a

search for conformations with energies lower than the
local-minimum energy found by energy minimisation.
Unlike A-interchange, SA is a global optimisation heuristic
based on probability, therefore, is able to overcome local
optima.

At each step of the simulation algorithm, a new state
of the system is constructed from the current state by
giving a random displacement to a randomly selected
particle. If the energy associated with this new state was
lower than the energy of the current state, the displace-
ment was accepted, that is, the new state becomes the
current state. If the new state had an energy higher by d
joules, the probability of changing the current state to
the new state is

d
eXp<_k_T) an

where k is the Boltzmann constant and T the absolute
temperature at present. This basic step, a metropolis step,
can be repeated indefinitely. The procedure is called a
metropolis loop. It can be shown that this method of gener-
ating current states led to a distribution of states in which the
probability of a given state with energy e; to be the current
state is

exp(—e;/kT)

—_— 12
> exp(—e;/kT) (12)
J

This probability function is known as Boltzmann
density. One of its characteristics is that for very high
temperatures, each state has almost equal chances of
being the current state. At low temperatures, only states
with low energies have a high probability of being the
current state. These probabilities are derived for a never
ending executing of the metropolis loop. The advantages of
this scheme is:

SA can deal with arbitrary systems and cost functions;
SA statistically guarantees finding an optimal solution;
SA is relatively easy to code, even for complex problems;
SA generally gives a ‘good’ solution.

However this original version of SA has some drawbacks:

e Repeatedly annealing with a 1/log k schedule is very
slow, especially if the cost function is expensive to
compute.

e For problems where the energy landscape is smooth, or
there are few local minima, SA is an overkill — simpler,
faster methods (e.g. local descent) will work better. But
usually one does not know what the energy landscape is.

e Normal heuristic methods, which are problem-specific or
take advantage of extra information about the system,
will often be better than general methods. But SA is
often comparable to heuristics.

e The method cannot tell whether it has found an optimal

286 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

solution. Some other method (e.g. branch and bound) is
required to do this.

In our modified version of SA, the algorithm starts with a
relatively good solution resulting from PFIH. Initial
temperature is set at 7, = 100, and is slowly decreased by

_ Ti—
l + T\/kal

where T} is the current temperature at iteration k and 7 a
small time constant. The square root of 7} is introduced in
the denominator to speed the cooling process. Here, we use
a simple monotonically decreasing function to replace the
1/(log k) scheme. Our scheme gives fairly good results in
much less time. The algorithm attempts solutions in the
neighbourhood of the current solution randomly or system-
atically and calculates the probability of moving to those
solutions according to

T 13)

A
P (accepting a move) = exp(— ?> (14)
k

This is a modified version of Eq. (11), where A = c$ -
C(S), C(S) is the cost of the current solution and C(S)
the cost of the new solution. If A < 0, the move is always
warranted. One can see that as temperature cools down, the
probability of accepting a non-cost-saving move gets expo-
nentially smaller. When the temperature has gone to the
final temperature 7; = 0.001 or there are no more feasible
moves in the neighbourhood, we reset the temperature to

T,
T. = max(?r,Tb) (15)

where T; is the reset temperature, and was originally set
to T, and T, the temperature at which the best current
solution was found. Final temperature is not set at zero
because as temperature decreases to infinitesimally close
to zero, there is virtually zero probability of accepting a
non-improving move. Thus, a final temperature not
equal but close to zero is more realistic. To search a
local neighbourhood, the 2-interchange approach was
adopted. Every time a GB solution is found, a 2-inter-
change (GB) procedure is executed to search for possible
better solutions around it. The procedure terminates after a
number of resets. Below is the detailed procedure of one of
the SA implementations, which adopts a partial 2-inter-
change (FB) to search the neighbourhood.

T, starting temperature of the SA method = 100

T: final temperature of the SA method = 0.001

Ty temperature at which the current best solution was
found

T, reset temperature of the SA method, originally
equal to T

T, temperature of the current solution

S current solution

Sy current best solution

R number of resets to be done

T the time constant in the range of (0, 1).

Algorithm 2. Simulated annealing

Step SA-1: Obtain a feasible solution for the VRPTW
using the PFIH.
Step SA-2: Improve S using the 2-interchange LSD with
GB strategy.
Step SA-3: Set cooling parameters: T, =T, =T, = T =
100, 7= 0.5.
Step SA-4: Generate systematically an S’ € N,(S) by (2,
0) and (1, 0) operations, and compute A = C(S") — C(S),
where N,(S) is the neighbourhood of current solution
under 2-interchange operation, C(S) and C(S’) means
the cost of current solution and the newly generated
solution, respectively.
Step SA-5: If {(A = 0) or (A > 0 and exp(—A/T}) = 6),
where 6 is a random number between [0, 1]} then

set S=15'.

if {C(S) < C(Sp)} then

improve S using 2-interchange LSD (GB).

update S, = S and Ty, = T}.
Step SA-6: Set k = k + 1. Update the temperature using
Eq. (13).

If {N,(S) is searched without any accepted move} then

reset T, = max(T,/2, Ty), and set T, = T,.
Step SA-T: if {R resets have been made since the last Sy
was found} then

go to Step SA-8.

else go to Step SA-4.
Step SA-8: Terminate SA and print results.

In general, our SA implementation is a simple and fast
algorithm that solves many VRPTWs to near optima. Due to
the GB approach in local neighbourhood search, the algo-
rithm is able to result in stable local optimal solutions
almost at all times. This is especially true if the global
optimum in a problem is located very distant to the corre-
sponding PFIH initial solutions. In that case SA may not
have enough energy to traverse that far, given the limited
number of temperature resets.

6. Tabu search

TS is a memory-based search strategy, originally
proposed by Glover [6], to guide the local search method
to continue its search beyond a local optimum. The algo-
rithm keeps a list of moves or solutions that have been made
or visited in the past. This list, known as a Tabu list, is a
queue of fixed or variable size. The purpose of the Tabu list
is to record a number of most recent moves and prohibit any

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 287

repetition or cycling. The memory can be recency or
frequency based. In case of recency-based memory, also
known as short-term memory, the Tabu list of size N records
the last N moves or configurations the algorithm has
encountered and sets them as ‘Tabu’. Frequency-based
memory, also known as long-term memory, complements
the recency-based memory by providing the additional
information of how many times the Tabu moves or Tabu
solutions have been attempted. Frequency-based memory
naturally provides better incentive as to the choice of next
move. Despite that some of the moves are taboos, they can
still materialise if they meet certain aspiration criteria. One
obvious criterion to use is if the move results in a GB, it
should be adopted even if it has been made very recently or
very frequently.

Although a number of researchers, such as Willard
[24], Osman [14], Gendreau et al. [5] and Taillard
[19], have applied TS on VRP, few have attempted
VRPTW. Potvin et al. [15] described a TS algorithm
applicable to VRPTW but their primary objective was
to minimise the number of vehicles instead of the total
cost (distance), and their approach made limited use of
the Tabu memory. Our design of TS for VRPTW
combines short-term recency memory and long-term
frequency memory and makes full use of intensification
and diversification strategies. We created a special
multi-functional list structure that can serve as a first-
in—first-out queue structure or an array of descending or
ascending order to store route configurations and move
structures.

6.1. The Tabu list

When this list structure is used as a queue, it is a
Tabu list that stores two kinds of recency information.
One of them is the recently made moves. The moves have
the structure:

(R;,nodel, positionl, R,, node2, position2) (16)

where R; and R, are the two routes under operation,
nodel a node from R; and positionl the original posi-
tion of nodel. Likewise for node2 and position2. This
notion provides a guideline to avoid making similar
moves in the near future. Such representation does not
uniquely describe a move, because a full description is
very complicated and its use increases the computation
tremendously. Another recency information stored in
Tabu list is the solution configurations. Every solution that
has been recently encountered is coded into an integer
string. For example, if we have the following solution as
described in Fig. 1:

Route No. 1: 0 > 7—8—9—11—-12—0
Route No.2:0—>2—>3—-1—-4—->5—-6—10—0

The coded integer string is then

0—-7—-8—-9—-11—-12—-0—-2—-3—-1—4—5

—6— 10— 0) (17)

The zeros delimit the routes. This representation has
I-to-1 correspondence to the solution itself. We also
attach the total cost of this solution to the string, for
reasons explained in the next section. The lifetime of
the Tabu moves and Tabu solutions on the Tabu list is
governed by the Tabu list size (TLS). The larger the
TLS, the longer these moves and solutions remain as
Tabu. Nevertheless, we found that longer TLS may
restrict the search process from proceeding and cause
it to end prematurely. Hence in most occasions, we fix
the TLS at 8-10. The Tabu list also employs a
frequency measure that counts the number of times
each of the Tabu moves and solutions have been
attempted by the search. This frequency information is
important in determining the status of the search
process. High Tabu-hit frequency implies the search
has been caught in a local optimum and search ought
to be stopped.

6.2. The candidate list

The long-term memory approach in our TS algorithm is
best represented in the candidate list. This list stores the
elite solutions the system has discovered in the search
process, also in integer string form like Eq. (17), but ranked
according to the total cost attached to the string, instead of a
FIFO queue. An item on the candidate list remains there as
long as it has not been intensified. Once in a while, some of
these elite solutions may be visited by other paths and
become Tabu. But since their lifetime as elite candidates
are usually longer than that as a Tabu, most of these solu-
tions can still be utilised during intensification. The size of
the candidate list can be variable, but is generally a multiple
of the size of the Tabu list.

6.3. Intensification and diversification

Our TS procedure begins with an initial solution
obtained from PFIH. Assuming that the initial solution
is good and close to the ultimate optimal point, it is
intensified by undergoing a 2-interchange (GB) LSD
procedure. As the current solution is being updated,
the moves involved and the solution itself are also
being copied to the Tabu list to prevent cycles or dupli-
cations. If the current solution is a new GB, it is also copied
to the elite list for future exploration. The intensification
terminates when the entire N,(S) has been searched without
any improved solutions or the maximum Tabu-hit frequency
has been reached.

After one round of intensification, the current solution S is
believed to have reached the optimum of its neighbourhood,

288 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

BEFORE

AFTER

1 1

1 1

Depot _»(:)'—"H:)_H : >__> Depot '
1

1

1

¢ :

Depot ! Depot [t
1 1

1 1

i i
Depot Depot i
1 1
1 1

i i
1 1
Depot _’@_;_»@_@_» Depot |1
1 1
1 1

Fig. 2. A relink operation: relink operation simply exchanges customer nodes between routes in order to diversify the solution. Feasibility check must be

performed.

and now it is time to diversify the search to explore other
regions. The algorithm accomplishes this by making a series
of random 2-interchange hops by the operations (2,0), (2,2),
(2,1), and relinking. Relinking is a new operation introduced
here to give more flexibility, and is illustrated in Fig. 2. The
hop to a new solution is only granted if this move and
resulting new S is not Tabu. At all times, a GB solution
always overrides the Tabu restriction. At every successful
random hop, the new solution is recorded in the candidate
list and ranked for further local intensification later.
After a number of iterations, the diversification process
ends with a simple procedure that selects the least cost
solution that is not a Tabu from the elite list and
updates the current solution with this elite solution. Based
on this new solution, a new round of intensification and
diversification is triggered. The algorithm stops under one
of the following conditions:

¢ a maximum number of iterations of the present solution
has been reached;
¢ no feasible hops can be made.

To ensure that the GB solution is indeed the optimum in
its neighbourhood, we apply 2-interchange (GB) at the end
of the program. The complete strict Tabu search (S-TABU)
algorithm follows.

Algorithm 3. Strict Tabu search

S-TABU1: Obtain an initial solution by PFIH and update
the GB solution with the present solution;

S-TABU?2: Initialise Tabu move list and Tabu solution list
as well as candidate list; add current solution to the Tabu
solution list;

S-TABU3: Do intensification, a 2-interchange (GB)
procedure;

S-TABU4: Do diversification, and record random solutions
encountered during random hops in the candidate list;
S-TABUS: If not diversified and total number of iterations
is less than MAX ITERATION,

go to S-TABU3;
S-TABUG: Else improve the GB solution obtained so far
by 2-interchange (GB) and return the improved solutions;
S-TABUT: Terminate S-TABU and print result.

7. Genetic algorithm

GA, originally developed by Holland [7], is an adaptive
heuristic that simulates the optimisation process with the
natural evolution of genes in a population of organisms as
shown in Fig. 3. The GA maintains a population of candi-
date members over many generations. The population
members are string entities of artificial chromosomes.
Chromosomes are usually fixed length binary or integer
strings. A special selection mechanism will pick up
parents to go though crossover and mutation procedures
and produce some children to replace themselves. A
new generation is formed with all the parents replaced.
The termination criterion of GA is convergence within a
tolerable number of generations. In this paper, we

chromosome

gene
allele

selection
crossover
mutation

= =

population

Fig. 3. The basic concept of genetic algorithm: a simple chromosome
structure with binary genes. A population of chromosomes can be used to
generate offspring undertaking selection, crossover and mutation operations.

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 289

combined a number of GA techniques such as new cross-
over operators and adaptive mutation probability, to solve
VRPTW problems with satisfactory results.

7.1. Chromosome representation

Like in other GA applications, the members of a
population in our GA for VRPTW are string entities
of artificial chromosomes. The representation of a
solution we use here is an integer string of length N,
where N is the number of customers in question. Each
gene in the string, or chromosome, is the integer node
number assigned to that customer originally. The
sequence of the genes in the chromosome is the order
of visiting these customers. Using the same example,
the chromosome string that represents the solution in
Fig. 1 is now:

7—-8—9—11—-12—-2—-3—-1—-4—-5—-6—10
(18)

This representation is unique, and one chromosome can
be only decoded to one solution. It is a 1-to-1 relation.
Note we link the last customer visited in route i with
the first customer visited in route i + 1 to form one
string of all the routes involved just like in the Tabu
list, but we do not put any bit in the string to indicate
the end of a route now, because such delimiters in a
chromosome greatly restrain the validity of children
produced by crossover operations later. To decode the
chromosome into route configurations, we simply insert
the gene values into new routes sequentially, similar to
PFIH. There is a chance that we may not get back the
original routes after decoding, but it is generally assumed
that minimising the number of routes helps in minimising
the total travel cost, therefore, packing a route to its maxi-
mum capability implies a potential good solution as a result.

7.2. Creation of initial population

Under the same assumption that we have made in the
last sections, i.e. the solution from PFIH is reasonably
good and in the vicinity of the GB solution, we create
an initial population in relation to this solution. The
way to do that is by letting the PFIH solution S, and
its random neighbours VS € N,(S;) describe a portion
of the starting population. The rest of the population is
generated on a totally random basis, unrelated to S.
The reason for having this mixed population is that: a
population of members entirely from the same neigh-
bourhood cannot go too far from there and hence
give up the opportunity to explore other regions.
The proportion of relevant chromosomes and random
chromosomes is governed by a parameter RAND_RA-
TIO. The higher this ratio, the more diverse the initial
population. This parameter also reflects the confidence
level of the user to the PFIH solution. If there is a high
chance that global optimum is located in N, (Sy), then it
is undoubtedly economical to have a small RAND_RA-
TIO so that the population converges to the optimum
sooner. The total population size is set at 100 and the
number of generations ranges between 500 and 1000, a
compromise between computation time and final result.
Certainly, the more generations the program runs, the
more optimised the solution in most cases, unless the
optimum has already been reached.

7.3. Selection

After we have a population of candidates, we need some
mechanism to select parents for mating and reproduction. A
tournament selection mechanism is used for this purpose. In
tournament selection, two identical copies of the population
of size N are maintained at every generation. In the begin-
ning, both populations are arbitrarily ranked. For population
Py, each pair of adjacent chromosomes (with indices 2i
and 2i + 1) in the population are compared. The one with

Population P Population P (reordered)
' 0
0 > o > mo < 1
1
2
1‘; > fl >< mt < 3
o o
o °
o o
o 0
o o
N-2 N-2
N DS fv-2y2 >< mv2z < N

Fig. 4. Tournament selection. Tournament selection procedure: the first time selection will choose N/2 parents, after reordering the population, the second time

selection will choose the other N/2 parents.

290 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

Single Point

Order-Based

Fig. 5. Simple crossover vs. ordered crossover: demonstration of single point and order-based crossover operations. Single point crossover needs only one cut
point for each chromosome. On the other hand, order-based crossover needs two cut points and repair of chromosomes must be performed after the operation.

smaller fitness value qualifies to be a potential parent and let
us call it f;. After comparing all the pairs in P, we have N/2
‘fathers’, namely fy.fi,...,f(v—2y2- Repeat this process for
population P,, and we get my,my,...,mu_nyn, a set of
‘mothers’ as well. Subsequently, f; and m; are mated, and
totally there are N chromosomes chosen. The procedure is
graphically illustrated in Fig. 4. The implication in this
selection scheme is that genetically superior chromosomes
are given priority in mating but average entities have some
chance of being selected too, provided they happen to be
compared with ‘worse-off’ chromosomes.

7.4. Reproduction

Reproduction is one of the most crucial functions in the
chain of biological evolution. Similarly, reproduction in GA
serves the important purpose of combining the useful traits
from parent chromosomes and passing them on to the
offsprings. An efficient and smart reproduction mechanism
is largely responsible for high GA performance. The repro-
duction of GA consists of two kinds of operations, crossover
and mutation.

Conventional single/double point crossover operations
are relevant to string entities that are orderless, or of differ-
ent length. They put two integer/binary strings side by side
and make a cut point (or two cut points) on both of them. A
crossover is then completed by swapping the portions after
the cut point (or between two cut points) in both strings (see
Fig. 5). In the context of VRPTW, where each integer gene
appears only once in any chromosome, such a simple proce-
dure unavoidably produces invalid offspring that have
duplicated genes in one string. To prevent such invalid
offspring from being reproduced, we define a set of order-
based crossover operators below.

The PMX crossover [12]. The permutation crossover
(PMX) method proceeds by choosing two cut points at
random, e.g.

Parent : hkcefd bla igj

Parent 2:abcdef ghi jkl

The cut-out section defines a series of swapping opera-
tions to be performed on the second parent. In the example
case, we swap b with g, 1 with h and a with i, and end up with
the following offspring:

Offspring:igcdef bla jkh

Performing similar swapping on the first parent gives the
other offspring:

Offspring: lkcefd ghi abj

Heuristic crossover. A random cut is made on two
chromosomes. From the node after the cut point, the shorter
between the two edges leaving the node is chosen. The
process is continued until all positions in the chromosomes
have been considered. Suppose, we have the following
parents:

Parent : hkcefd blaigj
Parent 2:abcdef ghijkl

Assume we choose b to be the first gene in the new
chromosome, we have to first swap b and g in parent 2.
After swapping, if the distance dy > dy;,, where d,; is the
distance between node b and node 1 in parent 1 and dy, is
the distance between node b and node h in parent 2, we then
choose h to be the next node and swap 1 and h in the first
parent or delete h in the first parent to avoid duplication
later. This process is continued until a new chromosome
of the same length and comprising all the 12 alphabets are
formed. Note that the result varies depending on whether
swapping or deletion is undertaken. We named heuristic
crossover with swapping HeuristicCrossoverl and Heuris-
tic Crossover2 otherwise.

Merge crossover. Unlike heuristic crossover, which rear-
ranges the parents according to distance to produce children,
merge crossover operated on the basis of a predefined time

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 291

0\

o—0O0—0C——=0

Swap Node

4
—0O0——C0C—0——0

Swap Sequence

o—0

Fig. 6. Several common mutation operations: demonstration of swap node
and swap sequence mutation operations. Unlike swap node operation, swap
sequence operation involves reversing sequence of some nodes.

precedence. This time precedence is often summarised from
the time windows imposed by each node. The author created
such precedence from the latest arrival time of each node. In
the same example:

Parent I:hkcefd blaigj
Parent 2:abcdef ghijkl

Similar to heuristic crossover, a random cut point is
selected and a first gene b is chosen randomly from the
first parents and swapping is done to second parent. The
node, which comes earlier in the time precedent
becomes the next gene in the new chromosome. Here,
we define two kinds of merge crossover just like the
heuristic crossover case, MergeCrossoverl and Merge-
Crossover2, to differentiate the swapping and deletion
schemes.

It is noted that both heuristic crossover and merge
crossover produce only one offspring from a pair of
parents. Inspired by the fact that both geographic loca-
tions and time sequences are important in vehicle rout-
ing, we decided to combine the two crossover operators
so that two parents now produce two children, each of
which comes from either the heuristic crossover or the
merge crossover. Naturally, we thus have four combined
operators from the four combinations, namely HIMI,
HIM2, H2M1 and H2M2. Experimental results on the
total five crossover operators including PMX indicated
that HIM2 outperforms the rest especially in clustered
data sets. Not every pair of parents ought to reproduce
in every generation. How many parents are to crossover
is governed by the probability of crossover, a fix real
number between 0 and 1. In our GA, we set it at 0.77, a
moderate value usually used in other GA implementa-
tion as well. When a couple of parents are determined
not to crossover, they are copied verbatim to the next
generation.

Mutation is a complementary operation to crossover.

The main purpose of mutation is to avoid over homo-
geneous population by bring random, unrelated traits
into the present population and increase the variance
of the population. Several mutation operators have
been proposed in the literature and they are shown in
Fig. 6. Because the chromosomes are of fixed length in
our implementation, only swap node and swap sequence
are used here. There is another important parameter asso-
ciated with the mutation operations. This is the probability
of mutation, or P yuion, taking on values from [0,1]. Earlier
research has shown that excessive P yuion Values drives the
GA into convergence sooner than necessary, often resulting
in undesirable local optimal solutions; small P yeagion
produces the opposite result: intolerably slow convergence.

In this project, the author developed a unique adaptive
mutation probability scheme. The scheme adapts Ppuion tO
the standard deviation of the population:

19)

where N is the population size, x; the fitness value of indi-
vidual i and X is the average fitness of the population. If S is
greater or equal to a threshold value MINPOPDEV =5, a
minimum P pyation = Pmin = 0.06 is used, otherwise
P utation = Prin T 0.1 X (MINPOPDEV — S). Hence, we
can see a minimum mutation probability of 0.06 is always
guaranteed.

7.5. Further improvements

Hill-climbing is a supplementary measure that takes
advantage of local greedy search to improve the chro-
mosomes produced from crossover and mutation proce-
dures. In hill-climbing, a portion of the population are
randomly selected and decoded into their respective
solution form. These solutions then undergo a few itera-
tions of removal and re-insertion operations and are
eventually updated with the new, improved solutions.
Note this is not a complete A-interchange procedure
due to the moderately large time requirement by each
A-interchange. Furthermore, to reduce the complexity
and to prevent from over-reliance on good solutions,
the probability of a chromosome to be selected for
hill-climbing is only set at 0.5.

However, even after hill-climbing, there is still the possi-
bility of degradation of the entire new generation. To restore
some of the good chromosomes in the parent generation, the
worst 4% chromosomes in the child generation is sub-
stituted with the best 4% in the parents. Note that the
percentage of recovery should be less than the mutation
rate at any time to have some mutated chromosomes escape
the recovery process and bring the population out of a
premature convergence.

292 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

Table 1

A snap comparison of the heuristics (the number on top of each cell is the
average cost; the number on the bottom is the average CPU time (s) asso-
ciated with the type of problem)

2-INT SA Tabu GA
Cl 965 943 874 872
25 84 557 556
Cc2 780 766 644 641
55 166 1885 1073
R1 1469 1422 1292 1333
46 78 1076 507
R2 1330 1279 1097 1124
98 217 3323 851
RCl1 1680 1657 1471 1547
49 63 1016 432
RC2 1700 1642 1331 1343
60 146 3217 835

With all the strategies we have described in the last few
sections, finally the GA is stated as such:
Algorithm 4. Genetic algorithm

GA-1: Generate initial population of N chromosomes
(partly from PFIH and its mutation and partly from totally
random selection).
GA-2: Evaluate the fitness value in terms of the objective
function for each chromosome x in the population, calcu-
late average fitness and standard deviation, thus set muta-
tion probability;
GA-3: Create a new population by repeating following
steps until the new population is complete;
1. [Selection] Select two parent chromosomes from a
population by tournament selection;
2. [Crossover] With a crossover probability cross over
the parents to form a new off-spring (HIM2). If no
crossover was performed, offspring is an exact copy
of parents;
3. [Mutation] With a mutation probability mutate new
offspring at a random locus (swap node or swap
sequence);
4. [Accepting] Place new offspring in a new population;

Table 2

5. [Hill-climbing] Performing hill-climbing with 1-
neighbourhood FB search;
6. [Recovery] Replace the worse 4% chromosomes in
the new population with the best 4% in the parents
population;
GA-4: Update the old population with the newly gener-
ated population;
GA-5: If the certain number of generation is reached,
stop, perform a 2-interchange (GB) on the best solution
in the current population and return the improved
solution;
GA-6: Else go to step 2.

8. Computation results and comparisons

We conducted most of the tests on a Pentium II 266
MMX industrial Personal Computer with 32M RAM.
Because of the varying nature of the algorithms devel-
oped, the duration of tests is also varying. For A-inter-
change LSD (GB), the algorithm goes up to 20
iterations, but may terminate earlier if the local opti-
mum is encountered. We did not specify the number
iterations for the SA to run, instead we specify the
number of resets that can be made before the program
terminates. The parameter for SA is set as follows: Ty =
100, T; =0.001, 7=0.5, R=3 (number of resets).
Under such settings, the effective number of iterations
for SA ranges from 500 to 700, depending on the input.
Our S-TABU program has to undergo at least 500 itera-
tions before it terminates. Because complexity arises
from Tabu list operations and the more extensive search
that TS guarantees, S-TABU takes the longest time to
complete on average. Finally, both of the GA implementa-
tions, GA-PMX and GA-HI1M?2 are tested, with a population
of 100 and 1000 generations.

All four heuristics were tested with 56 Solomon’s
VRPTW instances [18] which are 100-customer problem
sets. The 56 problems are categorised into six classes,
namely C1, C2, R1, R2, RC1 and RC2. Problems which
fall into C categories are clustered data, meaning nodes
are clustered either geographically or in terms of time

Relative average cost for our heuristics against the best known (this table compares the minimal costs between the published best solutions and our
solutions. The percentages are derived from Table 1. The last column shows the number of new best solution obtained against the number of

problems in each category)

Problems Published best 2-INT (%) SA (%) Tabu (%) GA (%) No. new best
Cl 827.54 +15.9 +13.6 +4.3 +3.9 6/9

C2 589.4 +32.3 +28.5 +5.6 +4.7 5/8

R1 1191.6 +23.2 +19.2 +5.8 +9.9 0/12

R2 1024.7 +29.5 +24.8 +3.3 +6.1 5/11

RCl1 1361.3 +23.2 +21.1 +6.0 +10.7 1/8

RC2 1156.8 +47.0 +41.9 +11.8 +10.9 1/8

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 293

windows. Problems from R categories are uniformly
distributed data and those from RC categories are
hybrid problems that have the features of both C and
R categories. In addition, C1, R1 and RC1 problem sets
have narrower time window for the depot, whereas the
other problem sets have wider time window for the
depot. A snap comparison of four of the heuristics is
tabulated in Table 1, which shows the average costs
obtained by each heuristic method on all six categories
and average CPU time.

This table is derived from the data of Appendix A. For
example, in class C1 of heuristic 2-INT, the average cost
965 is obtained by averaging the nine instances in class C1.
The average cost indicates the performance of each heuristic
on different categories of instances. Table 1 compares the
average costs and average CPU time for each of the algo-
rithms implemented in all six categories of problems. In
general, TS is the most effective heuristic, solving the
largest number of benchmark problems to near optima and
achieving the least average total cost in almost all cate-
gories. However, the computation time is about 2—3 times
that of GA and almost 20 times that of SA. GA almost hit as
many good results as TS but did not as well as TS in R1 and
R2 problems. Nevertheless, GA still remains a strong
competitor to TS as it is a good compromise of quality
and time. SA is very fast and offers reasonably good solu-
tions. The correlation between the number of vehicles
required and the total cost incurred in a solution is not
straightforward. Fewer number of routes can incur more
cost, especially in homogeneous data (R class problems).
R109, R201, R202 and R203 are examples of such
instances.

Table 2 shows the percentage increase of average
total distance of our solutions against the best-known
solutions in the literature, as well as the number of
solutions we have obtained that are better than or
equivalent to the best solutions in the literature. The
published best-known solutions are not obtained by
one or a particular class of methods, therefore, the
table demonstrates the position of our algorithms in
all VRPTW methods. Our TS and GA are already
close to the best ways of solving VRPTW. However, we
can also deduce that there is thus far no single heuristic
that is generic enough to solve problems of all situations,
instead they are inevitably problem specific.

A detailed best solution (number of vehicles needed
and total cost) of our heuristics against the best-known
results to the author is presented in Appendix A. We
obtained 18 new best-known results by the new heuris-
tics. Our algorithms, especially TS and GA did very
well with clustered problem sets C1 and C2. Many of
the results obtained for these two classes are already
optimal, proved by Lagrangian relaxation [9] and
other mathematical programming methods. However,
our methods are less successful with homogeneously
distributed data.

9. Conclusion

The implementations of A-interchange is a basic corner-
stone of all the more complex heuristic algorithms. It clearly
defines the meaning of A-neighbourhood and the operators
to explore such a neighbourhood. The method is simple and
straightforward but useful in almost all kinds of local search
procedures. Theoretically, a sequence of 2-interchange
operations is able to bring the current solution to anywhere
in the solution space.

We next studied SA and TS, two of the most talked-about
combinatorial optimisation strategies in the 1990s. Our
implementation of SA takes a systematic approach in
local search. Our experiments show that such systematic
search is more efficient than ‘random walk’. SA is a good
compromise of speed and performance. Our strict Tabu
search (S-TABU) algorithm is one of the many ways to
employ the sophisticated memory-based meta-heuristic
TS. S-TABU was able to solve many of the Solomon
problem sets to near optima in an average of 1500 s on a
Pentium II 266 MMX PC. This method apparently benefited
from the use of long-term memory and diversification strat-
egy. However, our S-TABU still lacks some of the impor-
tant features of TS, such as influence. The possibility of
further improvement is almost certain.

This paper has also implemented a new application of GA
to VRPTW. Previously, Thangiah used cluster-first—route-
second method when applying GA to VRPTW. In his
GIDEON system [22], the angular differences were coded
in the chromosomes. GA was only used to sector the custo-
mers within clusters. Other heuristics like 2-opt and SA had
to be used to assist GA in routing the customers within one
cluster. Strictly speaking, it is only a hybrid heuristic that
constitutes some GA element. Our current implementation,
however, is a complete GA with a more intuitive represen-
tation, a complete set of improvement schemes of many
flexible parameters. The results from this GA system
prove superior than that from the GIDEON system in all
56 Solomon instances. Other authors, like Blanton and
Wainwright [1], applied GA with similar representation to
VRPs, but almost all their work concentrates on the TSP,
which involves only one route and has been proved NP-
complete. Moreover, these authors failed to present their
result data so no comparison can be made. The paper is
thus among the first to solve complex VRPTW by GA and
to present comprehensive results to all 56 100-customer
benchmark problems.

Acknowledgements

The authors wish to thank the editor J.C. Kunz and the
anonymous reviewers for their valuable comments and
helpful suggestions, which greatly improved the paper.

294 K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295

Appendix A. Comparison of our best results with the
historical best' (NV: number of vehicles; TD: total

distance)
Problems Published best 2-INT SA Tabu GA

NV D NV D NV D NV D NV D
C101 10 829 10 828.937 10 828.937 10 828.937 10 828.937
C102 10 827 10 923.375 10 923375 10 901.527 10 868.798
C103 10 828.06 10 994.87 10 994.87 10 954718 11 939.456
C104 10 824.78 11 1130.85 11 1130.85 10 895.774 10 963.72
C105 10 829 10 828.937 10 828.937 10 828.937 10 828.937
C106 10 827 10 1052.07 10 1052.07 10 941.154 10 828.937
C107 10 829 10 875.62 10 867.234 10 828.937 10 828.937
C108 10 827 10 878.089 10 876.427 10 828.937 10 828.937
C109 10 829 10 1100.71 10 1124.44 10 828.937 10 828.937
C201 3 590 3 591.557 3 591.557 3 591.557 3 591.557
C202 3 590 4 801.281 4 787.856 4 745.99 4 683.864
C203 3 591.55 4 1225.1 4 1208.94 4 727.221 4 745.934
C204 3 590.6 3 661.213 3 642.691 3 590.599 3 604.998
C205 3 589 3 625.333 3 613.327 3 588.876 3 588.876
C206 3 588 3 704.162 3 694.25 3 588.493 3 588.493
207 3 588 3 725.404 3 704.365 3 600.841 3 593.195
C208 3 588 3 902.597 3 888.685 3 645.206 3 590.873
R101 18 1608 20 1847.37 20 1847.37 20 1707.95 20 1676.86
R102 17 1434 19 1720.46 18 1544.82 16 1488.59 18 1558.59
R103 13 1207 17 1551.34 17 1482.39 15 1293.85 15 1311.81
R104 10 982.01 12 1184.38 12 1184.38 11 1057.02 12 1128.29
R105 14 1377.11 17 1671.94 17 1595.68 16 1431.56 17 1496.37
R106 12 1252.03 14 1439 14 1434.3 14 1331.5 14 1357.19
R107 11 1126.69 13 1390.55 12 1270.04 12 1174.89 13 1240.82
R108 10 968.59 12 1256.61 12 1186.34 11 1039.34 12 1091.69
R109 11 1205 14 1525.45 14 1515.38 14 1256.36 15 1300.29
R110 11 1080.36 13 1444.63 13 1430.35 13 1179 13 1315.56
R111 10 1104.83 13 1371.64 13 1370.21 13 1148 12 1202.31
R112 10 953.63 12 1215.27 12 1180.18 11 1088.32 12 1097.64
R201 4 1354 5 1791.42 5 1726.13 5 1437.49 8 1329.74
R202 3 1530.49 4 1610.02 4 1581.64 5 1272.6 7 1307.03
R203 3 1126 4 1475.63 4 1248.55 4 1081.04 6 1086.43
R204 2 914 3 1098.67 3 1088.06 3 895.867 6 956.384
R205 3 1128 4 1370.68 4 13442 4 1150.34 5 1131.18
R206 3 833 3 1341.22 3 1369.5 4 1103.22 5 1187.25
R207 3 904 3 1167.11 3 1153.65 3 1007.3 4 1016.63
R208 2 759.21 3 988.367 3 971.572 3 806.797 3 845.937
R209 2 855 4 1210.96 4 1206.58 4 1110.3 5 1097.42
R210 3 1052 4 1312.91 4 1238.14 4 1071.3 6 1136.54
R211 3 816 3 1232.48 3 1140.65 3 946.354 7 932.483
RC101 14 1669 17 1948.94 17 1940.57 16 1734.17 17 17283
RC102 12 1554.75 16 1803.95 16 1777.02 14 1562.62 17 1603.53
RC103 11 1110 14 1627.02 14 1620.35 13 1377.93 14 1519.83
RC104 10 1135.83 12 1408.5 12 1408.5 11 1259.28 12 1276.02
RC105 14 1602 17 1920.19 17 1809.78 16 1597.67 17 1688.77
RC106 11 1448.26 14 1656.29 14 1645.24 14 1476.15 14 1491.58
RC107 11 1230.54 15 1677.92 15 1653.65 13 1392.97 14 1462.3
RC108 10 1139.82 12 1377.93 13 1335.06 12 1264.5 12 1333.15
RC201 4 1249 5 2070.4 5 1891.9 5 1617.5 10 1565.67
RC202 4 1221 5 1970.66 5 1956.97 5 1429.04 10 1353.27
RC203 3 1203 4 1627.74 4 1522.68 4 1179.67 6 1189.06
RC204 3 879 4 1314.21 4 1290.89 4 939.678 4 989.943
RC205 4 1389 5 1923.9 5 1907 5 1487.49 9 1465.8
RC206 3 1213 4 1663.87 4 1645.17 4 1357.32 5 1388.13
RC207 3 1181 4 1539.85 4 1497.54 4 1295.9 6 1304.48
RC208 3 919 3 1490.27 3 1422.94 3 1040.47 6 1003.43

References

[1] Blanton JrJL, Wainwright RL. Multiple vehicle routing with time and
capacity constraints using genetic algorithms. In: Proceedings of the
Fifth International Conference on Genetic Algorithms, 1993.
[2] Eilon S, Watson-Grandy C, Christofides N. Distribution management:
' The best-known solutions were obtained from the following sources: mathematical modeling and practical analysis. New York: Hafner,
[9,17,21,23] and http://dmawww.epfl.ch/~rochat data/solomon.html. 1971.

K.C. Tan et al. / Artificial Intelligence in Engineering 15 (2001) 281-295 295

[3] Fisher ML, Jornsten KO, Madsen OBG. Vehicle routing with time
windows. Working Paper, 1992.

[4] Fisher ML. Vehicle routing, Handbooks in operations research and
management science, vol. 8. Amsterdam, New York: Elsevier, 1995

[5] Gendreau M, Hertz A, Laporte G. A Tabu search heuristic for the
vehicle routing problem. Mgmt Sci 1994;40:1276-90.

[6] Glover F. Manuel laguna, Tabu search. Dordrecht: Kluwer Academic
Publishers, 1997.

[7] Holland JH. Adaptation in natural and artificial systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[8] Kirkpatrick S, Gelatt Jr. CD, Vecchi MP. Optimization by simulated
annealing. Science 1983;20:671-80.

[9] Kohl N, Madson O. An optimization algorithm for the vehicle routing
problem with time windows based on Lagrangian relaxation. Working
Paper, 1995.

[10] Kolen AWJ, Kan A.H.G.R., Trienekens HWJM. Vehicle routing with
time windows Oper Res 1987;35:266-274.

[11] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E.
Equations of state calculations by fast computing machines. J Chem
Phys 1953;21:1087-92.

[12] Oliver IM, Smith DJ, Holland JRC. A study of permutation crossover
operations on the traveling salesman problem. In: Proceedings of the
Fourth International Conference on Genetic Algorithms, 1991.

[13] Osman IH, Christofides N. Simulated annealing and descent algo-
rithms for capacitated clustering problem. Research Report. Imperial
College, University of London, 1989.

[14] Osman IH. Meta-strategy simulated annealing and Tabu search algo-
rithms for the vehicle routing problem. Annu Oper Res 1993;41:777—
86.

[15] PotvinJY, Kervahut T, Garcia BL, Rousseau JM. The vehicle routing
problem with time windows. Part 1. Tabu search. INFORMS J
Comput 1996;8:158—-64.

[16] Prinetto P, Rebaudengo M, Sonza Reorda M. Hybrid genetic algo-
rithms for the traveling salesman problem. In: Proceedings of the Fifth
International Conference on Genetic Algorithms, 1993.

[17] Shaw P. Using constraint programming and local search methods to
solve vehicle routing problems. Working Paper, 1998.

[18] Solomon MM. Algorithms for vehicle routing and scheduling
problems with time window constraints. Oper Res 1987;35(2):254—
66.

[19] Taillard E. Parallel iterative search methods for vehicle routing
problems. Networks 1993;23:661-73.

[20] Thangiah SR, Osman IH, Sun T. Algorithms for the vehicle routing
problems with time deadlines. Working Paper, 1992.

[21] Thangiah SR, Osman IH, Sun T. Hybrid genetic algorithm, simulated
annealing and Tabu search methods for vehicle routing problems with
time windows. Technical Report SRU-CpSc-TR-94-27. Computer
Science Department, Slippery Rock University, 1994.

[22] Thangiah SR. An adaptive clustering method using a geometric shape
for vehicle routing problems with time windows. In: Proceedings of
the Sixth International Conference on Genetic Algorithms, 1995.

[23] Thangiah SR. Vehicle routing with time windows using genetic algo-
rithms. Working Paper, 1995.

[24] Willard JAG. Vehicle routing using R-optimal Tabu search. MSc
Thesis. London: Management School, Imperial College, 1989.

[25] Desrochers M, Desrosier J, Solomon M. A new optimization algo-
rithm for vehicle routing problems with time windows. Oper Res
1992;40:342-355

