
A Runtime System for Generalized Committed Choice

Xiao Jia Kenny Q. Zhu
Shanghai Jiao Tong University
{xjia,kzhu}@cs.sjtu.edu.cn

Joxan Jaffar Roland H.C. Yap
National University of Singapore
{joxan,ryap}@comp.nus.edu.sg

Abstract
Traditional nondeterministic programming constructs (Dijk-
stra guards, CCP [6] and deep guards [10]) do not allow
operations which modify the runtime environment without
committing to a particular alternative. Generalized commit-
ted choice (GCC) allows speculative computations across
different alternatives to execute in parallel and isolation.
Speculation implicitly forks an environment into separate
ones for the alternatives and later one of these environments
can be committed to [3]. Speculations from concurrent pro-
cesses can nevertheless interleave and synchronize against
each other. In this paper, we present a concrete architec-
ture, its implementation and optimizations for GCC where
the store of the environment is in the form of record spaces.
Our prototype implementation allows GCC to be embedded
in traditional languages such as C/C++. Preliminary experi-
mental results show that our runtime and GCC extension is
a suitable coordination language for programming multiple
distributed agents which employ speculation and choices.

1. Introduction
A coordination language embodies a coordination model and
is responsible for the creation of, and the support of com-
munication among, computational activities. The general-
ized committed choice (GCC) is a coordination model of a
don’t-know nondeterminism choice construct which allows
the commit to occur anywhere within the choice [3] and
strives for maximal inter-play of choices between agents to
achieve beneficial speculation. GCC was proposed as a co-
ordination model for speculation among concurrent agents.
In this short paper, we report our preliminary progress in de-
veloping a concrete GCC runtime system. This work has the
following contributions:

[Copyright notice will appear here once ’preprint’ option is removed.]

• We demonstrate GCC as a usable and practical coor-
dination model for traditional programming languages
such as C/C++ by embedding GCC constructs in regu-
lar C/C++ programs and by employing record stores as
the data model;

• We extend the multi-world concept [3] to the notion of
multiple universe which is transparent to programmers
and crucial to handling the exponential explosion of mul-
tiple worlds;

• We show the viability of our system by two non-trivial
examples and their runtime statistics.

The remainder of this paper is structured as follows. The
rest of this section gives an overview of the GCC model
and introduces the usage in concrete actual agent programs.
Section 2 presents the overall system architecture. Section
3 discusses several optimization considerations. Section 4
gives some preliminary experimental results which show
that speculative computation with GCC agents is practical.

1.1 Motivation
We use the motivating example for GCC [3]. Bob and Jill
participate in an online trading system. Bob wants to up-
grade his camera and Jill wants to downgrade. Their prefer-
ences which are exclusive (denoted by XOR) are:

Bob’s agent: (sequencing is denoted by ‘;’)
(buy(goodlens); sell(averagelens)) XOR

(buy(goodcam); sell(averagecam))

Jill’s agent:
(sell(goodlens); buy(averagecam)) XOR

(sell(goodcam); buy(averagecam))

Buy and sell are synchronous actions which block until
there is a matching transaction. Bob and Jill are not aware
of each other, i.e. each agent acts independently. The objec-
tive is to satisfy as many agents as possible. In this exam-
ple, GCC does this by creating four separate and isolated
worlds arising from the potential interaction between the
combination of Bob and Jill’s choices as the agent computa-
tion proceeds. Figure 1 shows the effect of multiple worlds
where lens() denotes buying(selling) lens by Bob(Jill), and
cam() denotes buying(selling) camera by Bob(Jill). In this
example, only in world w4 can both agents be satisfied.1 This

1 w1 cannot complete after the lens transaction while w2 and w3 block.

1 2012/6/13



Bob

Bob: lens()

Jill

Bob: lens()

Jill: lens()

Bob: lens()

Jill: cam()

Bob: cam()

Jill

Bob: cam()

Jill: lens()

Bob: cam()

Jill: cam()

w1 w2 w3 w4

Figure 1: The multiple worlds in Bob-Jill example

requires speculation where agents can continue to interact.
The runtime system in this paper provides essential facilities
for embedding and implementing this example in conven-
tional languages such as C/C++.

1.2 C Implementation of Bob-Jill Example
We show the above example in the APIs in our runtime sys-
tem – the agents are bob.cc and jill.cc. Note that although
the agents employ speculation and concurrency using GCC
semantics, the embedding allows the agents to be written in
vanilla-looking C (see Listing 1 and 2) using the following
GCC coordination constructs in the runtime system:

gcc fork multiple choices
cm commit me (commit to this choice)
cu commit you (kill this choice)
in reads and removes a record from a record space
rd non-destructively reads a record space
out produces a record, writing it into a record space

Listing 1: bob.cc
1 void lens()

2 { buy(GoodLens); sell(AvgLens); cm(); }

3 void cam()

4 { buy(GoodCam); sell(AvgCam); cm(); }

5 int main()

6 { gcc(lens , cam); return 0; }

Listing 2: jill.cc
1 void lens()

2 { sell(GoodLens); buy(AvgCam); cm(); }

3 void cam()

4 { sell(GoodCam); buy(AvgCam); cm(); }

5 int main()

6 { gcc(lens , cam); return 0; }

Listing 3: Common routines for trading
1 enum Product

2 { GoodLens , AvgLens , GoodCam , AvgCam };

3 enum Type { Ack , Buy , Sell };

4 struct Offer { Type s; Product p; int i; };

5 void parse(struct Offer *, char *) { /*...*/ }

6 void sell(Product p)

7 { int id = generate_unique_id ();

8 out("s=%d,p=%d,i=%d", Sell , p, id);

9 in("s=%d & i=%d & p?=1", Buy , id);

10 out("s=%d,p=%d,i=%d", Ack , p, id); }

11 void buy(Product p)

12 { struct Offer f;

13 parse(&f,

14 in("s=%d & p=%d & i?=1", Sell , p));

15 out("s=%d,p=%d,i=%d", Buy , p, f.i);

16 rd("s=%d & i=%d & p?=1", Ack , f.i); }

Common trading routines are in Listing 3. A trading
transaction is a record of three elements: the trade type s,
which can be Ack, Buy, or Sell; the product type p, which
can be GoodLens, AvgLens, GoodCam, or AvgCam; and the
transaction number i, which is generated and guaranteed
to be unique. When an agent wants to sell some product
p∗, he produces a record (s=Sell, p=p∗, i=id) (line 8),
where id is a transaction number. Then he waits for someone
to buy p∗ by in(s=Buy & i=id & p?=1) (line 9). When
an agent wants to buy some product p∗, he consumes a
record by in(s=Sell & p=p∗ & i?=1) first (line 14), and
then out(s=Buy, p=p∗, i=id) (line 15). At the end of a
transaction, the seller produces an Ack record (line 10) and
the buyer reads it for acknowledgement (line 16).

1.3 Related Work
Earlier work [3] lays the theoretical foundation for GCC
without addressing the practical details of employing GCC
in conventional programming languages as well as a practi-
cal data model for real-world applications. Our runtime sys-
tem uses a data model for GCC called record space, which
uses Linda style tuples [2] with labels for tuple elements.

Logic programming languages, e.g. Prolog, search the so-
lution space in a depth-first fashion. Shared Prolog [1] pro-
grams are composed of a set of parallel agents that are Pro-
log programs extended by a guard mechanism. Coordination
of the agents is controlled by programmers via a centralized
data structure roughly resembling a blackboard system [5].

Deep guards [7, 10] in Oz [8, 9] and its implementations,
such as LVM [4], only enable local computation spaces with
monotonic constraint stores and short-lived actors. All local
effects only become globally visible at the time of commit.
Such restrictions make it useless in the context of the appli-
cations considered here such as real-time marketplaces with
long transactions.

2. System Architecture
Agents can be distributed and communicate through the
coordination server as shown in Fig. 2a. (Our prototype
uses agents in Unix). Two agents are initially two Unix
processes which can fork into multiple processes if they
involve choices.

Fig. 2b depicts the logical view of runtime environment.
Bob’s program starts from a single process and then forks
into two processes for the two choices (to buy good lens or
good camera). Jill’s program works similarly. The coordi-
nation server maintains all runtime information, such as the

2 2012/6/13



Bob's Program

Coordination Server

Jill's Program

(a) Physical deployment view

Server

Bob Jill

(b) Logical runtime view

Figure 2: Logical runtime view

structure of all the worlds and the relationships among them.
Each process in the agent’s environment conceptually lives
in one or more worlds. Processes from different agents live
in the same world if they interact. There is a communication
channel between each process and the server.

3. Implementation and Optimizations
The main technical challenge in the implementation of GCC
system is to contain the exponential growth of worlds be-
cause each world consumes valuable system resources. See
[3] for more details on the conceptual semantics of GCC. In
this section, we will present one key implementation idea
that tackle the challenge and then briefly discuss several
other optimizations.

3.1 Multiple Universe
A universe is a rooted tree of worlds along with their records.
The records in a universe form a logical partition of the
record space by record types. Agents that operate on differ-
ent record types live in different universes. Worlds only get
multiplied if two agents with choices are interested in the
same type of records.

At startup, an agent program lives outside any universe.
Once the agent wants to operate on some type of records, it
either migrates to the universe which owns that record type,
or creates a new universe with that type. Let U be a universe,
S(U) be the set of record types owned by the universe U .
Suppose there are in total n universes, U1, U2, . . . , Un, in the
runtime environment. When an agent program P in universe
Ui(1 ≤ i ≤ n) is about to operate on some record type T
(by in/rd/out), there are three cases:

• T ∈ S(Ui), then P operates on Ui as normal;
• ∃1 ≤ j ≤ n, j ̸= i, such that T ∈ S(Uj), then Ui and
Uj are removed and replaced by Uk = J(Ui, Uj) where
J joins two universes together to form another tree of
worlds. Uk is then added to the runtime environment for
P to operate on;

• ∀1 ≤ j ≤ n, T ̸∈ S(Uj), then S(Ui) ← S(Ui) ∪ {T}
and P operates on Ui.

The type of a record is the set of labels of the elements
in the record. For example, the record (a=1, b=2) has the
type {a, b}. Querying a record with constraints uses the
label types, e.g. querying only on a, the condition becomes
(p & b?=1) for in/rd operations, where p is a condition
on a. The question mark ? is the existence operator which
evaluates to 1 if the label exists, or 0 otherwise.

3.2 Other Optimizations
Lazy forking allows asynchronous coordination among

agent programs and the server, and implies a fork-on-
need mechanism. For example, program P starts with
world w, which is later split into two worlds, x and y,
by another program Q, which has to fork, but P doesn’t
need to, until it interacts with w.

Opportunistic forking is introduced that when there are too
many gcc() requests at the same time, some of them
will be delayed randomly in order to limit the number
of worlds.

Condition triggering , which is enabled by indexing of
record labels, is available for record consuming and read-
ing actions (in and rd). Options for in and rd operations
are: non-blocking, time-out and block until a condition.

Storage sharing works as a storage hierarchy where records
are stored as closer to the root as possible. New records
are always written to the current world. Searching a
record starts from the current world, and if not found,
the searching continues in the parent world, etc.

4. Evaluation
We evaluate our runtime system by running two examples
which exemplify speculative computation inside choices.
The experiments ran on Linux on a 4-core 2.0GHz Intel
Xeon CPU with 8GB RAM.

Bob-Jill example : 10 instances each of Bob and Jill agents;

Flight reservation example : 10 instances of selling agents
(Listing 4) and 20 instances of buying agents (Listing 5).

We propose the flight reservation example as a potential
application of GCC. Here flight agents sell tickets whenever
they are available, and travelers are ticket buyers waiting for
desired tickets. Travelers may want to buy a multi-leg ticket
at a lower price. For example, as shown in Fig. 3, a traveler
from a to c may choose the path a− b− c instead of the path
a− c because the former is cheaper. However, availability of
the tickets is dynamic and not known in advance (real world
ticketing is similar but airlines oversell). So if the traveler
chooses a “bet-and-risk-it” strategy, he may not be able to
get the two tickets (a− b and b− c) in reasonable time. With
the help of GCC, he can speculate in two worlds; in one
world, he waits for the ticket a − c, and in the other world,
he waits for the tickets a − b and b − c. For this evaluation,

3 2012/6/13



all the traveler agents start with 100 credits and try to buy
tickets in order to reach d from a.

a d

c

b
30

80

20

10

90

Figure 3: Costs between cities in the flight example

Listing 4: Ticket seller’s agent
1 enum { N = 7 };

2 int t[N][3] =

3 { { 2,3,10 },{ 0,1,30 },{ 1,2,20 },{ 2,1,20 },

4 { 0,2,80 },{ 1,3,90 },{ 2,3,10 } };

5 int main() {

6 for (int i = 0; i < N; i++)

7 out(" from_%d=1,to_%d=1,price =%d",

8 t[i][0], t[i][1], t[i][2]);

9 return 0;

10 }

Listing 5: Ticket buyer’s agent
1 enum { N = 4 };

2 void wait_for_ticket(func_param p) {

3 flt &d = *((flt *) p);

4 char *str =

5 in("from_%d=1 & to_%d=1 & price <=%d",

6 d.from , d.next , d.cash);

7 Ticket t = parse_ticket(str);

8 fly(d.next , d.to, d.cash - t.price);

9 cm();

10 }

11 void fly(int from , int to , int cash) {

12 flt_info flt[N];

13 func_ptr choices[N];

14 func_param params[N];

15 if (from == to) return;

16 visited[from] = true;

17 vector <int > next = unvisited_neighbors ();

18 for (size_t i = 0; i < next.size(); i++) {

19 flt[i] = flt_info(from , next[i], to, cash);

20 choices[i] = wait_for_ticket;

21 params[i] = (func_param) &(flt[i]);

22 }

23 gcc(choices , params , next.size());

24 }

25 int main() { fly(0, 3, 100); return 0; }

Table 1 shows the result of the experiment. Both exam-
ples are repeated nine times, and the minimum and the max-
imum number of worlds given. We see that the number of
worlds can be small even with speculation and the increase
is also limited. Notice that we only obtained a maximum of
67 worlds, which is much smaller than the theoretical bound
of 220 worlds (10 pairs of Bob vs. Jill agents). The response
time is the time for the coordination server to process the
first GCC request. The turnaround time is the time to ex-
ecute an agent program from start to finish, i.e. when all
processes forked by this program exit. There is variation in
times and number of worlds because GCC requests may be
delayed randomly, and there is non-determinism in the ex-
ecution of the agent programs/processes. For the maximum

Bob-Jill cases Flight cases
min max min max

Max # of worlds 11 67 11 53
Max storage (MB) 40.6 53.5 17.8 89.8
Response max 9.22 133.62 10.34 67.91
time (s) avg. 4.44 44.48 3.36 17.05

Turnaround max 9.23 1011.91 10.34 67.91
time (s) avg. 5.07 318.19 3.36 17.05

Table 1: Experiment statistics

case of maximum turnaround time in the Bob-Jill cases, the
higher latency is caused by the use of the opportunistic fork-
ing mechanism which delays requests according to the num-
ber of worlds. Thus, even when there is no more requests,
delayed requests may still have to wait. The response times
are not small enough because of the delays as well. This is a
tradeoff between usage of system resources versus latency.

5. Conclusion
We have presented a concrete system architecture and asso-
ciated implementation and optimizations for GCC. This pa-
per shows that GCC can be practical and realistic. We show
how to program in GCC by using our runtime system and
how the agent programs work. The use of C/C++ as a host
language demonstrates that GCC is language independent
and embeddable in mainstream languages.

References
[1] A. Brogi and P. Ciancarini. The concurrent language, shared

prolog. ACM Trans. Program. Lang. Syst., 13(1):99–123,
1991.

[2] D. Gelernter. Generative communication in Linda. ACM
Trans. on Programming Languages and Systems, 7(1):80–
112, 1985.

[3] J. Jaffar, R. H. C. Yap, and K. Q. Zhu. Generalized committed
choice. In COORDINATION, pages 191–210, 2007.

[4] M. Mehl. The Oz Virtual Machine - Records, Transients, and
Deep Guards. PhD thesis, U. of Saarlandes, 1999.

[5] H. P. Nii. Blackboard Systems. Addison Wesley, 1989.

[6] V. A. Saraswat. Concurrent Constraint Programming. MIT
Press, 1993.

[7] C. Schulte and G. Smolka. Encapsulated search for higher-
order concurrent constraint programming. In SLP, pages 505–
520, 1994.

[8] C. Schulte, G. Smolka, and J. Würtz. Encapsulated search
and constraint programming in oz. In PPCP, pages 134–150,
1994.

[9] G. Smolka. The definition of kernel oz. In Constraint Pro-
gramming, pages 251–292, 1994.

[10] G. Smolka. A calculus for higher-order concurrent constraint
programming with deep guards, 1994.

4 2012/6/13


