A System for Extracting Top-K Lists from the Web

Zhixian Zhang

Shanghai, China
zzx1989@sjtu.edu.cn

ABSTRACT

List data is an important source of structured data on the web. This
paper is concerned with “top-k” pages, which are web pages that
describe a list of k instances of a particular topic or concept. Ex-
amples include “the 10 tallest persons in the world” and “the 50
hits of 2010 you don’t want to miss”. Compared to normal web
list data, “top-k” lists contain richer information and are easier to
understand. Therefore the extraction of such lists can help enrich
existing knowledge bases about general concepts, or act as a pre-
processing step to produce facts for a fact answering engine. We
present an efficient system that extracts the target lists from web
pages with high accuracy. We have used the system to process
up to 160 million, or 1/10 of a high-frequency web snapshot from
Bing, and obtained over 140,000 lists with 90.4% precision.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.2.8 [Database Management]: Database Applica-
tions—Data Mining

Keywords

‘Web information extraction, top-k lists, list extraction, web mining

1. INTRODUCTION

The world wide web is by far the largest source of information
today. Much of that information contains structured data such as
tables and lists which are very valuable for knowledge discovery
and data mining. This structured data is valuable not only because
of the relational values it contains, but also because it is relatively
easier to unlock information from data with some regular patterns
than free text which makes up most of the web content. However,
when encoded in HTML, structured data becomes semi-structured.
And because HTML is designed for rendering in a browser, differ-
ent HTML code segments can give the same visual effect at least
to the human eye. As a result, HTML coding is much less stringent
than XML, and inconsistencies and errors are abundant in HTML

*This work was partially supported by NSFC Grant 61100050 and
MOE New Faculty Award No. 20110073120023.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’12, August 12-16, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

*
Kenny Q. Zhu
Shanghai Jiao Tong University =~ Shanghai Jiao Tong University
Shanghai, China
kzhu@cs.sjtu.edu.cn

Haixun Wang
Microsoft Research Asia
Beijing, China
haixunw@microsoft.com

documents. All these pose significant challenges in the extraction
of structured data from the web [14].

In this demo, we focus on list data in web pages. In particular, we
are interested in extracting from a kind of web pages which present
a list of k instances of a topic or a concept. Examples of such topic
include “20 Most Influential Scientists Alive Today”, “Ten Holly-
wood Classics You Shouldn’t Miss”, and “50 Tallest Persons in the
World”. We call these pages “top-k” pages. Figure 1 shows one
such “top-k” page [1]. Figure 1.(a) is a snapshot of the page and
Figure 1.(b-d) are some of its segments. The title (Figure 1.(b))
of a “top-k” page usually contains a number £ indicating the list
size (20), as well as the head word/phrase (e.g., scientist) which
best describes the entities in the list. Figure 1.(c) shows one in-
stance (element) in the list, which not only contains the instance
name (Timothy J. Berners-Lee), but also optionally additional in-
formation like a picture, a textual description and a link to a relevant
wikipedia page. The additional information can be treated as the at-
tributes of the instance. A “top-k” page can also contain unwanted
lists such as Figure 1.(d) which should be filtered out.

Our system is designed to extract “top-k” lists from web pages.
Basically, it performs three tasks: 1) Recognize a “top-k” page; 2)
Extract the “top-k” list; 3) Understand and process list content.

The input of the system is any HTML web page and the output
is the extracted “top-k” list of the page, if any. Table 1 shows the
sample output from the page shown in Figure 1. '

There were many previous attempts to extract lists or tables from
the web. None of them targets the “top-k” list extraction that is
studied in this work. In fact, most of the methods are based on
either very specific list-related tags [4] such as , <1i> and
<table> or the similarity between DOM trees [9, 10] and ignore
the visual aspect of HTML documents. These approaches are likely
to be brittle because of the dynamic and inconsistent nature of web
pages. More recently, several groups have attempted to utilize vi-
sual information in HTML in information extraction. Most notably,
Ventex [7] and HyLiEn [6] were designed to correlate the rendered
visual model or features with the corresponding DOM structure
and achieved remarkable improvements in performance. However,
these techniques indiscriminatingly extract all elements of all lists
or tables from a web page, therefore the objective is different from
that of this work which is to extract one specific list from a page
while purging all other lists (e.g. (d) in Figure 1) as noise. The
latter poses different challenges such as distinguishing ambiguous
list boundaries and identifying unwanted lists.

We target “top-k” list data for information extraction for the
following reasons. First, there are large amount of “top-k” lists
around on the web. We estimate that the total number in Bing’s

'The actual output is stored in XML format and includes additional
information.

Latest Features

7 Sinister Crypis Hidden
Undereath The World's
Greatest Universities

The 25 Most Influential Living
Atheists

20 Most Influential Scientists
Alive Today

10 DOs & 10 DON'Ts for
College

20 Most Influential Living
Economists

(d)

20 Most Influential Scientists A

20 Most Influential Scientists Alive Today

1. Timothy John “Tim" Berners-Lee, who invented the \/

le Web by being the first to

epends. [Wikipedia Link]

successfully implement the transfer protocels on which the

@

Figure 1: Snapshot of a typical “top-k” page [1] and its page segments

Index | Name Image Description Wiki. Link
1 Timothy J. Berners-Lee | tim-berners-lee_1366736¢.jpg | who invented the World Wide Web... [link]
2 Noam Chomsky noam_chomsky.jpg who, though a linguist and philosopher... [link]
3 Richard Dawkins richard_dawkins.jpg whose use of evolutionary biology has shaped... [link]
20 Edward Witten edward_witten.jpg whose work on the mathematical underpinnings... | [link]

Table 1: Sample extraction output of “20 Most Influential Scientists Alive Today” [1]

corpus is around 2.24 million (1.4%0 of total number of pages),
and our system can effectively extract up to 75.5% of them. The
scale of this data is larger than any manually or automatically ex-
tracted lists in the past.

Second, list data is generally cleaner than other forms of web
data. Free text contains a lot of variation and ambiguity and is
known to be hard to understand and extract. General tables, even
though structured, can have many different forms (such as row span
and column span) and styles, and many of them are not meaning-
ful if we don’t know the schema of the table or the meaning of
the headers [12]. Lists, on the other hand, have relatively simpler
structures and are easier to identify. What’s more, “top-k” lists,
with their unique semantics, are even cleaner than ordinary lists.

Third, “top-k” lists are relatively easier to understand. “top-k”
list pages share a common style: the title contains a number and the
topic or concept of the list. Each list item can be considered as an
instance of the page title. The number of items should be equal to
the number mentioned in the title. Besides the name of the instance,
each list item may contain additional attributes of the instance.

Finally, “top-k” lists have interesting semantics. The fact that the
list items are called “top XXX means that these items are more im-
portant, popular or meaningful than an arbitrary list. What’s more,
people are always fascinated about rankings. Information of this
sort is likely to find a large audience.

We deployed our prototype system on a distributed computing
platform and performed extraction on up to 1/10 of a high fre-
quency web snapshot crawled by Bing. Our preliminary results
showed that the system achieved 90.4% precision and 57.7% re-
call. That amounts to the correct extraction of 129,169 lists from a
total of 160 million randomly selected web pages.

The work described in this paper is an important step in our big-
ger effort of automatic constructing a universal knowledge base that

includes large number of known concepts and their instances. To
that end, we have already built one of the largest open-domain tax-
onomy called Probase [15, 13, 12, 11] which consists of 2.7 million
concepts and many more instances. The “top-k” lists we extracted
from the web can be an important source for enriching Probase’s
instance space. Also, our system enables the construction of an
effective fact answer engine [16]. With such an engine, we can an-
swer queries such as “Who are the 10 tallest persons in the world”,
or “What are 50 best-selling books in 2010 directly, instead of re-
ferring the users to a set of ranked pages like all search engines do
today.

Next we will briefly discuss the framework of our system (Sec-
tion 2) and the preliminary evaluation results (Section 3), and present
a plan for demonstration (Section 4).

2. TECHNICAL SPECIFICATION

Figure 2 shows the block diagram of our system. As the input
of the system, the web page is first parsed by a HTML parser[3]
to obtain a complete DOM representation. Then the title classifier
attempts to recognize the page title. If it is a “top-k like” title, the
classifier outputs the list size (the number k) and a set of possible
concepts mentioned in the title. With the number k, the candidate
picker extracts all lists of size k& from the page body as candidate
lists. Only one of them will be the actual list of interest. With the
concept set, the top-k ranker can score each candidate list and pick
the best one as the “top-k” list. Finally the content processor ana-
lyzes the list content and extracts the entity names and attributes.

2.1 Title Classifier

The title of a web page (string enclosed in <t itle> tag) helps
us identify a “top-k” page. The goal of the classifier is to recognize
“top-k like” titles, the likely name of a “top-k” page. In general,

body

Y

Web HTML title Title K | Candidate
Page Parser Classifier g Picker

M} Top-K top-k o | Content Top-k
lists Ranker fist— ™| Processor List

concepts *

not a toﬁ title

no candidate lists

—— -

Figure 2: System Overview

a “top-k like” title represents the topic of “top-k” list. Note that a
“top-k like” title may contain multiple segments, and usually only
one segment describes the topic or concept of the list.

We trained a Conditional Random Fields (CRF) [8] model from
both positive and negative sample titles. In addition to recognizing
a “top-k like” title, the classifier also transfers the cardinal digit
word (word like “ten” or “fifteen”) into the number k, and outputs
a set of Probase concepts such as “scientists” which are mentioned
in the title.

2.2 Candidate Picker

Given an HTML page body and the number k, the candidate
picker collects a set of lists as candidates. Each list item is a text
node in the page body.

We define a tag path of a node as a path from the root to this
node in the DOM tree. Items in a “top-k” list usually have simi-
lar format and style, and therefore they share an identical tag path.
For example, in Table 1, the tag path corresponding to the second
column Name is html /body/ . ../p/strong. Our Default al-
gorithm takes advantage of this observation to identify lists of size
k. Note that there might be multiple lists of the same size from a
given page.

The Default algorithm achieves good recall but may produce
noise. In a modified algorithm, known as Def+Patt, we introduce
filters based on more reliable patterns such as indices and highlight-

ing.
2.3 Top-K Ranker

When there are multiple candidate lists, we select only one of
them as the main list. Intuitively, the main list is the one that best
matches the title. In Subsection 2.1, we extract a set of concepts
from the title, and one of them should be the central concept of the
“top-k” list. Our key idea is that one or more items from the main
list should be instances of one of the concepts extracted from the
title. Probase taxonomy is used for this concept-instance matching.
We design a scoring function in the ranker that measure the amount
of matching as well as the visual features of a given list.

2.4 Content Processor

The content processor takes as input a “top-k” list and extracts
the main entities as well as their attributes. Sometimes the text
within an HTML text node contains a structure itself, e.g. “Hamlet
By William Shakespeare”. The content processor infers the struc-
ture of the text [5] by building a histogram for all potential separator
tokens such as “By”, “:” and “,” from all the items of the “top-k”
list. If we identify a sharp spike in the histogram for a particular
token, then we successfully find a separator token, and we use that

token to separate the text into multiple fields.

3. PRELIMINARY RESULTS

In this section, we present some preliminary results of the system

from three experiments. The first two experiments test the precision
and recall of the two main functions, namely title recognition and
list extraction, respectively. In the last experiment, we performed
large-scale extraction on a massive distributed computing platform.

For title recognition, we build a benchmark with 2000 random
web page titles, all of which contains at least one number. 50 of
these are “top-k like” and are treated as ground truth. The precision
of the classifier is 76.7%, while the recall is 92%. The high recall
ensures that most of the real “top-k” pages can pass through this
stage.

In the second experiment, the input is the DOM representation
of 100 correct “top-k” pages as well as the correct title analysis
result (number £ and concept set). Both algorithms obtain very
high precision, with Def+Patt at 97.4%. In terms of recall, Default
is better at 85% since Def+Patt uses stricter patterns.

In the last experiment, we apply the framework on 1/10 of a high-
frequency web snapshot from Bing, which are about 160 million.
Algorithm Def+Patt achieves 90.4% precision and 57.7% recall.
‘We measured the recall by taking a smaller sample of the web cor-
pus, manually checking the pages returned after the title recogni-
tion. If applied to the whole web corpus, Def+Patt is expected to
harness over 1.4 million “top-k list” with over 90% precision.

4. DEMOSTRATION SETUP

At the heart of our demonstration is a web-based “Top-k” list
extraction user interface [2]. It contains three main sections: Try-
[tOut, Benchmark and Title. Under the TryItOut section, a user can
test our system with an abitrary URL. In the Benchmark section,
we present 100 typical “top-k” pages which the user can test either
individually or in one go. We obtain these benchmark pages by
manually searching through over 5000 web pages with “top-k” like
titles. And in the Title section, a user can test an abitrary page title
(string) with the title classifier.

A screenshot of the TryItOut section with blow-ups of extracted
content is shown in Figure 3. Here, a user can type in the URL in
the textbox and click “Extract” button, the system will retrieve the
page in real time and attempt to extract a “top-k” list from it. The
output result includes the page title, running time (in millisecond),
number k, concepts as well as the “top-k list”. Both the result and
the original page will be presented after extraction.

In Benchmark section, as shown in Figure 4, we list 100 “top-
k” pages with their URLs. If a user want to test any one of them,
she can click “Test Me” button, the browser will be redirected to
TryItOut and show her the result. If the user wants to test the entire
benchmark, she can click “Test All” (in the bottom), the system will
process through the benchmark and send her a result file in XML
format.

In Title section, a user can type a string as input in the textbox,
then click “Parse” button, and the system will analyze it as a page
title and return detailed result, including time, features, concepts

TOF TEN EXTRACTION [output

120 Most Influential Scientists Alive Today
[Total Time: 271,Algo Time: 112,Parse Time: 41,Probase Time: 102, Title Time: 2.

Number: 20

srones{Concept:
scientist jinfluential scientist today ;

1 Timothy John Tim who invented the World Wide... Wikipedia Link

Noam Chomsky ~ who, though a linguist and... Wikipedia Link
Richard Dawkins ~ whose use of evolutionary... Wikipedia Link
Persi Diaconis who in merging the Wikipedia Link
Jane Goodall whose work on primates... Wikipedia Link
Alan Guth whose idea of inflationary. Wikipedia Link
Stephen Hawking whose work on the nature of. Wikipedia Link

Figure 3: Web Demo GUI: TryItOut

TOP TEN EXTRACTION

Ty

Me To test the benchmark click “Test AIl"in the bottom of the page.

No. Click for Test
' =
it/ superscholar.org/features/20-mostinf| Test e
- A | [rest ne | Nelfek
3 > | [Cesine]
5 ey
5 [lost 1o)
7 Tostto

‘ F

EEESE

Select afile

File name on th,
Special Functions || Test 411 %
1

Upload status:

Slalle

[add A New Testcase
urL

Figure 4: Web Demo GUI: Benchmark

and whether it is a “top-k like” title. A screenshot of this section is
shown in Figure 5.

5. CONCLUSION

In this paper, we define a novel list extraction problem, which
aims at recognizing, extracting and understanding “top-k” lists from
web pages. The problem is distinctive from other data mining tasks,
because compared to other structured data, “top-k” lists are clearer,
easier to understand and more interesting for readers. Besides these
advantages, “top-k” lists are of great importance in knowledge dis-
covery and fact answering simply because there are millions of
“top-k” lists around on the web. With the massive knowledge
stored in those lists, we can enhance the instance space of a gen-
eral purpose knowledge base such as Probase. It is also possible to
build a search engine for “top-£” lists as an effective fact answering
machine. Our proposed 4-stage extraction framework has demon-
strated its ability to retrieve large number of “top-k” lists at a very
high precision.

6. REFERENCES

[1] 20 most influential scientists alive today.
http://goo.gl/KbB90.

TOP TEN EXTRACTION

e, To test the itle benchmark click "Test AII,

ge Title: top 10 nba players in the world

foutput
[Time: 13
Features:
ltoplJ1
110CDO
1 nba NN 0
L players NNS 3
LinIN1
1 the DT 0
L world NN 1
Number: 10
{concept:
ftop
player
nba player
in

orld

Figure 5: Web Demo GUI: Title

[2] Top-k web demo. http://202.120.38.145:
8088/TopTenSite/Default.aspx.

[3] Winista htmlparser. http://www.netomatix.com.

[4] M. J. Cafarella, E. Wu, A. Halevy, Y. Zhang, and D. Z.
Wang. Webtables: Exploring the power of tables on the web.
In VLDB, 2008.

[5] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to
shovels: Fully automatic tools generation from ad hoc data.
In ACM POPL, 2008.

[6] F. Fumarola, T. Weninger, R. Barber, D. Malerba, and J. Han.
Extracting general lists from web documents: A hybrid
approach. In IEA/AIE (1), pages 285-294, 2011.

[7]1 W. Gatterbauer, P. Bohunsky, M. Herzog, B. Kriipl, and

B. Pollak. Towards domain-independent information

extraction from web tables. In WWW, pages 71-80. ACM

Press, 2007.

J. Lafferty, A. McCallum, and F. Pereira. Conditional

random fields: Probabilistic models for segmenting and

labeling sequence data. In ICML, 2001.

[9] B. Liu, R. L. Grossman, and Y. Zhai. Mining data records in
web pages. In KDD, pages 601-606, 2003.

[10] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.
Moser. Extracting data records from the web using tag path
clustering. In WWW, pages 981-990, 2009.

[11] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI 2011.

[12] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding
tables on the web. In ER, 2012.

[13] Y. Wang, H. Li, H. Wang, and K. Q. Zhu. Toward topic
search on the web. In ER, 2012.

[14] T. Weninger, F. Fumarola, R. Barber, J. Han, and D. Malerba.
Unexpected results in automatic list extraction on the web.
SIGKDD Explorations, 12(2):26-30, 2010.

[15] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
2012.

[16] X. Yin, W. Tan, and C. Liu. Facto: a fact lookup engine
based on web tables. In WWW, pages 507-516, 2011.

[8

—

