
Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

Layout-aware information extraction from semi-structured medical images
Kangqi Luoa, Jinyi Lua, Kenny Q. Zhua,∗, Weiguo Gaob, Jia Weib,∗∗, Meizhuo Zhangb
a Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
bAstraZeneca China, 199 Liangjing Road, Shanghai, 201203, PR China

A R T I C L E I N F O

Keywords:
Information extraction
Medical images
Electronic medical records
Domain-specific language
Spatial layout
Optical character recognition

A B S T R A C T

Textual information embedded in the medical image contains rich structured information about the medical
condition of a patient. This paper aims at extracting structured textual information from semi-structured medical
images. Given the recognized text spans of an image preprocessed by optical character recognition (OCR), due to
the spatial discontinuity of texts spans as well as potential errors brought by OCR, the structured information
extraction becomes more challenging. In this paper, we propose a domain-specific language, called ODL, which
allows users to describe the value and layout of text data contained in the images. Based on the value and spatial
constraints described in ODL, the ODL parser associates values found in the image with the data structure in the
ODL description, while conforming to the aforementioned constraints. We conduct experiments on a dataset
consisting of real medical images, our ODL parser consistently outperforms existing approaches in terms of
extraction accuracy, which shows the better tolerance of incorrectly recognized texts, and positional variances
between images. This accuracy can be further improved by learning from a few manual corrections.

1. Introduction

Information extraction is the task of automatically extracting in-
formation or knowledge from unstructured or semi-structured docu-
ments. In the domain of image processing, the task of textual in-
formation extraction (TIE) is automatically detecting and recognizing
texts from given images. TIE is applied in a large variety of image ca-
tegories, such as printed books, newspapers, digital drawings, or even
more general images [1]. Optical character recognition (OCR) is the
popular approach to solve TIE, turning images of printed text into
machine encoded texts. OCR is a hot research topic in recent years, and
the performance is promising on images containing largely text, such as
novels and reports. For example, Tesseract [2], one of the most popular
open source multilingual recognizers, achieved an error rate of 3.72%
for recognizing English words and 3.77% for simplified Chinese char-
acters [3]. Based on the exclusive use and high accuracy of OCR, the
Google Books [4] and Gutenberg Project [5] have scanned a large
number of printed books and converted into text for free and open
access.

Due to ever evolving hardware and software, many medical images
such as electro-cardio graphs (ECGs), magnetic resonance imaging
(MRI), X-ray or ultrasound images are directly printed and stored on
paper. Medical images shown in Fig. 1 contain a mix of graphics and

text, which include technical settings of the hardware used, test mea-
surements and simple diagnoses. In order to build the manageable
electronic medical records for patients, there has been a growing de-
mand for extracting such text-based medical information from these
medical images. Given the ECG image in Fig. 2 as the running example,
existing OCR softwares are able to produce texts with spatial layout
information, indicating the positions of each recognized text in the
image. Fig. 3 shows the raw OCR result produced by Tesseract, where
recognized texts are organized in the form of XML hierarchy of spans,
and we call them “text boxes” throughout this paper. Texts are stored
only in leaf text boxes, and the layout information of each box is re-
presented by the coordinates (left, top, right, bottom) of its bounding
box. We use the term “bounding box” and “zone” interchangeably in
this paper. It's worth mentioning that OCR softwares may generate in-
correct texts. for example, the original text “Vent. rate” in the image is
incorrectly recognized as “Vcnt. rule”, also “63 bpm” is recognized as
“53 bpm”.

Apart from scanning the images into digital formats, extracting the
structured textual knowledge is more important for building electronic
medical records. For example in Fig. 2, we would like to extract the
attribute-value pairs (e.g., Vent. rate = 63 bpm) and possibly other
values such as date (e.g., 18-Nov-2010) and time (e.g., 9:13:02), since
those values endow us with information of the particular patient. Since

https://doi.org/10.1016/j.compbiomed.2019.02.016
Received 27 November 2018; Received in revised form 28 January 2019; Accepted 19 February 2019

∗ Corresponding author.
∗∗ Corresponding author.
E-mail addresses: kzhu@cs.sjtu.edu.cn (K.Q. Zhu), jenny.wei@astrazeneca.com (J. Wei).

Computers in Biology and Medicine 107 (2019) 235–247

0010-4825/ © 2019 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2019.02.016
https://doi.org/10.1016/j.compbiomed.2019.02.016
mailto:kzhu@cs.sjtu.edu.cn
mailto:jenny.wei@astrazeneca.com
https://doi.org/10.1016/j.compbiomed.2019.02.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2019.02.016&domain=pdf

discovering structured knowledge is beyond the scope of the OCR
techniques, the goal of this work is to provide a systematic solution,
which enables users to easily specify the data of interest in the images,
and automatically extract the corresponding textual values from raw
OCR results.

There are some naive solutions for this information extraction task.
The first approach is to write regex expressions for each data to be
extracted, and apply them to different text boxes of the OCR result. For
example, using “Vent\. rate .* bpm” to capture the target bpm value.
However, this approach suffers from two major problems. First and
obviously, incorrect recognized texts lead to mismatches of regex rules.
Second, the hierarchical layout of OCR results are not always organized
in a human-readable manner. For example in Fig. 3, the text “Vcnt.
rule” and “53 bpm” are not automatically combined into the same text
box, but are rather far apart. In fact, the hierarchical layout is sensitive

to many factors, including color, contrast, accidental spots on the
prints, or the angle of the scanner camera. In this case, text-based regex
rules are not well suited for medical images. Besides, writing regex rules
is too ad-hoc and non-trivial for end users.

The second approach is more straightforward: the user first anno-
tates all the target zones of each piece of data, then simply conducts
OCR on each fragment of images. Though intuitive and easy to imple-
ment, this approach highly relies on the accuracy of carefully annotated
zones, either too larger or too smaller will affect the local OCR results.
In addition, there exists slight positional variations of target zones be-
tween two images, even if they share the same format. Therefore, the
user have to annotate zones for every individual image, which is tedious
and labour intensive.

Another alternative solution involves the page layout analysis
technique [6], which includes identifying and organizing the textual

Fig. 1. Examples of medical images with textual information.

Fig. 2. An ECG with interesting text areas marked by red ovals.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

236

regions in the scanned image of a text document. Fig. 4 shows the page
layout result of the running example. In particular, the technique first
segments textual zones (blue blocks) from non-textual zones and ar-
range them in their original order, then detects individual text unit (red
lines under texts) in each zone. Page layout analysis is mainly used for
analyzing the semantics of text zones for plain text image documents,
and it encounters two problems when applied to this task. First, it is
based on the strong assumption that images of the same format share
the same structure of page layout result. Noises in the image will affect
the page layout result and eventually generate totally error textual in-
formation. Second, users must implement an addition wrapper to de-
scribe the location (which texts in which regions) of each desired data.
This step highly depends on the detail result of page layout, and writing
such wrapper is almost intractable for common users without expert
knowledge.

In order to attack the limitations of the above approaches, We
propose a domain-specific language for describing and extracting
structured textual information from the raw OCR data of medical
images. We call it OCR description language, or ODL in short. The ODL
parser then parses the raw OCR data of the medical images according to
the description, and extracts structured textual data in a tree shape. The
ODL based solution has three major advantages. First, compared with
the previous methods, ODL is more user-friendly. Borrowing the syntax
from PADS [7], an ad-hoc data processing language, ODL provides a

concrete syntax which allows users to easily define fixed strings and
variables to be extracted, customize compositions for better organizing
structured data, apply value constraints on variables, and rough spatial
constraints on structures. Second, the syntax of ODL is layout-aware.
Besides the explicit description of the bounding boxes of individual
data, ODL also implies the relative layout between different data ele-
ments, which is based on the left-to-right and top-to-bottom data de-
scription manner. Those rich layout information support the effective-
ness of the ODL parser. Third, the parsing process of ODL is robust.
Intuitively, the process aims at finding the best alignments between the
data defined in ODL and the text boxes of the raw OCR result, satisfying
both value constraints, spatial constraints and their relative layouts.
The fuzzy matching strategy is applied to tolerate or even automatically
correct recognition errors brought by OCR, as well as slight layout
variances between images. Therefore, neither carefully annotated zones
nor perfect OCR recognitions are required in the extraction step.

In summary, this paper makes three main contributions.

1. We design a declarative spatial data description language for de-
scribing both spatial and value constraints in medical images, which
can be used to automatically generate parsers for structured in-
formation extraction from these images. The syntax of ODL can be
generalized to the other image domains (Section 3);

2. We propose a robust ODL parser, which builds the association

Fig. 3. A fragment of raw OCR results for ECG with layout information.

Fig. 4. Example result of page layout analysis.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

237

between the text boxes from raw OCR results and the corresponding
description in ODL. During the parsing phase, the parser is able to
tolerate the noises and errors brought by OCR recognition, as well as
inaccurate bounding boxes of input description (Section 4);

3. We conduct preliminary experimental studies of structured in-
formation extraction on real ECG dataset. The end-to-end evaluation
result shows that our ODL based solution consistently outperforms
existing approaches. Besides, the extraction accuracy further in-
creases by 2%, given only a few number of manual corrections.
(Section 5).

2. Approach overview

In this section, we describe the general framework of our system to
extract the structured textual information from the medical images. A
running example will be given to detail the different parts of the system.

2.1. Framework

Fig. 5 shows the framework of the whole system. The system takes
as input one or more medical images of the same format (e.g., the same
medical test conducted by the same equipment). All images are pro-
cessed by the OCR engine, turning into raw OCR results in a structured
format such as XML. For each raw OCR result, we ignore its hierarchy
and collect all the leaf text boxes as the OCR data, denoted by D. As
defined in Equation (1), each leaf text box d is a 5-tuple, which contains
the left, top, right, bottom coordinates with the recognized text re-
spectively.

= … =D d d d x y x y text{ , , }, (, , , ,).n1 0 0 1 1 (1)

The other part of the input is the data description of those images,
written in ODL. In a practical system, a user can annotate the data
description through a graphical user interface, which allows defining
strings and variables, adding data constraints and drawing rough

bounding boxes for different elements in the image. Afterwards, the
corresponding ODL description is automatically generated.

The parsing process is the main part of our system. Given the OCR
data D and user-defined ODL, we propose the ODL parser which mat-
ches all the elements in the provided description with the text from D,
and produces parsing results. The parsing results are in the form of a
parsing tree, where every leaf node contains both the element of ODL
and the corresponding text information. The parser tolerates the errors
of OCR recognition and slight layout variances during the extracting
process, therefore it's able to produce multiple candidate parsing trees
with slight mismatches, and the most suitable result will be selected
using scoring functions.

In addition, the system contains an automatic correction module,
which learns OCR recognition errors and tries to correct errors during
the parsing phase. After parsing multiple images, the system collects all
detected parsing errors, then provide the user with most frequent par-
sing errors and prompt the user for possible corrections. Such correc-
tions would then be incorporated into a correction model, which guides
the parser to make possible corrections during the subsequent parsing
process, and results in fewer errors.

2.2. Running example

We continue using the ECG in Fig. 2 as the running example. We are
interested in extracting the time, measurements and some basic diag-
noses, all highlighted in the red ovals. Fragments of the XML results
produced by the OCR software are shown in Fig. 3.

There are numerous ways to describe the image using ODL. One of
the descriptions is shown in Fig. 6, written in the surface syntax. In the
description, the simplest expressions are fixed constants and primitive
variables. For example, “Vent. rate” is a string constant, and num is the
name of an integer variable ranging from 1 to 12. Users can customize
compound types for representing structured textual information. For
instance, time_t is a struct type representing day, month and year in-
formation; month_str is a union type representing enumerable month
abbreviations. Users can further specify rough bounding boxes for dif-
ferent expressions. As what depicted in the description, the variable
time has a rough zone, indicating the corresponding data resides in the
top 30% area of the whole image. The keyword source stands for the
root expression of the entire data to be extracted. In addition, the
corresponding abstract syntax of this description is shown in Fig. 7, and
our later discussion on ODL will use the abstract syntax as instead.

The example parsing tree is shown in Fig. 8, where leaf nodes are
either (constant, value) or (variable, value) pairs. The node entry_t
serves as the root node of the whole tree, and leaf nodes are marked

Fig. 5. System framework.

Fig. 6. The ODL description in surface syntax.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

238

with “Error” if an imperfect alignment is detected, either because the
constant and value doesn't exactly match, or because the value doesn't
satisfy the corresponding value constraint. The system will prompt
frequent parsing errors for manual corrections. For example, the system
detects an error associated with variable p1, as “150” is incorrectly
recognized as “15o” by the OCR. If the user corrects “15o” into “150”,
the system learns there is a possibility for the character “0” to be mis-
recognized for “o” in the current image format. Subsequently, for other

images of the same format, the system is able to automatically correct
similar errors, e.g., the value for variable p3 from “1o.o” to “10.0.”

3. Syntax of OCR description language

In this section, we introduce the OCR description language, and
explain what kind of structured data that ODL is able to describe. The
abstract syntax of ODL is formally described in Fig. 9. ODL is able to
describe both structured data and spatial layouts of textual information
within the medical image. In the following parts, we will discuss the
ODL syntax and its type system in more detail.

3.1. Primitive expressions

According to the abstract syntax, we start from the most primitive
expressions that ODL can describe: constant and variable. Constants re-
present fixed-valued strings or numerical values to be recognized from
the image. For example in Fig. 7, “Vent. rate” and “mm/mV” are con-
stant expressions, as they always occur in all ECGs of the same format.
On the other hand, primitive variables represent numerical (int or float)
values varied in different images. In Fig. 7, the variable vr represents
the numerical value of “Vent. rate”. It's worth mentioning that, the
reason we specially define constants in ODL is to enrich the relative
layout information between different expressions, so that the parser can
locate the variables in the image more accurately.

3.2. Spatial expressions

Spatial description expressions include hskip len and vskip len. As
shown in Fig. 2, there has a large horizontal margin between “Vent. rate”
and “63 bpm”, hence we can use hskip len to explicitly and approximately
describe such horizontal margin between the previous and next expres-
sions. The size of margin is determined by len, which has two parts: the
length value and its measurement unit. Units can be the absolute pixel, or
what are more encouraged, the percentage of width (w) or height (h) of
the image. Besides, \t stands for a special margin size, which equals to
the average width of 4 Latin characters. We can easily estimate this value
via the width of each text box in the raw OCR results. Similarly, vskip len
explicitly describes the vertical margin between expressions, and \n
stands for the average height of one Latin character.

Fig. 7. The ODL description in abstract syntax.

Fig. 8. The example parsing tree of the running ECG.

Fig. 9. Syntax of OCR description language.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

239

3.3. Composition

Compositions are compound expressions constructed from other
expressions. These include union, struct, list, binding, bop and constraint.

The first three compositions define more structured and complex
type expressions. The union expression means there exists multiple
potential data or spatial expressions. For example, the union description
of month str_ is the enumeration of all abbreviations of different months.
The struct expression is used to describe an expression with multiple
sub-expressions. All sub-expressions must be described sequentially,
following the left-to-right then top-to-bottom manner. As another ex-
ample in Fig. 6, the struct description of triple t_ contains the constant
attribute name, spacing, variable value and constant unit listed from
left to right. The list expression indicates that a sequence of similar data
or the same spatial expressions should be applied multiple times. In the
example, vskip \n list represents several blank lines between the data of
interpretation and parameters in the images.

The function of binding is to give a variable name x to the compo-
sition expression e, so that each expression has an identifier in the
output parsing tree. The function of bop supports basic binary opera-
tions between numerical values in the ODL. These two expressions are
designed to simplify the description of ODL.

Finally, the constraint expression in ODL consists of two categories:
value constraints and spatial constraints. Value constraints can be ap-
plied to the primitive variable, indicating its type and value range, if the
user knows in prior. Since variables are usually numerical, two value
constraints are available: x int v v(, ,)min max and
x float length precision v v(, , , ,)min max . For example in Fig. 7, day int(, 1,31)
constrains the variable to be an integer ranging from 1 to 31;
p float2(, 3,1) constrains the variable to be a floating number in length 3
and precision 1, without range limits. Spatial constraints have the form
e coor(), which can be applied to any expression, and restrict the areas
that corresponding data resides in the image. Such positions in ODL are
represented by coor , the 4-tuple of left, top, right, bottom coordinates.
As shown in Fig. 7, spatial constraints are applied to several structs:
time, tri and inter . These constraints are rather rough and large, as users
are encouraged to give larger spatial constraints if they are not so sure
of the exact bounding boxes.

3.4. Type system

The inductive typing rules of ODL is shown in Fig. 10. T-VARIABLE
indicates that the type of variable is based on the type of name in the
typing context. T-INT ARITH, T-INT REL, T-FLOAT ARITH and T-FLOAT
REL indicate that the two expressions of the bop are of the same type
(int or float), and the final type of the bop expression is based on the
binary operation. T-CONSTRAINT indicates that the final type of the
constraints expression is always the same as the original expression e0. T-
HSKIP and T-VSKIP indicate that the spatial parameter e is of the len
type, and the final types of these two expressions should be unit. The
last three of the typing rules are for the union, struct and list expressions,
respectively.

4. Robust ODL parser

In this section, we focus on the ODL parser, which is the core of the
entire information extraction system. We first describe the semantics
that the parser is used for generating parsing trees based on the ODL
specification. Afterwards, we describe the detail of the fuzzy matching
strategy and the automatic correction model.

4.1. Semantics of the ODL parser

Referring to Fig. 8, the parsing process evaluates the entire data
expression of ODL into hierarchical texts organized by the parsing tree,
defined as = …T node T T(, [, ,])n1 , where Ti is the i-th sub-tree of T. The

leaf nodes of T are e text(,) pairs representing the alignment between
some primitive expression and its corresponding text, and non-leaf
nodes are always the variable names x.

Since the entire expression has a complex structure, the evaluation
is conducted recursively: it first evaluates each sub-expression, and then
composes multiple parsing trees into a large one. So the semantics of
the parser consists of two parts: the evaluation rules for non-composi-
tional expressions (constants, primitive variables and spatial expres-
sions), and the inductive evaluation rules for compositional expres-
sions.

The most basic rule is for evaluating constants (or primitive vari-
ables): given the OCR data D and the constant (or primitive variable) e
in ODL, searching all possible alignments between e and some text box
d D. During the whole parsing process, the parser maintains an en-
vironment =E x y x y x y(, , , , ,)cr cr0 0 1 1 , which contains the coordinates of
the searching area, as well as a cursor (xcr, ycr). The cursor is a reference
point, indicating the rough position that the desired text box resides. By
default, the searching area is the whole image, and the cursor is at the
top-left corner. The relative layout in ODL is represented in a left-to-
right then top-to-bottom manner, thus the text box d becomes a can-
didate alignment of e, if it's within the searching area, and not located
in the top-left side of the cursor. The following InBound function de-
fines such rule:

=InBound D E d D(,) { | (2)

E x d x d x E x. . . .0 0 1 1

E y d y d y E y. . . .0 0 1 1

¬ d x E x d y E y(. . . .)}cr cr1 1

With the environment E provided, the parser enumerates all candidate
text boxes, and use a boolean match function Match e d E(, ;) to judge

Fig. 10. Inductive typing rules of ODL.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

240

whether an alignment exists between d and the constant (or primitive
variable) e. Intuitively, d is a valid match of e, if its text is close to the
constraints of e, and it's located near the cursor (E x E y. , .cr cr). For a
better flow of explanation, the formal definition of the match function
will be given in the next section. If matches, a new parsing tree

=T e d text((, .), []) is generated, which has a single node without any
children. Besides, both D and E need to be changed, so that the parser
can work on the alignment of the subsequent expressions in ODL.
Following the relative layout of expressions, the cursor is moved to the
top-right corner of the box: =E Move E d(,), and d is removed from D,
as one text box can be aligned at most once: =D D d{ }. Equation (3)
defines a series of functions that changes the environment, which are
used in different evaluation rules. In which, c is short for coor .

=Move E d E x E y E x E y d x d y(,) (. , . , . , . , . , .),0 0 1 1 1 0 (3)

= +Hskip E len E x E y E x E y E x len E y(,) (. , . , . , . , . , .),cr cr0 0 1 1

= +Vskip E len E x E y E x E y E x E y len(,) (. , . , . , . , . , .),cr0 0 1 1 0

=Restrict c c x c y c x c y c x c y() (. , . , . , . , . , .).0 0 1 1 0 0

The tuple T E D(, ,) is called a parsing state, which records the partial
parsing tree, the environment information and the remaining text
boxes. Since there exist multiple candidate text boxes for alignment,
given E and D, e will be evaluated into a set of parsing states, written in
the following judgment form:

E D e T E D, ; {(, ,)}.
i

i i i (4)

Based on the definition of the environment, match function and
parsing state, Fig. 11 lists all the evaluation rules. The rules E-EMPTY, E-
PRIM1 and E-PRIM2 are used for evaluating the constants or primitive
variables in a recursive form, where r stands for a list of parsing states.
The parser generates new parsing trees based on whether d and e
matches. In addition, the parser can simply skip the text box d and try to
find alignments from remaining OCR data D d{ }.

The rules E-HSKIP and E-VSKIP are used for evaluating the spatial
expressions. Intuitively, the hskip and vskip expression doesn't match
any text boxes, but indicating the rough size of spacings. Therefore,
both rules merely move the cursor horizontally or vertically, using
Hskip or Vskip function defined in Equation (3).

Now we introduce the evaluation rules for compositional expres-
sions, and focus on how the output parsing states are composed from

the multiple sub-states. The rule E-COOR is used for evaluating spatial
constraints e coor(). The given coordinates coor restrict the searching
area of alignments in the image, thus both the environment and the
available OCR data are modified when evaluating e. The Restrict func-
tion sets the new environment based on coor , and the OCR data in the
output parsing state contains all text boxes outside the searching area
(D D), as well as unused boxes inside it (Di). There doesn't have a
evaluation rule for value constraints, but such constraints will be used
in the match function.

The last 5 rules in Fig. 11 are used for evaluating union, struct and list
expressions. The rules E-WRAP1 and E-WRAP2 construct the hierarchical
structure of parsing trees, where the root node x is the identifier of
union/struct/list expressions; E-UNION simply combines parsing states
from all its branches; E-STRUCT binds the parsing tree of e1 to the larger
tree of the remaining parts; E-LIST is similar with E-STRUCT, considering
that a list equals to a struct with unlimited expressions.

4.2. Fuzzy match function

The key feature of the parsing process is the robustness: rather than
conducting exact match, the parser tolerates the OCR recognition er-
rors, and the slight layout variances between images of the same
format. In order to measure the degree of fuzzy matching between
primitive expressions and text boxes, we define penalty functions at
both value and spatial level, then based on that, we give the formal
definition of the Match function.

Penalty Function for Value Constraints. The value penalty function
F e text(,)v measures the penalty of aligning some text with the primitive
expression e, i.e., either constants or primitive variables. For the constant
c, since the desired value is fixed, the penalty score is simply derived
from the edit distance (Levenshtein distance) between two texts, which
measures the minimal number of edits required to change one text to the
other. For the primitive variable x of the integer and floating point type,
the value constraint is put into use. Referring to the value constraints
x int v v(, ,)min max and x float length precision v v(, , , ,)min max , edit distances
are calculated between the text data and each numerical value, satisfying
the restrictions of value range, length or precision, and the smallest edit
distance is picked as the error score. The complete form of the value
penalty F e text(,)v is defined as follows:

=F c text EditDist c text(,) (,),v (5)

Fig. 11. Evaluation rules of the ODL parser.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

241

=F x int v v text((, ,),) minv min max
i

EditDist i text i Z v i v(,) | , },min max

F x float l p v v text((, , , ,),)minv min max
i

EditDist i text i R v i v(,) | , },min max

where R is the set of all real numbers in length l and precision p. For
example, the penalty score (edit distance) between the constant “Vent.
rate” and the text “Vcnt. rule” is 3. As another example, the penalty score
between x int(, 60,100) the text “53” is 1, since for all desired integers
between 60 and 100, “63” holds the minimum edit distance with “53”,
which is 1.

Penalty Function for Spatial Layout. Recap that in the parsing process,
based on the left-to-right and top-to-bottom relative layout between
expressions embedded in ODL, the cursor E x E y(. , .)cr cr maintains a
rough reference position that the desired text box resides. That's to say,
the closer a text box d to the cursor, the higher confidence to align with
the current expression. Therefore, the spatial penalty score F d E(,)s
measures the spatial distance between the cursor and the top-left corner
of box, calculated in L1-norm:

= +F d E d x E x d y E y(,) | . . | | . . |.s cr cr0 0 (6)

Now we formally define the match function Match e d E(, ;). The
function returns a boolean value for whether the text box d can be
aligned to the primitive expression e. Given the above penalty functions
at both value and spatial view, the Match function is defined as the
weighted sum of two scores, controlled by an output threshold τ:

= + <Match e d E F e d text k F d E(, ;) T (, .) (,)
F otherwise

.v s

(7)

where k and τ are hyperparameters of the system. Finally, for picking
the best parsing tree from multiple parsing states of the entire image
expression, the textual error score of each primitive expression equally
contributes to the final score of the whole parsing tree T. We define the
overall score of T as follows:

=score T F e text() (,).
e text leaf T

v
(,) () (8)

4.3. Automatic correction module

The correction module aims at automatically detecting and cor-
recting error texts during the parsing process. For example, the parser
not only detects the error of matching the text “15o” to the variable p1
in Fig. 8, but also tries to correct the error text into “150” on-the-fly. We
first explain the automatic correction in the parsing process, then dis-
cuss the incremental generation of the correction model.

4.3.1. Correction model
The correction model M is a set of correction strategies S. Each

correction strategy S is a probabilistic distribution of replacements from
the original string ori to multiple candidate strings dst :

= …S ori dst p ori dst p{(, ,), , (, ,)}.m m1 1 (9)

A concrete correction strategy, for example,
=S {(“o”,“o”, 0.6), (“o”,“0”, 0.3), (“o”,“O”, 0.1)} indicates that given the

character “o” there's a 60% possibility that no correction is needed,
30% possibility to replace into “0”, and another 10% possibility to re-
place into “O”. Since the most frequent error of OCR recognition hap-
pens at character level, all the original strings are short phrases (1,2,3-
letter-gram). In addition, we define rep text ori dst(, ,) as the result of
replacing all occurrences of ori with dst in the string text .

Given the correction model M, the parser is able to vary the input
text such that a lower penalty for value constraints results. Intuitively,
the value penalty between “15o” and x int() is always 1 without cor-
rection. It will become smaller than 1 when the correction model is
applied, due to a possibility of varying “15o” to “150”. More specifi-
cally, the relaxed version of value penalty Fv is the minimum ex-
pectation score of different texts after being replaced by some strategy
S:

=F e text M p F e text(, ;) min (,) |v
S M dst p S

i v v
(,)i i (10)

=text rep text ori dst(, ,)}i i

By changing Fv in Equation (7) into Fv, the matching function
Match e d E M(, ; ,) is able to make better judgments with the help of the
correction model. Once some d and e matches (Fig. 11, E-PRIM1), We
record the best strategy S which reaches the minimum value penalty,
and generate the corresponding parsing tree =T e d text((, .),)i i for each
variant of string replacement by S . For example, (p1, “15o”), (p1,
“150”) and (p1, “15O”) are all valid parsing trees. The best parsing
result will be picked by the overall scoring function defined in Equation
(8). In this case, the system is able to find the correct matching results
from those candidate variants.

4.3.2. Generation of correction model
The model is generated in a hybrid approach. The initial correction

model is generated from the result of OCR engine. For each text box, the
OCR engine outputs top-K candidate texts, although only the best one is
displayed in the raw OCR result. Regarding each i-th candidate as the
replacement of the best text, the system counts all different (ori, dst)
substring replacements. For example, given the replacement from “15o”
to “150”, distinct substring replacements are: (“1”, “1”), (“5”, “5”),
(“o”, “0”), (“15”, “15”), (“5o”, “50”) and (“15o”, “150”). For those
images of the same format, the system counts all occurrences of sub-
string replacements from every image, and builds the initial correction
model M, where the probabilities are calculated by normalization over
occurrences.

The correction model can be updated by incremental human cor-
rections. Once the user manually changes some error texts into correct
ones, the system obtains new substring replacements (ori, dst) and re-
calculates all the probabilities in M. Since the human labeled texts are
ground truth texts, all occurrences of substring replacements derived
from human correction are multiplied by a weight factor w, so as to
make larger contributions to the probability values in M.

5. Experiments

In this section, we introduce the medical image dataset and com-
peting approaches for the structured information extraction task. We
show the end-to-end extraction results, and investigate the effectiveness
of automatic correction given manual annotations.

5.1. Experimental setup

Medical Image Dataset. The medical image dataset which we use are
from real ECG reports, which are recorded at different times and dif-
ferent hospitals. Those ECG reports can be divided into several different
formats. Among them, we choose 4 typical image formats covering the
most images, with examples shown in Fig. 12. Though sharing similar
medical information, the layout of textual data differ from each other.
Table 1 lists the statistics of the dataset.

ODL Annotation. To obtain the data description of the medical
images, we involve 6 volunteers to annotate the ODL of each image
format. All the volunteers are undergraduate students in the major of
computer science. The volunteer's training time is about 45min, in

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

242

which we present the syntax of ODL and several running examples to
them. After the training process, each volunteer is asked to annotate the
ODL of the 4 image formats in the dataset within 20min. By manual
inspection, 21 out of 24 ODL annotations are structural acceptable,
where the defined data follows the left-to-right then top-to-bottom
manner, and the spatial constraints are properly applied. Finally, we
manually pick the best annotation of each image format, which are used
in the experiments.

Image Preprocessing. The original medical images poses various
problems which affects the performance of the OCR engine. For ex-
ample, images are in different colors, and the textual information are

surrounded by grid lines. To alleviate those problems, we binarize these
images by a simple thresholding approach. We set separate thresholds
for each of the RGB channels of the image, and combine the output
values of all channels with AND operation. We make use of the auto-
thresholding techniques in ImageJ Toolkit [8], which automatically
determine the thresholds and generate the output images. Fig. 13 shows
the comparison between the original image and the corresponding one
after preprocessing. By removing grid lines and turning to a binary
image, the output is much cleaner, making the text on the image stand
out.

5.2. Evaluation of structured textual information extraction

Now we perform the end-to-end extraction task on the medical
image dataset. We use the extraction accuracy over variables as the
evaluation metric. For our proposed method (ODL Parser), we adopt
Tesseract [2] as the OCR engine. We split the dataset into 5% for va-
lidation and 95% for testing. The hyperparameters k, τ and w are tuned

Fig. 12. Example images of ECG formats in the dataset.

Table 1
Statistics of the ECG image dataset.

Format 1 2 3 4

Number of Images 124 113 102 97
Number of Attributes per Image 17 16 18 15

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

243

by achieving the highest accuracy on the validation set.
We compare our method with three competing methods discussed in

Section 1. The first method (Exact Match) is a textual matching ap-
proach. Based on the coordinates of each text box in the raw OCR result,
we restore all text boxes into multiple rows of texts. Then we write
simple regex rules to extract numerical variables by exactly matching
the constant strings before and after them. No fuzzy matching or data
constraints are applied in this method.

The second competing method (Zonal OCR) is based on manually
marking zones of each data on the images. Tesseract is applied for re-
cognizing texts from each image fragment. In order to overcome the
slight positional variations between images, the annotating process is
improved in this method. As shown in Fig. 14, for images of the same
format, we first label all zones of interest in one image (the blue boxes),
as well as another referent zone (the red box). We keep the relative
distance between all boxes, and only label the referent zone for all the
remaining images. Therefore, all zone of interests of the remaining
images can be automatically calculated.

The third approach (Page Layout) is based on the page layout ana-
lysis, with examples depicted in Fig. 4. We adopt ABBYY recognizer for
page layout analysis, and implement ad-hoc rules to map the desired
data with specific text units in the page layout result.

The experiments are conducted on the machine with Intel i7-4790
CPU and 32G memories. The ODL parser parsers each image in 2 s on
average, and the memory consumption doesn't exceed 1G. The perfor-
mance can be further boosted by multiple threading. Table 2 shows the
experimental results over the testing images. Our ODL-based approach
consistently outperforms existing approaches by an absolute gain of
3–6% on all the 4 ECG formats, which demonstrates the effectiveness of

the robust parsing process.

5.3. Evaluation of automatic correction

In this section, we conduct the additional experiments to analyze
the performance gain brought by human correction in our system. For
each image format, the system prompts a certain number of imperfect
e d text(, .) alignments as parsing errors, collects all manual correction
data, and performs a new run of parsing based on the updated correc-
tion model. Given the set of all detected parsing errors, we compare two
policies of recommending errors for manual correction: random and
most frequent. For the random policy, the system follows the 2-step
sampling without replacement: first randomly samples e from all dis-
tinct expressions with parsing errors, then randomly selects one in-
stance from all parsing errors related to e. The most frequent policy is
also based on sampling without replacement, while for each pick, the
system always randomly samples the parsing error from those expres-
sions with the most parsing errors.

Fig. 15 reports the extraction accuracies with 0, 1, 5, 10, 15 human
corrections using different recommending policies. For each specifica-
tion, we conduct the experiment 100 times, and report the average
accuracy. Due to the intensive labour in repeating experiments, we
didn't perform experiments on larger human corrections. For all dif-
ferent image formats, the more corrections we make, the better accu-
racy we can get, which demonstrates the effectiveness of the correction
model. The improvement to the extraction accuracy is better when
using the most frequent policy instead of the random baseline. We argue
that by paying more attentions to the most common recognitions errors,
the correction model under the most frequent recommendation is able to
correct more imperfect alignments, rather than wasting limited cor-
rections to long-tail cases. In addition, for the accuracy curve of the
most frequent policy, we observe that the growing rate goes down when
increasing the number of human corrections. This is reasonable, as
compared with frequent recognitions errors, the incremental

Fig. 13. Example of image preprocessing.

Fig. 14. Example of ECG image with zones of interests and referent zones.

Table 2
Accuracy of structured information extraction over medical images.

Format 1 2 3 4

Exact Match 58.8% 56.3% 61.1% 53.4%
Zonal OCR 81.2% 79.8% 81.7% 80.6%
Page Layout 79.7% 80.2% 81.2% 81.1%
ODL Parser 85.5% 83.8% 84.9% 84.0%

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

244

corrections on infrequent ones lead to fewer improvements.

5.4. Discussion and analysis

This section compares and contrasts the ODL based model with
other baselines approaches in the end-to-end extraction task. Based on
the results shown in Table 2, we first observe that Exact Match baseline
is outperformed by the other approaches by a significant margin. The
result is not surprising, due to that exact matching approach is highly
sensitive to the recognition accuracy. Errors occurring on either the
target variable or its surrounding constants will lead to a matching
failure, and noisy text boxes become another factor to affect the ex-
traction accuracy.

The other two baselines, though marginally outperformed by the
ODL-based approach, still have their own important limitations. Zonal
OCR is a typical approach that greatly simplifies the parsing process, at
the expense of intensive human labour. As shown in Fig. 14, users have
to annotate the referent zone (the red box) for every single image, which
is inefficient. Besides, the main assumption of this approach is that
relative layouts of texts are accurate and unchanged among all the
images of the same format. The assumption makes sense, but doesn't
always hold. Misrecognition of the zone is disastrous, as all the ex-
tracted information will be incorrect. For the Page Layout approach, it
also requires the consistent page layout result for images of the same
format. Fig. 4 gives an example of correct page layout, however, if the
textual zone are recognized incorrectly, necessary information may be
omitted from output. As shown in Fig. 16, the largest textual zone is
imperfectly located, which leads to error information extraction results.
Although having a relative high accuracy, the extraction wrapper of this
method is rather ad-hoc, which is more challenging for putting into real
use.

Compared with those baselines, the ODL based approach doesn't
rely on any carefully defined bounding boxes, its most important ad-
vantage is to make full use of the relative layout information between
expressions embedded in the ODL description. Based on the implicit
layout restrictions, the parser is able to generate the optimized

alignment between expressions and text boxes, while satisfying both
value and spatial constraints.

6. Related work

6.1. Textual information extraction

There has been a lot of research works for extracting textual in-
formation from various images, such as book covers, digital drawings,
natural scenes, and video frames [1]. More recent researches focus on
the text recognition in specific domains, such as the character detection
of natural scenes [9], which can be further improved by leveraging the
symmetric property of characters [10]. The ICDAR2017 Robust Reading
Challenge [11] aims at extracting texts from biomedical literature fig-
ures, including the task of text detection and cropped word recognition.

With the growth of text recognition methods, several researches
belong to the downstream applications using OCR techniques, such as
content based image retrieval [12], and lossless image compression
[13]. Our presented work is regarded as another downstream applica-
tion, which converts the unstructured recognized texts into the struc-
tured knowledge of medical records. The OCR engine serves as the
building block of the system, but the main contribution of this work
goes beyond the scope of OCR.

Another related research field is information extraction from free

Fig. 15. Extraction accuracy with human annotated correction.

Fig. 16. Example result of an imperfect page layout analysis.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

245

texts. A series of OpenIE researches [14,15] extract the (subject, pre-
dicate, object) relation triples from the natural language sentences in
the open domain. There also exists information extraction system in
specific domains, such as cTAKES [16] in the clinical domain and
BioInfer [17] in the biomedical domain. While the goal of these tasks
are learning extraction rules for textual knowledge, our work targets on
a different perspective: The structured knowledge depends on the user's
demand, rather than concrete facts or pre-defined relations. Besides, the
input texts of our work are separated text boxes with recognition errors,
which is far more challenging than ordinary free texts. Therefore, our
research targets on using description languages for data representation
and parsing, which is a non-trivial task.

6.2. Data description language

In previous work, some declarative data description languages were
designed for different purposes. For example, PADS [7] is a data de-
scription language to handle the ad-hoc log data. With the help of the
descriptions, a compiler can be used to parse and print the data. Further
research including the LearnPADS [18,19], which provides a fully au-
tomatic system for generating the corresponding PADS descriptions.
ODL is inspired by PADS and uses the type system in programming
language integrated with fuzzy matching and spatial features to handle
the specific text data from medical images.

In ODL, in order to describe spatial information, we enhance the
syntax with spatial features in order to limit the search area of the
description and horizontal and vertical skip to describe the spatial re-
lation between the data. There has also been some previous work on
describing the spatial information in the document, such as LaTeX [20]
and PostScript [21]. In LaTeX, lots of spacing parameters and spacing
commands are used. For example, “\vspace{ skip }” and
“\hspace{ skip }” are two general spacing commands. In PostScript, in
order to manipulate the text, some operations are designed, including
ashow, widthshow, awidthshow and so on. These operations take an input
text string and a separate specification for positioning the elements. We
use similar descriptions for spacing functions, “hskip len” and “vskip
len”. But the way we interpret them is different. The reason is ODL is a
fuzzy description language so that it’s easy for humans to write in ODL.
ODL will tolerate some error of the spacing command by using the fuzzy
matching strategies. However, in LaTeX, spacing commands are inter-
preted as it is.

6.3. Page layout analysis

A typical document analysis system consists of page segmentation,
optical character recognition, and logical structure identification. The
interest in the logical structure was inspired by the emergence and
popularity of common representation standards such as XML. By using
these common standards, we can encode structural information to-
gether with the contents [6]. One of the key components used to help to
understand a document is logical labeling. The task of logical labeling is
to label segmented blocks on a document image as title, author, header,
text column, etc [22]. The set of labels will depend on the document
classes or applications. Logical labeling techniques can be roughly
characterized as either zone-based or structure-based. Zone-based
techniques classify zones individually based on the features of each
zone [23,24]. Structure-based techniques incorporate global constraints
such as the position of the text. In our work, instead of using zone or
struct, we describe the logical layout by making use of the composition
expressions.

Some style-directed layout analysis algorithms also allow users to
specify the physical layout [25]. In this case, a regular language, in-
cluding terminal symbols, non-terminal symbols and production rules,
is proposed to express the varieties of physical regions and help the
physical layout analysis. However, the basic terminal symbol is the text
line instead of the word. The reason is that it is hard to distinguish word

from noises based on the image features alone, which result in in-
accuracies when processing the production rules. In our work, we in-
troduce constraints to handle such noises.

Another related work about page segmentation is VIPS [26]. It's a
vision-based page segmentation algorithm used to extract the semantic
structure of a web page. In our work, the semi-structure output of the
OCR engine is comprised of the structured XML files. However, VIPS
can't be directly used to analyze these XML files since the errors in the
recognition process will lead to errors in the XML files about the visual
cues and the DOM structures.

Different from the solutions for web pages, PATO [27] is a system
for extracting predefined items from printed documents in a dynamic,
multisource scenario. By focusing on the parameters of the text blocks,
it pays little attention to the relationship between different text blocks,
that is, it is not able to represent dependencies between text block,
while our system does.

7. Conclusion

In this paper, we have proposed ODL, the declarative data de-
scription language for describing and extracting structured textual in-
formation from various medical images. The syntax of ODL makes use
of both value and layout information to describe the data format of
images, and the proposed ODL parser then generates the best align-
ments between structured data in ODL and the texts recognized by OCR
engine. As the key feature of our system, the parsing phase is built upon
the fuzzy matching between ODL expressions and text boxes, and such
tolerance of imperfect alignment leads to the more robust information
extraction process. In addition, based on multiple candidate texts of the
OCR engine and manually annotated corrections, the correction model
is combined with ODL parser, which is able to correct frequent re-
cognition errors on-the-fly. We collected the ECG image dataset for
evaluation, and the end-to-end experimental results demonstrate that
our ODL-based approach consistently outperforms the other existing
solutions. Furthermore, the evaluation of the manual correction in-
dicates that by using the frequency based policy to prompt parsing
errors, the extraction accuracy can be effectively improved with limited
manual corrections. Finally, though the data used in this paper are
exclusively medical images, which is the preliminary study of our re-
search, this framework will conceivably benefit structured information
extraction tasks targeting the other types of semi-structured images.

Conflicts of interest

None Declared.

Acknowledgments

Kenny Q. Zhu and Jia Wei are the corresponding authors. This work
was partially supported by the AstraZeneca-SJTU collaborative research
grant.

References

[1] K. Jung, K.I. Kim, A.K. Jain, Text information extraction in images and video: a
survey, Pattern Recogn. 37 (2004) 977–997.

[2] R. Smith, An overview of the tesseract OCR engine, Proceedings of the International
Conference on Document Analysis and Recognition, vol. 7, 2007, pp. 629–633.

[3] R. Smith, D. Antonova, D.-S. Lee, Adapting the tesseract open source OCR engine for
multilingual OCR, Proceedings of the International Workshop on Multilingual OCR,
ACM, 2009, pp. 1–8.

[4] L. Vincent, Google book search: document understanding on a massive scale,
Proceedings of the International Conference on Document Analysis and
Recognition, vol. 2, IEEE Computer Society, 2007, pp. 819–823.

[5] M. Lebert, Project Gutenberg (1971-2008), (2008).
[6] L. O'Gorman, The document spectrum for page layout analysis, IEEE Trans. Pattern

Anal. Mach. Intell. 15 (1993) 1162–1173.
[7] K. Fisher, R. Gruber, PADS: a domain-specific language for processing ad hoc data,

ACM Sigplan Not. 40 (2005) 295–304.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

246

http://refhub.elsevier.com/S0010-4825(19)30063-0/sref1
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref1
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref2
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref2
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref3
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref3
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref3
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref4
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref4
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref4
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref5
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref6
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref6
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref7
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref7

[8] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis, Nat. Methods 9 (2012) 671.

[9] X.-C. Yin, X. Yin, K. Huang, H.-W. Hao, Robust text detection in natural scene
images, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014) 970–983.

[10] Z. Zhang, W. Shen, C. Yao, X. Bai, Symmetry-based text line detection in natural
scenes, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 2558–2567.

[11] C. Yang, X.-C. Yin, H. Yu, D. Karatzas, Y. Cao, ICDAR2017 robust reading challenge
on text extraction from biomedical literature figures (DeTEXT), Proceedings of the
International Conference on Document Analysis and Recognition, vol. 1, IEEE,
2017, pp. 1444–1447.

[12] P.A. Wankhede, S.W. Mohod, A different image content-based retrievals using OCR
techniques, Proceedings of the International Conference of Electronics,
Communication and Aerospace Technology, vol. 2, IEEE, 2017, pp. 155–161.

[13] A. Ergüzen, E. Erdal, Medical image archiving system implementation with lossless
region of interest and optical character recognition, J. Med. Imag. Health Inf. 7
(2017) 1246–1252.

[14] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., T.M. Mitchell,
Toward an architecture for never-ending language learning, Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 5, 2010, p. 3. Atlanta.

[15] A. Fader, S. Soderland, O. Etzioni, Identifying relations for open information ex-
traction, Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2011, pp. 1535–1545.

[16] G.K. Savova, J.J. Masanz, P.V. Ogren, J. Zheng, S. Sohn, K.C. Kipper-Schuler,
C.G. Chute, Mayo clinical text analysis and knowledge extraction system (cTAKES):
architecture, component evaluation and applications, J. Am. Med. Inf. Assoc. 17
(2010) 507–513.

[17] S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen, T. Salakoski,
Bioinfer: a corpus for information extraction in the biomedical domain, BMC Bioinf.
8 (2007) 50.

[18] K. Fisher, D. Walker, K.Q. Zhu, P. White, From dirt to shovels: fully automatic tool
generation from ad hoc data, ACM SIGPLAN Not. 43 (2008) 421–434.

[19] K. Fisher, D. Walker, K.Q. Zhu, LearnPADS: automatic tool generation from ad hoc
data, Proceedings of the SIGMOD International Conference on Management of Data,
ACM, 2008, pp. 1299–1302.

[20] L. Lamport, A. LaTEX, Document Preparation System, Addison-Wesley, Reading,
MA, 1986.

[21] E. Taft, S. Chernicoff, C. Rose, Post-script Language Reference, Addison-Wesley,
1999.

[22] J. Liang, D. Doermann, Logical labeling of document images using layout graph
matching with adaptive learning, Proceedings of the International Workshop on
Document Analysis Systems, Springer, 2002, pp. 224–235.

[23] O. Altamura, F. Esposito, D. Malerba, Transforming paper documents into XML
format with WISDOM++, Int. J. Doc. Anal. Recognit. 4 (2001) 2–17.

[24] G.I.S. Palmero, Y.A. Dimitriadis, Structured document labeling and rule extraction
using a new recurrent fuzzy-neural system, Proceedings of the International
Conference on Document Analysis and Recognition, IEEE, 1999, pp. 181–184.

[25] T. Kanungo, S. Mao, Stochastic language models for style-directed layout analysis of
document images, IEEE Trans. Image Process. 12 (2003) 583–596.

[26] D. Cai, S. Yu, J.-R. Wen, W.-Y. Ma, VIPS: A Vision-Based Page Segmentation
Algorithm, Technical Report, Microsoft Technical Report, (2003) MSR-TR-2003-79.

[27] A. Bartoli, G. Davanzo, E. Medvet, E. Sorio, Semisupervised wrapper choice and
generation for print-oriented documents, IEEE Trans. Knowl. Data Eng. 99 (2014)
1–14.

K. Luo, et al. Computers in Biology and Medicine 107 (2019) 235–247

247

http://refhub.elsevier.com/S0010-4825(19)30063-0/sref8
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref8
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref9
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref9
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref10
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref10
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref10
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref11
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref11
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref11
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref11
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref12
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref12
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref12
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref13
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref13
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref13
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref14
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref14
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref14
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref15
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref15
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref15
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref16
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref16
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref16
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref16
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref17
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref17
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref17
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref18
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref18
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref19
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref19
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref19
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref20
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref20
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref21
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref21
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref22
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref22
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref22
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref23
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref23
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref24
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref24
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref24
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref25
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref25
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref26
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref26
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref27
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref27
http://refhub.elsevier.com/S0010-4825(19)30063-0/sref27

	Layout-aware information extraction from semi-structured medical images
	Introduction
	Approach overview
	Framework
	Running example

	Syntax of OCR description language
	Primitive expressions
	Spatial expressions
	Composition
	Type system

	Robust ODL parser
	Semantics of the ODL parser
	Fuzzy match function
	Automatic correction module
	Correction model
	Generation of correction model

	Experiments
	Experimental setup
	Evaluation of structured textual information extraction
	Evaluation of automatic correction
	Discussion and analysis

	Related work
	Textual information extraction
	Data description language
	Page layout analysis

	Conclusion
	Conflicts of interest
	Acknowledgments
	References

