Enhanced Story Representation by ConceptNet for
Predicting Story Endings

Shanshan Huang
huangss_33@sjtu.edu.cn
Shanghai Jiao Tong University

Libin Shen

libin@leyantech.com
Leyan Tech

Abstract

Predicting endings for narrative stories is a grand challenge
for machine commonsense reasoning. The task requires ac-
curate representation of the story semantics and structured
logic knowledge. Pre-trained language models, such as BERT,
made progress recently in this task by exploiting spurious sta-
tistical patterns in the test dataset, instead of “understanding”
the stories per se. In this paper, we propose to improve the
representation of stories by first simplifying the sentences to
some key concepts and second modeling the latent relation-
ship between the key ideas within the story. Such enhanced
sentence representation, when used with pre-trained language
models, makes substantial gains in prediction accuracy on
the popular Story Cloze Test without utilizing the biased
validation data.

CCS Concepts: » Computing methodologies — Reasoning
about belief and knowledge.

Keywords: commonsense reasoning; story comprehension;
commonsense knowledge

ACM Reference Format:

Shanshan Huang, Kenny Q. Zhu, Qianzi Liao, Libin Shen, and Ying-
gong Zhao. 2020. Enhanced Story Representation by ConceptNet
for Predicting Story Endings. In Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge Management
(CIKM ’20), October 19-23, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/
3340531.3417466

*Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. .. $15.00
https://doi.org/10.1145/3340531.3417466

Kenny Q. Zhu*

kzhu@cs.sjtu.edu.cn
Shanghai Jiao Tong University

Qianzi Liao
liaogz@sjtu.edu.cn
Shanghai Jiao Tong University

Yinggong Zhao
ygzhao@leyantech.com
Leyan Tech

1 Introduction

Predicting “what happens next” in narrative stories is an im-
portant but challenging task of commonsense reasoning in
Al Story comprehension was first studied in the context of
planning and goal searching [8], which was one of the most
important problems in Al. The task evolved to predicting
what is expected to happen next in stories. Much work has
been evaluated on a standard dataset called Story Cloze Test
(SCT) [9]. SCT asks for the correct ending of a four-sentence
story context from two alternatives, as shown in Figure 1(a).

Context:

1) Tiffany was getting overwhelmed at work.

2) While she liked her job, she longed for a break.

3) One day, she tripped outside on uneven pavement.

4) She broke her ankle and had to be off work for a couple months.
Ending:

1) Tiffany went in to work the next day.

2) She was in pain but happy to have a rest. (a)

Ending 1) (b): ;| Ending 2) CapableOf
I like_job | §|Iong_for_break |<—| tired H have a rest J

MotivatedBy (¢)

HasProperty

: pavement hard
1 |

go_to_work

HasPrerequisite

HasProperty

Figure 1. An example from the story-cloze task. In (b) and
(c), the words in the blue boxes are concepts from the story;
the words in the white boxes are concepts not from the story
but serve as bridging nodes.

Previous works suggest that structured commonsense knowl-
edge [6, 13] may enhance story understanding. For example,
from Figure 1 (b) and (c), the structured knowledge can help
reason story endings with logic relations between tokens.
Meanwhile, it is easy to find that one could arrive at the cor-
rect ending 2) by looking at only some of the key words
(highlighted in blue) which are more informative for infer-
ence, instead of consuming all the words. In fact, the other
un-highlighted words are not only uninformative, but may
even confuse the downstream classifier with ambiguous se-
mantics. For example, the name Tiffany is often associated
with jewelries, thus the introduction of this meaning into the
story context does more harm than good.
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Step 1: Sentence simplification

s1: Tiffany was getting overwhelmed at work.
s2: While she liked her job, she longed for a break.

Step 2: Sentence representation

Step 3: Ending prediction
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Figure 2. Framework overview: our framework can be divided into three steps: sentence simplification, sentence representation

and ending prediction. ny, ..
the nodes. n, ..

Inspired by the above observation, we improve the story
representation by using commonsense knowledge from two
aspects. First, we simplify sentences by extracting a sequence
of concepts from ConceptNet [15], a community curated
open-domain knowledge graph covering much of the knowl-
edge required for commonsense reasoning and obtain the
intra-sentence concept representation. Second, we incorpo-
rate structured commonsense knowledge from ConceptNet by
including the pre-trained concept embeddings from Concept-
Net knowledge graph to story sentence representation. For
example, in Figure 1(c), “long for break” is related to “have
arest” through CapableOf and MotivatedBy relation edges.
These edges help us “connect the dots” within the story and
allow us to make more meaningful deduction along the story.

In summary, this paper makes the following contributions:

o We simplify the stories by streamlining sentences to a
few key concepts, which eliminates unwanted variance
in the text, and achieve better results than using the
original sentences (see Section 2.1).

e We combine sequential and structured representation
for the key concepts in a sentence as the sentence repre-
sentation and get better performance (see Section 2.2).

e Our approach, when combined with the suitable lan-
guage model, beats the recent state-of-the-art methods
by substantial margins using the corrected, unbiased
training data (see Section 3.2 and Section 3.3).

2 Approach

Given the story context s = (sg, sy, ..., sp ) of L sentences, the
goal of the problem is to predict the correct ending from
two candidate ending sentences e; and e,. We propose to
refine and extend story sentence representations through in-
corporating commonsense knowledge from ConceptNet for

.ng are the examples of token nodes in ConceptNet, ry, ..
n6 are the corresponding vector from Numberbatch which are trained on ConceptNet.

.r¢ are the commonsense relations between

story ending prediction. The architecture is shown in Figure
2, which consists of the following steps.

2.1 Sentence Simplification

Our goal is to extract a sequence of concepts C, from an input
sentence s = {wy, ..., wy} with N words. C; contains only
the key concepts in s. | We choose to use ConceptNet [15]
as the source of these concepts because of its comprehensive
coverage of commonsense knowledge.

The concepts in ConceptNet are expressed in terms of
short phrases, commonly made up of one or two words such
as “break ankle”. While these phrases are meaningful and
understandable to human beings, they may not find exact
match in the input sentences, simply because people don’t say
“break ankle” in normal text but “break her ankle” instead. To
remedy this problem, we develop a fuzzy match method, that
allows one additional words to be inserted to a concept from
ConceptNet before exact matching in the input sentence.

Another technical issue is that extracted concepts may over-
lap with each other in the input sentence. For example, from
the sentence “She hope it would come back for more later”,
we can extract the following concepts: “hope”, “come back”,

“come for”, and “more”. “Come back” and “come for” are
both meaningful, and we keep them in C,. Afterwards, we
remove duplicate concepts from Cs, if it’s contained by other
concepts in the sequence. For example, we match “come” and
“come back” in sentence. “Come” will be deleted because it
is the sub-sequence of the words in “come back”.

2.2 Sentence Representation

After sentence simplification, the original sentence s is trans-
formed into a sequence of concepts Cs with the same order

IThe input sentences are tokenized and lemmatized using Stanford
CoreNLP [7]



in s. We present the methods to encode the concept sequence
and the concept graph respectively.

Concept Sequence Encoding: After simplification pro-
cess, the concept sequence of a sentence is encoded into
vector representation using a sequential encoder E. Concept
sequence Cs is converted into a flatten word sequence s’,
which is the concatenation of the words of all the concepts
in Cs. Compared with the original sentence, s’ is a simplified
word sequence where commonsense-irrelevant information
has been discarded. In the above case, the simplified sequence
will be “hope come back come for more”.

Then simplified sequence s’ is fed into a sequential en-
coder, which maps the input s” into a sequence of contextual
embeddings H*¢?:

Ho¢d =E(s') (1)

Concept Encoding: Besides the flattened concept sequence
in the simplified sentence, the relation between concepts is
also important for predicting the story ending. We take advan-
tage of pre-trained concept embedding from Numberbatch?
which is the pre-trained on ConceptNet knowledge graph
containing more than 2,000,000 popular concepts. Given the
sequence of concepts extracted from a sentence, C, we define
the structured knowledge representation H*9 as the sum of
each concept:

H*9 = Z Numberbatch(c), 2)

ceCs

where Numberbatch(c) denotes the concept vector of concept
c. If the concept is not in Numberbatch, we approximate its
concept vector by averaging the vectors of all its constituent
words which can be found in Numberbatch.

Finally, the complete representation of the sentence s is de-

fined as the concatenation of two components: Hy = [H:°7; H ).

The representation will be fed into a fully connect layer for
choice classification.

3 Evaluation
3.1 Baselines

The baseline models can mainly be divided into supervised
and unsupervised:

Unsupervised: DSSM [9] and GMSA [3] calculate seman-
tic similarity between a pair of strings by representing them
in a continuous semantic space.

Supervised: CGAN [18] generates negative endings as
training the discriminator. SKBC [12] and SIMP [16] uses
Skip-thought [4] with GRU-GRU structure to produce generic
sentence representations. BERT [2] and TransBERT [6] apply
the bidirectional training of Transformer [17] compared to uni-
directional Transformer for GPT [11] and ISCK [1]. Except
for the pre-training representation models, FES-JOINT [10]

Zhttps://github.com/commonsense/conceptnet-numberbatch

and SeqMANN [5] make fully use of various semantic fea-
tures, like sentiment, to get better results.

We choose to apply our methods on 3 typical models:
DSSM, GPT and BERT.

3.2 Dataset

Model Endings of SCT(V) (%)  Endings of SCT(R) (%)
SIMP 72.60 59.86
SKBC 72.76 58.18
GPT 71.77 57.93
TransBERTgASE 79.0 54.52
TransBERTLARGE 75.84 54.30
Human 62.40 62.40

Table 1. SCT test accuracies of SOTA models trained from
endings only in SCT(V) vs. endings only in SCT(R).

The SCT dataset comes with 101,903 5-sentence stories
(first 4 as context and last as ending). Human authors were
asked to write negative endings for 3744 of these stories
to create cloze test instances. These 3744 instances were
then split into validation set (SCT(V)) and test set (SCT(T)).
The remaining 98,159 stories are called raw stories. Previous
work indicated that human-authorship bias [14] exists in SCT
datasets, especially when the validation set of SCT is used
for training. In fact, in a “stripped-down” version of the SCT
task, where one is supposed to choose between two alternative
story endings, without given the context, SOTA models all
performed much better than human, after training from the
endings-only data of the SCT validation set. This shows that
the models are not really capable of human-like reasoning,
but merely pick up cues from the endings in the validation set
(see SCT(V) column of Table 1).

We thus follow Roemmele et al.’s [12] to construct a new
training set called SCT(R) by Random and Backward sam-
pling of negative endings for 98,159 raw stories. With the
new training data, the same SOTA models performs reason-
ably worse than human in the “ending-only” test, as shown
in SCT(R) column of Table 1. Therefore in the remaining
experiments, we will use SCT(R) as the training data for all
competing algorithms in both SCT and SCT, 1.5 * tests.

3.3 End-to-end Results

We first show the end-to-end results of the three baselines
with simplification and concept encoding methods. Then we
evaluate other models trained with new dataset on SCT. In Ta-
ble 2, SKBC and DSSM achieve significant 3.43% and 4.75%
improvement with simplification. BERTpasg gains 0.8% in-
crease with simplification and 2.89% with concept encoding
method (both compared with original model). BERT may

3SCT, 1.5 was previously released on https://competitions.
codalab.org/competitions/15333#participate-
submit_results, with the goal of fixing some of the bias, but was
later found to have other problems and was subsequently closed for access.
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Model Test  Original (%) Simp(%) CE(%) Simp+CE (%)

DSSM 54.04 5879 540 582
SKBC SCT 64.70 68.13  65.12 69.7
BERTRASEours) 56.54 5734 59.43 60.24
DSSM 54.30 57.83 5435 58.53
SKBC SCT,1.5  64.56 67.30 6545 67.97
BERTBASE(ours) 56.88 5802 59.79 60.97

Table 2. End-to-end accuracy on SCT and SCT,, 1.5 test sets.
Original=baseline, Simp=simplification method, CE=concept
encoding method

Model Acc (%)) [ Model Acc (%))
DSSM 54.04 SKBC 64.70
GMSA 61.20 CGAN 60.90
SeqMANN 59.74 BERTBASE(ours) 56.54
SIMP 61.09 BERTgASE 61.46
FES-LM 61.60 BERTARGE 64.67
ISCK 62.21 TransBERTpASE 61.46
GPT 63.46 TransBERT ARGE 61.89
SKBC+Simp+CE(ours) 69.7 Human 100

Table 3. Results of story ending prediction on SCT *

learn the informative weight from pre-training with Trans-
former unit. Our simplification can even help with reducing
the weight of less informative words for BERT. DSSM+CE
performs worse than DSSM mainly because DSSM is a bag-
of-words model and inevitably loses the order information.
We can also get the same conclusion from the results testing
on SCT, 1.5 that simplification and graph embedding can
benefit ending prediction.

Table 3 shows the results of other previous research on our
new training data and test on SCT test set. BERTBAsE(ours)
retrains the language model of BERTgasg with BookCorpus.
Our BERTgasg performs worse than the basic version be-
cause we retrain the language model with less unsupervised
data. Though larger corpus, such as Wikipedia, can lead to a
better result, we only expect to show the effective improve-
ment of our simplification and concept encoding methods.
SKBC with our methods achieves 69.7% accuracy, which
is the best among our experiments. It performs better than
any other commonly-used models we tested. Notice that our
experiments are not meant to demonstrate the superiority of
a particular algorithm but to show that the proposed story
representation methods (i.e., simplification and concept en-
coding) work for a variety of models. Human performance
is 100% and can be viewed as an upperbound [9]. All results
are averaged from 5 independent runs.

4 Conclusion

Our approach well integrated the ideas of main information
extraction and structured knowledge incorporation and get
better performance with automatically generated unbiased

4Some scores are great lower than that of the published models because they
are trained with validation data which contains spurious features and proved
to be unable for training in Section 3.2.

dataset. From the results we can find that predicting story
ending is still a challenging task in artificial intelligence with
little high quality data. We consider to generate higher quality
datasets for training as future work.
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