
3

Historic Moments Discovery in Sequence Data

RAN BAI, Department of Computing, The Hong Kong Polytechnic University

WING KAI HON, Department of Computer Science, National Tsing Hua University

ERIC LO, Department of Computer Science and Engineering, Chinese University of Hong Kong

ZHIAN HE, Department of Computer Science, University of Hong Kong

KENNY ZHU, Department of Computer Science and Engineering, Shanghai Jiao Tong University

Many emerging applications are based on finding interesting subsequences from sequence data. Finding

“prominent streaks,” a set of the longest contiguous subsequences with values all above (or below) a cer-

tain threshold, from sequence data is one of that kind that receives much attention. Motivated from real

applications, we observe that prominent streaks alone are not insightful enough but require the discovery

of something we coined as “historic moments” as companions. In this article, we present an algorithm to

efficiently compute historic moments from sequence data. The algorithm is incremental and space optimal,

meaning that when facing new data arrival, it is able to efficiently refresh the results by keeping minimal infor-

mation. Case studies show that historic moments can significantly improve the insights offered by prominent

streaks alone. Furthermore, experiments show that our algorithm can outperform the baseline in both time

and space.

CCS Concepts: • Information systems → Data structures; Data mining; • Theory of computation →

Data structures and algorithms for data management;

Additional Key Words and Phrases: Historic moments, space optimal, prominent streaks, sequence data

ACM Reference format:

Ran Bai, Wing Kai Hon, Eric Lo, Zhian He, and Kenny Zhu. 2019. Historic Moments Discovery in Sequence

Data. ACM Trans. Database Syst. 44, 1, Article 3 (January 2019), 33 pages.

https://doi.org/10.1145/3276975

1 INTRODUCTION

Finding prominent streaks [8], a set of maximal contiguous subsequences with values all above
(or below) a certain threshold, from a sequence dataset has recently found applications in so-
cial network analysis, disease outbreak detection, and computational journalism [6, 7]. Take

This work is partly supported by the Research Grants Council of Hong Kong (GRF14200817, 15204116, 15200715, 521012),

Research Committee of CUHK and NSFC grants (91646205, 61373031).

Authors’ addresses: R. Bai, Department of Computing, The Hong Kong Polytechnic University; email: csrbai@comp.

polyu.edu.hk; W. K. Hon, Department of Computer Science, National Tsing Hua University; email: wkhon@cs.nthu.

edu.tw; E. Lo, Department of Computer Science and Engineering, Chinese University of Hong Kong; email: ericlo@

cse.cuhk.edu.hk; Z. He, Department of Computer Science, University of Hong Kong; email: zahe@cs.hku.hk; K. Zhu, De-

partment of Computer Science and Engineering, Shanghai Jiao Tong University; email: kzhu@cs.sjtu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0362-5915/2019/01-ART3 $15.00

https://doi.org/10.1145/3276975

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

https://doi.org/10.1145/3276975
mailto:permissions@acm.org
https://doi.org/10.1145/3276975

3:2 R. Bai et al.

computational journalism as an example; the following news article from January 20111 contains
a real example of a prominent streak:

“Today is Beijing’s 36th consecutive Blue Sky Day, a day whose Air Pollution Index
(API) is 100 or below, indicating “excellent” or “good” air quality. As far as I can tell,
this is the longest consecutive streak of Blue Sky Days in Beijing for at least ten years.”

In the excerpt above, the prominent streak refers to a subsequence of 36 days of consecutive measures
of Air Pollution Index of 100 or below, and the authors in [8] have developed an efficient algorithm
to discover streaks like this. Although useful, a prominent streak only stands for a singular event
in the dataset. In fact, the news excerpt above is continued like this:

“ . . . in Beijing for at least ten years. Previously, there were only three streaks of

30 days or longer, one in 2006 and two during 2008 Olympics.”

The last sentence is crucial: it pinpoints the rarity of the 36-day Blue Sky streak; otherwise,
readers who are unfamiliar with Beijing’s weather would probably find the news mundane. In
contrast, when it is further explained that the last time Beijing had 30 or more consecutive Blue Sky
Days was nearly 3 years ago, readers will then be impressed by how rare the current streak is and
may be aroused to learn more about Beijing’s environment. In other words, the three prominent
streaks in 2006 and 2008 are similar “historic moments” that happened before, which highlights
the rarity of the 36-day streak that happened in 2011.

In this article, we formally introduce the concept of the historic moment of a streak s , which is a
set of prominent streaks that end before s and can be used to highlight the interestingness of s . The
term “interestingness” can take many forms but is mainly centered around whether a similar event
happened before, and if so, how long ago it was. The technical concern is how to efficiently report
historic moments from a sequence dataset, with a consideration that the data sequences are being
appended regularly (e.g., hourly update of crude oil price,2 update of the seismic magnitude per
one-tenth second3). To this end, we present a highly efficient incremental algorithm that can enable
interactive historic moment analysis on a sequence dataset with continuous data updates. The
efficiency of the algorithm comes from maintaining an index in minimal space. Space optimality
leads to disk I/O reduction per operation or even makes the index small enough to be memory
resident. That property is crucial for online analysis and real-time monitoring, especially when
there are possibly many data sequences of interest concurrently. Experiments on five real datasets
show that our algorithm, namely, the space-optimal incremental algorithm (SOIA), outperforms
the baseline algorithm by 9× to 184× in terms of speed, using 98% to 99.5% less space (e.g., in our
case study, our algorithm maintained an index of only 2GB for a 350GB data sequence, whereas
the baseline needed to maintain an index of size 500GB). Furthermore, our case studies show that
historic moments indeed can help journalists to find full news stories, instead of half-baked ones
found by prominent streaks, and help seismologists to get a bigger picture when analyzing ground
motion data.

The rest of the article is organized as follows. Section 2 reviews the related work. Section 3
gives the formal problem definition. Section 4 presents our space-optimal incremental algorithm
together with a few baseline algorithms. Section 5 presents the case studies, and Section 6 presents

1Excerpts from V. Wagner’s LiveFromBeijing blog: http://www.livefrombeijing.com/2011/01/beijing-breaks-record-for-

longest-streak-of-consecutive-blue-sky-days-best-air-quality-in-years/.
2http://www.pmbull.com/oil-price/.
3http://ds.iris.edu/ds/nodes/dmc/data/.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://www.livefrombeijing.com/2011/01/beijing-breaks-record-for-longest-streak-of-consecutive-blue-sky-days-best-air-quality-in-years/
http://www.livefrombeijing.com/2011/01/beijing-breaks-record-for-longest-streak-of-consecutive-blue-sky-days-best-air-quality-in-years/
http://www.pmbull.com/oil-price/
http://ds.iris.edu/ds/nodes/dmc/data/

Historic Moments Discovery in Sequence Data 3:3

the experimental study. Section 7 concludes the article. Appendix A extends the problem and the
algorithms from a single data sequence to multiple data sequences.

2 RELATED WORK

In this section, we first review related works that focus on discovering interesting knowledge
from sequence datasets. The first work is [8], which studied the finding of prominent streaks from
a data sequence Dn = 〈v1,v2, . . . ,vn〉 with n numeric values. A streak s = (i, j,v) is a contiguous
subsequence in Dn containing numeric values 〈vi ,vi+1, . . . ,vj 〉, with i ≤ j, and v = min {vk | i ≤
k ≤ j} denotes the minimum4 value of the subsequence. We call v the value of s , |s | = j − i the
length5 of s , and [i, j] the interval of s .

Prominent streaks are in fact the two-dimensional skyline points [1, 3–5, 11, 12, 15, 18] of all
the streaks found in a sequence, based on the length and the value dimensions. That is, a streak
is a prominent streak if there is no streak that has both a larger length and value at the same
time. The challenge of computing prominent streaks is that, given a sequence of length n, there
are Θ(n2) streaks in total. So a brute-force method would require O (n4) comparisons to locate
the set of prominent streaks from Θ(n2) candidates. In view of that, the authors in [8] developed
an O (n logn) time algorithm, LLPS, which first computes a set of local prominent streaks (LPSn)
from Dn and then locates the set of prominent streaks from LPSn . The size of LPSn is at most
n and it is guaranteed that the set of prominent streaks is a subset of LPSn . According to [8], the
definition of a local prominent streak is:

Definition 2.1 (Local Prominent Streak (LPS) [8]). A streak s = (i, j,v) is a local prominent streak
if (1) vi−1 < v and (2) vj+1 < v . We use LPSn to denote the set of local prominent streaks in the
sequence dataset Dn . When i = 1, we can ignore condition (1). Similarly when j = n, we can ignore
condition (2).

Figure 1 shows some streaks of a sequence dataset. Streaks s1 (299, 303, 9) and s2 (306, 309, 8)
are local prominent streaks, whereas streak s3 (310, 311, 4) is not. The LLPS algorithm has
two phases: (1) first spend O (n) time to obtain the linear size LPSn and (2) then invoke
an O (|LPSn | log |LPSn |) skyline algorithm to compute the set of prominent streaks from
LPSn , resulting in an overall time complexity of O (n + |LPSn | log |LPSn |), which is at most
O (n logn).6 Prominent streaks alone could only tell the continuity of a singular event. Historic
moments can tell the other side of the story about how interesting that singular event is. We later
show that historic moments and prominent streaks are related, but computing historic moments
is a challenging problem in its own right.

In [17], the authors advocated that rare events are more informative and comparisons among
objects can make a story more complete. As such, given a set A of concerned attributes on a
relational dataset, the authors developed the concept of top-τ -skyband as “one of the few” objects.
Intuitively, the top-τ skyband consists of (at most) τ objects that are dominated by the smallest
number of other objects. Each of these objects is one of the few most prominent objects in the
dataset when attributes inA are concerned. [17] proposed an efficient algorithm that finds the top-
τ skyband in O (2d (τ |n | + n logn)) time, where d is the number of attributes and n is the number
of objects. Our article shares the same vision with [17] in terms of quantifying the interestingness

4Maximum value is an alternate but equivalent definition.
5An alternate definition is |s | = j − i + 1.
6[8] also included another algorithm, NLPS, which generates O (n2) local prominent streaks in the first phase. It is obvious

that LLPS is more efficient than NLPS.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:4 R. Bai et al.

Fig. 1. A data sequence (a value is represented by ×).

of a piece of information through its rarity. However, we focus on sequence data, whereas [17]
focused on relational data.

In [14], a “fact” is defined as a contextual skyline object that stands out against other objects in a
context with regard to a set of measures. Given a relational table with a setM of measure attributes
and a setA of dimension attributes, for a constraint c defined on A ⊆ A (known as a context) and
a measure subspace M ⊆ M, a tuple t is a contextual skyline object if t satisfies c and no other tuple
t ′ satisfying c dominates t . The authors in [14] focused on identifying these “facts” in a timely
manner. So when a new tuple t is added to a table, the target is to find which combinations of
constraint c and measure subspace M make t a contextual skyline object. All those eligible 〈c,M〉
pairs are treated as situational facts and the prominence of a situational fact is defined based on
the size of the skyline under c and M . Upon the arrival of a new tuple t , a baseline method can
compute the topmost prominent situational facts using O (2 |M |+ |A |) skyline queries. In case the
context is fixed, the number of skyline queries becomesO (2 |M |). In this article, we aim to discover
certain knowledge in a timely fashion as in [14]. However, other than that, our work is orthogonal
with [14] because that work focused on relational data, while ours focuses on sequence data.

All of the related work above relies on skyline computation, whose discussion began with [4],
in which anO (n2) block nested loop (BNL) skyline algorithm was introduced. Then the sort-filter-
skyline (SFS) algorithm was introduced [5], whose best-case time complexity is O (dn + n logn),
where d is the number of dimensions. Index-based skyline algorithms were introduced in [10, 12,
15], in which the Branch & Bound (BBS) skyline algorithm in [13] gives the I/O optimal solu-
tion because for each query it visits relevant nodes of the R-tree only once, with time complexity
O (n logn). Recently, [1] presented a parallel skyline algorithm. A survey of skyline computation
and the variants of skyline could be found in [9].

3 PROBLEM DEFINITION

In this article, we propose the notion of historic moment. Our goal is to identify the historic moment
in a timely fashion. So we mainly focus on streaks that just happened, and we name those as
situational streaks. Furthermore, inspired by our motivating example, whether a situational streak
is informative or not is relative to how long ago a similar event (streak) happened before. For
some applications (e.g., computation journalism), a situational streak might lead to a news story
because a similar streak happened long ago. But there are also applications (e.g., seismology) where
a situational streak becomes important because a similar streak just happened. We now formally
define historic moments and their related terms based on the intuition above.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:5

Fig. 2. Data sequence D19.

Definition 3.1 (Situational Streak (SS)). In a data sequence Dn with n numeric values
〈v1,v2, . . . ,vn〉, a streak (i, j,v) ∈ LPSn is a situational streak if j = n, i.e., the most recent lo-
cal prominent streak. We use SSn to denote the set of situational streaks in Dn .

Figure 2 shows a data sequenceD19 with n = 19 numeric values.D19 has four situational streaks:

s1 (15, 19, 7), s2 (14, 19, 6), s3 (8, 19, 4), s4 (1, 19, 1).

Obviously not all situational streaks are interesting, and basically we are interested in those
with the highest or lowest values (e.g., high seismic magnitude, low Air Pollution Index). Without
loss of generality, we focus on those with the highest values in the discussion. Also, for ease of
discussion, we assume that all values are positive. So we define:

Definition 3.2 (Top-k Situational Streak). The top-k situational streaks are the k streaks in SSn

with the highest values.

In Figure 2, among the four situational streaks, s1 and s2 are the top two situational streaks.
The following news7 is a real example of reporting not only the top but also the top two situa-

tional streaks:

“ . . . the highest temperatures are above 32 Celsius for five days and 30 Celsius for six
days”

Next, given any situational streak z, we are interested in a subset of local prominent streaks that
are “similar” to z. So we define:

Definition 3.3 (Analogous Streaks (AS)). A local prominent streak s in a data sequence Dn is an
analogous streak of a situational streak z when:

(1) s .j < z.i (i.e., s ends before z starts),
(2) |s | ≥ |z | · σ (i.e., the length of s is at least σ times that of z, where σ ≥ 0 is a similarity

threshold), and
(3) s .v ≥ z.v · σ (i.e., the value of s is at least σ times that of z).

In Figure 2, s11, with length 4 and value 8, is the only analogous streak of the top one situational
streak s1 (length 4; value 7) when the similarity threshold σ is 1. When we relax σ to be 0.75, both
s7 and s11 are analogous streaks of s1.

7http://www.chinanews.com/sh/2015/05-21/7291066.shtml.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://www.chinanews.com/sh/2015/05-21/7291066.shtml

3:6 R. Bai et al.

In this article, we use the same similarity threshold σ for both length and value. An alternate
definition is to impose different similarity thresholds on length and value, which could be easily
supported by straightforward adaption of our techniques.

Definition 3.4 (Historic Moments (HM)). Let AS (z) be the set of analogous streaks of a situ-
ational streak z. Assume that each streak s in AS (z) is represented by a 3D point (|s |, s .j, s .v).
The historic moment of z, denoted by HM (z), is the 3D skyline of AS (z), and we write that as
HM (z) = skyline (AS(z)).

Problem Definition: Given a data sequence Dn with n numeric values, a similarity threshold σ ,
and a positive integer k , compute the historic moments for each of the top-k situational streaks.

In Figure 2, for the top one situational streak s1, ifσ = 0.5, we haveHM (s1) = {s7, s8, s11}. Streak
s9 is not a historic moment of s1 because s8 dominates8 s9, denoted as s8 	 s9, despite AS (s1) =
{s7, s8, s9, s11}. Note that s7 is the historic moment of s1 with the largest j (i.e., most recent), s8 is the
historic moment of s1 with the highest value, and s11 is the historic moment of s1 with the longest
interval. In the following, we use computational journalism as an example and present some real
news stories that justify the use of the skyline of analogous streaks to formulate historic moments.

Story 1 (Most recent historic moment). The Beijing Blue Sky Days news in the introduction is
a real example that illustrates that the most recent historic moment is newsworthy. In that story,
the “36 days of Blue Sky” is a situational streak z with length 36 and value 100. The “30 days of
Blue Sky that happened in 2008” is then the historic moment of z that occurs most recently.

Story 2 (Highest-value historic moment). In April 2014, the United Kingdom had the following
news about smog:

“air pollution levels with more than eight lasts two days,”

which is essentially a situational streak z of length 2 with value 8. When reporting the news, the
journalist quoted the “Great Smog” incident, which happened in 1952:

“ . . . (The 1952 Smog) led to the creation of the Clean Air Act 1956, which introduced
a number of measures to reduce air pollution. . . . Unfortunately in the modern day,
despite the visibility and intensity of smog being much reduced, up to 29,000 peo-
ple in the UK still die per year because of air pollution, according to the European
Commission.” 9

The “Great Smog” incident is in fact the historic moment of z with the highest value.

Story 3 (Longest-interval historic moment). In January 2014, the United States had the follow-
ing news about drought in California:

“Meanwhile, today’s scant rainfall was enough for Sacramento to finally end the
longest running rainless rainy season streak in its recorded history. The city now has a
new all-time record of 52 consecutive days without measurable rainy season rainfall,”

which is essentially a situational streak of length 52 with value close to 0. When reporting the news,
the journalist continued with comparisons with a historic moment that had the longest interval:

8Following the literature, an object x is said to be dominated by another object y , denoted as y 	 x , with respect to a

set A of concerned attributes, if y .Ai ≥ x .Ai for all Ai ∈ A, and there exists at least one attribute Aj ∈ A such that

y .Aj > x .Aj . Here we discuss streak s , and the concerned attributes set A refers to { |s |, s .j, s .v } of s .
9“UK Smog: You Thought This Was Bad? Take a Look at the Great Smog of 1952”: http://www.independent.co.uk/news/

uk/home-news/uk-smog-you-thought-this-was-bad-take-a-look-at-the-great-smog-of-1952-9238550.html.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://www.independent.co.uk/news/uk/home-news/uk-smog-you-thought-this-was-bad-take-a-look-at-the-great-smog-of-1952-9238550.html
http://www.independent.co.uk/news/uk/home-news/uk-smog-you-thought-this-was-bad-take-a-look-at-the-great-smog-of-1952-9238550.html

Historic Moments Discovery in Sequence Data 3:7

Table 1. Major Notations in This Article

Notation Meaning

Dn Data sequence with n values
σ Similarity threshold
k Top-k parameter

s (i, j,v) Streak s with interval [i, j] and value v
LPSn Local prominent streaks of Dn

SSn Situational streaks of Dn

AS (z) Analogous streaks of a situational streak z
HM (z) Historic moments of a situational streak z
Pn Perplexing streaks of Dn

Nn Nonperplexing streaks of Dn

Un Minimal subset of LPSn obtained by SOIA

“ . . . dating back to Dec. 7, 2013. The previous longest streak was Nov. 1 to Dec. 16,
1884.” 10

4 FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

In this section, we present algorithms to obtain historic moments from a data sequence. Specifi-
cally, Section 4.1 first presents a baseline algorithm that computes historic moments from a data
sequence Dn offline, given a similarity threshold σ and a parameter k . In practice, there could be a
data update or a user may want to look for historic moments with different σ and k values when
operating under an interactive (online) mode [7]. In these cases, re-executing the baseline algo-
rithm for any update of σ , k , or data would be inefficient. Therefore, in Section 4.2, we first present
how to refactor the baseline algorithm to be incremental. The baseline incremental algorithm is
still inefficient because it needs to keep and maintain a lot of intermediate results. Therefore, in
Section 4.3, we present SOIA, an efficient incremental algorithm that returns historic moments
by maintaining and accessing minimal information. Appendix A extends the problem and the al-
gorithms for finding historic moments from a single data sequence to multiple data sequences.
Table 1 lists the major notations used in this article.

4.1 Baseline Algorithm (BA)

Given a data sequence Dn , a similarity threshold σ , and a parameter k , the problem of finding
historic moments for each of the top k situational streaks can be solved naively as follows:

• Step 1. Use the first phase of LLPS in [8] to compute the set of all local prominent streaks
LPSn fromDn , and then select the topk situational streaks from there. This step, according
to [8], takes O (n) time and the LPSn takes O (n) space.

• Step 2. For each top k situational streak z, scan through LPSn to identify its analogous
streaks AS (z).

• Step 3. Finally, for each z, compute the skyline from AS (z) as the resultingHM (z).

The naive method above is inefficient in terms of fully scanning the large LPSn k times in
Step 2. Therefore, one simple improvement is to build an index forLPSn after Step 1. Specifically,

10“California’s Devastating Drought Isn’t Going to Get Better Any Time Soon”: http://www.slate.com/blogs/future_tense/

2014/01/30/california_s_exceptional_drought_won_t_get_better_any_time_soon.html.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://www.slate.com/blogs/future_tense/2014/01/30/california_s_exceptional_drought_won_t_get_better_any_time_soon.html
http://www.slate.com/blogs/future_tense/2014/01/30/california_s_exceptional_drought_won_t_get_better_any_time_soon.html

3:8 R. Bai et al.

one can regard each streak s in LPSn as a 3D point (|s |, s .j, s .v) and insert them into an R-tree.
Then, the analogous streaks of a situational streak z can be regarded as a 3D-range query Q :

[|z | · σ ,+∞) × [0, z.i) × [z.v · σ ,+∞).

By building an R-tree, the above query can locate the analogous streaks of a situational streak
z without scanning all the streaks in LPSn . Furthermore, Steps 2 and 3 can be combined as a
constrained skyline query on the R-tree that returns the skyline within Q . This combined step
can be implemented using the BBS skyline algorithm in [13]. Algorithm 1 summarizes the above
index-based baseline algorithm (BA).

ALGORITHM 1: Baseline Algorithm (BA)

1: procedure BA(Dn ,σ ,k)

2: Use the first phase of LLPS in [8] to compute LPSn ;

3: Rtree = Build-R-Tree(LPSn);

4: SSn = Get-SS(LPSn);

5: Z = Get-Top-SS(SSn , k);

6: for each streak z inZ do

7: Q = [|z | · σ ,+∞) × [0, z.i) × [z.v · σ ,+∞); // define the analogous region

8: HM (z) = BBS(Rtree, Q); // compute constrained skyline

4.2 Baseline Incremental Algorithm (BIA)

The BA is not incremental. Therefore, we refactor it to become incremental so that it can return
results efficiently even when the data sequence Dn is appended with new values resulting in Dm ,
wherem > n, or when the parameters are updated asσ ′ ork ′. The incremental method is composed
of two phases where there are (1) a maintenance procedure to computeLPSm online when data
is appended and (2) a lookup procedure to answer the historic moment queries. Similar to BA,
we use an R-tree to store the local prominent streaks.

4.2.1 BIA Maintenance. When the data sequence Dn is appended with new values
〈vn+1,vn+2, . . . ,vm〉 resulting inDm , wherem > n, this procedure aims to obtain (1) the updated set
of situational streaks SSm and (2) possibly some new local prominent streaks. The maintenance
procedure is similar to the one in [8]. Specifically, for each value vn+k ∈ {vn+1,vn+2, . . . ,vm },
where 1 ≤ k ≤ m − n, it may:

(1) make some streaks in SSn+k−1 to stop being situational streaks and turn to being local
prominent streaks that end at n + k − 1—those streaks would then get inserted into the
R-tree;

(2) extend some streaks in SSn+k−1 to become longer streaks in SSn+k that end at n + k ; or
(3) form a new local prominent streak whose value is vn+k and ends at n + k ; this happens

when none of the streak in SSn+k−1 has value vn+k . Note that this is a situational streak
for Dn+k , so it is in SSn+k .

For maintenance reasons that become clear momentarily, we separate SSn from the rest of
streaks in LPSn . Specifically, we insert streaks from LPSn − SSn as 3D points into an R-tree.
Streaks from SSn ⊆ LPSn are stored separately. Algorithm 2 summarizes the above discussion,
and we have the following:

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:9

ALGORITHM 2: BIA Maintenance Procedure

1: procedure Maintenance(〈vn+1,vn+2 . . .vm〉)
2: for k = 1 tom − n do

3: if n == 0 and k == 1 then

4: SS1 = {(1, 1,v1)};
5: continue;

6: SSn+k = ∅;

7: for each streak (i,n + k − 1,v) in SSn+k−1 do

8: if vn+k ≥ v then

9: Insert (i,n + k,v) to SSn+k ; //case (2)

10: else

11: Insert (i,n + k − 1,v) to Buffer B; // case (1)

12: if no streak in SSn+k−1 has value vn+k then // case (3)

13: if all streaks in SSn+k−1 have value < vn+k then

14: Insert (n + k,n + k,vn+k) to SSn+k ;

15: else

16: Select the streak (i,n + k − 1,v) in SSn whose value v > vn+k and is the smallest;

17: Extend it to be (i,n + k,vn+k)
18: Insert it into SSn+k ;

19: Insert the streaks in B into R-tree;

• The Maintenance procedure takes SSn and the appending values 〈vn+1,vn+2, . . . ,vm〉
as the input. The outputs of it are SSm and the updated R-tree by inserting new local
prominent streaks.

• For each value vn+k ∈ {vn+1,vn+2, . . . ,vm }, Lines 2 to 18 compute its SSn+k and the new
local prominent streaks based on SSn+k−1 iteratively. Lines 3 to 5 are to initialize SS1.

• For each value vn+k ∈ {vn+1,vn+2, . . . ,vm }, we collect the new local prominent streaks in
Buffer B (Line 11) and then insert them into the R-tree in a batch (Line 19) to reduce the I/O
overhead by avoiding frequent access to the R-tree.

4.2.2 BIA Lookup. Given the R-tree of historic moment candidates created by the mainte-
nance step, the historic moments for each of the top k situational streaks, under any similarity
parameter σ ′ and k ′ values, can be obtained by calling the Lookup procedure as presented in
Algorithm 3.

ALGORITHM 3: BIA Lookup Procedure

1: procedure Lookup(σ ′, k ′)
2: Z = Get-Top-SS(SSn , k ′);
3: for each streak z inZ do

4: Q = [|z | · σ ′,+∞] × [0, z.i) × [z.v · σ ′,+∞];

5: HM (z) = BBS(Rtree, Q); // compute constrained skyline

4.2.3 Space Requirement of BIA. Why is it necessary for BIA to keep all streaks in LPSn?
Specifically, from what we have defined, the historic moments are the skyline of analogous streaks,
which are in turn a subset ofLPSn . Therefore, one might question whether BIA can keep only the
skyline of LPSn , instead of the full LPSn . Unfortunately, optimizing BIA like that is incorrect.
That is because a streak currently not in the skyline (LPSn) could become a historic moment after
a new value vn+1 is appended, or when facing different values of σ and k . The following are two
examples.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:10 R. Bai et al.

Fig. 3. After v20 is appended.

Example 4.1. Consider again the data sequence in Figure 2. We have:

• n = 19;
• LPS19 = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11}; and
• SS19 ⊂ LPS19 = {s1, s2, s3, s4}.

Consider the skyline of LPS19, which is:

• skyline (LPS19) = {s1, s2, s3, s4, s5, s6, s11}.

Now consider the lookup of historic moment of the top 1 situational streak in that dataset
D19 with σ ′ = 0.75. The top 1 situational streak in that dataset D19 is s1, whereas the analogous
streaks of s1 are AS (s1) = {s7, s11}. The historic moments of s1 are HM (s1) = {s7, s11}, since s7

and s11 cannot dominate each other. At this point, we see that s7 is a historic moment of s1 but
s7 � skyline (LPS19).

Example 4.2. Still consider the data sequence in Figure 2, but with a new valuev20 = 5 appended,
resulting in D20 of Figure 3. We see that, with v20 appended, it has:

(1) made streaks s1 and s2 in SS19 to stop being situational streaks and turn to being local
prominent streaks that end at n = 19;

(2) extended streaks s3 and s4 in SS19 to become longer streaks s ′3 and s ′4 in SS20 that ends
at n = 20; and

(3) formed a new local prominent streak, snew , whose value is 5 and ends at n = 20.

Now consider the lookup of historic moment of the top 1 situational streak in that updated
dataset D20 with σ ′ = 0.5. The top 1 situational streak in that dataset D20 is snew , whereas the
analogous streaks of snew areAS (snew) = {s7, s11}. The historic moments of snew areHM (snew) =
{s7, s11}. Once again, we see that s7 is a historic moment of snew but s7 � skyline (LPS19).

4.3 Space-Optimal Incremental Algorithm (SOIA)

BIA needs to keep and maintain LPSn , which is space inefficient, especially when multiple se-
quences are of interest (e.g., multiple stocks, multiple seismic monitoring sensors) or when the se-
quences are very long (e.g., high-frequency trading with stock tick every millisecond). As shown
in the previous section, straightforward optimizations like keeping skyline (LPSn), instead of
LPSn , is unfortunately incorrect. When not space efficient, BIA would not be time efficient ei-
ther because the redundancies in the index would jeopardize both the lookup and maintenance

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:11

time. In this section, we present a space-optimal incremental algorithm (SOIA) that keeps only a
minimal subsetUn of LPSn that is sufficient to return historic moments online. Formally,

Definition 4.3. Given a data sequence Dn , the minimal subset Un of LPSn refers to a subset
of LPSn that guarantees

(1) for any streak s in {LPSn −Un }, it must not be a historic moment of any situational
streak y in Dm , wherem ≥ n, and

(2) there does NOT exist a proper subset X ofUn that satisfies condition (1).

SOIA strikes to maintain Un under continuous data updates. Space optimality of SOIA signif-
icantly reduces the size of the index, thereby reducing the I/O per operation or making the in-
dex memory resident. That property is crucial for online analysis and real-time monitoring, espe-
cially when there are possibly many data sequences of interest, which demands one index per data
sequence.

So the grand challenge of SOIA is how to confine Un , where trivially confining Un to be the
skyline of LPSn is definitely insufficient, whereas confining Un to be LPSn is definitely not
space optimal. Now we first discuss how to obtain Un properly given the data sequence Dn , and
Section 4.3.1 studies how to maintain its minimality when the data sequence is appended.

In SOIA, we treat σ as a parameter that controls the tradeoff between space and time, in addition
to its original role as being the similarity threshold. More specifically, when deciding which streaks
inLPSn shall be kept (i.e., belong toUn) and which shall be discarded, a small σ value makes local
prominent streaks easier to be an analogous streak of a situational streak z. So it is natural that the
size ofUn increases when σ is getting smaller. In contrast, a large σ value makes local prominent
streaks harder to be an analogous streak of a situational streak z. So it is intuitive that the size of
Un decreases when σ is getting larger. With σ as a parameter between space and time, the goal of
SOIA is to maintain Un as long as a user queries for historic moments with any similarity value
σ ′ larger than or equal to σ .

We now confine whatUn should be, given σ . We start by showing a simple lemma (Lemma 4.4).
Then, we look at the easiest case, with σ = 1. We can interpret this case as either having the
most stringent space requirement or as the users being uninterested in analogous streaks that are
shorter, or smaller in value, than the situational streak of interest. Finally, we work on the general
case.

Lemma 4.4. The intervals of two local prominent streaks are either disjoint or one containing the
other.

Proof. Assume to the contrary that there exist two local prominent streaks (i, j,v) and
(i ′, j ′,v ′) whose intervals are not disjoint nor one containing the other. Without loss of gener-
ality, assume that i < i ′. Then, we have i < i ′ ≤ j < j ′. That is, i ′ − 1 is within the range of [i, j]
and j + 1 is within the range of [i ′, j ′]. Now, there are two cases:

(1) If v ≥ v ′, then (i ′, j ′,v ′) is not a local prominent streak because vi′−1 ≥ v ≥ v ′.
(2) Otherwise, we have v ′ > v . Then (i, j,v) is not a local prominent streak because vj+1 ≥

v ′ > v .

So both cases lead to contradiction. The lemma follows. �

The Specific Case: What Streaks in LPSn Should Be inUn When σ = 1?

Let HM (SSn) denote the set that contains the historic moments of all streaks in SSn , and
when σ = 1, we have the following proposition:

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:12 R. Bai et al.

Proposition 4.5. When σ = 1, skyline (LPSn) ∪HM (SSn) is the minimal subset Un of
LPSn that contains historic moments of a situational streak for dataset Dn or future dataset Dm ,
wherem > n.

Proof. We prove by showing that a streak s is in skyline (LPSn) orHM (SSn) if and only if s
can serve as a historic moment of some streaks inSSn orSSm . This is done by proving Lemma 4.6
(the if case) and Lemma 4.7 (the only-if case) below.

Lemma 4.6. If a streak s in LPSn can serve as a historic moment of a streak in
SSn or SSm , then s is in skyline (LPSn) ∪HM (SSn).

Proof. It is equivalent to showing that for any streak s , if s � skyline (LPSn)
and s � HM (SSn), then s will not be a historic moment of any streak in SSn or
SSm .
Since s is not in the skyline of LPSn , there must exist some streak y ∈ LPSn in
the skyline with y 	 s . Now, for any streak z∗ = (i∗, j∗,v∗) in SSn or SSm :

(1) If z∗ ∈ SSn , s cannot be a historic moment of z∗ since s � HM (SSn).
(2) Else, if y does not overlap with z∗, y will be an analogous streak of z∗

whenever s is, so that s cannot be in the skyline of AS (z∗), and thus not
a historic moment of z∗.

(3) Else, y overlaps with z∗ and z∗ � SSn . Then, we must have some z =
(i, j,v) in SSn with the same starting position as z∗, i.e., i = i∗, and also y
must overlap with z. Also, |z | < |z∗ | since z∗ � SSn while both streaks z
and z∗ have the same starting position. Now, recall that from Lemma 4.4,
the intervals of two local prominent streaks are either disjoint or one con-
taining the other. Thus, we further have |s | ≤ |y | (sincey 	 s) and |y | ≤ |z |
(since y overlaps with z and z ∈ SSn). The above inequalities imply that
|s | < |z∗ | so that s is not an analogous streak, and thus not a historic mo-
ment of z∗ when σ = 1.

So in all cases, s is not a historic moment of z∗. This completes the proof of the
lemma. �

Lemma 4.7. If a streak s is in skyline (LPSn) ∪HM (SSn), then s can serve as
a historic moment of SSn or SSm .

Proof. Since any streak inHM (SSn) is already a historic moment of a current
situational streak, it remains to show that any streak s = (i, j,v) in skyline (LPSn)
can be a historic moment of some streak in SSn or SSm . To see this, imagine that
the data sequence Dn is appended with the following values for its next |s | + 2
days: ϵ,v,v, . . . ,v , where ϵ is a positive value less than v . That essentially will
create a situational streak z∗ = (i∗, j∗,v∗), with i∗ = n + 2, j∗ = n + |s | + 2, length
|z∗ | = j∗ − i∗ = |s |, and value v∗ = v .

Note that s is an analogous streak of z∗. Furthermore, s is in the skyline of
AS (z∗) because (1) every streak in AS (z∗) must end before n + 1, but (2) ev-
ery streak that ends exactly at n + 1 will have minimum value ϵ , which cannot
be an analogous streak of z∗. This implies that AS (z∗) ⊆ LPSn . So no streak in
AS (z∗) dominates s as s ∈ skyline (LPSn). Thus, s is in the skyline of AS (z∗),
and is therefore a historic moment of z∗. This completes the proof of the lemma. �

By combining Lemmas 4.6 and 4.7, Proposition 4.5 follows. �

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:13

For Figure 2, as in Example 4.1, we have:

• SS19 = {s1, s2, s3, s4}and
• skyline (LPS19) = {s1, s2, s3, s4, s5, s6, s11}.

When we set σ = 1 and k = 4, the historic moment of SS19, denoted as HM (SS19), is {s11},
since s11 is a historic moment (and the only one) of s1, while there are no historic moments for
s2, s3, or s4. So Proposition 4.5 states that we only need to keep {s1, s2, s3, s4, s5, s6, s11}. Although
currently s5 and s6 are not historic moments of any situational streak (since they overlap with all
streaks in SS19), each of them may be a historic moment of some situational streaks in the future.
For example, consider two new values that v20 = v21 = 9 are added to the example data sequence
in Figure 2. Then, (20, 21, 9) becomes a situational streak of the data sequence D21, with both s5

and s6 being its historic moments.

Example 4.8. Consider v2 and v6 equal to 7 instead of 8 in Figure 2. In this case, streak s11 =

(2, 6, 7) is no longer in skyline (LPS19), since it is dominated by s1. Yet, s11 is a historic moment
of s1, and s11 ∈ HM (SS19).

The example above illustrates why Proposition 4.5 has to keep HM (SSn) as well. In that ex-
ample, s11 ∈ HM (SS19). This also justified our aforementioned argument of why modifying BIA
to keep only the skyline of LPSn is insufficient.

The General Case: What Streaks in LPSn Should Be inUn When σ > 0?

Unfortunately, Proposition 4.5 is still insufficient, specifically when there are queries with σ ′ <
1. As we discussed in Example 4.1, in Figure 2, when querying with σ ′ = 0.75, s7 is the historic
moment of s1, but s7 � skyline (LPS19) ∪HM (SS19) according to Proposition 4.5.

So to support a general σ , in addition to skyline (LPSn) ∪HM (SSn), what else shall we in-
clude while maintaining minimality?

We answer the question by continuing Example 4.1. Specifically, when σ = 0.75, s7 shall be in-
cluded, but unfortunately it is pruned by s5 because s5 	 s7. However, while s7 is pruned by s5,
the latter is not serving as an analogous streak of s1 instead. Why can’t s5 serve as s1’s analo-
gous streak? That is because s5 overlaps with s1, which violates the definition of analogous streak
(Definition 3.3, condition 1; i.e., s5 has to end before s1 starts). In other words, when s5 cannot serve
as an analogous streak of s1, it shall not be used to prune any analogous streak for s1.

So we classify the streaks in LPSn into two subsets: (1) Perplexing Streaks Pn , and (2) Nonper-
plexing Streaks Nn :

Definition 4.9 (Perplexing Streaks Pn). A streak p ∈ LPSn is a perplexing streak when there
exists a situational streak z ∈ SSn such that:

(1) p overlaps with z,
(2) |p | ≥ |z | · σ , and
(3) p.v ≥ z.v · σ .

Note that p can overlap with multiple situational streaks. We use Pn to denote the set of all per-
plexing streaks in data sequence Dn .

By definition, SSn ⊆ Pn .

Definition 4.10 (Nonperplexing Streaks Nn). Streaks in LPSn that are not in Pn are nonper-
plexing streaks, denoted as Nn . That is, Nn = LPSn − Pn . So a streak s ∈ LPSn is a nonper-
plexing streak if, for every situational streak z ∈ SSn that s overlaps with, either |s | < |z | · σ or
s .v < z.v · σ .

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:14 R. Bai et al.

Example 4.11. In Figure 2, whenσ = 0.75, streaks inLPS19 = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11}
are classified into

• P19 = {s1, s2, s3, s4, s5} or
• N19 = {s6, s7, s8, s9, s10, s11}.

s5 is in P19 because (1) s5 overlaps with s1, (2) |s5 | ≥ |s1 | · 0.75, and (3) s5.v ≥ s1.v · 0.75. In contrast,
s6 � P19 because |s6 | � |si | · 0.75 for any si ∈ SS19.

In the following, we state some important lemmas.

Lemma 4.12. A streak that is dominated by skyline (Nn) would not be a historic moment of any
streak in either SSn for dataset Dn or SSm for future dataset Dm , wherem > n.

Proof. Suppose that streak s is dominated by a streaky ∈ skyline (Nn). Then, for any streak z∗

in SSn or SSm , two cases can happen: (1) y does not overlap with z∗ or (2) y overlaps with z∗.
In Case (1), if s is an analogous streak of z∗, so is y, as y 	 s , so that s is not in the skyline of
AS (z∗), and thus not a historic moment of z∗.

In Case (2), let z∗ = (i∗, j∗,v∗). Since y overlaps with z∗, we must have some z = (i, j,v) in SSn

with the same starting position as z∗, i.e., i = i∗, and also y overlaps with z. (Note that z = z∗

if z∗ ∈ SSn .) As y ∈ N , |y | < |z | σ ≤ |z∗ | σ holds. As y 	 s , this further implies |s | ≤ |y | < |z∗ | σ .
Thus, s is not an analogous streak of z∗. Consequently, z cannot be a historic moment of z∗. This
completes the proof. �

Lemma 4.12 directly leads to the following corollary.

Corollary 4.13. Given a streak s ∈ Nn , if s ∈ HM (z), where z ∈ SSn ∪ SSm , then s ∈
skyline (Nn).

Definition 4.14 (Smallest-Value Extension). Let z = (i, j,v) be a situational streak. Suppose that
the sequence is appended with a new value v ′ < v . If the streak z ′ = (i, j + 1,v ′) remains as a
streak in LPSn+1 (i.e., vi−1 < v

′), then z ′ is called the v ′ extension of z. If vsmall is the smallest
value v ′ such that the v ′ extension of z exists, then the streak z+ = (i, j + 1,vsmall) is called the
smallest-value extension of z.

So for Figure 2, the corresponding smallest-value extensions of the situational streaks are

s+1 = (15, 20, 6 + ϵ) s+2 = (14, 20, 4 + ϵ)

s+3 = (8, 20, 1 + ϵ) s+4 = (1, 20, 0 + ϵ),

where ϵ is an arbitrarily small positive value. Note that streak (15, 20, 7) is not s+1 because 7 is not
the smallest possible value to extend s1 = (15, 19, 7). Appending the data sequence withvsmall = 6
will result in a situational streak (14, 20, 6). But that does not qualify as s+1 because the starting
position of s+1 should be the same as the starting position of s1.

Definition 4.15 (Universal Domination). Let SS (p)
n be the set of situational streaks that overlap

with a perplexing streak p. A streak s is universally dominated by a perplexing streak p when

(1) p 	 s , and

(2) s is not an analogous streak of all z ∈ SS (p)
n , and

(3) s is not an analogous streak of z+, for all z ∈ SS (p)
n .

Conceptually, universal domination is harder to achieve than the ordinary domination, since p
universally dominating s implies that p dominates s .

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:15

Lemma 4.16. If a streak s ∈ skyline (Nn) ∪ Pn that is either (1) universally dominated by some
streak in Pn or (2) its length is less than σ , then s would not be a historic moment of any streak in
SSn for dataset Dn or SSm for future dataset Dm , wherem > n.

Proof.

(1) Suppose that a streak s is universally dominated by a perplexing streakp = (i ′, j ′,v ′) ∈ Pn .
Then, there are the following cases when considering a current/future situational streak
z∗ = (i∗, j∗,v∗):
(a) z∗ does not overlap with p. Then, if s is an analogous streak of z, so is p. In this case,

s is not in the skyline of AS (z∗), and thus not a historic moment of z∗.
(b) z∗ overlaps with p.

(i) z∗ ∈ SSn : then z∗ ∈ SS (p)
n , so that by definition s cannot be an analogous streak

of z∗.
(ii) z∗ � SSn (it happens when z∗ ∈ SSm and z∗ � SSn): then there exists some

current situational streak z = (i, j,v) with the same starting position as z∗, and

z ∈ SS (p)
n . Furthermore, |z∗ | ≥ |z+ | and z∗.v ≥ z+.v hold, where z+ is the smallest-

value extension of z. As s is not an analogous streak of z+, s cannot be an analogous
streak of z∗. In other words, s cannot be a historic moment of z∗.

(2) Any streak in SSn or SSm has length at least 1. So streaks in skyline (Nn) ∪ Pn with
length less than σ cannot be the historic moment, as their length is not qualified.

This completes the proof. �

Lemma 4.16 leads to the following corollary.

Corollary 4.17. Given a streak s ∈ skyline (Nn) ∪ Pn , if s ∈ HM (z), where z ∈ SSn ∪ SSm ,
then ∀p ∈ Pn such that s is not universally dominated by p, and s has length no less than σ .

Example 4.18. Consider Figure 2 again; recall that when σ = 0.75, P19 = {s1, s2, s3, s4, s5}, and
N19 = {s6, s7, s8, s9, s10, s11}. Also, skyline (N19) = {s6, s7, s8, s11}. Then, s5 is a perplexing streak. Note
that s8 ∈ skyline (N19) and s8 is universally dominated by s5 since:

(1) s5 	 s8,

(2) s8 is not an analogous streak of any streak in SS (s5)
19 = {s1, s2, s3, s4}, and

(3) s8 is not an analogous streak of s+1 , s+2 , s+3 , s+4 .

Therefore, by Lemma 4.16, s8 would not be a historic moment in any case and it is not necessary to
keep it. In contrast, s7 ∈ skyline (N19) and s5 	 s7 as well. However, since s7 is an analogous streak
of s1, s7 is not universally dominated by s5 and it cannot be pruned using Lemma 4.16.

Theorem 4.19. The minimal subset Un of LPSn is the set of streaks in skyline (Nn) ∪ Pn that
(1) are not universally dominated by any streak in Pn and (2) have length at least σ .

Proof. We prove the theorem by showing that a streak s is inUn if and only if s can serve as a
historic moment of some streak inSSn orSSm , wherem > n. This is done by proving Lemma 4.20
(the if case) and Lemma 4.21 (the only-if case) below.

Lemma 4.20. If a streak s can serve as a historic moment of some streak in SSn or
SSm , then s is inUn .

Proof. First, LPSn = Nn ∪ Pn contains all local prominent streaks, and thus
all historic moments. Then, by Corollary 4.13, we see that skyline (Nn) ∪ Pn con-
tains all historic moments. Consequently, by Corollary 4.17, we see that Un con-
tains all historic moments. The lemma follows. �

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:16 R. Bai et al.

Lemma 4.21. If a streak s is inUn , then s can serve as a historic moment of some
streak in SSn or SSm .

Proof. A streak s in Un is either (1) not dominated by any other streak in
LPSn or (2) dominated only by some streak p ∈ Pn but not universally domi-
nated by p.

For Case (1), if we append the data sequence Dn first with an arbitrarily small
positive value ϵ , followed by �|s |/σ � + 1 values of (s .v)/σ , then, after �|s |/σ � + 2
new data values arrived, there will be a situational streak z∗ with length |z∗ | =
�|s |/σ � and value z.v = (s .v)/σ . That streak z∗ will regard s as its historic mo-
ment.11

For Case (2), let z be the longest situational streak in SSn such that s is an
analogous streak of z∗, where z∗ = z or z+. Note that such a z must exist since s is
not universally dominated by some p ∈ Pn (recall Definition 4.15 for the property
of universal domination). Also, z∗ ∈ SSn ∪ SSm .

Then, for any streakp ∈ Pn withp 	 s ,p must overlap with z∗.12 So all streaks in
Pn that dominate s cannot be an analogous streak of z∗. Moreover, no streak inNn

dominates s , as s is dominated only by streaks in Pn . The above statements imply
that s is not dominated by any analogous streak of z∗, so that it is in the skyline of
AS (z∗), and thus a historic moment of z∗. In summary, each streak inUn is a his-
toric moment of some streak in SSn or SSm , and therefore needs to be kept. �

Combining the above lemmas, Theorem 4.19 follows.

Example 4.22. Consider Figure 2 when σ = 0.75; as in Example 4.18, we have:

• P19 = {s1, s2, s3, s4, s5};
• skyline (N19) = {s6, s7, s8, s11};
• in skyline (N19) ∪ P19, s8 is universally dominated by s5; and
• each streak in skyline (N19) ∪ P19 has length at least σ .

According to Theorem 4.19, minimal subsetU19 of LPS19 is the set of streaks in skyline (N19) ∪
P19 that (1) are not universally dominated by any streak in P19, which gives s8 � U19, and (2) have
length at least σ . So we have:

• U19 = {s1, s2, s3, s4, s5, s6, s7, s11} and
• SS19 = {s1, s2, s3, s4}

4.3.1 SOIA Maintenance. Theorem 4.19 gives how to obtain Un of data sequence Dn . Based
on that, now we discuss how to obtainUm accordingly when new values 〈vn+1,vn+2, . . . ,vm〉 are
appended to the data sequence Dn . Without loss of generality, we first focus on when a single data
value vn+1 is appended, and then generalize the procedure when values 〈vn+1,vn+2, . . . ,vm〉 are
appended in a batch.

When appending valuevn+1 toDn , it works like BIA (Section 4.2.1) to getSSn+1 and local promi-
nent streaks ending at n based on three different cases. Specifically, our maintenance algorithm
aims to do the following:

11The reason is as follows: clearly, s is an analogous streak of z∗. Next, if to the contrary s is not in the skyline of AS (z∗),
then there is some streak y ∈ AS (z∗) that dominates s . Such a y must not overlap with z∗ (since it is an analogous streak

of z∗) and must not include the value ϵ that is newly appended to D (since the value of y is at least s .v for y 	 s). In other

words, y must be a streak in LPSn . A contradiction occurs, for no streak in LPSn should dominate s .
12Else, SS (p)

n does not contain any situational streak of which s is an analogous streak, so that s is universally dominated

by p , and therefore s � Un . A contradiction occurs.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:17

M1. Identify streaks in case (1). Those streaks will not be in SSn+1 and they require no more
isolation. So we insert them into the R-tree.

M2. Compute the updated set of situational streaksSSn+1 from case (2) and case (3). The streaks
in SSn+1 will be stored explicitly, sorted by their values.

M3. Resume minimality, as minimality may be violated at this point.

The reasons causing the minimality violation include the following:

(a) A perplexing streak s ∈ Pn may become a nonperplexing streak since Dn+1. For Dn , s can
only prune streaks that it universally dominates through Lemma 4.16. But suppose that s
further becomes a nonperplexing streak for Dn+1. Then, s is in Nn+1 and can prune any
streak that it dominates through Lemma 4.12. Recall that universally domination is harder
to achieve than ordinary domination. When s goes fromPn toNn+1, it means now its “prun-
ing power” has increased. So now more streaks could be pruned by s and they should be
removed accordingly in order to maintain minimality.

(b) A streak s , which is not universally dominated by any perplexing streak in Pn , may now
be universally dominated by a perplexing streak in Pn+1, so that s should be removed. This
happens when s is an analogous streak of some streak z in SSn but z is no longer in SSn+1

due to case (1), or s is no longer the analogous streak of the extended z ′ inSSn+1 because of
case (2) (i.e., |z ′ | becomes longer and |s | ≥ |z ′ | · σ does not hold anymore). Note that when s
is not an analogous streak of any streak in SSn+1 and is dominated by some streak in Pn+1,
s could be and should be removed in order to maintain minimality.

Algorithm 4 shows how the maintenance procedure works in the case of appending a single
value.

ALGORITHM 4: SOIA Maintenance Procedure (Only for Appending a Single Value)

1: procedure Maintenance(vn+1)

2: if n == 0 then

3: P1 = {(1, 1,v1)};
4: return;

5: SSn+1 = ∅;

6: for each streak (i,n,v) in SSn do

7: if vn+1 ≥ v then

8: Insert (i,n + 1,v) to SSn+1;

9: else if |n − i | ≥ σ then

10: Insert (i,n,v) to R-tree;

11: if no streak in SSn has value vn+1 then

12: if all streaks in SSn have value < vn+1 then

13: Insert (n + 1,n + 1,vn+1) to SSn+1;

14: else

15: Select the streak (i,n,v) in SSn whose value v > vn+1 and is the smallest;

16: Extend it to be (i,n + 1,vn+1)
17: Insert it into SSn+1;

18: T = streaks in R-tree;

19: Set PTn = T ∩ Pn ;

20: Find ΔN and Pn+1 from PTn and SSn+1;

21: for each streak y in ΔN do

22: Remove streak s from R-tree if y 	 s;

23: for each streak p in Pn+1 do

24: Remove streak s from R-tree if s is universally dominated by p;

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:18 R. Bai et al.

Lines 2 to 4 are to initialize P1. Lines 6 to 17 work like BIA’s maintenance, except that it needs
to check the length of streak when inserting to the R-tree (Line 9). Lines 18 to 24 are for resuming
the minimality, corresponding to M3(a) and M3(b) discussed above. Specifically, we are meant to
do two kinds of pruning:

• Pruning (i): Remove the streaks that are dominated by any streak in skyline (Nn+1)
(c.f. Lemma 4.12).

• Pruning (ii): Remove the streaks that are universally dominated by any streak in Pn+1

(c.f. Lemma 4.16).

Let T be the streaks in the updated R-tree after executing Lines 2 to 14 of the maintenance pro-
cedure. So to carry out Pruning (i) and (ii) above, a basic method is to identifyNn+1 by comparing
each streak in T with the streaks in SSn+1, according to Definition 4.10. Once Nn+1 is obtained,
Pruning (i) above can be done. Next, identify streaks in {T − Nn+1} ∪ SSn+1 as Pn+1, and use it
to complete Pruning (ii).

For efficiency, we now show that Pruning (i) can be done by a much smaller subset ΔN ⊆ Nn+1

instead, where ΔN = Nn+1 − Nn . Especially, ΔN can be obtained from PTn , where PTn denotes
Pn ∩ T . Also, Pn+1 can be identified in a more efficient way accordingly.

Lemma 4.23. If a streak in T is dominated by any streak in skyline (Nn+1), then such a streak is
dominated by some streak in ΔN .

Proof. We prove the lemma with the help of the following two lemmas,

Lemma 4.24. For a streak s ∈ T , if s � PTn , then s � Pn+1.

Proof. Let s be a streak in the T but not inPn , i.e., s � PTn . Now, suppose to the
contrary: s ∈ Pn+1. This implies that there exists streak z ′ = (i ′, j ′,v ′) ∈ SSn+1,
i.e., j ′ = n + 1, such that s overlaps with z ′, and |s | ≥ |z ′ | · σ . However, for z ′ ∈
SSn+1, there must be a situational streak z = (i, j,v) ∈ SSn with the same starting
position as z ′, i.e., i = i ′ and j = n. It follows that s also overlaps with z, and |s | ≥
|z | · σ . Thus, s ∈ PTn , a contradiction. �

Lemma 4.25.

skyline (Nn+1) = skyline (skyline (Nn) ∪ ΔN).

Proof. By Lemma 4.24, for any streak s ∈ Nn , which means s � PTn , s � Pn+1.
Thus, by definition, such a streak s must be in Nn+1. This implies Nn ⊆ Nn+1. So
we have Nn+1 = Nn ∪ ΔN . Further, if a streak s is in Nn but not in skyline (Nn),
it is not in skyline (Nn+1), since the streak that dominates s is still in Nn+1. That
completes the proof since removing a nonskyline streak from a set would not affect
the result of a skyline operation. �

Lemma 4.25 implies that if a streak in T is dominated by skyline (Nn+1), then it is dominated
by skyline (Nn) ∪ ΔN . Furthermore, if a streak is dominated by skyline (Nn), it does not exist in
T because (1) T includes the streaks in Un − SSn and the newly streaks ended at n by Line
8 of Algorithm 4, and none of these newly added streaks are dominated by skyline (Nn), and
(2) all streaks in T that are dominated by skyline (Nn) are pruned during any previous execu-
tion of the maintenance procedure. Thus, any streak in T that is dominated by skyline (Nn+1)
must be dominated by some streak in ΔN . �

We proceed to discuss how to obtain ΔN and Pn+1. First, we state that ΔN can be obtained
from PTn .

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:19

Lemma 4.26. ΔN ⊆ PTn .

Proof. Any streak s ∈ T that s in ΔN ⊆ Nn+1 cannot be in Pn+1, so that its ending position is
at most n. This implies s ∈ Nn ∪ PTn . By definition, ΔN = Nn+1 − Nn . So s cannot be in Nn but

can only be in PTn , which gives ΔN ⊆ PTn . �

Lemma 4.27. ΔN = Nn+1 ∩ PTn .

Proof. Following Lemma 4.26, we have ΔN ⊆ PTn and then

• Nn ∩ PTn = Nn ∩ (Pn ∩ T) = (Nn ∩ Pn) ∩ T = ∅, and

• Nn+1 ∩ PTn = (Nn ∪ ΔN) ∩ PTn = (Nn ∩ PTn) ∪ (ΔN ∩ PTn) = ∅ ∪ ΔN = ΔN .

The lemma follows. �

Next, we state that Pn+1 can be obtained from PTn , ΔN , and the updated SSn+1:

Lemma 4.28. Pn+1 = (PTn − ΔN) ∪ SSn+1.

Proof. We discuss Pn+1 as two parts below:

(i) Pn+1 includes SSn+1 by definition.
(ii) For streaks in Pn+1 − SSn+1, they are in Nn ∪ PTn . By Lemma 4.24, they must be in PTn ;

moreover, they cannot belong toNn+1. That is, they should be in PTn − PTn ∩ Nn+1, where

PTn ∩ Nn+1 = ΔN by Lemma 4.27.

(i) gives SSn+1 and (ii) gives PTn − ΔN . The lemma thus follows. �

With Lemmas 4.26, 4.27, and 4.28, we shall obtain ΔN and Pn+1 as follows:

(1) For each streak p in PTn , compare p with all streaks in SSn+1.
If there does not exist any streak z inSSn+1 such thatp overlaps with z and |p | ≥ |z | · σ ,

then p belongs to Nn+1. For efficiency’s sake, we insert p to ΔN (c.f. Lemma 4.23). Else, p
belongs to Pn+1 and we insert it into Pn+1.

(2) Expand Pn+1 by including all streaks in SSn+1.

The above gives the details of Line 20 in Algorithm 4. The remaining Lines 21 to 24 carry out
the pruning based on the discussed lemmas so far.

Example 4.29. Let us revisit the example of appending v20 = 5 as in Figure 3, with σ = 0.75.
Recall that before the value is appended as in Figure 2, we have:

• SS19 = {s1, s2, s3, s4},
• P19 = {s1, s2, s3, s4, s5},
• N19 = {s6, s7, s8, s9, s10, s11}, and
• Rtree = {s5, s6, s7, s11} because s9 and s10 are not in skyline (N19) and s8 is universally domi-

nated by s5.

Appending v20 requires us to compute the new SS20 and local prominent streaks ended at 19.
Running Lines 6 to 18 will result in:

• SS20 = {s ′3 (8, 20, 4), s ′4 (1, 20, 1), snew (14, 20, 5)}, as explained in Example 4.2, and
• T = {s1, s2, s5, s6, s7, s11}, as s1 and s2 get inserted into the R-tree according to case M1

(Line 10 in Algorithm 4).

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:20 R. Bai et al.

Lines 19 and 20 then identify the following:

• PT19 = T ∩ P19 = {s1, s2, s5}.
• ΔN = {s5} because in PT19 , only s5 has length less than |z | · σ , where z denotes any streak

in SS20.
• P20 = (PT19 − ΔN) ∪ SS20 = {s1, s2, snew , s

′
3, s
′
4}.

Lines 21 and 22 remove s7 from the R-tree because s5 ∈ ΔN and s5 	 s7. Next, Lines 23 and
24 check if any streak in the R-tree is universally dominated by streaks in P20 and prune them
accordingly. In the example, no such streaks are found, and the minimality of the streaks stored in
R-tree is maintained.

Now we generalize the discussions above to handle the case that a batch of data values
〈vn+1,vn+2, . . . ,vm〉 is appended to Dn that results in Dm . Algorithm 5 shows the pseudo-code
of this maintenance procedure, and we have the following:

• Upon each value vn+k ∈ {vn+1,vn+2, . . . ,vm }, Lines 3 to 23 work similarly to Lines 2 to 20
in Algorithm 4 that it computes corresponding to Pn+k and ΔN , respectively. N is used
to collect the streaks in ΔN generated in Line 22 for each value vn+k , so that in the end we
have N = Nm − Nn .

ALGORITHM 5: SOIA Maintenance Procedure

1: procedure Maintenance(〈vn+1,vn+2, . . . ,vm〉)
2: N = ∅;

3: for k = 1 tom − n do

4: if n == 0 and k == 1 then

5: P1 = {(1, 1,v1)};
6: continue;

7: SSn+k = ∅;

8: for each streak (i,n + k − 1,v) in SSn+k−1 do

9: if vn+k ≥ v then

10: Insert (i,n + k,v) to SSn+k ;

11: else if |n + k − 1 − i | ≥ σ then

12: Insert (i,n + k − 1,v) to Buffer B;

13: if no streak in SSn+k−1 has value vn+k then

14: if all streaks in SSn+k−1 have value < vn+k then

15: Insert (n + k,n + k,vn+k) to SSn+k ;

16: else

17: Select the streak (i,n + k − 1,v) in SSn+k−1 whose value v > vn+k and is the smallest;

18: Extend it to be (i,n + k,vn+k)
19: Insert it into SSn+k ;

20: T = streaks in R-tree ∪ B;

21: Set PT
n+k−1

= T ∩ Pn+k−1;

22: Find ΔN and Pn+k from PT
n+k−1

and SSn+k ;

23: N = N ∪ ΔN ;

24: Insert streaks in B into R-tree;

25: for each streak y in N do

26: Remove streak s from R-tree if y 	 s;

27: for each streak p in Pm do

28: Remove streak s from R-tree if s is universally dominated by p;

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:21

• Similar to Algorithm 2, we store the new local prominent streaks in a Buffer B (Line 12) and
then insert them into the R-tree in a batch (Line 24) to improve the I/O efficiency.

• Lines 25 to 28 are to prune the R-tree to guarantee its space-optimal properly, according to
Lemma 4.23 and Lemma 4.16.

4.3.2 SOIA Lookup. The Lookup procedure of SOIA is the same as BIA’s Lookup procedure.
Algorithm 6 shows the pseudo-code when dealing with a new parameter σ ′ (with σ ′ ≥ σ) and a
new parameter k ′ from a user. It first obtains the top k ′ situational streaks by a linear scan of SSn ,
since streaks in SSn are sorted by values. Then, for each such situational streak z, it constructs a
query using the following region:

Q = [|z | · σ ′,+∞] × [0, z.i) × [z.v · σ ′,+∞].

That region contains exactly the set AS (z) of analogous streaks of z. We can thus apply the
BBS skyline algorithm in [13] to computeHM (z) (the constrained skyline) from the R-tree.

ALGORITHM 6: SOIA Lookup Procedure

1: procedure Lookup(σ ′,k ′)
2: Z = Get-Top-SS(SSn , k ′);
3: for each streak z inZ do

4: Q = [|z | · σ ′,+∞] × [0, z.i) × [z.v · σ ′,+∞];

5: HM (z) = BBS(R-tree, Q); // compute constrained skyline

Example 4.30. Following Example 4.29, given σ = 0.6 and k = 2, now we have

• Rtree = {s1, s2, s5, s6, s11} and
• SS19 = {s ′3, s ′4, snew }.

When querying with parameter σ ′ = 0.6 and k ′ = 2: for snew , find out its analogous streaks in R-
tree that AS (snew) = {s11}, and its historic moment is skyline (AS(snew)) = {s11}; for s ′3, there is
no analogous streak for it. So now the historic moment is {s11}.

5 CASE STUDY

5.1 Microsoft’s Stock Price

The first sequence dataset is Microsoft’s (NASDAQ:MSFT) daily stock price13 from 1986 to 2014.
We set the similarity threshold σ as 1 and monitor the historic moments of the top 1 situational
streak. On June 11, 2014, we got the following top 1 situational streak:

(2014–6–05, 2014–6–11, 40.35),

and its corresponding historic moments are:
(1999–12–16, 2000–1–05, 40.36)
(1999–12–21, 2000–1–03, 41.52)
(1999–12–22, 2000–1–03, 41.77)
(1999–12–22,1999–12–31, 41.83)
(1999–12–22,1999–12–30, 42.08)
(1999–12–16, 2000–1–03, 40.40).

13http://finance.yahoo.com/q/hp?s=MSFT.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://finance.yahoo.com/q/hp?s$=$MSFT

3:22 R. Bai et al.

It turns out that all those historic moments happened around the end of 1999, meaning that
Microsoft had not had such a long streak of high stock prices for almost 14 years. Indeed, a real
news report14 was given on June 11, 2014 based on the above:

Microsoft stock inching closer to all-time high. Don’t look now, but Microsoft (NAS-
DAQ:MSFT) stock is at a 14-year high and is approaching its all-time high reached
just before the dot-com crash.

5.2 Beijing’s Temperature

The second sequence dataset is the average daily temperature of Beijing15 from 1995 to 2014. We
set the similarity threshold σ as 1 and monitor the historic moments of the top 1 situational streak.
On July 29, 2010, we got the following top 1 situational streak:

(2010–7–27, 2010–7–29, 85.5),

and its corresponding historic moments are:

(2000–7–03, 2010–7–06, 86.8)
(2000–7–11, 2000–7–14, 87.6)
(2000–7–22, 2000–7–26, 85.6)
(1999–7–23, 1999–7–29, 87.4).

These historic moments imply that the last time Beijing had such a long streak of high temper-
ature was almost 10 years ago, and this observation was reported in the news on July 29, 2010:16

High temperature days in Beijing July last longest in the past ten years. . . .

5.3 Taiwan Seismic Datasets

The third dataset is the ground motion sensor stream of Taiwan.17 Ground motion is the movement
of the earth’s surface. Seismologists can utilize ground motion data to study and even predict some
geological activities such as earthquakes [2]. The datasets are streams of sample counts18 for every
50ms, since 1998, with one data sequence per monitoring station. Each data sequence is about
350GB in size and BIA was required to build an index of size 500GB, exceeding the disk size of our
experimental platform (detailed configuration in Section 6). In contrast, SOIA only required 2GB
to house the index, making this case study feasible.

We set the similarity threshold σ as 0.9 and monitor the historic moments of the top 10 situa-
tional streaks. We got a number of interesting findings there when we studied the sequence data
from one such station, namely, station “KMNB.” Specifically, it illustrates that while historic mo-
ments that happened long ago are useful, those that happened very recently are also helpful to
highlight the importance of a prominent streak in certain domains.

For example, we got a situational streak sa on February 3, 2016. That was a streak of length of
202 units (i.e., 10.1s) with 40,334 counts. Let’s look at its corresponding historic moments:

(2016-01-30-03:43, length=184, count=40391)
(2016-01-30-03:43, length=185, count=40188)
(2016-01-30-03:42, length=189, count=39161).

14http://www.scalper1.com/microsoft-stock-inching-closer-to-all-time-high.html.
15http://academic.udayton.edu/kissock/http/Weather/gsod95-current/CIBIEJNG.txt.
16http://news.163.com/10/0729/08/6COD18AV000146BC.html.
17http://ds.iris.edu/ds/nodes/dmc/data/
18Count is a scale unit of ground motion. A “count” value of 3.27508e9 indicates ground motion of 1 meter/second.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://www.scalper1.com/microsoft-stock-inching-closer-to-all-time-high.html
http://academic.udayton.edu/kissock/http/Weather/gsod95-current/CIBIEJNG.txt
http://news.163.com/10/0729/08/6COD18AV000146BC.html
http://ds.iris.edu/ds/nodes/dmc/data/

Historic Moments Discovery in Sequence Data 3:23

We can see that its historic moments just happened 4 days before February 3, 2016. That implied
it was not a singular prominent event and was worth paying attention to. In fact, based on our
record [16], an earthquake happened 2 days later, on February 5, 2016. As another example, we
got another situational streak sb on February 27, 2010, of length 238 units (i.e., 11.9s) with 42,492
counts. Its historic moments are:

(2010-02-26-01:49, length=219, count=40949)
(2010-02-26-01:48, length=223, count=40232)
(2010-02-26-01:48, length=230, count=40119).

It is important that its historic moments just happened 1 day before. Actually, an earthquake
happened 5 days later, on March 4, 2010, according to [16].

How can one tell the above historic moments are fair indicators of earthquakes but not normal
energy release? In order to answer that question, we ran SOIA on the dataset and obtained the
following statistics:

Among all (situational) streaks of length > 200 and value > 40,000 (e.g., sa and sb

above), their corresponding historic moments happened 23 days ago, on average.

One plausible message of the above is that the more recent historic moments are to the sit-
uational streaks (and farther away than the mean, 23 days), the more significant they are as an
earthquake indicator. To cross-check that claim, we found that for all situational streaks of length
> 200 and value > 40,000 in the dataset, whenever their corresponding historic moments hap-
pened before 23+ days, no earthquake was reported within weeks after those situational streaks
happened.

6 PERFORMANCE STUDY

In this section, we evaluate the performance of SOIA using five real sequence datasets and compare
with BIA. The experimental platform has a 2.8GHz Intel i5 CPU, 8GB RAM, and 256GB hard disk.
Table 2 lists the information about the datasets, which are ordered based on their data sizes. Dataset
D5 was too large that BIA would require index space larger than our disk; therefore, we only used
a fraction of D5 in order to make BIA runnable in this section.

6.1 Overall Comparison

We first look at the overall performance of BIA and SOIA when the full dataset is available. We
evaluate the performance of BIA and SOIA in terms of their (1) index building time (maintenance
time), (2) query time (lookup time), and (3) index space.

We use σ = 0.5 in building the index structure (Maintenance procedure). We create five user
lookup workloads:W1,W2,W3,W4,W5, where a workloadWi mimics a user exploring the dataset by
trying out 10 · i different k and σ ′ historic moment lookups. Therefore,W1 consists of 10 lookups
(e.g., a casual user) and W5 consists of 50 lookups (e.g., a serious journalist). When reporting the
lookup time, we report the average running time ofW1 toW5. That represents the total wait time
for a user in one interactive session. In the experiment, each lookup query randomly chose a value
between 1 and 10 for k and randomly chose a value between σ and 1 as σ ′.

Figure 4 shows the results. Since SOIA has to invest some time to identify and prune redundant
streaks in order to maintain a minimal space index for the latter use, its one-off maintenance time is
higher than BIA (Figure 4(a)). Nevertheless, we see that such investment is worthwhile because the
lookup time of SOIA is 9.58× (D1) to 184.14× (D4) better than BIA (Figure 4(b)), which gives users
a much shorter waiting time during the exploration. Figure 4(c) shows that the space requirement
of SOIA is much smaller than that of BIA. On D5 (a largely trimmed version of Taiwan’s ground

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:24 R. Bai et al.

Table 2. Summary of Datasets

Dataset Size (MB) Length Description

D1 14.1 1,074,637 household global minute-averaged
current intensity from December 2006 to December 200819

D2 21.3 1,600,237 household global minute-averaged active
power from December 2006 to December 2009

D3 27.5 1,802,000 EEG time-series datasets20

D4 32.5 2,764,800 number of requests to World Cup 98 website
per second from April to May 199821

D5 52.4 3,456,000 Taiwan KMNB station ground motion
from Jan. 1 2017, to Jan. 2, 201722

Fig. 4. BIA versus SOIA.

motion data), monitoring historic moments for just one station already requires BIA to build an
index bigger than 200MB.

The minimal index size of SOIA is also the key factor that leads to its excellent historic moment
lookup performance (other factors include the size and the value of the streak; see Algorithm 6).
Compared with SOIA, BIA takes 656× (D1) to 2, 898× (D3) more index space. Table 3 lists the index
space as well as the number of streaks stored using BIA and SOIA, respectively. For SOIA, the
number of streaks in Skyline (Nn) and Pn is also reported. In fact, the sizes of the index structures
are proportional to the numbers of streaks in LPSn . In the following sections, we only include
the index size in our discussions.

6.2 Historic Moment Exploration with Data Update

Next, we look at the performance of SOIA and BIA for maintaining the index structure online. That
is, whenever a value arrives, BIA inserts new local prominent streaks into the R-tree immediately,
and SOIA maintains its space-optimal property by inserting and pruning the R-tree immediately.

In this experiment, we regard the first 98% of a dataset as the initial dataset and its index structure
has been built by the Maintenance procedure already. Then, we examine the performance of
SOIA and BIA regarding a data append of the last x% of the dataset, where x = 0.1, 0.5, 1, and 2.

Figure 5 shows the experiment results. In the figures, we report:

(a) the time of the Maintenance procedure in order to handle data appending,

19https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption.
20http://alumni.cs.ucr.edu/∼mueen/OnlineMotif/index.html.
21http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
22http://ds.iris.edu/ds/nodes/dmc/forms/breqfast-request/.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://alumni.cs.ucr.edu/protect $
elax sim $mueen/OnlineMotif/index.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ds.iris.edu/ds/nodes/dmc/forms/breqfast-request/

Historic Moments Discovery in Sequence Data 3:25

Table 3. Number of Streaks Maintained by BIA and SOIA

Method BIA SOIA

Dataset
Index Space

(MB)

Number of
Streaks
Stored

Index Space
(MB)

Number of
Streaks Stored

Number of
Streaks in

Skyline (Nn)

Number of
Streaks in
Pn

D1 17.06 299,868 0.026 434 433 8

D2 66.91 1,175,934 0.061 1,012 987 31

D3 127.55 2,241,976 0.044 676 662 14

D4 101.87 1,790,601 0.080 1,362 1,337 25

D5 226.75 3,985,692 0.199 3,291 3,289 20

(b) the average time of running time ofW1 toW5,
(c) the total of (a) and (b), and
(d) the size of the index after a data update.

The maintenance times of SOIA and BIA are similar (see subfigure (a)) because the advantage
of having a smaller index in SOIA is offset by the extra effort spent on maintaining minimality.
Nevertheless, SOIA is superior in terms of lookup performance (see subfigure (b)). So if one con-
siders the time from getting the new data to the time that a user finishes a particular session of
historic moment exploratory (see subfigure (c)), SOIA is much better than BIA. With no surprise,
SOIA maintains a smaller index size all the way (see subfigure (d)).

6.3 Sensitivity Study

Here, we look at the impact of parameters σ and k on the performance of SOIA.
We first look at the influence of σ . In this experiment, given that the full dataset is available, we

try different values for σ : 0.1, 0.3. 0.5. 0.7, 0.9. Figure 6(a) shows that different σ values do not influ-
ence the maintenance time of SOIA much. That is because the maintenance of SOIA is dominated
by the time of scanning all LPSn to get Pn , which is independent of σ there. Figure 6(b) shows
that a higher σ value during maintenance would make historic moment lookup more efficient
because that would result in a smaller index as shown in Figure 6(c).

Figure 7 shows the time for maintaining space optimal online when data is being appended.
In that experiment, we report the results of the maintenance time when the remaining 0.1%, 1%,
and 2% of data are inserted, in case the index has been built for 98% of the original data already.
When σ increases, the maintenance procedure takes less time. That is because a higher σ value
would reduce the number of perplexing streaks, and for each perplexing streak p, the mainte-
nance algorithm is required to remove streaks that are universally dominated by p from the R-tree
(Algorithm 4, Lines 23 and 24). As a result, the maintenance time decreases when σ increases.

Lastly, we look at the impact of k on the performance of SOIA. Note that k has no impact on
the maintenance phase of SOIA, so we only report the average execution time of the lookup phase
based on the five workloads, with σ = 0.5.

Figure 8 shows that the lookup time generally increases with the value k . That is because the
lookup procedure looks for the historic moment for each top k situational streak. Increasing k
would then increase the number of skyline computational calls to the index.

7 CONCLUSION

In this article, we introduce the notion of the historic moment, which complements existing
work [8, 19] and provides holistic insights from sequence data. The computational issue of the

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:26 R. Bai et al.

Fig. 5. BIA versus SOIA under data update.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:27

Fig. 6. Varying σ .

Fig. 7. Varying σ when updating.

Fig. 8. Varying k .

historic moment focuses on the incremental and interactive aspects, in which new data are ex-
pected to arrive regularly and users are supposed to discover new historic moments right away,
by feeding in different input parameters. To this end, we present SOIA, a highly efficient incremen-
tal algorithm using minimal space. Space optimality is important for online analysis and real-time
monitoring systems because it significantly reduces the index size, thereby reducing the I/O per
operation or making the index memory resident even when there are many data sequences. Case
studies show that historic moments are helpful in computational journalism as well as in seismol-
ogy. Experimental studies show that SOIA is both space and time efficient and outperforms the
baseline on real data.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:28 R. Bai et al.

APPENDIX

A FINDING HISTORIC MOMENTS FROM MULTIPLE SEQUENCES

The main discussion focuses on finding historic moments in one data sequence. In this section,
we also extend our problem and the algorithms to multiple data sequences (note that in [19], the
authors also study how to find prominent streaks in multiple data sequences). We first give a
motivating example from a piece of sports news in April 2014:23

“He (Kevin Durant) put up 25 points in his 40th consecutive game, which is the longest
streak since Michael Jordan scored 25 in 40 consecutive games in the 1986-87 season.
Wilt Chamberlain, who scored 25 or more in 80 consecutive games in 1960-61, holds
the all time record in that category.”

In this piece of news, for the streak that Kevin Durant has achieved, the reporter reports historic
moments from Michael Jordan and Wilt Chamberlain, which are two other data sequences.

Definition A.1 (Top k Situational Streak in Multiple Sequences). Given multiple sequences Dn =

{D1
n , . . . ,D

w
n } that contain w data sequences and each having n values, let SSD1

n
n , . . . ,SS

Dw
n

n be

the set of situational streaks for each data sequence, respectively. Let SSn = SSD1
n

n ∪ · · · ∪ SSDw
n

n

be all situational streaks in Dn . The top k situational streaks in Dn are the k streaks in SSn with
the highest values.

Definition A.2 (Analogous Streak in Multiple Sequences). Given multiple sequences Dn =

{D1
n , . . . ,D

w
n }, let LPSD1

n
n , . . . ,LPS

Dw
n

n be the local prominent streaks for each sequence, re-

spectively. Let LPSn = LPSD1
n

n ∪ · · · ∪ LPSDw
n

n be all local prominent streaks set in Dn . A local
prominent streak s ∈ LPSn is an analogous streak of a situational streak z ∈ SSn when:

(1) s .j < z.i (i.e., s ends before z starts),
(2) |s | ≥ |z | · σ (i.e., the length of s is at least σ times that of z, where σ ≥ 0 is a similarity

threshold), and
(3) s .v ≥ z.v · σ (i.e., the value of s is at least σ times that of z).

Definition A.3 (Historic Moments in Multiple Sequences). Given multiple sequences Dn =

{D1
n , . . . ,D

w
n }, a similarity threshold σ , and a positive integer k . For each of situational streak z

in the top k SSn , let AS(z) be the set of analogous streaks in multisequence Dn for z. Assume that
each streak s in AS(z) is represented by a 4D point (|s |, s .j, s .v,x), where x indicates which data
sequence Dx that s comes from. The historic moment with respect to z, denoted by HM(z), is the
skyline of AS(z) with respect to the first three dimensions, i.e., |s |, s .j, and s .v of streak s .

In the sports news above, each data sequence in Dn represents the points that the player gets.
On April 5, 2014, the streak with value 25 and length 40 from Kevin Durant is the top 1 situational
streak. Its historic moments include the streak with value 25 and length 40 from Michael Jordan
in 1986, as well as the streak with value 25 and length 80 from Wilt Chamberlain in 1960.

BIA and SOIA can be adapted to deal with this multisequence situation in a straightforward
manner. We name them as BIA-MS and SOIA-MS, respectively.

A.1 BIA-MS

BIA-MS is largely similar to BIA in that LPSn − SSn are inserted into the same R-tree, each SSDi
n

n

is stored separately, and we have the following:

23http://ftw.usatoday.com/2014/04/kevin-durant-michael-jordan-record-thunder.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

http://ftw.usatoday.com/2014/04/kevin-durant-michael-jordan-record-thunder

Historic Moments Discovery in Sequence Data 3:29

(1) Maintenance. Each sequence of new values 〈vDi

n+1,v
Di

n+2 . . .v
Di

m 〉 for Di calls the mainte-
nance procedure of BIA, i.e., Algorithm 2, once.

(2) Lookup. Same as the lookup procedure of BIA, i.e., Algorithm 3.

A.2 SOIA-MS

SOIA-MS is largely similar to SOIA. SOIA-MS is also space optimal as it keeps minimal subset
Un of LPSn . It mainly generalizes the notion of perplexing streaks and nonperplexing streaks for
multiple sequences:

Definition A.4 (Perplexing Streak). A streak p ∈ LPSn is a perplexing streak when there exists a
situational streak z ∈ SSn such that:

(1) p overlaps with z,
(2) |p | ≥ |z | · σ , and
(3) p.v ≥ z.v · σ .

We use Pn to denote the set of all perplexing streaks in Dn .

Definition A.5 (Nonperplexing Streak). Streaks in LPSn that are not in Pn are nonperplexing
streaks, denoted as Nn . That is, Nn = LPSn − Pn . A streak s ∈ LPSn is a nonperplexing streak
if, for every situational streak z ∈ SSn that s overlaps with, either |s | < |z | · σ or s .v < z.v · σ .

Theorem A.6. The minimal subset Un of LPSn is the set of streaks in skyline (Nn) ∪ Pn that
(1) are not universally dominated by any streak in Pn and (2) have length at least σ .

Proof. We prove the theorem by adapting the corresponding proof in Theorem 4.19. This is
done by proving Lemma A.7 (the if case) and Lemma A.8 (the only-if case) below.

Lemma A.7. If a streak s can serve as a historic moment of some streak in SSn or
SSm , then s is in Un .

Proof. Firstly, LPSn = Nn ∪ Pn contains all local prominent streaks, and thus
all historic moments for Dn . Then, by adapting Lemma 4.12, we see that given
that a streak is dominated by skyline (Nn), then it would not be a historic mo-
ment for either SSn or SSm . So skyline (Nn) ∪ Pn contains all historic moments.
Consequently, by adapting Corollary 4.17, we see that if a streak is universally
dominated by some streak in Pn , it cannot be the historic moment for SSn or SSm .
So Un contains all historic moments. The lemma follows. �

Lemma A.8. If a streak s is in Un , then s can serve as a historic moment of some
streak in SSn or SSm .

Proof. Same as the proof of Lemma 4.21, with adapting Dn , SSn , LPSn , Pn ,
and AS to Di

n , SSn , LPSn , Pn , and AS, respectively. �

Combining the above lemmas, Theorem A.6 follows.

Algorithms 7 and 8 present the maintenance and lookup procedures of SOIA-MS, respectively.

They are indeed a straightforward adaption of SOIA with minimal changes like computingLPSDi
n

n

for every data sequenceDi
n and using the multiple sequence version of the definitions instead (e.g.,

using Pn instead of Pn).

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:30 R. Bai et al.

A.3 Performance Study

In this section, we compare the performance of BIA-MS and SOIA-MS using multiple real data
sequences. The experimental platform and workload settings are the same as in Section 6. Among

ALGORITHM 7: SOIA-MS Maintenance

procedure Maintenance({〈vD1

n+1,v
D1

n+2 . . .v
D1

m 〉, . . . , 〈vDw

n+1,v
Dw

n+2 . . .v
Dw

m 〉})
N = ∅;

for k = 1 tom − n do

if n == 0 and k == 1 then

P1 = {(1, 1,vD1

1), (1, 1,vD2

1) . . . (1, 1,vDw

1)};
continue;

SSn+k = ∅;

for each new value vD j

n+k
do

for each streak (i,n + k − 1,v) in SSD
j

n+k−1

n+k−1
do

if vD j

n+k
≥ v then

Insert (i,n + k,v) to SSD
j

n+k

n+k
;

else if |n + k − 1 − i | ≥ σ then

Insert (i,n + k − 1,v) to Buffer B, along with its data sequence information;

if no streak in SSD
j

n+k−1

n+k−1
has value vD j

n+k
then

if all streaks in SSD
j

n+k−1

n+k−1
have value < vDi

n+k
then

Insert (n + k,n + k,vD j

n+k
) to SSD

j

n+k

n+k
;

else

Select the streak (i,n + k − 1,v) in SSD
j

n+k−1

n+k−1
with v > vD j

n+k
and is the smallest;

Extend it to be (i,n + k,vD j

n+k
);

Insert it into SSD
j

n+k

n+k
;

SSn+k = SSD1
n+k

n+k
∪ · · · ∪ SSDw

n+k

n+k
T= streaks in R-tree ∪ B;

Set PT
n+k−1

= T ∩ Pn+k−1;

Find ΔN and Pn+k from PT
n+k−1

and SSn+k ;

N = N ∪ ΔN;

Insert streaks in B into R-tree;

for each streak y in N do

Remove streak s from R-tree if y 	 s;

for each streak p in Pm do

Remove streak s from R-tree if s is universally dominated by p;

ALGORITHM 8: SOIA-MS Lookup

1: procedure Lookup(σ ′,k ′)
2: Z = Get-Top-SS(SSn , k ′);
3: for each streak z inZ do

4: Q = [|z | · σ ′,+∞] × [0, z.i) × [z.v · σ ′,+∞];

5: HM(z) = BBS(R-tree, Q), and relevant data sequence information;

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:31

Fig. 9. SOIA-MS versus BIA-MS.

the five real datasets, only D5, the ground motion data sequence from seismic stations, has multiple
sequences (from multiple stations). So we construct five real multisequence datasets as follows:

(1) MS1: KMNB, YHNB;
(2) MS2: KMNB, YHNB, YULB, TWGB;
(3) MS3: KMNB, YHNB, YULB, TWGB, TPUB, SSLB;
(4) MS4: KMNB, YHNB, YULB, TWGB, TPUB, SSLB, NACB, YOJ; and
(5) MS5: KMNB, YHNB, YULB, TWGB, TPUB, SSLB, NACB, YOJ, HK, HK0,

where each code (e.g., KMNB) above denotes one station name.

A.3.1 Overall Comparison. We first look at the overall performance of SOIA-MS and BIA-MS
when the full datasets are available. Figure 9 shows the comparison results that we evaluate them
in terms of their (1) index building time (maintenance time), (2) query time (lookup time), and
(3) index space.

A.3.2 Historic Moment Exploration with Data Update. We evaluate the performance of SOIA-
MS and BIA-MS for maintaining the index structure online. In this experiment, we regard the first
98% of a dataset as the initial dataset; i.e., each data sequence in the dataset has 98% as initial, and
the index structure of it has been built by a maintenance procedure already.

Next, we examine the performance of SOIA-MS and BIA-MS regarding a data append of the last
x% of each data sequence in the dataset, where x = 0.1, 0.5, 1, and 2. Figure 10 shows the experiment
results. While SOIA-MS spends more effort in maintaining minimality, SOIA-MS is much more
efficient when looking up the historic moments, as SOIA-MS always maintains a much smaller
index size.

The basic principle of SOIA-MS is similar to SOIA, and the impact of parameters σ and k for
SOIA-MS is also similar to SOIA. So here we don’t repeat the experiments of parameter sensitivity.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

3:32 R. Bai et al.

Fig. 10. SOIA-MS versus BIA-MS under data update.

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

Historic Moments Discovery in Sequence Data 3:33

REFERENCES

[1] Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. 2015. Parallel skyline queries. Theory of Comput-

ing Systems 57, 4 (2015), 1008–1037.

[2] Gail M. Atkinson and David M. Boore. 2006. Earthquake ground-motion prediction equations for eastern North Amer-

ica. Bulletin of the Seismological Society of America 96, 6 (2006), 2181–2205.

[3] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. 2004. Efficient distributed skylining for web information

systems. In International Conference on Extending Database Technology. Springer, 256–273.

[4] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline operator. In Proceedings of the 17th

International Conference on Data Engineering. IEEE, 421–430.

[5] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2005. Skyline with presorting: Theory and optimiza-

tions. In Intelligent Information Processing and Web Mining. Springer, 595–604.

[6] Sarah Cohen, James T. Hamilton, and Fred Turner. 2011. Computational journalism. Communications of the ACM 54,

10 (October 2011), 66–71. DOI:https://doi.org/10.1145/2001269.2001288

[7] Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li, Jun Yang, and Cong Yu. 2014. Data in, fact

out: Automated monitoring of facts by FactWatcher. In Proceedings of the 40th International Conference on Very Large

Data Bases. VLDB Endowment.

[8] Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, and Yong Yu. 2011. Prominent streak discovery in sequence data.

In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

1280–1288.

[9] Christos Kalyvas and Theodoros Tzouramanis. 2017. A survey of skyline query processing. arXiv preprint

arXiv:1704.01788 (2017).

[10] Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002. Shooting stars in the sky: An online algorithm for skyline

queries. In Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment, 275–286.

[11] Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh. 2016. Efficient computation of group skyline queries on MapRe-

duce. GSTF Journal on Computing (JoC) 5, 1 (2016), 69–76.

[12] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2003. An optimal and progressive algorithm for skyline

queries. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. ACM, 467–478.

[13] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline computation in database sys-

tems. ACM Transactions on Database Systems 30, 1 (March 2005), 41–82. DOI:https://doi.org/10.1145/1061318.1061320

[14] Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, and Cong Yu. 2014. Incremental discovery of prominent

situational facts. In Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE.

[15] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. 2001. Efficient Progressive Skyline Computation. In Proceedings of

the 27th International Conference on Very Large Data Bases (VLDB’01), Peter M. G. Apers, Paolo Atzeni, Stefano Ceri,

Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard Thomas Snodgrass (Eds.). Morgan Kaufmann Publishers

Inc., San Francisco, CA, 301–310.

[16] Wikipedia. 2017. 2016 Taiwan earthquake — Wikipedia, The Free Encyclopedia. Retrieved from https://en.wikipedia.

org/w/index.php?title=2016_Taiwan_earthquake&oldid=766638710 (accessed February 27, 2017).

[17] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2012. On one of the few objects. In Proceedings of

the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1487–1495.

[18] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and Qing Zhang. 2005. Efficient computation of the

skyline cube. In Proceedings of the 31st International Conference on Very Large Data Bases. VLDB Endowment.

[19] Gensheng Zhang, Xiao Jiang, Ping Luo, Min Wang, and Chengkai Li. 2014. Discovering general prominent streaks in

sequence data. ACM Transactions on Knowledge Discovery from Data 8, 2, Article 9 (June 2014), 37 pages. DOI:https:

//doi.org/10.1145/2601439

Received June 2017; revised August 2018; accepted September 2018

ACM Transactions on Database Systems, Vol. 44, No. 1, Article 3. Publication date: January 2019.

https://doi.org/10.1145/2001269.2001288
https://doi.org/10.1145/1061318.1061320
https://en.wikipedia.org/w/index.php?title=2016_Taiwan_earthquake&oldid=766638710
https://en.wikipedia.org/w/index.php?title=2016_Taiwan_earthquake&oldid=766638710
https://doi.org/10.1145/2601439
https://doi.org/10.1145/2601439

