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Abstract

This paper presents the design, theory and implementation o
GLoVES!, a domain-specific language that allows users to specify
the provenance (the derivation history starting from thigins),
syntax and semantic properties of collections of disteHudata
sources. In particular, @®VES specifications indicatevhere to
locate desired dathpwto obtain it whento get it or to give up try-
ing, andwhat format it will be in on arrival. The GOVES system
compiles such specification into a suite of data-procedsiolg in-
cluding an archiver, a provenance tracking system, a dsg¢dbad-
ing tool, an alert system, an RSS feed generator and a delguggi
tool. In addition, the system generates description-§ipditiraries

so that developers can create their own application®©\Ves also
provides a generic infrastructure so that advanced userbuid
new tools applicable to any data source with BOBES descrip-
tion. We show how GoVES may be used to specify data sources
from two domains: CoMon, a monitoring system for Planetkab’
800+ nodes, and Arrakis, a monitoring system for an AT&T web
hosting service. We show experimentally that our systenscafe

to distributed systems the size of CoMon. Finally, we prewvacde-
notational semantics for ®VES and use this semantics to prove
two important theorems. The first shows that our denotatisea
mantics respects the typing rules for the language, whilséitond
demonstrates that our system correctly maintains the pemae.

Categories and Subject DescriptorsD.3.2 [Programming lan-
guage§ Data-flow languages

General Terms Languages

1. Introduction

One of the primary tasks in developing a distributed systekeep-

ing it running smoothly over long periods of time. Consedlyen
well-designed distributed systems include a subsysteipores-

ble for monitoring the health, security and performance®oton-
stituent parts. CoMon [24], designed to monitor Planetl28],[is

an illustrative example. CoMon operates by attempting tieya

a log file from each of 800+ PlanetLab nodes every five minutes.
When all is well (which it never is) each node responds with an
ASCII data file in mail-header format containing the nodess-k
nel version, its uptime, its memory usage, the ID of the usén w

1We call the system GovEs because it helps users get their hands on
things that are difficult to handle.
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[ NameUse | Properties |
CoMon [24] Multiple data sets
PlanetLab host Archiving every 5 minutes
monitoring From evolving set of 800+ nodes

CoralCDN [13]
Log files from
CDN monitoring

Single Format
Periodic archiving
From evolving set of 250+ hosts

AT&T Arrakis Execute programs remotely to
Website host collect data
monitoring Varied fetch frequencies

AT&T Regulus
Network monitoring

Diverse data sources
Archiving for future analysis
Per minute, hour, and day fetche|

[y

AT&T Altair Thousands of data sources
Billing auditing Archiving and error analysis
GO DB [1] Multiple Formats
Gene function info. | Uploads daily, weekly, monthly
BioGrid [27] XML and Tab-separated Formats

Curated gene and
protein data

multiple data sets.= 50MB each
Monthly data releases

Figure 1. Example distributed ad hoc data sources.

the greatest CPU utilizatioetc. CoMon archives this data in com-
pressed form and processes the information for display doe?{
Lab users. CoMon also tracks various networking problenasnm
tains lists of “problem nodes” and supports on-going timeexed
queries on the data. These features make CoMon an invalieble
source for users who need to monitor the health and perfarenan
of their PlanetLab applications or experiments.

Almost all distributed systems should have similar motiitgr
infrastructure. However, the implementors of each newibisted
system currently have to build “one-off” monitoring toolshich
takes an enormous amount of time and expertise to do wellbA su
stantial part of the difficulty comes from the diversity, Gtyaand
quantity of data these systems must handle. In additiongimgn-
tors cannot ignore errors: they must properly handle nétwoors,
partial disconnects and corrupted data. They also cannotégper-
formance issues: data must be fetched before it vanishesrie
mote sites and it must be archived efficiently in ways that db n
burn out hard drives by causing them to overheat. Last bueast,
new monitoring systems must interact with legacy devicegady
software and legacy data, often preventing implementers fis-
ing robust off-the-shelf data management tools built fandard
formats like XML and RSS.

Systems researchers are not alone in their struggles wsth di
tributed collections of ad hoc data sources. Similar proislappear
in the natural and social sciences, including biology, ps/and
economics. For example, systems such as BioPixie [21]nG20]
and Golem [26], built by computational biologists at Pritore
routinely obtain data from a number of sources scatteredsacr
the net. Often, the data is archived and later analyzed oedrfior
information about gene structure and regulation. Figurerirsa-
rizes selected examples of distributed ad hoc data sources.



We have developed a new domain-specific language and systendent features of Goves and to compensate for the lack of built-
called Q.ovEsto facilitate the creation, maintenance and evolution in generic programming support in @Q@&_c . Still, the reward for
of tools for processing ad hoc data from distributed sourtes building generic tools is high: as more and more such toe! faiit,
language allows developers to describe the provenanceyssnd the life of the off-the-shelf user becomes easier and edsused
semantics of data sources they wish to monitor, including: this infrastructure to build the off-the-shelf tools deked earlier.

To guide the design and implementation of &ES, we have

e Where the data is located. The data may be in a file on the developed an idealized, first-order calculus and assabigpe sys-
current machine (perhaps written by another process),ma€so  tem to model its core elements. We have equipped this calevith
remote location, or at a collection of locations. a denotational semantics that specifies for each data sdesceip-

e Whento get the data. The data may need to be fetched just oncetion the set of (meta-data, data) pairs that it should prediite

(right now!) or according to some repeating schedule. semantics allows users to calculate and reason about thehdst

« How to obtain it. The data may be accessible through standard they should be receiving. We have proven the type systemdsoun
protocols such asttp orftp or it may be created via a local  With respect to the semantics. Moreover, we have used tharsem
or remote computation. tics to provedependency correctnesa key theorem inspired by

e What preprocessingthe system should do when the data ar- earlier work on provenance in databases by Cheney.[8]. This

rives. The data may be compressed or encrypted. Privacy Cor]_theorem guarantees the correct provenance meta-datasaisd

) : N ; with every data item.
siderations may require the data be anonymized. In addition to being of theoretical interest, the calculos és

e What for.mat the data source arrives in. The data may be in meta-theory have served as a guide for our implementatioasin
ASCII, binary, or EBCDIC. It may be tab- or comma-separated ctyre. In particular, the compilation strategy for ourface-level
or it may be in XML. It may be in the kind of non-standard  |3nguage was influenced by observations about how higlel-le
format thatPADS[12, 16] was designed to describe or for which  consiructs could be compiled into combinators from ourdak
the user has a well-typed parser. We also reorganized the way earlier versions of our system pr

cessed and propagated provenance meta-data in order tdhebey

The GLoVESs system compiles these high-level specifications principle of dependency correctness.

into a collection of programming libraries and end-to-eoal$ for
distributed systems monitoring. Our current tool suitdudes a
number of useful artifacts, inspired by the needs we havergbd

Contributions. The paper makes the following contributions:

in a variety of ad hoc monitoring systems including an arehiv
provenance tracking system, database loader and others.

The GLovEssystem can generate all of these tools from declar-
ative descriptions and tool configuration specificationsus for
common tasks, users can manage distributed data sourcgly sim
by writing high-level declarative specifications. There ealatively
few concepts to learn, no complex interfaces and no trickiebo
plate to master to initialize the system or thread togetbel I-
braries. Because there is so little “programming” involvee re-
fer to the act of writing simple specifications and using geéned
tools as theff-the-shelinode of use.

To provide extensibility, GOVES supports two other modes of
use. The second mode is for thimgle-minded implementewho
needs to build a new application forspecificcollection of dis-
tributed data sources. Such users need more than the rogiétti
of tools. To meet this need, the system provides supportréate
ing new tools by generating libraries for fetching data,garsing
and printing, for performing type-safe data traversal, mndtream
processing using classic functional programming paradigoch
asmap, fold anditerate . These generated libraries make it
straightforward to create custom tools specific to parsicdata
sources. The cost of this flexibility is a steeper learningyebe-
cause the programmer must learn a variety of interface<tfeumal
programmers may find these interfaces intuitive, but coatmral
scientists may prefer to stick with off-the-shelf uses.

The third mode is for thegeneric programmerGeneric pro-
grammers may observe that they (or their colleagues) nepdrto
form some task over and over again on different data sethieRat
than writing a program specific to a particular data set, ey
a separate set of interfaces supplied by theo@&s system to

Outline.
use throughout the paper (Section 2), show how to descréseth
data sources in GOVES (Section 3), describe the generated tool in-
frastructure and its modes of use (Section 4), define a diéomah
semantics and prove our key correctness properties (Bdgtidis-
cuss the implementation and evaluate its performancei{Bes},
describe related work (Section 7) and conclude (Section 8).

¢ |t describes the design of a domain-specific language farispe
fying provenance, syntax and semantic properties of tisted
ad hoc data sources.

e |t provides a formal denotational semantics for our languag
and proves the key properties of Type Soundness and Depen-
dency Correctness.

o |t describes the architecture of the system and how it esable
multiple modes of use.

¢ |t demonstrates the practicality of our architecture asdrit-
plementation by showing the infrastructure will scale tadia
systems the size of PlanetLab.

Inthe rest of the paper, we describe the examples we will

2. Running Examples

The CoMon [24] system, developed at Princeton, monitors the
health and status of PlanetLab [25] by attempting to fetd¢h fitam
each of PlanetLab’s 800+ nodes every 5 minutes. This datgesan
from the node uptime to memory usage to kernel version. CoMon
displays the data to users in tabular form and allows thenete p
form a number of simple queries to find, for instance, lighigded
nodes, nodes with drifting clocks or nodes with little remiag disk
space. CoMon also monitors nodes for various problems amerge

write a single generic program to complete the task. For exam ates reports of deviant machines or user programs. Firzslyjon
ple, the Round Robin Database (RRD) loader is generic becaus archives the data so PlanetLab users can perform custolysaral

it is possible to load data from any specified source into tR®OR
tool [22] without additional “programming.” The genericgqgram-

of historical data.

AT&T provides a web hosting service. The infrastructure for

ming mode is the most difficult to use as it involves learning a this service includes a variety of hardware components ssch

relatively complex set of interfaces for encoding Geneeali Al-
gebraic Datatypes (GADTS) [32] and Higher-Order Abstragat-S
tax (HOAS). These complexities are required to encode therte

routers, firewalls, load balancing machines, actual welveser
and databases, replicated and geographically distribitedce,
a given web site may be distributed across a variety of mashin



| et sites =

"http://pll.csl.utoronto.ca:3121";

"http://plab1-c703.uibk.ac.at:3121";

"http://planet-labl.cs.princeton.edu:3121"
]

f eed simple_comon

base {|
sources = all sites;
schedul e = every 5 min, starting now,
timeout 60.0 sec;
f or mat = Comon_format.Source;
[}

Figure 2. Simple CoMon feedgimple _comon.fml ).

feed comon_1 =

base {|
sources = any sites;
schedul e = every 5 min, lasting 2 hours;
f or mat = Comon_format.Source;

[}

Figure 3. Description fragment for data from one of many sites
(sites.fml ).

running a variety of operating systems in a variety of lowadi
When a customer signs up for AT&T’s hosting service, part of
the contract specifies what kinds of monitoring AT&T will pide
for the site. The Arrakis infrastructure provides this ntoring ser-
vice. It tracks a variety of resources using a wide array cisnees,
including network bandwidth, packet loss, cpu utilizafidisk uti-
lization, memory usage, load averagets, For each machine in the
hosting service and for each such resource, the monitoyistg s
archives the values at regular intervals and issues aléns \the
values exceed resource- and contract-specific levels. lEhéva is
used to track long-term behavior of the service, allowingieeers
to determine when more resources need to be provisionedxfor
ample, adding cpus, memory or disk space. It also allowsheegs
to understand the “normal” behavior for a particular sitéchimay
include daily or seasonal cycles.

3. GLOVES: An Informal Introduction

(* Ocaml helper values and functions
| et config_locations
["http://summer.cs.princeton.edu/status/ \

tabulator.cgi?table=slices/ \
table_princeton_comon&format=nameonly"]

*)

*)

(* Feed of nodes to query

feed nodes =
base {|
sources = all config_locations;
schedul e = every 5 min;
f or mat = Nodelist.Source;
[}

| et makeURL (Nodelist.Data x) =
“http://* = x ~ ":3121"

I et old_locs = ref []
| et current list_opt =
mat ch list_opt with
Some | -> old_locs = I; |
| None  -> lold_locs
(* Dependent CoMon feed of node statistics *)
feed comon =
f or each nodelist i n nodes
create
base {|
sources = all (List.map makeURL
(List.filter Nodelist.is_node
(current (value nodelist))));
schedul e = once, timeout 60.0 sec;
f or mat = Comon_format.Source;
[}
Figure 4. Node location feed drives data collection

(comon.fml ).

constraints. While it is not strictly necessary for &/Es program-
mers to usePADS/ML specifications in their descriptions, and the
key ideas in this paper can be understood without a deep knowl
edge ofPADS/ML, the two languages have been designed to fit
together elegantly. Moreover, several of our generateld s@loit
the common underlying infrastructure to enable useful datdy-
ses and transformations over feeds whose formats are spkbifi
PADS/ML descriptions.

A simple variation of our first description appears in Fig8rén

The GLovEslanguage allows users to describe streams of data and contrast tasimple_comon , which returns data frorall sites per

meta-data that we refer to &seds To introduce the central features
of the language, we work through a series of examples draovn fr
the CoMon and Arrakis monitoring systems.

3.1 CoMon Feeds

Figure 2 presents a simple CoMon statistics feed. This ger
specifies thaimple_comon feed using thdase feed construc-
tor. Thesour ces field indicates that data for the feed comes from
al | of the locations listed isites . Theschedul e field speci-
fies that relevant data is available from each source evesyiin-
utes, starting immediately. When trying to fetch such dium sys-
tem may occasionally fail, either because a remote machit@vn
or because of network problems. To manage such errors, llee-sc
ule specifies that the system should try to collect the data fach
source for 60 seconds. If the data does not arrive withinfiat
dow, the system should give up.

The last field in a base feed constructor is frer mat field,
which specifies the syntax of the fetched data by supplying a
parser for it. In this caseComon_format.Source is actu-
ally a parser generated from raDS/ML [16] specification file
(comon_format.pml ), which we have omitted because of space

time slice,comon_1 returns data from jusinesite per time slice.
This difference between the two is specified using dng con-
structor instead of thal | . This feature is particularly useful when
monitoring the behavior of replicated systems, such asetluss
ing state machine replication, consensus protocols, ar legsely-
coupled ones such as Distributed Hash Tables (DHTS) [Shdad
systems, the same data will be available from any of the fomet
ing nodes, so receiving results from the first available risdeffi-
cient. The schedule fmomon_1 indicates the system should fetch
data every five minutes for two hours, using thsting  field

to indicate the duration of the feed. It omits th&rting and
timeout specifications, causing the system to use default settings
for the start time and the timeout window.

So far, our examples have hard-coded the set of locations fro
which to gather data. In reality, however, the CoMon systesidn
Internet-addressable configuration file that containg aflisosts to
be queried, one per non-comment line. This list is peridbjiag-
dated to reflect the set of active nodes in PlanetLab. Figspeed-
ifies a version of theomon feed that depends upon this configu-
ration information. To do so, the description includes axilary
feed callechodes that describes the configuration information: it



pt ype nodeitem =
Comment of '#  * pstring_SE(peor)
| Data of pstring_SE(peor)

| et is_node item =
mat ch item with
Data _ -> true
| _ -> false

pt ype source =
nodeitem precord plist (No_sep, No_term)

Figure 5. PADS/ML description fiodelist.pml ) for CoMon
configs, with one host name per uncommented line.

is available from theconfig_location , it should be fetched
every five minutes, and its format is described byrhes/ML de-

scriptionsource given in the filenodelist.pmi , which ap-

pears in Figure 5.

The pPADS/ML description in Figure 5 specifies thaburce
is a list (plist ) of new-line terminated recordprecord ) each
containing anodeitem . In turn, anodeitem is either a'#’
character followed by a comment string, which should be ¢dgg
with the Comment constructor, or a host name, which should be
tagged adata . The description also defines a helper function
is_node , which returns true if the data item in question is a
host name rather than a comment. Given this specificatian, th
nodes feed logically yields a list of host names and comments
every five minutes. In fact, because of the possibility oberrthe
feed actually delivers bst optionevery five minutesSomeif the
list is populated with datad\one if the data was unavailable at the
given time-slice. Furthermore, to record provenance mftdron,
each element in the feed is actually a pair of meta-data amd th
payload value.

Given thenodes specification, we can define tkemon feed
using the notatiorf or each nodelist i n nodes create

. Inthis declaration, each elementrafdes is bound in turn to
the variablenodelist ~ for use in generating the new feed declared
in“... " The final result of thef or each is the union of all such
newly generated feeds. Both the payload datdthe provenance
meta-data ohodelist may be used in creating the dependent
feed. In this example, we use the functiealue to select only
the payload portion, ignoring the meta-data. The compleangn
functionmeta provides access to the provenance information.

To complete the construction of theomon feed, a small
amount of functional programming allows the user to manage e
rors and strip out comment fields. Any such simple transftiona
may be written directly in O@wmL, the host language into which
we have embedded . ®VES. In particular, thecurrent  function
checks if thenodelist ~ value isSome |, in which case it caches
| before returning it as a result. Otherwise, if timdelist ~ value
is None (indicating an error), the most recently cached list of rode
is used instead. The rest of tkeur ces specification filters out

A second such source is a list of authentication informafmm
logging into the machines. These two data sources havedtiffe
formats, locations, and update schedules, but system &irators
want to keep a combined archive of the administrative infiom
present in these sourcessifes_mime is a feed description of
the profile information andites_keyscan_mime  is a feed of
authentication information, then the declaration

feed sites =
Locale of sites_mime
| Keyscan of sites_keyscan_mime

creates a feed with elements drawn from each of the two feeds.
The constructord.ocale and Keyscan tag each item in the
compound feed to indicate its source.

3.2 Arrakis Example

We now shift to an example drawn from AT&T'’s Arrakis project.
Like the earlier CoMon example, thetats feed in Figure 6
monitors a collection of machines described in a configandiie.
Before we discuss thetats feed itself, we first explain some
auxiliary feeds that we use in its definition.

The raw_hostLists description has the same form as the
nodes feed we saw earlier, except it draws the data from a local
file once a day. We usefaed comprehensiao define a clean ver-
sion of the feedhost_lists . In the comprehension, the built-in
predicatds_good verifies that no errors occurred in fetching the
current list of machinesl , as would be expected for a local file.
The functionget_hosts takeshl and uses the built-in function
get_good to extract the payload data from the provenance and
error infrastructure, an operation that is guaranteed ¢oesed be-
cause of thés_good guard. The functiomyet_hosts then se-
lects the non-comment entries and unwraps them to produse a |
of unadorned host names.

We next define a feed generatgen_stats  that yields an
integrated feed of performance statistics for each suppliast.
When given a hosh, gen_stats  creates an every-five-minute
schedule lasting twenty-four hours with a one minute tintetiu
uses this schedule to describe a compound feed that paitsase
feeds: the first uses the Unix commapishg to collect network
statistics about the route towhile the second performs a remote
shell invocation usingsh to gather statistics about how long the
machine has been up. Both of these feeds uspttbe constructor
in the sour ces field to compute the data on the fly, rather than
reading it from a file. The argument tor oc is a string that
the system executes in a freshly constructed shell. Thengair
constructor for feeds takes a pair of feeds and returns aofgeadrs,
with elements sharing the same scheduled fetch-time beingg
This semantics produces a compound feed that for each tosise
a pair of its ping and uptime statistics, conveniently gingghe
information for each host. Of course, the full Arrakis moniihg
application uses many more tools than jpstg anduptime to
probe remote machines so the full feed description has mamg m

comment fields and converts the host names to URLs with the re- components than this simplified version.

quired port using the auxiliary functionakeURL

With this specification, we expect to get data from all thévact
machines listed in the configuration file every five minutee W
further expect the system to notices changes in the configara
file within five minutes.

The previous examples all showcased feeds containing kesing
type of data. GOVES also provides a datatype mechanism so we
may construct compound feeds containing data of differertss

Finally, we define the feedtats . The most interesting piece
of this declaration is théist feed comprehensipmiven in square
brackets, that we use to generate a feed of lists. Given alisbst
elementhl , the right-hand side of the comprehension uses the
value function to extract the payload from the meta-data and then
considers each hoktfrom the resulting list in turn. The left-hand
side of the comprehension uses gen_stats feed generator to
construct a feed of the statistics tor The list feed comprehension

As an example of where such a construct is useful, the CoMon then takes this collection of statistics feeds and contbem into

system includes a number of administrative data sourcessQch
source is a collection of node profiles, collecting the danmame,
IP address, physical locatioetc, for each node in the cluster.

a single feed, where each entry is a list of the statisticstter
machines irhl at a particular scheduled fetch-time. We call each
such entry asnapshotof the system. The resulting feed makes



| et config_locations =
[(*file:///arrakis/config/machine_list")];

f eed raw_hostLists

base {|

sources = all config_locations;
schedul e = every 24 hours;

f or mat = Hosts.Source; [}

| et get_host (Hosts.Data h) = h
| et get _hosts hl =

List.map get_host

(List.filter Hosts.is_node hl)

f eed host_lists =
{| get_hosts (get_good hl) |
hl <- raw_hostLists, is_good hl |}

feed gen_stats (string h) =
let s = every 5 mins,
timeout 1 min,

lasting 24 hours in

base {|
sources = proc ("ping -c 1 "~ h);
f or mat = Ping.Source;
schedule = s; [},

base {|
sources = proc ("ssh "~ h = " uptime");
f or mat = Uptime.Source;
schedule = s; |}

)

feed stats =
foreach hl in host_lists create

[ gen_stats (h) | h <- value hl ]

Figure 6. Simplified version of Arrakis feedafrakis.fml ).

it easy for down-stream users to perform actions over smapsh
relieving them of the burden of having to implement their own
multi-way synchronization. Given the list feed comprehensthe
foreach. .. create construct generates a feed of snapshots
from the feed of host lists.

4. Working with Feeds
4.1 The “Off the Shelf” User

The GLoVES system provides a suite of “off-the-shelf” tools to
help users cope with standard data administration neetk. Vxfit-
ing a GLovEsdescription, users can customize these tools by writ-
ing simpleconfiguration filessuch as shown in Figure 7. Each con-
figuration file includes a feed declaration header and a seguef
tool specifications. The header specifies the path to the deed
scription file comon.fml ) and the name of the feed to be created
(comon). Each tool specification starts with the keywtodl  fol-
lowed by the name of the took(g, provtrack  andrss ). The
body of each tool specification lists name-value pairs, @hei-
ues are O@ML expressions. Some attributes are optional, and the
compiler fills in a default value for every omitted attribu@& oveEs
compiles a configuration file into an G®L program that creates
and archives the specified feed, configures the specifies, taontl
applies them to the feed in parallel. In the following paegairs, we
describe some of the tools we have implemented.

Archiver. The archiver saves the data fetched by a feed in
the local file system, organizing it according to the struetaf
the feed, with one directory per base feed. It places a aatalo
each directory documenting the source of the data, its sibed

feed comon.fml/comon

t ool provtrack
{
minalert = true; maxalert = true;
lesssig = 3; moresig = 3;
slicesize = 10;
slicefile = "slice.acc";
totalfile = "total.acc";
}
t ool rss
{
title = "CoMon Memory RSS";
link = "http://www.comon.org/memory-rss.xml";
desc = "CoMon Memory Usage Information”;
path = "<top>.[?].Mem_info";
}

Figure 7. Example tool configuration filecbmon.tc ).

Summary of network transmission errors

ErrCode: 1
ErrCode: 5
ErrCode: 6

ErrMsg: Misc HTTP error Count: 12
ErrMsg: Bad message Count: 27
ErrMsg: No reply Count: 2

Top 10 locations with most network errors

Loc: http://planetlab01.cnds.unibe.ch:3121 Count: 2
Loc: http://pepper.planetlab.cs.umd.edu:3121 Count: 2
.. omitted ...

Figure 8. Fragment of provenance tracker outptaifion.acc ).

arrival time and the actual arrival time. The archiver wgtionally
compress files.

Profiler. The profiler monitors performance, reporting through-
put, average network latency and average system latenoégsao
period of time. Users can specify in the configuration wheprts
file and for how long. We used this tool to produce some of the
experimental results in Section 6.

Provenance trackerThe provenance tracker maintains statisti-
cal profiles for feeds. These include error rates, most comeno
rors and their source locations and times. For numeric dhéa,
tracker keeps aggregates such as averages, max/min valdes a
standard deviations. For other dagag|, strings, URLs and IP ad-
dresses), it keeps the frequency of the dpnost common values.
The user can configure the tracker to profile entire feeds e,on
or incrementally. The latter is useful for infinite feedscaese it
allows users to continuously monitor feeds and compare thei
rent behavior with historical statistics. The tracker catpat either
plain text or XML. Figure 8 shows portions of provenance keac
output for the CoMon example.

Alerter. The alerter allows users to register boolean functions
which generate notifications when they evaluate to falseeed f
items. The tool appends these notifications to a file, whichbm
piped into other tools. The system provides a library of canm
alerters such as exceeding max/min thresholds or deviétimy
the norm (.e., trigger an alert when a selected value strays more
than k standard deviations from its historical value). Users can
supply their own conditions by giving arbitrary @@L predicates
in the configuration file.

Database loaderThis tool allows users to load numerical data
from a feed into an RRD. Users specify a function to transform
feed items into numeric values and RRD parameters such as dat
source type and sampling rate. RRD indexes the data by larriva
time. It periodically discards old data to make space for.rve
tool supports time-indexed queries and graphing of histbdata.



| et (sample, ) Feed. split_every 600. comon in
| et select_load = function
Some {Comon_format.Source.
loads = (_, load::_)} -> Some load
| None -> None in
| et loads Feed. map select_load sample in
| et load_thl = Feed. f ol d update empty_tbl loads

in print_top 10 load_tbl

Figure 9. Code fragment finding least loaded PlanetLab nodes.

| et update_m tbl adata =
| et meta = Feed.get_meta adata
| et data = Feed.get_contents adata
mat ch meta, data wth
(h, Some basemeta), Some load ->
| et location Meta.get_link basemeta
update tbl (location, data)
| _ -> thl (* no change to thl *) in
| et load_thl = Feed. f ol d_m update_m empty_tbl loads
i n print_top_with_loc 10 load_tbl

in

in

Figure 10. Revised code fragment with provenance meta-data.

RSS feed generatof.he RSS feed generator convertsie0SES
feed to an RSS feed. Users specify the title, link (sourceg¢cdp-
tion, update schedule and contents of the RSS feed. Conecit s
fications are written in the path expression language.

4.2 The Single-Minded Implementer

In addition to the off-the-shelf tools, ®VES includes an API for
manipulating generated feeds. The API provides users witea
abstraction representing a potentially infinite series lefments.
This abstraction is related to that of a lazy list, but exteitdvith

support for provenance information. Therefore, we modelféed
API on the list APIs of functional languages but provide twedls
of abstraction. One level allows users to manipulate feldsainy
lazy list of data elements (ignoring where they come front)ilev
the other exposes the meta-data as well.

For example, consider PlanetLab users looking for a ddsirab
set of nodes on which to run their experiments. They can use th
API generated from the CoMon description to monitor PlanbtL
for a few minutes to find the least loaded nodes. Figure 9 shows
an OGamL code fragment that collects the nodes with the low-
est average loads over 10 minutes and then prints them. We omi
the details for maintaining the table of top values, as itrthago-
nal to our discussion. First, we uBeed.split_every to split
the feed when 600 seconds (10 minutes) have elapsed. Then, wi
useFeed.map to project the load data from the CoMon elements.
Finally, we useFeed.fold  to collect the data into a table. Func-
tion update adds an entry to the table, aedhpty tbl is the
initially empty table. After filling the tableprint_top 10 pro-
cesses each node’s loads and prints the ten lowest avesdse lo

However, if we want a report of the names of the nodes that

the off-the-shelf user, but gains a correspondingly higlegree of
flexibility and can still write relatively concise programs

4.3 The Generic Programmer

Occasionally, users might want to develop functions thatroa-
nipulateany feed. Often, such functions can be written parametri-
cally in the type of the feed element, much like the feed lipra
functions discussed above. However, the behavior of maeg fe
functions depends on the structure of the feed and its elesmen
Such functions can be viewed agerpretationsof feed descrip-
tions. To support their development, we provide a framevfork
writing feed interpreters.

Two core examples of feed interpretation are the feed areato
and the provenance tracker. The behavior of these tools)depn
the structure of the feed. Functions like these requirefag ia run-
time representation of the feed, complete with the detailsefeed
description that they represent. The obvious choice foremmt-
ing feed descriptions in O&vL is a datatype. However, standard
OCaML datatypes are not sufficiently typeful to express the types
of many generic feed functions. For example, the feed aweati
function has the typefeed_create : 'a prefeed ->
'a feed where the typ€a prefeed is an AST of a feed
description and feed elements have type. This limitation of
datatypes has been widely discussed in the literature, arid v
ous solutions have been proposed [11, 31, 32]. We have cliosen
represent our AST using a variant of the Mogensen-Scottcenco
ing [18, 30] which exploits higher-order abstract syntaxetzode
variable binding in feed descriptions. This implementattrategy
exploits O:ML’'s module system to type the encodingsAp.
Our earlier work orPADS/ML [11] exploited a similar strategy, but
there we only sought to encode the @@ type of the data, not the
entirePADS/ML description, which is where higher-order abstract
syntax becomes useful.

The result of our work is that developers can interpret feed-
description representations by case analysis on theictatey
while still achieving the desired static guarantees. Meegowe
have successfully used this framework to deveddipof the tools
presented in this paper, including the feed creator. Thepdem
only infers appropriate type declarations from feed desioms
and compiles the feed syntax into our representations. kenve
as one might expect, interfaces using higher-order alistyatax
and Mogensen-Scott encodings are one step more complex than
those involving the more familiar maps and folds. Consetiyen
the learning curve for the generic programmer is one stegpste
than the curve for the single-minded implementor, and two (o

eperhaps ten) steps steeper than the curve for the off-tlétsder.

5. GLOVES Semantics

Developing a formal semantics forLGVES has been an integral
part of our language design process. The semantics helpsigom
nicate our ideas precisely and explore the nuances of ddsign

have the lowest average loads, the above solution is not goodsions. Moreover, the semantics provides users with a taelason

enough because the CoMon data format does not include tle nod
location in the data. In such situations, provenance mata-i$
essential. We therefore replace the last two lines of Fiungth
the code in Figure 10 that exploits the meta-data. First, ive g
theupdate_m (update with meta) function that uses meta-data to
associate a location with every load in the table. It relinstize
Meta module, which GOVES provides to facilitate management
of meta-data. Next, we show a call to the meta-awareffitt m ,
which passes the payload and its meta-data to the foldingitum
Last, the callprint_top_with_loc 10 prints the ten lowest
average loads and their locations.

It should be clear from these examples that the single-ndinde
implementer has a number of new interfaces to master reliv

about the feeds resulting from.@vEsdescriptions, including sub-
tleties related to synchronization, timeouts, errors annggnance.
To express locations, times, schedules and constrairt$edal
calculus depends upontest languagewhich we take to be the
simply-typed lambda calculus. Figure 11 presents its symthich
includes a collection of constants to simplify the semanttrings
(w), times ¢) and locations 4). We assume times may be added
and compared and we leb represent a time later than all others.
We assume that the set of locations includes the constafkere,
indicating the associated data was computed rather thahefgt
We treat schedules as sets of times and use the notatior to
refer to a timef drawn from the set. We use a similar notation to
refer to elements of a list. The host language also inclugeslard



(host-language base types)
b ::= bool | string | time | loc

(host-language types)
T = b|Toption| kT2 | T+ 12| Tlist| Tset| 1 — T2

(host-language values)

v o=
false | true booleans
| wlt]l strings, times, locations
| None | Some v optional values
| (v1,v2) pairs
| inlw|inrov sum values
| [o1,...,vn] list values
| {vi,...,vn}  setvalues
| Az:Tee function values

(host-language expressions)
e =
x variables
| v data values
| None | Some e option expressions
[ more typed lambda expressions

Figure 11. Host Language Syntax.

(feed payload types)
o =T | Toption| o1 x02]| 01+ 02]0 list

(core feeds)

{src=¢ey; source specification
sched = eg; schedule specification
win = e3; time-out window specification
PP = €4; pre-processor

format = e5; }  format specification

(feeds)

F o=
all C all sources

| anyC one of multiple sources
0 empty feed
One(ew, €t) singleton feed
SchedF(e) schedule to feed
FiLUF, union feed

| F1+ F sum feed
(F1, F») pair feed
[F |z« €] list comprehension feed
{|F2 |z — F1|}  feed comprehension
filter F with e filter feed

| letzx=einF letfeed

Figure 12. Feed Language Syntax.

structured types such as options, pairs, sums, lists ancdidms.
We omit the typing annotations from lambda expressions wineyn
can be reconstructed from the context and we use patteriingtc
where conveniente(g.,\(z, y).e is a function over pairs).

5.1 Feed Syntax and Typing

The abstract syntax for our feed calculus and its typingsrafgpear
in Figures 12 and 13, respectively. The feed typing judgninest
the formI' + F : o feed, which means that in the contekt
mapping variables to host language type#’ is a feed obr values.

The core typing judgment, which has the foim- C' : o core,
conveys the same information for core feeds.

Intuitively, a feed carrying values of typeis a sequence of pay-
load values of typer. However, to record provenance information,
we pair each payload value with meta-data, so a feed is &ctal
sequence of (meta-data, payload) pairs. At the top-levelardata
consists of a triple of the scheduled time for the payloadepen-
dency sethat records the origin and scheduled time of any data
that contributed to the payload, and a nested meta-dataxftedde
form depends upon the type of the payload.

Formally, we letm range over top-level meta-datds range
over dependency sets, andange over “nested” meta-data:

m == (t,ds,n) top-level meta-data

ds == {(t1,01),...,(tn,¢n)} dependency set

n = (t,¢,None) base meta-data (timeout)
| (¢,¢,Some t) base meta-data (success)
| (n1,n2) pair meta-data
| inln sum meta-data
| inrn sum meta-data
| [, ] list meta-data

Given meta-datan, we writem.t, m.ds andm.nest for the first,
second and third projections (respectivelyyof Base meta-data is
a triple of the scheduled time, the location of origin and ptiamal
arrival time whereNone indicates the data did not arrive in time.

As shown in Figure 12, we define the feed payload type
terms of host language types, stratified to facilitate thaopof
semantic soundness. We use the funciiosta(o) to define the
type of meta-data associated with payload of type

meta(o) time * ds * nest(o)
ds (time * loc) set
nest(r) time * loc * (time option)

nest(7 option)

(

( time * loc * (time option)
nest(o * 02)

(

(

nest(o1) * nest(o2)
nest(o1) + nest(o2)
nest(o) list

nest(o1 + 02)
nest(o list)

Feed typing depends upon a standard judgment for typingdamb
calculus expression§: - e : 7.

Having covered these preliminaries, we can now discuss the
syntax and typing for each of the feed constructs in Figure 12
Core feeds express the structure of base feeds, descritg@rdata
sources €rc), schedule gched), window (win), preprocessing
function (pp) and file format format). The source field describes
the set of locations from which to fetch data. It may contaeymlo-
locations that model theroc form found in the implementation.
Instead of having timeouts specified as part of scheduleseakd
in the surface language, the calculus separates these tweis
into distinct fields, which simplifies the semantics. If agnit spec-
ified to arrive at timet by schedulee, fails to arrive within the
window es, the feed pretends it received the vaNene. Other-
wise, it wraps the received data string in an option. As altethe
preprocessoes maps astring option to astring option, where a
result of None indicates either a network or preprocessing error.
Finally, the formatting functiors parses the output of the prepro-
cessor to produce a value of typeption, where aNone result in-
dicates a network, preprocessing or formatting error. {Rersake
of simplicity, we do not model the variety of error codes ttad
implementation supports.)

The feedall C selects all the data from the core fe€d The
feedany C selects for each time in the schedule tdrthe first
good value to arrive from any location. It retuiNsne paired with
appropriate meta-data if no such good value exists.



I'kFep:loclist T'kes:timeset I'kFes:time
I' - eq4 : string option — string option
I' F e5 : string option — 7 option

(t-core)
'+ {src =e;; sched =e2; win =eg3;
pp =eu; format =es; } : T option core
I'EC: o core
(t-all)
I'Fall C: o feed
I'C: o core
(t-any)
I'Fany C : o feed
—— (t-empt
T'0: o feed ( Pty
I'kFey:T 'k e : time (t-0n8)
I' - One(ey, er) : T feed
I'ke:time .set (t-schedulg
T' - SchedF(e) : time feed
I'HF :0feed TF F;: o feed (t-union)
'\ UF; : o feed
FFFl L 01 feed FFFg:Ugfeed
' Fy + Fs : 01 + 09 feed (t-summ
I'+ F1 L 01 feed T'F F2 102 feed (t-pair)
Tk (F1, F2) : 01 % 02 feed
I'Fe:7list I'xz:tH F : o feed .
- (t-list)
PkH[F |z« ¢]: o list feed
T'k Fy:01feed T',x:meta(o1)* o1 Fa: oy feed
(t-comp
I'+ {|F2 | xXr «— F1|} L 02 feed
I'F:ofeed T'Fe:(meta(o)*o)— bool !
(t-filter)

'k filter F with e : o feed

I'te:7 Itk F: o feed
I'Hlet x =ein F : o feed

(t-let)

Figure 13. Feed Language Typing.

The empty feed({) contains no elements and may be ascribed
any feed type. The singleton fe@de(e., e:) constructs a feed
containing a single value, at a single timee;. The schedule
feedSchedF(e) builds a feed whose elements are the times in the
schedulee. The union feed merges two feeds with the same type
into a single feed. In contrast, the sum feed takes two feetfs w
(possibly) different types and injects the elements of dael into
a sum before merging the results into a single feed. The pad,f
written (F1, F»), combines the elements of the two nested feeds
synchronously, matching elements that have the sscheduled
time, regardless of when those elements actuaitive. The list
feed[F' | © < ¢], in contrast, provides-way synchronization,
wheren is the length of the input list. Each element; in e defines

afeedF; = F[x — e;]. For each timeg with a valuev; in each

feed F}, the list feed returns the ligty, ..., v,] (@and appropriate
meta-data). Note that if the; feeds share a schedulethen each
feed will have a value for every time in the schedsi@ven in the
presence of errors, so the synchronization will succeeddt #me

in the schedule.

The feed comprehensiofiF: | = «— Fi|} creates a feed with
elementd: [z — v] whenv is an element of; . Note that the entry
v is a pair of meta-data (with typeeta(c)) and payload data (with
typeo). The feedfilter F' with e eliminates elementsfrom F’
whene v is false. Finally, let feedslet x = ¢ in F provide a
convenient mechanism for binding intermediate values.

Several of the surface language constructs presented in Sec
tion 3 may be modeled as derived constructs in the calculos. F
instance, flor each z in F} creat e F3) can be modeled as a
{|F2 | * < F1|}. Likewise, the surface language comprehension
{le2 | * < Fi, ei1|} can be modeled a§0ne(es, z.1.t) |  «—
filter F; with e1|}. Whene;, is a schedule anek is a function
over times, purely artificial “computed” feeds may be modeds
{|One(es z.1.t,2.1.t) | x < SchedF(es)|}.

5.2 Feed Semantics

We give a denotational semantics for our formal feed languag
in Figure 14. The principal semantic functions &fC7,, ., and
F[F] . defining core feeds and feeds, respectively. In these
definitions,E is anenvironmentmapping variables to values abd

is auniversemapping pairs of schedule time and location to arrival
time and a string option representing the actual data. tinély,

the universe models the network. Wheifts, ¢) = (ta, Some w),

the interpretation is that if the run-time system requesats érom
location ¢ at time ¢, then string datav will be returned at time

tq. The timet, must be no earlier than,. When U (ts, ¢)
(00, None), networking errors have made locatibnnreachable.

The semantic definitions fof and F use conventional set-
theoretic notations. They depend upon a semantics for thelysi
typed host language, writtef{e] ,, whose definition we omit. We
assume that given environmeft with type I and expressior
withtyperinT, E[e], =vand-v: 7.

The meaning of core feed' is the set of (meta-data, payload)
pairs for the feed. To construct this set, we first computeliiie
of source locationd., the set of times in the scheduteand the
length of the windowl/. Thetimeout function checks whether
the item arrival timez,; is within the windowW of the sched-
uled timez, returningNone if not. Otherwisetimeout returns
its data argument,, which may beNone because of other net-
working errors. Similarly, therrival function returns the ar-
rival time Some z,: if the item arrived within the window and
None otherwise. The functiometa uses therrival  function
to construct the meta-data for the item, consisting of thede
uled timet, the dependency set containing the scheduled time and
source locatio{ (¢, £) }, and the nested meta-data, which includes
the scheduled time, the source locatiod, and the actual arrival
timearrival (¢, U(t,£)). (This apparent redundancy goes away
with non-core feeds.) Using thtemeout  function, we define an
alternate univers&’ that retrieves data from the outside world us-
ing the original universé/, checks for a timeout, and applies the
preprocesso[e,;] ;). To compute the payload, tival function
applies the formatting functiofife] , to the value returned by the
alternative universé/’ at timet for location /. Finally, the result
is the set of all pairs of meta-data and payload produceddon e
location/ in the list L and timet in the schedulé.

The semantics of thell C feed is simply the semantics of the
underlying core feed. The semantics of they C feed selects for
each timet in the schedules' of the core feed” the earliest good
payload value from any location if one exists,None otherwise.



Cl[{src =esrc;

sched =€sched; where

Win =€yin; L =¢&lesrc]
PP =€pp; S = gﬂesched]]E
format =ey; } pys W = Elewin] 5

{(meta(t,?),payload(t,¥)) | £ € L andt € S}

timeout = A(z¢, (Tat, Xs)).if Tar < ¢ + W then z,; else None
(

arrival = \

Zt, (Tat, Ts)).if Tar < x4 + W then Some x4: else None

meta = \(¢, ). t {(t,0)}, (t,¢,arrival(t,U(t,¥))))
U' = (¢, Sﬂepp]]E (tlmeout (t,U(t,90))
payload = A(t,£).E[es] 5 (U'(t,0))
Fla11 Cl gy, = ClClgy
Flany Clg = {((t, DS¢,nesty),ve) | t € S}
where A = C[Cl sy
S = {m.t| (m,v) € A}
Ay = {(m,v) | (m,v) € Aandm.t = t}
DS, :Umu)eAtmds
Gy = {(m,Some v) | (m, Some v) € A:+}
m.nest,v) where(m,v) = earliest(G;) if |G¢ >0
(nests, v.) { (t,nowhere, None), None) if |Gt =0
f[[w]]EU = {1

FlOne(ew, e)] 5

{((Eledd g {1 (Eleel s
F[SchedF(e)] ;¢

FIF U B, F

]]EU U}—[[Fﬂ]EU

[£
{((m.t,m.ds,inl m.nest), inl v)
{((m.t,m.ds, inr m.nest), inr v)

f[[Fl +F2]]EU

FI(F1, F2)] 5y

nowhere, Some S[[et]] ), g[[ev]]E)}

{((t,{ }, (t,nowhere, Some t)),t) | t € E[e] 5}

| (m,v) € F[F1]py} U
|( ) f[[FQ]]EU

{((m1.t,m1.ds Uma.ds, (m1.nest, ma.nest)), (v1,v2)) |

(m1,v1) € F[F1] p and(ma,v2) € F[F2] 5 andmy.t = mo.t}

FIF |z —e€]lgy {((t,U;—q. , mi-ds, [m1.nest, ...

Vil
where [z1,...

2k = Ele] g

Fi{IF: |z = Fil} gy

Flfilter F withe] .,

Fllet z =ein Fl, f[[F]](E,zHg[[e]]E)U

,mg.nest]), v, ...
.. k‘(mi,vi) S fﬂF]](E,szi)U andmi.t = t}

{((ma2.t,m1.ds U ma.ds, ma.nest), va

{(m,v) [ (m,v) € F[F] gy and€fe (m,v)] g

0k]) |

) | (mhvl) S "T[[Fl]]EU and(TTLQ,'Uz) S f[[FQ]](EA,;c»—»(ml,vl))U}

= true}

Figure 14. Feed Language Semantics.

It returns the set of all such values, paired with the appropriate
meta-data. To compute this set, the function first computes t
meaningA of the core feed”'. It extracts the schedul8 from
the meta-data iM. For each time in the schedule, it computes
the setA; of (meta-data, payload) pairs fetched at titm€or each
such set, it computes the dependency3&t, which collects the
dependencies of all the items fetched at tim&he setG, collects
all the good items fromA;. If this set is non-empty, we use the
function earliest to choose the (meta-data, payload) pait, v)
with the earliest arrival time fron@;. (We assume that there is
always one such earliest item.) In this case, we set thedhestéa-
datanest: to be the nested meta-datasef and the payload value
v; to bew. If the set of good values is empty, then we set the
nested meta-data to indicate that at timeve created (location =

nowhere) a payload value that had no actual arrival time. In this
case, the payload valug is justNone.

The meaning of the empty feed is the empty set. The meaning of
the singleton fee@ne(e,, e;) is a single pair, the payload portion
of which is the meaning of,,. The meta-data indicates the sched-
uled time is the meaning et, the dependency set is empty, the data
came fromnowhere (a dummy location indicating the value was
generated internally), and the arrival time matched thedaled
time. A schedule fee@chedF(e) yields a feed with one payload
value for eacht in the meaning of the schedule The correspond-
ing meta-data follows the same pattern as for the singleted.f
The union feed is the set-theoretic union of its constitdentls.
The sum feed injects the elements of its constituent feetsan
sum and likewise takes their union. It constructs compouetam
data from the meta-data of the constituent feeds in the abwiay.



The pair feed F1, F») is formed by finding for each timeall
elements off} at a timet (including erroneous elements) and all
elements ofF;; at timet (again including erroneous elements) and
generating their Cartesian product. Notice that if the dales do
not intersect, the pair feed will empty. The meta-data istroicted
by combining the meta-data for the paired feeds. The sentaniti
the listfeed F' | = < e] is similar to that of the pair feed except the
synchronization isi-way instead of pairwise, whereis the length
of the liste.

The feed comprehensiofiF» | x «— Fi|} contains payload
valueswv, taken from the meaning of fee, whenz is mapped
to (meta-data, payload) pairs drawn from the meaning of féed
The dependency set for the feed comprehension includesethe d
pendency sets dfoth £ and F5. The filter feedfilter F with e
selects those (meta-data, payload) pairs from the meahifAgtmat
satisfy the predicate. Finally, the letfeedet = = e in F' returns
the meaning of feed whenz is mapped to the meaning of

5.3 Feed Properties

We have used our semantics to prove two key properties ofatur ¢
culus. The first propertyType Soundnesserves as an important
check on the basic structure of our definitions: Do the setsbf
ues given by the denotational semantics have the typedaddy
our typing rules? The second properBependency Correctness
guarantees the semantics adequately maintains provenastee
data. To be more specific, it demonstrates that a feed iterendisp
exclusively on the locations and times mentioned in its ddpacy
set. This theorem is crucial for users who need to track dawh-p
lems in their distributed system — when they find their inaagni
data is bad, they need to know exactly where (and when) tottmok
find malfunctioning equipment or software.

Finally, Dependency Correctnesgates that if two universes;
and U, are identical at locations and times d (but arbitrarily
different elsewhere) then the elements of any féethat depend
upon the locations and times it do not change whe#' is inter-
preted in universé/; as opposed to iV.. We prove Dependency
Correctness by induction on the structure of feeds.

Theorem 5 (Dependency Correctness)
o If Uy =45 Us thenC[[C]]E U, =ds CHC]]EU2'

o IfU1 =45 Uz then"f[[F]]EUl —ds f[[F]]EUz'

6. GLOVES Implementation and Evaluation

The GLovEs implementation has three parts: the compiler, the
runtime system, and the built-in tools library. We describese
parts in turn and then evaluate the overall system perfotamand
design.

The Compiler. The GLoVvES compiler consists ofcc , the tool
configuration compiler for .tcfiles, arichic , the compiler for feed
declarations (.fml files). Both compilers convert their s@s into
OCaML code, which is then compiled and linked to the runtime
libraries. We implemented both tools wi@amlp4, the OCG\ML
preprocessor.

The fmlc  compiler performs code generation in two steps.
First, the code generator emits the type declarations fdr &sed.
Second, it generates representations for each feed diémeriphe
compiler constructs these representations by extracliements
from the concurrently generatedbs/ML libraries and using poly-
morphic combinators to build structured descriptions.

The Runtime System. We implement each GoveEsfeed as a lazy
list of feed items. Following the semantics in Section 5,adfdem

Type Soundness. The type soundness theorem states that values is a (meta-data, payload) pair, although the implememtdiis a

contained in the semantics of each feed are (meta-dataggujyl
pairs with the appropriate type. More specifically, if thedeyping
rules give feed” typeo feed, then its data has typeand its meta-
data has typeneta(o). A similar statement is true of core feeds.

Theorem 1 (Type Soundness)

o [fT F C : o core and for allz in dom(I"), - E(x) : I'(x)
andt U : time x loc — time x (string option) then for all
(m,v) € C[C] gy F (m,v) : meta(o) * 0.

o [fT F F : o feed and for allz in dom(I"), - E(x) : I'(x)
andt U : time x loc — time x (string option) then for all
(m,v) € F[F] gy, (m,v) : meta(o) * 0.

We have proven the theorem by induction on the structureeaffe
Dependency Correctness.In order to make the principle of De-

pendency Correctness precise, we must define what it means fo

two universes to be equal relative to a dependencydsetntu-
itively, this definition simply states that the universes equal at
the times and locations ihs and unconstrained elsewhere.

Definition 2 (Equal Universes Relative to a Dependency Set)
Ui =as Uz ifand only if for all (¢, €) € ds, U1 (t,£) = Ua(t, £).

Now, we need a similar definition of feed equality. In the daling
definitions, letS,, S2 range over denotations of core feeds and
feeds.

Definition 3 (Feed Subset Relative to a Dependency Set)
S1 Cygs Se ifand only if for all (m,v) € S1 such thain.ds C ds,
(m,v) € Ss.

Definition 4 (Feed Equality Relative to a Dependency Set)
S1 =d4s Sz ifand only if S1 Cas S2 andSsz Cgs St

more refined notion of meta-data that includes more detaileat
information.

The GLOVES runtime system is a multi-threaded concurrent
system that follows the master-worker implementationtstya
Each worker thread either fetches data from a specifieditotat
and parses the data into an internal representationréje or
synthesizes its data by calling a generator function. Usingr
conditions, location, scheduled time and arrival time, wueker
generates the appropriate meta-data, pairs it with thengpashes
the feed item onto a queue. The master thread pops the ferd ite
from the queue on demande., when the user program requests
the data. The worker threaddager which guarantees that all data
will be fetched and archived, but the master threalhay, which
allows application programs to process only relevant data.

We used thé@dcamlnet 2 library [28] to implement the fetch-
ing engine. It batches concurrent fetch requests into grofig00,

a size which balances maximizing throughput with avoidiagre
whelming the operating system with too many open sockets.

Tools Library. As explained in Section 4, we implemented the
GLOVES off-the-shelf tool suite using our generic tool framework.
Some tools depend upon auxiliary tools. For instance, tbe $e-
lector calls a data selector built using theps/ML generic tool
framework [11] for base feeds. Other tools depend upon extér
braries. For instance, tlieed2rrd  tool requires the RRD round-
robin database [22] and tHeed2rss tool uses the XML-Light
package [19] for parsing and printing XML.

Experiments. To assess performance, we measure the average
time to fetch a data item (termeetwork latency, the average time

to prepare the data item for consumption after fetchingeitn(ed
system latengy and thethroughputof the system for the CoMon
feed description in Figure 4. The throughput measures thege
number of items fetched and processed per second.
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Figure 15. Average throughput and latencies per node

All the experiments were conducted on a Mac Powerbook G4
computer with a 1.67GHz CPU and 2GB memory running Mac OS
X 10.4. In each experiment, we randomly selected 16 subgets o

PlanetLab nodes, with increasing size from 50 to 800 in imenets

of 50. For each set, we applied the profiler tool for the CoMon
feed twice, once without archiving and once with it, to measu
the throughput and latencies as the system fetched frora trozte
lists. We repeated the experiment ten times and calculdted t
average values.

Figure 15 shows the average throughput and the average net
work and system latencies. The throughput is maximized when
fetching from 200 nodes because the system supports up to 20

concurrent fetches. Archiving adds to the overhead of tiséesy
and hence reduces the throughput and increases networlysnd s
tem latencies. Note that while network latency increasek thie
number of nodes, system latency remains almost constarre&nd
atively low, showing that the GOVES runtime system adds little
overhead to the inevitable network fetching cost. Desigerain-
dom network delays in these experiments, the network lgitenc

Now, in theory, the compiler is not 100% essential to the gene
ation of our generic programs, but in practice, it is an ermrsnad-
vantage to the average programmer. After spending moniidg-st
ing this issue, the best alternative we have devised that mioteuse
compiler support is to require that programmers write thpécifi-
cation code inside of functors parameterized in the apatgpway.
These functors can then be passed off to other functors megie
ing appropriate tool interfaces. However this functor pamgming
style is extremely hard to learn, to use and to explain. Awgd
these complications by creating a language-level interfsaems
to be a good, practical solution to the problem. For moregintsi
into the precise issues at hand, we recommend readingdelaik
on the construction of theADs/ML infrastructure [11] as well as
Hinze’s work [15] on generic programming.

Two secondary issues influencing our choice of language over
library are that (1) we could choose a pleasing and conciee sy
tax for both our feed and tool specifications and (2) this apgin
allows smooth integration withaADS/ML, which itself is a success-
ful language extension. On the latter point, developingsiesy in
which data locality, temporal availability, format and pesties are
all specified in one place and in one seemlessly integrateusy
was an important goal. We believe it improves the user progra
ming experience significantly.

7. Related Work

Because of space constraints, we survey only the most glosel
related work.

Provenance. GLOVES meta-data can be seen as an instance
of provenance information, a topic of increasing interesthie
database community. Cheney al [8] showed how the program-
ming language idea of dependency analysis leads to a foneaiyt

for tracking provenance. Indeed, our Dependency Corresthbe-
orem reuses the definition of dependency correctness gmckia
their work. Our system differs from theirs in several wayswh
ever. They treat provenance abstractly, as a collectionlofs; we

treat it concretely, as attestation of time, source locadiod error-

freeness. They track provenance at the level of individugles in

A relational calculus; we track it at the level of files, leapto re-

duced overhead. They simply track the provenance infoonatie
permit programmer code to view and respond to such infoomati

Stream Processing. There has been a large body of work in data
stream processing and work flow management [14]. For inetanc
languages such as Lustre [7], SIGNAL [4] and Functional Reac
tive Programming (FRP) [9, 29] are designed to implement syn
chronous systems that react to continuous or discretelsigrteese

generally linear in the number of nodes. The system, which we sjgnals are time-indexed values that can be composed omdeco

have not tried to optimize, was able to fetch data from 80Cesod

posed using various combinators. Our work on0BES is com-

and archive the results in under 70 seconds, well under the 5 plementary to these efforts in that the primary purpose 0bGS

minute turnaround time currently supported by CoMon. Tatken
gether, these results suggest thab@Es is capable of supporting
PlanetLab-scale monitoring.

Language or Library. A natural question that frequently arises
for domain-specific languages is whether the system istiette
plemented as a library or as a language extension. The ssbng
reason for us to implement our system as a language exteission
that O’Caml (and C, and SML, and, in fact, most functional and
imperative languages) have poor support for generic, tipested
programming. Unfortunately, many of our key tools, inchgliour
parsers, printers, database loaders, selectors, etcenegig pro-
grams defined over the types of the feeds that our specifisatio
generate. By defining a language extension, we are free t&eénv
a compiler to assemble the code fragments comprising thiedee
applications in a type-correct way.

is to bridge between such systems and the messy, outsidd.worl
GLOVESprovides a way to robustly internalize external, distréulit
data while tracking error conditions and maintaining prevece

in a comprehensive manner so that programmers can subslyquen
use, for example, the elegant abstractions of events, mrkand
signals from FRP.

Web Mashups. Web Mashup languages such as MashMaker [10]
and Yahoo Pipes [33] allow web programmers to extract data fr
web sites and RSS feeds and recombine them, often using con-
ventional functional programming paradigms such as magfiknd

ter. The focus is on end-user programming with relativelyabm
amounts of data that can be displayed to a user in a web browser
Errors are generally ignored as completeness or absolatecto
ness of information is not critical in the domains of intéréinlike
GLOVES, which allows users to write rich descriptions expressing



the location, format, schedule and access mode of the data, Y
hoo Pipes, for instance, acquires data through a fixed tiafeof
black boxes. For this reason,LGVES and mashup languages also
have the potential to be complementary, withd@es descriptions
serving to define new ad hoc data sources for mashups. IntHact,
idea motivated the design and implementation of theo&s ad
hoc-to-RSS conversion tool.

Systems monitoring. One early and widely-used protocol for sys-
tem monitoring is SNMP, the simple network management proto
col [6], which is supported by commercial tools such as HRis®
View [2] and free tools such as MRTG [23]. It provides an open
protocol format, where vendors supply management infaonat
bases (MIBs) that provide a hierarchical description of tiaed-
ware’s monitoring information. By separating the data desion
into the MIB, SNMP can be more concise than XML, but it has
poor support for ad hoc data, and it is more difficult to update
with new data types or even changes to the data format. For Gri
or cluster environments, two popular monitoring tools arnG
glia [17] and Nagios [3]. Ganglia uses raw data in XDR for its
native fields and XML-encapsulated fields for extensiongyida
has no standard data format, but instead gathers all datertmpdp
cally executing user-specified commands described in agioafi
tion file. The commands use standardized return values tessp
status and are typically restricted to no more than 4KB of itoon
ing data. What distinguishesL@GVES from systems like SNMP or
Ganglia is the ability to automatically parse and monitatually
any kind of ad hoc data, from node-level information likettbal-
lected by Ganglia or SNMP, all the way down to applicatiovele

or even protocol-level data. These areas are the ones #haioar
well served by today’s general-purpose monitoring systéfiuose-
over, the ability to use the same data description to autoelit
build parsers, in situ tools, and monitoring systems diyeftom
declarative descriptions represents an ease of use nddlzeain
other systems.

8. Conclusions

The explosive growth of the Internet has made monitoringraad-
aging data systems distributed across wide-area netwockeas-
ingly important. The possibility of partial failure and tineed to
synchronize makes such code tedious and difficult to write co
rectly. The G.OVES system allows users to declaratively specify
their data systems and then generate a wide-variety of fimotsa-
nipulating the data: from stand-alone tools, to simpleditas for
writing their own analyses, to generic libraries for builginew
generic tools. We precisely specify the meaning of our laggu
via a sound denotational semantics and show that this semant
is dependency correct. Finally, we demonstrate experiafigrihat
the system has acceptable performance overheads.
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