
Coordination of Many Agents

Joxan Jaffar, Roland H.C. Yap, and Kenny Q. Zhu

School of Computing
National University of Singapore

Republic of Singapore
{joxan,ryap,kzhu}@comp.nus.edu.sg

Abstract. This paper presents a reactive programming and triggering framework
for the coordination of a large number of distributed agents with shared knowl-
edge. At the heart of this framework is a highly structured shared store in the
form of a constraint logic program (CLP), which is used as a knowledge base and
being reacted to by agents through the use of “reactors”. The biggest challenge
arising from such a reactive programming framework using CLP is to develop a
trigger mechanism that allows efficient “wakeup” of blocked reactors. This pa-
per addresses the architecture of this open framework, and discusses a general
methodology for doing triggering of logic conditions using views and abstrac-
tions.

1 Introduction

In online applications such as an automated marketplace, many agents with shared
knowledge need to interact and synchronize with each other by reacting to some condi-
tions. The agents block when the condition they are waiting for is not satisfied and
unblock when the condition becomes true some time later. Because the number of
agents participating in these activities is very large, and the blocking conditions may
be very complex, existing technologies such as blackboard architectures [10] and active
databases [15] are inadequate.

This paper introduces a shared-store programming framework for interacting dis-
tributed agents which combines the power of Constraint Logic Program (CLP) [8] and
the triggering of complex conditions.

The framework allows agents to react to their environments taking into account
complex conditions, and allows for coordination with each other through a structured
shared store, the knowledge base, represented by a CLP. The distributed agents inter-
act with the shared CLP store via embedded program fragments called reactors pro-
grammed in a simple stylized concurrent language. The key features of this language
include the use of CLP goals as guards and the use of committed choice. CLP goals as
guards give a unique way of handling reactivity in distributed programs which leverages
CLP’s power of declarative semantics, databases and complex views.

Since reactors may block on complex logical conditions and there are many of them,
the key technical challenge is how to identify efficiently a set of reactors, among all the
blocked reactors, that need to be checked for “wakeup” given a state change to the
CLP store, e.g. update of a base predicate. We call this process triggering. This is more

difficult than determining when a guard becomes entailed in Concurrent Constraint Pro-
gramming (CCP) [12] as the CLP program itself can change and the test is not simply
entailment.

The idea behind efficient triggering is to exploit a notion of locality. To explain a
simple form of locality, consider the popular online chat client, MSN messenger. While
there may be millions of users logged on at the same time, every user typically only
has a small contact list. When a user logs on (which can be viewed as a state change),
it is easy to exhaustively search the vicinity of this user (in this case, her contact list)
to find out which contacts are online and notify (trigger) those people. However, there
are more complex forms of locality for which no such efficient algorithms are readily
at hand. For example, a marketplace has frequent and diverse updates; an individual
trader, however, is typically interested in a small fraction of these. Given an update, it
is difficult to identify the few interested traders.

In this paper, we deal with more complex forms of locality. We employ a general
assumption that any single state change in the CLP is unlikely to affect a large portion
of the blocked reactor, therefore it pays to design an index structure for the reactor
conditions so that triggering can be done efficiently as a search in the index. To facilitate
the indexing of complex conditions, the trigger framework exploits the semantics of
CLP views in abstracting complex views to simple ones. It is also possible to develop
analysis tools with CLP technology to verify the correctness of such abstraction.

Since this framework is completely open, in the sense that any agents can interact
with the system at any time, and CLP goals are used in reactive conditions, we call
this framework Open Constraint Programming or OCP. It is also an open system in the
sense that the agents are language neutral. We argue that open, reactive, and concur-
rent systems with powerful modeling capabilities are useful for distributed coordinated
applications such as those in E-commerce.

This paper addresses the design of the architecture and the reactor language, and
focuses in particular on a triggering framework and methodology which are essential
for managing large number of reactors. The main contribution of this paper is two-fold:

– the use of CLP as a knowledge base and for reactivity in an open programming
framework; and

– a general triggering framework for re-enabling a small set of reactors, among a
large number of blocked ones.

1.1 Related work

The OCP framework is related to shared-memory concurrent languages such as CCP
[12] and blackboard architectures [10]. In the CCP framework (including GHC [14]
and Oz [13]), processes communicate by interacting with a set of shared variables in
a store on which they can either post (“tell”) or test (“ask”) for the presence of some
constraint. These languages also use committed choice for non-determinism. However,
the constraint store is monotonic in CCP, whereas in OCP, the store is a knowledge base
and can be non-monotonic. Just as in a database or blackboards, the store needs to be
non-monotonic as it is meant to be stateful.

Blackboard languages such as Linda [7] and ActorSpace [1] use a set of tuples or
actors as medium of communication and synchronization. OCP can be thought of as
generalizing Linda’s tuple space, to use more powerful constructs and going from a
structured shared memory store to richer store which uses CLP. By doing so, the prim-
itive operations on the store can utilize complex reasoning to express how the agents
interact and synchronize. OCP is also related to active databases [15] because the ECA
rules can be treated as the special case of a basic kind of OCP reactors. Triggering is
required in both active databases and OCP, though the active database has a much sim-
pler trigger paradigm, which is on simple events such as insertion/deletion to the base
tables. In particular, active databases do not address our problem of minimizing the cost
of triggering.

Another class of reactive languages are the synchronous languages such as Esterel
[2], Lustre [3] and SIGNAL [6]. These languages are designed for reactive systems
in which reaction is instantaneous. These synchronous systems are also deterministic,
while CCP and OCP are non-deterministic.

In what follows, we will discuss the architecture of OCP, which includes the reactor
programming language and motivating examples, the triggering mechanism which is
critical for the efficient implementation of a runtime system, and finally a description
of an initial prototype system with some experimental results.

2 Architecture

In the basic OCP framework (Fig. 1), every software agent consists of a program written
in a suitably convenient language. Small program fragments, which we call reactors,
written in an OCP reactor language, are embedded in the agent program. This is similar
to how one can embed SQL in a host program. When the agent wants to execute a
reactor, this reactor is submitted to the OCP runtime system, in a similar fashion to a
remote procedure call.

The purpose of the reactor is to perform some actions to the shared CLP store or
knowledge base. In the rest of this paper, we will use the notation∆ to refer to the shared
CLP store (this suggests it is stateful). The action may be guarded by some conditions
defined in the reactor as well as other logic defined in ∆. We expect that some part of
the requirements for the condition may be expressed in the submitted reactor and the
rest of it could be reasoning expressed in the knowledge base itself. We use a rather
general form of the condition which is any CLP goal expressed in the language of the
knowledge base. A typical action may be to update or delete some data in the store and
the condition could be some consistency condition, e.g. ensure minimum balance in a
bank account. The action can only be performed if the knowledge base ∆ is consistent
with the guard. When that is not the case, the reactor blocks until some change in ∆
makes the condition true, we say the reactor is re-enabled and can be executed as long
as the condition is true. One can express concurrent alternatives in a reactor, committed
choice is used to control the non-determinism arising from the alternatives. As a reactor
behaves like a remote procedure call from the agent program, it only returns when the
submitted reactor has completely finished executing its reactor program.

Since the knowledge base ∆ is non-monotonic, we can think of it as consisting of
some static predicates which do not change and some dynamic predicates which can be
changed by a reactor. In this paper, we consider dynamic predicates to be ground facts,
which we call base predicates.

 R

R

R

R

Agent Program

CLP

Agent Program

Agent Program

B
lo

ck
ed

 re
ac

to
rs

Blocked

OCP Runtime System

Reactor

Re−enabledReactor

Reactor

Fig. 1. The basic model of OCP

2.1 Syntax and semantics

We now give the inductive definition of a simple reactor language as follows. Let r be
a reactor, then

r ::=
δ atomic update to ∆

| r1; r2 sequence
| r1 || r2 choice
| commit commit the enclosing choice
| c⇒ δ guarded actions

The reactors are intended to be embedded in agent programs. The sequence con-
struct is self-explanatory, and we just focus on atomic update, choice/commit and guarded
action. We define the operational semantics of these constructs using the reactor transi-
tion relations r, ∆ δ−→ ∆′, r′, where δ is an atomic action that changes the store from
∆ to ∆′, and r progresses to r′.

– An atomic update is an action that consists of one or more of the following sub-
actions in an atomic sequence: an insertion, a deletion or an update to a base pred-
icate. Often the sequence is coded in a CLP goal to be executed atomically by the
runtime system. While, in principle, these operations can be used on any predicate
in ∆, in this architecture, we restrict the atomic updates to only base predicates.
The rule for atomic update is

δ,∆
δ−→ δ(∆)

– The choice construct provides a form of early-committed non-determinism. The
semantics of choice is that both branches execute concurrently until one of them
makes an update to ∆ or issues a commit. At that time, the other choice branch is
aborted with no effect on ∆. The commit operation can be thought of as a special
atomic update to ∆ which has no effect, like a noop. Let ε denote an action that
does not change the store, such a read; and let u denote an update that changes the
store or a commit, the rules for the choice construct are

r2, ∆
ε−→ ∆, r′2

r1 || r2, ∆
ε−→ ∆, r1 || r′2

r2, ∆
u−→ ∆′, r′2

r1 || r2, ∆
u−→ ∆′, r′2

r2, ∆
u−→ ∆′

r1 || r2, ∆
u−→ ∆′

– Guarded actions are used for synchronization or for ensuring consistency condi-
tions. c is called a blocking condition or simply a condition. A guarded atomic
update, c ⇒ δ, blocks until condition c is true, i.e. ∆ |= c, and then atomically
performs the update δ. In particular, c is any CLP goal defined over ∆ which is
evaluated by the CLP system. Variables in condition c are in the same scope as the
action and can be used to bind variables in the action. The rule for guarded actions
is

δ,∆
δ−→ ∆′

c⇒ δ,∆
δ−→ ∆′

if ∆ |= c

2.2 A motivating example

We use the following example of shipping marketplace as a motivating example for
OCP throughout this paper. The agents interacting with the marketplace are clients who
want to ship cargo and transportation companies which offer cargo ships of various
load capacity and sailing schedules. The knowledge base is a CLP program which con-
tains static facts of a distance table (map) among cities, and dynamic facts about the
availability of the vessels, such as the following.

map(seoul, shanghai, 4668).
vessel(’star’, hongkong, shanghai, 20000, 0.012, 15, 18).

The map predicate records the distance between two cities, e.g. the distance between
Seoul and Shanghai is 4668 km. The vessel predicate specifies a vessel named “star”,
which is scheduled to go from Hong Kong to Shanghai, with a load capacity of 20000
tons, and a shipping price of 1.2 cent per ton per km. It will depart at time 15 and arrive
at time 18. The departure and arrival time along with the distance table implies travel
speed of the vessel. We assume that the unit price for shipping is roughly proportional
to the speed of travel.

A client wants to ship cargo from place A to B, either directly or via some other
transit points, by a certain deadline and within budget. Constraints are on the load ca-
pacity of the vessel and the feasibility of arrival/departure times. The reactivity arises
because it may not be possible to ship the cargo given the existing state of the store,

however, changes to the store may make the request feasible. Clients will update the
capacity as they are committed to a particular vessel.

The relation (and a knowledge base) deliverable is used to specify blocking
conditions c of the clients’ reactors. It returns Dep and Arr as the departure and arrival
times for tracking, and a list of vessel identifiers.

%base case for one segment
deliverable(A, B, Weight, Budget, Deadline, Dep, Arr, [ID]):-

Budget>0, Weight>0,
LoadCap>=Weight, Weight*Dist*Price<=Budget, Arr<=Deadline,
map(A, B, Dist),
vessel(ID, A, B, LoadCap, Price, Dep, Arr).

%base case for two segments: A-C and C-B
deliverable(A, B, Weight, Budget, Deadline, Dep, Arr, [ID1, ID2]):-

Budget>0, Weight>0,
LoadCap1>=Weight, LoadCap2>=Weight,
Weight*(Dist1*Price1+Dist2*Price)<=Budget,
Arr1<=Dep2, Arr2<=Deadline,
map(A, C, Dist1), map(C, B, Dist2),
vessel(ID1, A, C, LoadCap1, Price1, Dep1, Arr1),
vessel(ID2, C, B, LoadCap2, Price2, Dep2, Arr2).

%recursive case: A...C-D...B
deliverable(A, B, Weight, Budget, Deadline, Dep, Arr, L):-

LoadCap>=Weight, Weight*Dist*Price<Budget, Dep2>=Arr1,
map(C, D, Dist),
deliverable(A, C, Weight, Budget1, Dep1, Dep, _, L1),
vessel(ID, C, D, LoadCap, Price, Dep1, Arr1),
deliverable(D, B, Weight, Budget-Budget1-Weight*Dist*Price,

Deadline, Dep2, Arr, L2),
L=concat(L1, ID, L2).

There is more than one way to define deliverable. Here, we choose to define
base cases of one segment and two segments, and then a recursive rule that consists
of a path from A to C, a segment C to D and another path from D to B. The reason
for this set-up is to have more efficient triggering which will become clear in the next
section. When the deliverable condition is satisfied, the cargo can be shipped and
the do ship action will update the corresponding capacities along the route.

A client who wants to ship a cargo weighing 100 tons from Singapore to Seoul by
time 25 and with maximum $5000, can submit the following reactor to the OCP system:

deliverable(singapore, seoul, 100, 5000, 25, D, A, IDs)⇒
do ship(singapore, seoul, 100, IDs)

From the above example, we argue that there exists a large class of applications like
the shipping marketplace where the use of a CLP program as a knowledge base and for
reactivity is not only elegant but, we believe, also essential. The recursion and constraint
solving capability of a CLP offers an extremely concise but expressive way to specify

general logical rules, such as deliverable, to be used by many different reactors
from different agents with their own instantiations or possible additional constraints.

2.3 The runtime system

This section describes the design of the runtime system architecture. Central to the
system design is the notion of triggering. A trigger model determines which blocked
reactors to fire given an update δ to the knowledge base ∆. When a reactor is fired, it
is re-enabled and starts execution by re-evaluating the blocking condition which failed
earlier, and if it succeeds, proceeds to executing the action.

To manage the execution, blocking and wakeup of the reactors, the runtime system
employs a registry that wraps around the CLP system and the blocked reactors. The
registry is composed of the following elements (see Figure 2):

1. a CLP program loaded in a CLP system;
2. a receptionist that handles the I/O of reactors; and
3. a trigger unit for triggering blocked reactors.

Blocked List

Index
Structure

Output Queue

Input Queue

Return

Invoke New reactors

Done reactors Update

Query

W
ak

eu
p

lis
t

B
lo

ck
ed

re
ac

to
rs

Woken reactors

Program
CLP

R
ec

ep
tio

n

U
ni

t

T
ri

gg
er

U
ni

t

Fig. 2. The registry

The dark arrows in the figure represent the flow of reactors in the system. A reactor
is executed against the CLP store once it enters the registry. The blocking conditions
and the actions in the reactors are implemented as CLP goals which are executed by
a CLP system. If the blocking condition is satisfied, the action is executed, probably
updates the CLP and exits the system; otherwise, the reactor is blocked in the blocked
list, until the condition becomes true in the future.

We suggest that this architecture is extremely versatile because CLP can integrate
databases with logic programs, constraints and concurrency. At one end of the spectrum,
a CLP program can be reduced to just ground facts which is similar to Linda. At the
other end, it can be a full-fledged knowledge base complete with a reasoning system
and constraint solvers.

3 Triggering

The problem of triggering is present in many applications and scenarios. Consider the
popular online application MSN messenger. One of its features is when a user Jane logs
in, all her contacts who are currently online must be notified, or triggered. As we know,
MSN messenger has millions of users online at any time, certainly we don’t want to
test every online user to see if he or she is a friend of Jane. In this particular case, a
simple hash-based triggering can be used as any user’s contact list is typically small, in
fact, bounded. But in general, the problem of determining just which agents are to be
triggered by an often-occurring event is intractable.

In this section, we discuss the triggering problem for OCP, and present a methodol-
ogy for dealing with it.

3.1 Views and blocking conditions

The basic problem can be defined as follows: given an update δ to a base predicate of
the CLP knowledge base, and given a set of blocked conditions C which are currently
false, efficiently return a subset of C which become true as a result of the update.

To facilitate discussion below, let us first define:

Definition 1 (View). A view is simply a rule defining a distinguished set of non-base
predicates. It has the general form:

p(X̃0):-q1(X̃1), q2(X̃2), . . . , qn(X̃n), Ψ(X̃0, · · · , X̃n). (1)

where p is not a base predicate. We say that this view is basic if the qi, 1 ≤ i ≤ n, are
all base predicates. Otherwise, we say that the view is composite.

Note that not all CLP predicates provide views. Views are essentially interface pred-
icates for the agents to interact with the CLP program. The blocking conditions of re-
actors are defined based on views.

Definition 2 (Blocking Condition). A blocking condition c is of the form:

p(X̃), Ψ(X̃),

where p is a view on variables X̃, andΨ(X̃) is a constraint. We say a blocking condition
is basic (composite) if the view it refers to is basic (composite).

Typically, Ψ(X̃) specifies a value or a range for some of the variables in X̃, such as
c ::= p(X,Y), X = 5, 0 ≤ Y ≤ 5.

Definition 3 (Induced View). Let p be a view of the form p(X̃):-Body. Let c be a
blocking condition p(X̃), Ψ(X̃). The view of p induced by c is the rule

p(X̃):-Body, Ψ(X̃).

To determine if a blocking condition c on a view p is enabled by an update δ is in
general an undecidable problem. Naively, one can execute c as a goal against the newly
updated CLP knowledge base. This is tantamount to testing if the induced view of c has
any solutions.

Running induced views is, unfortunately, unacceptable if c is a composite condition
that depends on complex views whose resolution is very expensive, e.g. when recursive
joins are involved. Preferably, we could discover some constraints, from the definitions
of both c and δ, which could answer this question directly. This is clearly more desir-
able, and this optimization represents our first objective.

However, if the total number of blocked reactors is very large, even this optimization
is insufficient, because having to consider every blocking condition is prohibitively ex-
pensive (recall the MSN example). We therefore seek to build an index for the blocked
conditions so that large number of conditions can be excluded from an update without
testing any one of them. Constructing this index thus becomes our second optimization
objective.

In what follows, we will first show how to index basic blocking conditions by a
spatial index structure called the RC-tree. We then show how to reduce composite views
to basic ones so that the RC-tree can be used.

3.2 The RC-tree

This section considers the problem of indexing multi-dimensional geometrical objects.
There is a wealth of publications in the the area of spatial databases [5] and compu-
tational geometry [11]. However, these spatial indexes, especially those used for geo-
graphic information systems applications, assume little or no overlapping among the
objects, and when the objects are large, static segmentation is used to reduce large ob-
jects to many small rectangles, which increases the space and insertion cost. In addition,
they index the Minimum Bounding Rectangles (MBRs) of the original objects, rather
than the objects themselves. The original shapes of the objects are thus lost and not
made use of in such approximation.

We propose a new spatial index structure, called RC-tree, which is better suited for
indexing dynamic, overlapping regions. RC-tree is a clipping-based spatial index which
combines some features of the kd-tree and the R+-tree. Every intermediate node of a
RC-tree is a hyper-plane that partitions the space assigned to this node. The space is
thus divided into two sub-spaces. All objects entirely contained in the left half-space
will be stored in the left sub-tree at the node; and all objects contained in the right half-
space go into the right sub-tree. If an object intersects the hyperplane, it is clipped and
the two resulting clipped objects go into respective subtrees where they belong. The
root node is assigned the entire space.

The novelty of the RC-tree is that instead of indexing MBRs of the objects, it in-
dexes the actual shape of the objects, and dynamically clips the objects on demand
when there is need to discriminate a number of them. This enables the RC-tree to index
objects of large extension and with heavy overlapping.

RC-tree’s dynamic clipping can be seen as doing the segmentation dynamically and
on demand. A very important technique used in the RC-tree is domain reduction which
dynamically updates the MBRs of clipped objects such that insertion and search costs

d1

d2 d3

L1 L2

d1d1

d3

d2

d3

d2

L

L2

L1

d1

d2 d3

L LL L
RC−Tree Other Binary Clipping Based Tree

Fig. 3. Advantage of clipping and domain reduction in insertion

as well as space requirements are reduced. In the left part of Fig. 3, domain reduction
strategy creates a tree with only two items (“L1” and “L2”) in the leaves. In the right
part of the figure, the other tree, which is similar to the R+-tree, has four items (denoted
by “L”). In addition, during the insertion, the RC-tree clips object “L” and inserts the
two sub-objects “L1” and “L2” into the tree while the other strategy inserts four times.

We have conducted a range of traditional and synthetic benchmarks on the RC-tree,
and have observed an amortized log(n) insertion time, amortized log(n) point query
time, where n is the number of objects to be indexed. Our experiments also show that
RC-tree performs much better in query performance than other R-tree variants and the
quad-tree.

3.3 Basic views

The RC-tree can be used to efficiently index multi-dimensional shapes and to search
using a query of the same dimensionality.

LetΨ(X̃) be a constraint and q a base predicate. Then the basic condition q(X̃), Ψ(X̃)
can be treated as a geometrical shape in an RC-tree for X̃. Accordingly, the update on
q(X̃) where X̃ has been grounded can be treated as a query to that RC-tree. Therefore,
reactor conditions on a single base predicate can be indexed and triggered using the
RC-tree in a straightforward manner.

Consider an example of such a basic blocking condition:

vessel(_,A,B,C,P,_,_), A=beijing, B=taipei, C>=500, P<=0.02.

One can construct a 4-dimensional shape on (A,B,C, P) such that

(A =′ beijing′) ∧ (B =′ taipei′) ∧ (C ≥ 500) ∧ (P ≤ 0.02)

and index shapes like this in a 4-d RC-tree on variables (A, B, C, P). When a new vessel
becomes available or an existing vessel changes, variables (A,B,C, P) get updated
simultaneously. The ground values (A,B,C, P) can then be used as a point query to
the RC-tree index. For example, an update of

vessel(’dragon’, beijing, taipei, 10000, 0.015, 23, 40)

is one of such updates that would enable the above blocking condition.
Another type of basic condition is of the form p(X̃0), Ψ(X̃0), where p is a basic

view, which means

p(X̃0):-q1(X̃1), . . . , qn(X̃n), Ψ0(X̃0, · · · , X̃n),

where q1 through qn are all base predicates. Of course, one can immediately replace
p(X̃0), Ψ(X̃0) by

q1(X̃1), . . . , qn(X̃n), Ψ ′(X̃0, · · · , X̃n),

where
Ψ ′(X̃0, · · · , X̃n) = Ψ0(X̃0, · · · , X̃n) ∧ Ψ(X̃0).

For example,

c ::= q1(X), q2(Y), X + Y = 10, X ≥ 0, X ≤ 5.

The condition c can be formulated as a shape in the (X , Y) space, and an RC-tree can
be built for shapes in the (X , Y) space. The problem is, updates are only on q1/1
and q2/1 separately, which means either X or Y is updated at a time, but not both.
Therefore, we cannot construct a complete query of (X , Y), but instead we have either
(x, *) or (*, y), where * denotes unknown values. There are two possible ways to solve
this problem. The first and the “default” method is to construct a range query using a
wildcard for the variable that is not instantiated. For example, if q1(5) is written to
the CLP, a query (5, *), which is essentially an infinite range query to the RC-tree, can
be produced to query the index tree. This method is applicable but not always effective.
Suppose the blocked conditions are all binary constraints on X and Y , and there is no
bound on X , then (5, *) will not be able to discriminate any shapes in the index, and
hence all conditions will be triggered.

The second way is to instantiate or constrain some of the unknown variables at the
time when an update occurs. This is possible if there exists in the CLP a constraint or
functional relationship between the value of the known variable (X) and the value of
unknown (Y). For example, if the following rule exists in the CLP:

q2(Y):- q1(X), Y = 2*X+1.

Then given X = 5, the system can infer by the above rule that Y = 11, and thus
produce a complete query (5, 11).

Alternatively, if there exists a constraint between X and Y such as,

q2(Y):- q1(X), Y<=X.

then a finite range query can be produced: ((5, Y) : Y ≤ 5), which is more specific
and effective than querying with (5, ∗).

We conclude this subsection with a few comments on the issues of aggregation and
materialization. Aggregation is a concept that originates from the relational databases.
An aggregate is a function of some tuples in the same relation. Common aggregation

functions such as min, max, average can be computed incrementally and are included in
some versions of CLP as system predicates or as meta-level predicates. In the shipping
example, the prices and speeds of vessels vary over time, but their ranges can be defined
as aggregates of the vessel predicate using the min/max functions.

When a blocking condition contains a view that uses aggregation, how do we deal
with it? One way to handle aggregation is to materialize the value of aggregates if
they are not changed often, such as price ranges of all vessels. Once the aggregate
values are materialized, they can be treated as constants and used in the basic views.
However, when the aggregate value does change later, the views constructed based on
the materialized values must be updated. This may involve deleting of the corresponding
shape from the index, reconstructing it and then re-inserting it into the index.

3.4 Composite views

Having shown how to index and query basic conditions in the last section, this section
considers a methodology to reduce composite conditions to basic conditions so that
they can be handled like in Section 3.3.

The essence of our method is to translate the definition of the composite view p at
hand into a basic view. There are two ways, which can be repeatedly interleaved, to
progress towards this.

The first and obvious way is to perform an unfolding of the definition of p. Clearly
unfolding alone cannot, in general, obtain a basic view, because of recursion.

The alternative way, which represents the main contribution of this section, is to
replace the remaining non-base predicates in the definition by an abstraction, that is,
a sequence of other predicates and constraints, in such a way the resulting definition
of p is at least as general as the original definition. Though this step is seemingly
difficult, it may be the case in applications that the abstraction is in fact evident from the
domain. We shall demonstrate this below; meanwhile, we shall call this methodology
an application-based abstraction.

For example, for a view p(X̃) whose recursive definition refers to a base predicate
q, it is possible to unfold p(X̃) a number of times such that q is exposed along with
some subgoals of p:

p(X̃):-p(X̃ ′), q1(X̃1), p(X̃ ′), Ψ(X̃1).

Now if one can replace the two p(X̃ ′)’s with a constraint and combine it with Ψ(X̃1)
to obtain:

p′(X̃):-q1(X̃1), Ψ ′(X̃)

Then p′(X̃) is an abstraction of the recursive view p(X̃).
We now give a more concrete example of abstracting the view deliverable in

the shipping example of Sec 2.2. We shall however simplify the relation vessel/7 to
three arguments: source, destination and cost. We further assume that the value of cost,
for each (source,destination) pair, is precisely the distance between them according to
map/3. We also simplify deliverable/8 to three arguments: source, destination
and budget. Fig. 4 shows the simplified definition of deliverable.

deliverable(A, B, Budget):-
vessel(A, B, Cost),
0<Cost<=Budget.

deliverable(A, B, Budget):-
vessel(A, C, Cost1),
vessel(C, B, Cost2),
0<Cost1+Cost2<=Budget.

deliverable(A, B, Budget):-
deliverable(A, C, Cost1),
vessel(C, D, Cost2),
deliverable(D, B, Cost3),
Cost1+Cost2+Cost3<=Budget.

Fig. 4. Simplified deliverable

C

B

A D

Co
st
3

Co
3

Co1

Cost1

Budget

Cost2

Fig. 5. Abstraction of deliverable

By inspecting the third rule of deliverable, one can see that deliverable
is the transitive closure of vessel and thus the cost of a direct vessel from point A to
C and from D to B is no bigger than cost of the transitive closure. In other words, given
map(A, C, Co1) and map(D, B, Co3), Co1 ≤ Cost1 and Co3 ≤ Cost3,
where Cost1 and Cost3 are defined in Fig. 4. We illustrate this scenario in Fig.
5, where the dark arrow refers to an actual vessel, the light arrows refer to straight
distances (map), and the dashed arrows are the transitive closure of vessels (deliverable).
Therefore we can abstract deliverable to a basic view abs deliverable as
follows.

abs_deliverable(A, B, Budget):-
Co1+Cost2+Co3<=Budget,
map(A, C, Co1), vessel(C, D, Cost2), map(D, B, Co3).

The above abstraction captures the intuition that if a new vessel segment (from C to
D) is too far away from both the source (A) and destination (B) of a reactor, then this
reactor should be excluded from triggering. In other words, we are exploiting “locality”
of the source and destination in this example.

We summarize our methodology of abstraction as follows.

– it reduces composite views to basic views so that direct indexing can be done on
the basic conditions;

– it provides a conservative estimate of the original view, ie. the set of facts satisfying
the abstraction is a superset of that of the original view. Thus an update that does
not trigger an abstracted condition does not trigger the original blocking condition.
In other words, exclusion of reactors by abstraction is safe.

It is, of course, undecidable in general to replace a composite view with an equivalent
one, while trivial to replace it with an abstraction. The challenge is to find a useful
abstraction. While it is not possible to characterize this condition formally, we suggest
that if the application intuitively satisfies the condition that an individual reactor is not
likely to be triggered by an average update, then it is likely that a desired abstraction
can be discovered without great effort. We have tried to indicate this with the example
above.

4 Implementation and evaluation

We have implemented a prototype OCP system. Rather than using a tailor-made CLP
system, our prototype for simplicity integrates the CLP(R) system [9] with a server
registry explained in Section 2.3 that manages a collection of reactors especially to
handle triggering and communicates with external agents. The multi-threaded registry
was implemented in C++. The OCP registry and the CLP(R) system communicate
through Unix message queues.

Agents are written using the language Python which is a relatively rich and exten-
sible scripting language. A special Python reactor library handles the submission of
reactors to the OCP system.

4.1 Trigger efficiency

To evaluate the effectiveness of triggering using RC-tree, we conduct the following ex-
periments on a Pentium 4 2.4GHz PC running Linux 2.4.20. We implement the shipping
marketplace example in Section 2.2 for transporting cargo between a set of 7 Asian and
6 North American cities. The distance matrix among these cities is approximated by the
flight distances between them [4].

We identify two types of reactor blocking conditions and two types of vessel up-
dates: intra-continental, inter-continental. For instance, a reactor waiting to ship a cargo
from an Asian city to an American city is inter-continental, whereas a reactor waiting
to ship within two Asian cities is an intra-continental reactor. Similar definition applies
to the available vessels. We thus created three sets of reactors (1000 reactors in each
set): intra-continental only, inter-continental only, and mixed; and similarly three sets
of vessel updates (1000 updates in each set): intra-continental only, inter-continental
only, and mixed. We use the abstraction in Section 3.4 for triggering the reactors. We
did 9 experiments, corresponding to the 9 possible combinations of sets of reactors and
updates. The experimental results are given in Table 1. The first number in each data
cell is the average percentage of reactors being triggered out of 1000 blocked reactors
in each scenario. The second number in parentheses is the time for the triggering mech-
anism to determine which reactors to be fired with a sequence of 1000 vessel updates.
All times are measured in milliseconds.

reactors(intra) reactors(inter) reactors(mixed)
vessels(intra) 10.176% 37.743% 23.964%

(12.6ms) (13.2ms) (12.9ms)
vessels(inter) 0% 33.893% 16.937%

(8.7ms) (13.1ms) (12.7ms)
vessels(mixed) 4.364% 33.694% 19.025%

(12.4ms) (13.2ms) (12.8ms)
Table 1. Hit rate and average trigger time

From Table 1, we see that for intra-continental reactors, the best case for triggering
excludes all reactors from wakeup (intra-column, row 2). This is intuitive because long-

haul voyages are more expensive and take longer and thus do not affect short range
shipping needs. For inter-continental reactors, triggering excludes about two thirds of
the reactors. This is simply because for inter-continental reactors, the budgets are larger
and deadlines are later, and thus short range vessels are more likely to affect these re-
actors. The experimental results demonstrate that indexing and abstraction are effective
optimizations: (a) the triggering mechanism is effective in avoiding the wakeup of a
substantial number of blocked reactors; and (b) the triggering mechanism is itself rela-
tively fast.

5 Concluding Remarks

This paper has presented a new distributed programming framework which allows dis-
tributed program agents to react to a CLP program like a shared common store. Agents
modify the CLP program through the use of reactors which are guarded on logic condi-
tions with respect to the CLP. The key challenge is then how to efficiently manage these
reactors to allow blocking and wake-up. We detailed a triggering framework which in-
corporates a novel spatial index structure to solve this problem.

Some of the future work includes the development of an automatic verification tool
for application-based abstraction used in the triggering, and the classification of various
kinds of advanced views as well as abstraction recommendations for these classes. We
are also enhancing OCP with a more generalized version of committed choice in which
commit can happen anywhere in the choice branch.

References

1. G. Agha and C. J. Callsen. Actorspace: an open distributed programming paradigm. In ACM
PPoPP, 23–32. 1993.

2. G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

3. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for pro-
gramming synchronous systems. In ACM POPL, 178–188. 1987.

4. Distances between 325 cities in the world. http://www.etn.nl/distanc4.htm.
5. V. Gaede. Multidimensional access methods. ACM Computing Survey, 30(2):170–231, 1998.
6. T. Gautier and P. L. Guernic. SIGNAL: A declarative language for synchronous program-

ming of real-time systems. In FPCA, pages 257–277. Springer, 1987.
7. D. Gelernter. Generative communication in Linda. In ACM TOPLAS, 7(1):80–112, 1985.
8. J. Jaffar and J.-L. Lassez. Constraint logic programming. In ACM POPL, 111–119, 1987.
9. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and system.

In ACM TOPLAS, 14(3):339–395, 1992.
10. H. P. Nii. Blackboard Systems. Addison Wesley, 1989.
11. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
12. V. A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
13. G. Smolka. The Oz programming model. In Computer Science Today, pages 324–343.

Springer, 1995.
14. K. Ueda. Guarded horn clauses. In 4th Logic Programming ’85, LNCS 221, 168–179, 1986.
15. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database

Processing. Morgan Kaufmann Publishers, Inc., 1996.

