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Abstract
Continuous vision is the cornerstone of a diverse range of intelli-
gent applications found on emerging computing platforms such as
autonomous machines and Augmented Reality glasses. A critical
issue in today’s continuous vision systems is their long end-to-end
frame latency, which signi�cantly impacts the system agility and
user experience. We �nd that the long latency is fundamentally
caused by the serialized execution model of today’s continuous
vision pipeline, whose key stages—sensing, imaging, and vision
computations—execute sequentially, leading to long frame latency.

This paper seeks to reduce the end-to-end latency of continu-
ous vision tasks. Our key idea is a new proactive vision execution
model that breaks the sequential execution of the vision pipeline.
Speci�cally, we propose to allow the pipeline front-end (sensing and
imaging) to predict future frames; the pipeline back-end (vision al-
gorithms) then predictively operates on the future frames to reduce
frame latency. While the proactive execution model is generally
applicable to any vision systems, we demonstrate its e�ectiveness
using an implementation on resource-constrained mobile Systems-
on-a-chips (SoC). Our system, PVF, incorporates two techniques to
overcome key challenges that arise in deploying proactive vision in
mobile systems: it enables multiple outstanding speculative frames by
exploiting the hardware heterogeneities in mobile SoCs; it reduces
the energy overhead of prediction by exploiting the error-resilient
nature of vision algorithms. We show that PVF reduces the frame
latency by up to 92% under the same energy.
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1 Introduction
Domain speci�c architectures (DSA) provide more compute capabil-
ity with lower energy consumption under the same silicon budget.
A signi�cant implication of DSAs is the high non-recurring engi-
neering (NRE) cost of designing custom architectures and hardware
chips [33]. Therefore, we must identify key application domains
whose demands and social impacts are high enough to justify the
e�orts of designing DSAs. This paper focuses on the domain of
continuous vision, which processes real-time images from camera
sensors to extract visual insights that guide high-level decision
making. Continuous vision is key to many emerging applications in
both consumer mobile devices and “always-on” embedded systems
such as robotics, Augmented Reality, and smart-city sensing.

Today’s continuous vision system is bottlenecked by its long
frame latency, which is fundamentally caused by its serialized exe-
cution model. The three major stages in a vision pipeline – sensing,
imaging, and vision computation – process a frame sequentially,
leading to high per-frame latencies. Existing system optimizations
such as pipelining and batching are designed to improve throughput
(i.e., frame rate), but further exacerbate the frame latency.

The long frame latency is detrimental to vision-enabled embed-
ded systems. For instance, a typical embedded robot today has a
200 ms responsive latency from event to command, in which 100 ms
is attributed to the vision sub-system [13]. Such a high latency puts a
hard bound on the agility of the robot, limiting user-experience and
functionalities [12, 25]. Improving the latency of continuous vision
systems, however, is mainly constrained by the tight energy and
power budgets because embedded computing platforms routinely
operate without active cooling or constant power supply [28].

This paper seeks to reduce the end-to-end latency of continuous
vision tasks. Our key idea is to break the sequential execution chain.
Speci�cally, we propose a new vision execution model where the
vision front-end, i.e., the sensing and imaging stages, predicts future
frames, and the vision computation stage operates proactively on
predicted future frames. Once the actual frame is generated by the
front-end and vindicates the predicted frame, the vision results are
likely already available, reducing the frame latency.



While proactive vision is applicable to general vision systems,
we present an important case-study on mobile Systems-on-a-chip
(SoCs), which are widely used in many devices such as AR/VR head-
sets, smartphones, robots that are latency- and energy-constrained.
We introduce PVF, a proactive mobile vision system, which signi�-
cantly reduces the end-to-end frame latency with low energy while
largely relying on existing mobile SoC hardware.

In its e�cient realization of the proactive vision pipeline, PVF
addresses two key challenges. First, the proactive execution model
exposes more concurrent computations (frames) on the �y, increas-
ing the hardware resource contention. PVF exploits the hardware
heterogeneities available on mobile SoCs, which naturally exposes
di�erent IP blocks (e.g., GPU, DSP, NPU), to execute multiple out-
standing frames concurrently, mitigating the resource contention.

Second, predictive execution introduces new computations due
to frame prediction and thus increases the energy consumption.
To reduce the speculation-induced energy overhead, PVF exploits
the error-resilient nature of the image formation process (i.e., the
sensing and imaging stages) and allows the predicted frames to be
directly consumed by the vision algorithms without being checked
with the captured frames. This relaxation saves energy by switch-
ing o� the sensor and the Image Signal Processors (ISP), which in
many use-cases could consume up to 50% of the total energy [42].
This form of approximation is di�erent from conventional approxi-
mation in computer vision that approximates the vision algorithm
itself. Instead, we approximate the inputs to the vision algorithms,
an opportunity uniquely enabled by prediction, and in turn miti-
gates the prediction-induced energy overhead.

Leveraging the SoC heterogeneities while approximating the
vision front-end exposes a complex scheduling problem to PVF.
The scheduler must 1) control the approximation to meet accuracy
requirements, and 2) optimize for latency under energy constraints
by wisely mapping multiple outstanding frames onto multiple ex-
ecution targets (i.e., IP blocks). To that end, PVF uses an o�ine-
online collaborative strategy. The o�ine component identi�es key
accuracy-sensitive knobs and empirically constructs a model be-
tween the knobs and the accuracy. The online component schedules
the frames on the SoC and dynamically tunes the knobs to minimize
the latency while meeting the energy budget and accuracy goals.

To enable e�cient implementation of the speculative execution
model, PVF extends today’s mobile SoC only minimally. We demon-
strate the e�ectiveness of PVF on two common vision tasks: object
tracking and object detection. We show that PVF is able to achieve
up to 92% latency reduction under the same energy budget, or 60.3%
energy reduction at same frame latency, all with negligible accuracy
loss. In summary, this paper makes four contributions:

• We propose the proactive continuous vision execution model
that predicts the vision front-end to reduce the end-to-end
frame latency.

• We propose a front-end approximation technique that ap-
proximates the image formation process to mitigate the en-
ergy overhead introduced by speculation.

• We design an o�ine-online collaborative software system
that controls the accuracy while minimizing the frame la-
tency in proactive vision executions.

• We demonstrate PVF, an e�cient implementation of the
proactive vision execution model. PVF reduces the frame
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Fig. 1: The conventional sequential execution model of the
continuous vision pipeline.

latency under the same or lower energy budget with little
hardware overhead.

2 Background and Motivation
Continuous vision refers to a class of applications that perform
computer vision (CV) tasks on live camera video streams. Di�erent
from o�ine video processing, continuous vision performs CV tasks
in real-time and thus has much tighter performance and energy con-
straints. This section introduces the bottleneck of continuous vision
systems, and describes the insu�ciency of existing optimizations.

2.1 Latency Bottleneck in Continuous Vision
A typical continuous vision pipeline consists of three main stages:
sensing, imaging, and vision computation, as Fig. 1 shows. The
sensing stage uses an image sensor to convert photons to RAW
pixels, which are then processed by an Image Signal Processor
(ISP) at the imaging stage to generate RGB frames. The vision
computation stage processes the generated RGB frames to extract
semantic information (e.g., object location) for high-level decision
making. We call the sensing and imaging stages the vision “front-
end”, and the vision computation stage “back-end.”

The three stages execute sequentially because there is a strict
dependency between any two adjacent stages. For instance, the
vision computation stage cannot start until the RGB frames are gen-
erated by the ISP. The serialized execution limits the frame latency.
That is, the time between when the sensor starts the sensing and
when the vision results are available is limited by the cumulative
execution time of all three stages.

Unfortunately, today’s vision system optimizations further exac-
erbate the frame latency. For instance, pipelining the three stages
increases the throughput, but introduces additional control and
bookkeeping overhead that increases latency. In addition, batch-
ing multiple frames improves hardware utilization and data reuse,
but also increases the per-frame latency. As a result, even if all
three stages individually operate in real time, e.g., 30 frames per
second (FPS), the end-to-end per frame latency could add up to
over 100 ms. Long frame latency severely limits the applicability of
vision-enabled systems. For instance, an autonomous vehicle needs
to respond to an event within 100 ms as it can travel 2-3 meters
during the interval. Similarly, a 100 ms rendering latency causes
nausea and is intolerable to AR users [20].

2.2 Limitations of Optimizing Only Vision
Algorithms

To reduce the frame latency, prior work has mostly focused on im-
proving the performance of the vision computation stage, i.e., the
back-end of the vision pipeline. Back-end optimization techniques
include designing more e�cient vision algorithms (e.g., simpli�ed
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Deep Neural Network (DNN) models [16, 35, 52, 67], compress-
ing/pruning DNN models [29, 31]) andleveraging motion informa-
tion [10, 22, 71]. Back-end optimizations are e�ective when the
back-end dominates the frame latency. However, in many cases,
depending on the complexity of the vision task and the image res-
olution, the front-end could contribute signi�cantly to the frame
latency, making the back-end optimizations ine�ective.

We use the examples of the object detection and the object track-
ing task to illustrate the point. We assume that both the sensor and
the ISP operate at a typical 30 FPS, and use a systolic-array-based
DNN accelerator operating at 500 MHz to process vision DNNs
(see Sec. 5 for detailed experimental setup). The detection task uses
YOLOv2 [53], the state-of-the-art detection DNN, as the vision algo-
rithm, while the tracking task uses the classic KCF algorithm [34].

YOLOv2 is compute-intensive, and operates at only 10 FPS; the
KCF algorithm is much simpler and operates at 60 FPS. As a re-
sult, the frame latency of the detection task is back-end-dominant
and the frame latency of the tracking task is front-end-dominant.
Applying back-end optimizations would thus lead to less latency
reduction for the tracking task than for the detection task. For in-
stance, we apply the motion-extrapolation optimization proposed
in Euphrates [71], which reduces the latency of the vision stage by
a factor of 2. Fig. 2 compares the frame latency reductions between
detection and tracking. A 2⇥ vision stage latency reduction trans-
lates to only 9% frame latency reduction for tracking, much lower
compared to the 62% reduction for detection.

Even for the same task, the latency distribution changes as the in-
put resolution changes. Using object detection as an example, Fig. 2
compares the latency reductions of motion-extrapolation when ap-
plied to a 608 ⇥ 608 image and a 256 ⇥ 128 image. The latter spends
signi�cantly less time in the back-end, and thus gets improved only
by 6% as compared to 49% observed on higher resolution inputs.

Along with latency reductions, most of the back-end optimiza-
tions also reduce the back-end’s energy consumption. The energy
reduction, however, is even less signi�cant compared to latency
reduction. This is because the vision front-end (sensor and ISP) usu-
ally contributes signi�cantly to the total energy consumption. Fig. 3
shows the energy breakdown between the front-end and the back-
end for object detection and tracking. The back-end energy con-
tributes to only about 50% in detection and about 20% in tracking.
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Applying the motion-extrapolation optimization to the back-end
thus reduces the overall energy consumption only marginally.

We propose to improve the latency and energy e�ciency at the
same time by breaking the sequential executionmodel. It is meant to
complement, not replace, back-end optimizations to achieve greater
latency and energy reductions.

3 Proactive Vision Execution Model
To overcome the sequential bottleneck in continuous vision pipelines,
we propose the proactive execution model (Sec. 3.1). However, the
new execution model introduces two roadblocks that obstruct ef-
�cient implementations. We discuss two enabling mechanisms,
exploiting SoC heterogeneities (Sec. 3.2) and approximating vision
front-end (Sec. 3.3), that remove the roadblocks and pave the way
for e�cient proactive execution in continuous vision.

3.1 Proactive Execution model
The key idea of the predictive execution model is to allow the vision
computation stage to operate speculatively on predicted future
frames before the sensing and imaging stages generate the actual
frames. Once an actual frame is generated, it is used to validate
the predicted frame. If the predicted frame is checked to match the
actual frame under certain metrics, the vision task results are likely
already available and can be directly used, reducing the end-to-end
frame latency. Otherwise, the speculated work is discarded, and the
system executes the vision stage using the actual frame.

We illustrate the new predictive execution model in Fig. 4 with
an example of three frames. The system starts with the sequential
model where the vision computation in Frame 1 waits for the actual
frame. In contrast, Frame 2 and 3 are executed predictively where
the vision stage operates on the predicted frames. Compared to
the conventional sequential model, the predictive execution model
now requires two new system components: a frame predictor and
a checker (Pred and Check in Fig. 4, respectively).

First, the frame predictor predicts future frames to enable specula-
tion. Frame predictors range from simple motion-based approaches
(e.g., extrapolation and optical �ow) that are computation-e�cient
especially in constrained environments [51] to recent generic ap-
proaches that use deep learning [9, 24, 44, 47, 49, 51, 58]. Critically,



many frame prediction algorithms could predict multiple future
frames in a sequence [9, 24, 44]. This allows us to speculatively
process multiple outstanding frames at the same time (Frame 2 and
3 in Fig. 4), further reducing the latency.

Second, the predictive vision pipeline requires a checking com-
ponent which commits vision results on predicted frames only if
the predicted frames are validated to be similar to the actual frames
captured by the sensor and ISP. This is similar to processor specu-
lation that commits instructions on the predicted path only if the
prediction is true. Many image similarity metrics and algorithms
have been proposed in the computer vision literatures, ranging
from pixel-level comparison (e.g., Sum of Absolute Di�erences [54])
to feature-level correlation [19, 44]. These algorithms are usually
lightweight to calculate, enabling e�cient checks.

3.2 Mitigating Resource Contention
Predictive execution enables multiple outstanding frames to be
processed concurrently. However, it leads to hardware resource
contention at the vision computation stage. For instance in Fig. 4,
the vision stages of Frame 2 and Frame 3 are overlapped. If only one
IP block is available to execute vision algorithms, the vision stage
of the two frames must be serialized (similar to structure hazards
in a processor pipeline), defeating the purpose of speculation.

To address the resource contention in the vision computation
stage introduced by prediction, we propose to exploit the hardware
heterogeneities available on today’s mobile SoCs. State-of-the-art
mobile SoCs such as Qualcomm Snapdragon 835 and Apple A11
all provide multiple IP blocks that can be used to execute vision
algorithms, including the GPU, DSP, and NPU. Nvidia’s Xavier
SoC even provides dedicated accelerators for non-NN-based vision
algorithms as well as an accelerator dedicated to stereo vision algo-
rithms [5], further increasing the SoC hardware heterogeneities.

The heterogeneities are not fully exploited by today’s vision sys-
tems, especially when the front-end dominates the frame latency,
in which case there will be only one outstanding frame in the vision
stage, and thus only one IP block is needed. In the predictive exe-
cution model, however, the frame predictor could predict multiple
future frames in a sequence, exposing more outstanding frames
that could make e�ective use of the multitude of the IP blocks. For
instance in Fig. 4, the vision computations of Frame 1, 2, and 3
are concurrent, and could be scheduled to di�erent IP blocks. How
exactly the frames are scheduled is critical to ensuring that the
latency target is met in an energy-e�cient manner. We discuss our
run-time scheduling mechanisms in Sec. 4.3.

3.3 Mitigating Energy Overhead
While the predictive execution model reduces the frame latency,
it increases the energy consumption, for three reasons. First, spec-
ulation fundamentally trades energy for latency by performing
extra work (e.g., prediction and checking). Second, using multi-
ple IP blocks, while alleviating resource contention, also increases
the energy consumption because CPU/GPU/DSP are less energy-
e�cient than NPU for executing vision algorithms (e.g., DNNs).
Finally, mis-prediction wastes energy on executing frames whose
results are eventually discarded.

Precise Frames Unchecked-Predicted 
Frames

Checked-Predicted
Frames

Time

Predicted Sequence

Fig. 5: Precise frames refer to non-predicted frames, which
are used to predict future frames. Some predicted frames
are unchecked against the actual frames while the rest are
checked using a relaxed similarity measure.

To mitigate the energy overhead, we observe that the predictive
exectuion is precise only if 1) the checking module enforces a
pixel-perfect match between the predicted and the captured frame,
and 2) every predicted frame is checked against the actual frame
captured by the vision front-end. However, both are unnecessary
because computer vision tasks are known to tolerate low-quality
images [11, 18, 68, 71]. We relax both constraints, and allow inexact
frames to be consumed by the vision algorithms to save energy.

• Relax Checking Criterion The strictest form of checking
is to accept a predicted frame only when it is a pixel-perfect
match with the actual frame. This would lead to an unneces-
sarily high mis-prediction rate and also signi�cant energy
waste. Instead, we propose to relax the checking process
by thresholding the similarity metric. A predicted frame is
regarded as mis-prediction only if its similarity measure is
below the threshold.

• Relax Checking Frequency Taking relaxed checking one
step further, we could forego the checking for a subset of pre-
dicted frames that are likely to be similar to the actual frames.
In this way, not only the checking energy could be saved, the
sensor and ISP that generate the actual frames could also be
switched o�, making up for the energy overhead introduced
elsewhere. Since the sensor and ISP could take up to 50% of
the total system power consumption [71], relaxing the frame
checking frequency saves energy signi�cantly.

Overall, there are three types of frames as Fig. 5 shows. Precise
frames are frames that are generated from the sensor and ISP, and
are used to predict future frames by the frame predictor. Among
the predicted frames, the �rst few frames are unchecked-predicted
frames, which are speculatively executed and do not require check-
ing against the actual frames, thus saving both the checking and
front-end energy. The rest frames in the prediction sequence are
checked-predicted frames, which must be checked with the actual
frames, albeit using a relaxed similarity measure. We make the
design decision that the unchecked-predicted frames always pre-
cede the checked-predicted frames, because most frame predictors
work in a recurrent fashion that use past frames to predict future
frames [60]. As prediction progresses, prediction accuracy gradually
drops and checking against actual frames becomes important.

Overall, two key parameters dictate the trade-o� between accu-
racy and latency: the similarity threshold used in checking predicted
frames, and the number of frames in a predicted sequence that are
unchecked, which we dub “unchecked-degree.” Sec. 4.2 will describe
our o�ine-online collaboratively scheme to tune the two knobs to
bound the accuracy while reducing latency.
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4 PVF framework
PVF is our system design that e�ciently realizes the proactive
execution model. We �rst provide a framework overview (Sec. 4.1),
which consists components for accuracy control (Sec. 4.2), resource
scheduling (Sec. 4.3), and mis-prediction handling (Sec. 4.4). They
work together to minimize the latency of a vision task while sustain
its accuracy target. We then discuss the hardware support to enable
an e�cient implementation of PVF (Sec. 4.5).

4.1 System Overview
Fig. 6 provides an overview of PVF. The goal of the PVF framework
is to deliver a given latency target using the least energy while
meeting the accuracy requirement. Accordingly, there are two main
tasks of PVF: 1) ensuring the accuracy, and 2) delivering the latency
target in an energy-e�cient manner.

At run time, a frame predictor �rst predicts multiple future
frames, which are directly fed to the back-end to perform vision
tasks without waiting for the vision front-end. While a predicted
frame could be executed by any IP block provided by the hard-
ware, we propose a run-time design that intelligently maps the
predicted frames to the IP blocks in a way that minimizes the over-
all frame latency while meeting a given energy budget. When an
actual frame is produced by the front-end and matches with a pre-
dicted frame by the checking logic, the corresponding speculative
result is committed. Upon a frame mis-prediction, the run time
discards the current result, and re-starts the vision pipeline from
the mis-predicted frame.

The vision task could experience accuracy drop due to the relax-
ations introduced in Sec. 3.3. PVF relies on static-dynamic collabo-
ration to control accuracy. The static component identi�es a set of
knobs that accuracy is most sensitive to, and uses the pro�ling data
to empirically set the knobs to meet the accuracy target with the
least compute cost. With the “initial guess”, the run-time system
monitors the program execution, and dynamically tunes the knobs
to adapt to run-time dynamisms and to meet the accuracy target.

4.2 Accuracy Control
Proactive execution is precise if every predicted frame is checked to
be a pixel-perfect match with the actual captured frame. As estab-
lished in Sec. 3.3, however, PVF exploits the error-resilient nature of

vision tasks and introduces two sources of inexactness to improve
e�ciency. First, a portion of the predicted frames, controlled by the
unchecked-degree K , are not checked against the actual frames. Sec-
ond, the checking module does not enforce a pixel-perfect match;
rather, it accepts a predicted frame if its similarity measure is above
a similarity threshold T . PVFmust carefully calibrate the two knobs,
to control the accuracy while improving e�ciency.

To balance the overhead and e�ectiveness of accuracy control,
PVF uses the pro�le-guided optimization, where o�ine pro�ling
data is used to guide the initial calibration of the knobs, which are
further calibrated at run time to adapt to online dynamisms.
Static Control PVF �rst uses representative sample data to obtain
initial values of K and T o�ine. To that end, PVF requires users
to specify an image similarity metric (e.g., SSIM [61]), an accuracy
metric (e.g., mean average precision, mAP, for object detection [40]),
and an accuracy target. The o�ine accuracy control component
pro�les the vision pipeline against the sample input frames while
sweepingT andK . The samples could either come from the training
data or be supplied from users who have particular use-cases in
mind. In the end, we obtain the combination of T and K that meets
the accuracy requirement using the least compute. The statically
tuned T and K are then used as the initial setting at run time.
Dynamic Control It is possible that the accuracy knob setting
obtained/pro�led o�ine is occasionally overly aggressive or con-
servative at run time. Therefore, PVF introduces a dynamic control
mechanism to respond to run-time dynamisms that are not cap-
tured by o�ine pro�ling. Intuitively, if frame prediction is accurate,
PVF could approximate the front-end more aggressively, and vice
versa. In our design, if the mis-prediction rate is higher than a
threshold in a predicted sequence, PVF will increase the checking
frequency (i.e., increase the unchecked-degree K), and vice versa.
Other more complex mechanisms such as using control theory [23]
is also possible, but we empirically �nd that this simple mechanism
performs well in practice.

4.3 Runtime Scheduling
Proactive execution exposes a complex scheduling problem to the
run-time systemwhere multiple predicted frames are to be executed
on a heterogeneous SoC with multiple execution targets (i.e., IP
blocks). The scheduler must intelligently map frames to IP blocks



in order to minimize the average frame latency without violating
the energy budget. The scheduler could be easily extended to con-
sider the dual problem of minimizing the energy under a latency
constraint. Here we describe the former, but will evaluate both later.

Essentially, the scheduling task can be formulated as a con-
strained optimization problem.Without losing generality, assuming
that the frame predictor predictsM frames, which are to be sched-
uled onto N IP blocks, and the unchecked-degree is K (i.e., the �rst
K frames in the M predicted frames are not checked against the
actual frames). The scheduling problem is:

min(
KX
i=1

L
U
i +

MX
i=K+1

L
C
i ) s .t . E < Ebud�et (1)

whereLUi andLCi denote the frame latency of an unchecked-predicted
frame and a checked-predicted frame, respectively. E is the total
energy consumes across all the frames:

E =
KX
i=1

NX
n=1

�in ⇥ En +
MX

i=K+1

NX
n=1

�in ⇥ En (2)

where En denotes the inherent energy consumption of IP block n,
which could be dynamically pro�led once at run time. The binary
variable �in denotes whether the frame i is scheduled to IP block
n. The collection � = {�in } (i 2 {1, 2, ...,M}, n 2 {1, 2, ...,N })
thus uniquely determines an execution schedule for theM predicted
frames. LUi and LCi are both expressed as functions of �in ; please
refer to Appendix A for a detailed derivation.

Overall, our formulation optimizes over the schedule � = {�in }
(i 2 {1, 2, ...,M}, n 2 {1, 2, ...,N }). Unfortunately, this optimization
formulation is non-convex due to the complex interactions among
{�in }. Solving it by exhaustive search would require an algorithm
with a time complexity of O(NM ).

Instead, we use a lightweight greedy algorithm that works well
in practice. Algorithm 1 describes the pseudo-code. Speci�cally, the
scheduler schedules frames one at a time. Each frame is scheduled
to the IP block that would provide the lowest frame latency —
provided that the rest of the frames can possibly �nish with the
remaining energy budget using the least energy-consuming IP
block; otherwise the rest of the frames are scheduled to the least
energy-consuming IP. This algorithm is also lightweight to compute.
It takes about tens of microseconds to execute on a micro-controller,
as will be discussed in the hardware architecture later.

Note that scheduling (i.e., frames to IPs mapping) must be done
at run time, because PVF assumes no prior knowledge of the energy
consumption of each IP block.

4.4 Checking and Handling Mis-predictions
The run-time scheduler itself operates under the assumption that
no frame mis-prediction occurs. While mis-predictions are rare as
we will quantify in Sec. 6, they must be dealt with in a lightweight
fashion. Upon a mis-prediction, the run-time system takes two
actions. First, it discards the result generated for the mis-predicted
frame. Second, it replaces the predicted frame with the actual frame
and re-executes its vision stage. We de�ne mis-prediction penalty
as the time (energy) wasted in executing mis-predicted frames
that are eventually discarded. As we will quantify in Sec. 6.8, the
mis-prediction penalty is low. Note that it is possible that when

Algorithm 1: Greedy Frame Scheduling Algorithm.
Input: Energy Budget Ebud�et ; Predicted sequence length

M ; Number of IPs N ; Latency for each IP L1, . . . ,Ln ;
Energy consumption for each IP E1, . . . ,En ; Earliest
available time for each IP A1, . . . ,An ;
Unchecked-degree K ; ISP �nish time for each frame
T1, . . . ,Tm ; Checking latency C .

Result: IP selection �i for all the predicted frames.
if Ebud�et < M ⇥min(E1, . . . ,En ) then

return -1;
end
else

for i = 1 toM do
t =1
for j = 1 to N do

if Ebud�et - Ej � (M-1) ⇥min(E1, . . . ,En ) then
if i < K then

if Aj + Lj < t then
�i = j;
t = Aj + Lj ;

end
end
else

f =max (Aj+Lj ,Tj+C)
if f < t then

�i = j;
t = f ;

end
end

end
end
Ebud�et = Ebud�et - E�i ;
for j = 1 to N do

Aj = Aj + ( j == �j ) ? Lj : 0;
end

end
end

an actual frame is generated the predicted frame have started its
vision stage yet (i.e., waiting for the availability of the IP block that
it is scheduled onto), in which case the mis-predicted frames are
simply discarded, and there is no mis-prediction penalty.

4.5 Architectural Augmentations and
Implementation Details

A key design objective of PVF is to maximally reuse existing mobile
SoC architecture. PVF requires four principled augmentations to
existing mobile systems as shown in Fig. 6.
Frame Predictor PVF requires a frame predictor. While any frame
prediction algorithms would be compatible with the PVF frame-
work, we choose to a CNN-based frame prediction algorithm P����
��� [43]. The recurrent model predicts a sequence of consecutive
frames by using both the current frame and the hidden state that
contains historical information. Intuitively, predicting more frames
increases the scheduling window, but also introduces more mis-
predictions. We empirically �nd that 10 frames are desirable (i.e.,



M in Equ. 1), which in turns leads to about 81 million MAC oper-
ations, indicating a compute cost over two orders of magnitude
lower than that of a typical vision task such as object tracking and
detection [71]. Other even lighter predictors (e.g., using motion
vectors [54]) could be used in ultra-low power systems.

To not compete for the resources with the vision tasks, the frame
predictor is executed using a dedicated NPU rather than reusing
the main NPU. Compared to hard-wiring the predictor logic, using
a programmable NPU allows PVF to support other predictors in
the future if needed.
Checking Logic The frame checking is done in hardware. We
use the widely-used SSIM metric [61] to assess the quality of the
predicted frames compared to the actual frames. SSIM is lightweight
to compute compared to other system components. Given an input
resolution of 608 ⇥ 608, calculating the SSIM requires only 7.4
million MAC operations, a few orders of magnitude lower than the
vision algorithms.
Memory The proactive execution model requires two new data
structures: the Pending Frame Bu�er that stores predicted frames
and the Pending Result Bu�er that stores �nished results that are
not yet committed. In our implementation, we reserve two regions
in the physical memory for the two data structures. Sec. 6.1 will
show that the memory overhead is negligible.
MCUWe execute the run-time scheduler on a micro-controller unit
(MCU), which is common to mobile SoCs. The run-time system is
lightweight in computation and requires programmability to adapt
to future changes in the run-time policy, which a MCU provides.

5 Experimental Methodology
We describe the experimental setup (Sec. 5.1), the baselines (Sec. 5.2),
and the evaluation scenarios (Sec. 5.3).

5.1 Basic Setup
Software SetupWe evaluate PVF using two common vision tasks:
object detection and object tracking. We use YOLO [53], a state-
of-the-art CNN as the detection algorithm. We conduct the object
detection applications on the widely-used KITTI dataset [26]. We
evaluate two input resolutions: 608 ⇥ 608 and 256 ⇥ 128. We use
the common mean Average Precision (mAP) as the accuracy met-
ric [21], which is the mean of the average precisions across all
the object classes. We use ECO [17], a state-of-the-art CNN as the
tracking algorithm. We use VOT challenge 2017 benchmark as our
dataset [40] and use the commonly used Expected Average Overlap
(EAO) as the accuracy metric [39], which is the mean of the average
per-frame overlap across sequences with typical lengths.
Hardware SetupWe develop an in-house simulator parameterized
with real hardware measurements for modeling the continuous
vision pipeline. We model the baseline as a typical mobile SoC
consisting of key IP blocks including the CPU, GPU, ISP, and DSP.
Wemodel the AR1335 image sensor [1], and use the energy numbers
reported in the data sheet. The ISP power is measured from the
Nvidia Jetson TX2 module. Given a 256 ⇥ 128 low resolution image,
the sensor and ISP are set to run at 40 FPS, and consume 4.5 mJ and
3.8 mJ per frame, respectively. Given a 608 ⇥ 608 high resolution
image, the sensor and ISP are set to run at 30 FPS, and consume
6.5 mJ and 5.4 mJ per frame, respectively.

We model an NPU in the baseline to execute vision DNNs and
a separate NPU for the frame predictor (Sec. 4.5). Any existing
NPUs could be integrated into PVF, since PVF does not change the
microarchitecture of a NPU. For the purpose of our evaluation, we
use S����S�� [56], a RTL-validated DNN accelerator simulator, to
model the behaviors of both NPUs. The NPU has an array size of
20 ⇥ 20 operating at 500 MHz with a SRAM size of 1.5 MB. The
predictor NPU has an array size of 10 ⇥ 10 operating at 350 MHz
with a SRAM size of 128 KB. We implement the checking module
as a 6-way SIMD MAC units running at 500 MHz.

PVF uses other non-NPU IP blocks during scheduling. We model
a Qualcomm Hexagon 680 DSP, whose power consumption is mod-
eled through direct measurement from the Open-Q 820 Hardware
Development Kit [6]. We model the Pascal GPU from the Jetson
TX2 [3], whose power consumption is modeling through direct
measurement using its built-in power measurement. The DRAM
is modeled after four Micron 16 GB LPDDR3-1600 channels [4].
Finally, we model an ARM M4-like micro-controller [2], which is
used to execute the PVF run-time scheduler. Appendix B shows the
measurement results that we use for parameterizing the simulator.

5.2 Baselines
We compare with three di�erent baselines:

• Base, which is the baseline system without predictive execu-
tion. Base uses YOLO [53] for object detection and ECO [17]
for object tracking.

• BO, which optimizes Base by optimizing the vision back-end,
i.e., the vision algorithm. It represents a common strategy
today to reduce the frame latency. While there are many
back-end optimization techniques such as model compres-
sion [15, 30, 37] and motion compensation [71], they all have
the same e�ect of reducing the vision algorithm’s latency. In
our evaluation we choose to replace complex but accurate
DNN models with simpli�ed but less accurate DNN models.

In particular, we train a simpli�ed version of YOLO, which
we call O-YOLO, which has 41.1% fewer MAC operations
than YOLO with only 0.15 mAP loss on low resolution in-
puts and 2.3 mAP loss on high resolution inputs. For object
tracking, we use KCF [34], which uses hand-crafted features
and has 80% lower compute cost with 0.03 EAO drop on
low resolution inputs and 0.153 on high resolution inputs
compared to ECO.

• FCFS, which improves BO by utilizing all the IP blocks avail-
able for vision computation but without prediction capabil-
ities. Therefore, comparing PVF with FCFS will show the
bene�ts of the proactive execution model. The FCFS sched-
uler maps incoming frames to the fastest available IP block
using a First-Come-First-Serve policy.

5.3 Evaluation Scenarios
Since PVF predicts and sometimes even skips the vision front-end,
its e�ectiveness is naturally sensitive to the latency distribution
between the front-end and the back-end. To understand when and
why PVF provides latency reduction, we evaluate it under three
di�erent usage scenarios:



• Back-End Dominant, which refers to a scenario where the
back-end dominates the original vision pipeline (i.e., a high-
latency but accurate vision algorithm is used). Object detec-
tion with high resolution falls into this category.

• Front-End Dominant, which refers to a scenario where the
front-end dominates the original vision pipeline. Object
tracking with low resolution falls into this category.

• Mixed, which refers to a scenario where the back-end domi-
nates the original vision pipeline, but front-end becomes the
bottleneck when an optimal vision algorithm is used. Object
tracking (both high and low resolutions) �ts this scenario.

6 Evaluation
We �rst show the software and hardware overhead of PVF (Sec. 6.1).
We then show that with careful accuracy tuning, the accuracy
drop of front-end approximation is negligible (Sec. 6.2). We further
demonstrate that PVF achieves latency reduction with the same or
lower energy budget in di�erent scenarios. (Sec. 6.3, Sec. 6.4, and
Sec. 6.5). We apply the same run-time optimization formulation to
the duel problem of saving energy under latency budgets (Sec. 6.6).
We show how sensitive PVF is to di�erent accuracy knobs (Sec. 6.8).
Finally, we compare PVF with an alternative that simply lows the
image resolution in an iso-accuracy setting (Sec. 6.7), and compare
our PVF implementation with an ideal implementation that has an
oracle predictor (Sec. 6.8).

6.1 Overheads
Hardware Overhead PVF adds two new hardware components:
predictor and checker. In a 16 nm technology node, the predictor
is about 170,000 um2 in area and the checking module is about
1,500 um2 in area. Both combined contribute to less than 0.15% of
the total SoC die area [7]. In addition, the two pending bu�ers are
pinned in the DRAM (Sec. 4.5). The Pending Frame Bu�er has a
size of 1.5 MB and the Pending Result Bu�er has a size of 200 Bytes.
Prediction Overhead The prediction overhead is low. For high
resolution inputs, the latency of the predictor is 12.5 ms per frame,
which is about 5 ⇥ faster than the front-end; the energy overhead is
less than 0.5 mJ per frame, which is 22 ⇥ lower than the front-end.
For low resolution inputs, the latency and energy overhead is less
than 1.0 ms and 0.1 mJ per frame, respectively, which are about 50
⇥ faster and consumes 83 ⇥ lower energy than the front-end.
Checking Overhead Checking also have insigni�cant overhead,
with a mere 2.5 ms and 0.2 ms latency for high and low resolution
inputs, respectively.
SchedulingOverheadThe run-time scheduler uses a simple greedy
algorithm. The run-time scheduler executes within 100 µs on an
M4-like micro-controller.

6.2 Accuracy Results
We evenly split the dataset into an o�ine pro�ling set and an online
test set. The pro�ling set is used by the static accuracy control
module to empirically decide the two accuracy knobs, similarity
threshold T and unchecked-degree K , while the test set is used at
run-time evaluation.
Object Detection We set an accuracy target of less than 1.5 mAP
loss compared to Base, on par with the accuracy drop in prior
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Fig. 8: Accuracy sensitivity in object tracking.

work [10, 71]. Fig. 7 shows how the mAP drop (left �-axis) and
mis-prediction rate (right �-axis) vary with the SSIM (similarity)
threshold for the pro�ling set. As the SSIM threshold relaxes from
right to left, the mis-prediction rate decreases and therefore PVF
accepts more inexact input frames. At the same time, the accuracy
drop also increases. Similarly, Fig. 7b shows how the mAP changes
with the unchecked-degree. As more frames are predicted without
being checked, the mAP drop increases.

The o�ine accuracy control module tunes both knobs together
and settles for the con�guration with T = 0.5 and K = 6. We
�nd that this setting is stable at run time. The average number of
unchecked frames increases by only 0.72 in each predicted sequence.
Overall, the static-dynamic collaborative approach in PVF leads
to an 1.13 mAP loss on the test set, which would have been 4.4%
higher if only the static component is employed.
Object TrackingWe set an accuracy target of less than 0.1 EAO
loss compared to Base, which is better than switching from a CNN-
based tracker to the best non-CNN tracker [38]. Fig. 8a and Fig. 8b
show how the accuracy drop varies with the SSIM threshold and
the unchecked-degree for the pro�ling set. The o�ine tuning mod-
ule chooses 0.7 as the SSIM threshold T and 6 as the unchecked-
degree K , which again is stable at run time. The average number
of unchecked frames increases by only 0.57 in each predicted se-
quence. Overall, the static-dynamic scheme in PVF leads to leads to
0.051 EAO loss on the test set, which would have been 13.7% higher
if the accuracy knobs are tuned only o�ine.

6.3 Latency in Back-End Dominant Scenario
PVF run-time system schedules frames in a predicted sequence
onto di�erent IP blocks given a speci�c energy budget in order to
minimize latency. We show in this section the results of PVF under
di�erent energy budgets when the vision back-end dominates the
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Fig. 9: Frame latency reductions under di�erent energy constraints in the three evaluated scenarios.
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(c) Energy consumptions under di�erent la-
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Fig. 10: Frame energy consumptions under di�erent latency constraints in the three evaluated scenarios.

pipeline latency. We use object detection with high resolution as a
concrete use-case for this scenario.

Fig. 9a shows the latency reduction of PVF over Base (�-axis)
under di�erent energy constraints (x-axis). Note that while PVF
can �exibly adapt to di�erent energy budgets thanks to its run-time
scheduler, the three baselines are �xed designs and their latencies
do not change with the energy budget. We purposefully choose the
energy budgets for PVF to match the energy consumptions of the
three baselines, so that we can compare PVF with the baselines in
an iso-energy manner.

Compared with Base, BO achieves 51.0% latency reduction. The
signi�cant latency reduction comes from shaving o� the vision
stage latency that dominates the pipeline. FCFS further reduces the
latency by 14.9% because it employs multiple IP blocks to reduce
the resource contention of the vision back-end. Compared to FCFS,
PVF is able to further achieve 8.0% latency reduction under the same
energy budget. This is because through prediction PVF provides
more frames to the back-end and thus better utilizes the available
IP blocks in a heterogeneous SoC. Compared with Base and BO,
PVF’s latency reduction is 67.4% and 16.4%, respectively.

In addition, PVF extends the energy-latency trade-o� space.
Given di�erent energy budgets, PVF’s scheduler automatically iden-
ti�es the most suitable frame-to-IP mapping that meets the energy
with minimal latency. Overall, PVF pushes the Pareto-optimal fron-
tier further than that of the three baselines, providing better system
operating choices that are more energy-e�cient with lower latency.

6.4 Latency in Front-End Dominant Scenario
Fig. 9b shows the latency reduction of BO, FCFS, and PVF over Base
in front-end dominant scenarios. Overall, both BO and FCFS have
little latency improvement over Base, but PVF provides signi�cant
latency reduction.

When the front-end dominates the end-to-end latency, the back-
end (i.e., vision stage) is not the bottleneck. Therefore, BO only has
marginal latency reduction over Base (6.4%) as the former optimizes
the back-end vision algorithms. In addition, in front-end dominant
scenarios, whenever a new frame is produced by the front-end, the
NPUwill always be available because the back-end is fast. Therefore,
the FCFS scheduler will schedule incoming frames only to the NPU
(as other non-NPU IP blocks have higher energy consumption than
the NPU), essentially falling back to BO. As a result, FCFS leads to
an almost identical latency compared to BO.

In contrast, PVF provides signi�cant latency reduction due to
the ability to proactively execute future frames without waiting for
the front-end. Under the same energy budget, PVF provides 85.6%,
85.6%, and 92.0% frame latency reduction compared to BO, FCFS,
and Base, respectively.

In front-end dominant scenarios PVF does not provide a large
energy-latency trade-o� as it does in back-end dominant scenarios.
This is because the NPU is always available and the scheduler will
always schedule incoming frames to the NPU.
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Fig. 11: Sensitivity Analysis. TLF denotes “too low to �nish.”

6.5 Latency in Mixed Scenario
Fig. 9c shows the latency reductions of BO, FCFS, PVF over Base
in the mixed scenario. In this scenario, the back-end dominates
the pipeline latency with the original vision algorithm in Base.
Therefore, by optimizing the vision algorithm BO signi�cantly
outperforms Base, reducing the latency by 86.8%. However, once
the vision algorithm is optimized, the front-end dominates the
latency. Thus, FCFS has no latency improvement over BO, and the
PVF achieves only 6.7% further latency reduction over FCFS.

6.6 Energy Improvements
So far, we have been evaluating PVF under the objective of minimiz-
ing latency under di�erent energy budgets. PVF could also operate
under a dual problem of minimizing energy consumption under
latency constraints. We brie�y evaluate PVF under this objective.

Fig. 10a, Fig. 10b, and Fig. 10c show how PVF can reduce the
frame energy consumption under given latency constraints for the
same three scenarios as described in Sec. 5.3, respectively. Simi-
larly to the latency-oriented optimization, PVF shows the most
signi�cant energy savings when the front-end dominates the vision
pipeline latency, such as the scenario shown in Fig. 10b. In that case,
PVF is able to achieve 55.6%, 52.4%, and 52.4% per frame energy
saving compared to Base, BO, and FCFS, respectively.

6.7 Comparison With Lower Image Resolution
PVF out-performs an alternative that simply lowers the image
resolution. Due to the space limit, we show the results of the front-
end dominant scenario (i.e., object detection with low resolution).
We designed an iso-accuracy experiment, in which we lower the
input image resolution by 25%. Compare against simply lowering
the resolution, PVF reduces latency by 90.0%, slightly lower than
the 92.0% reduction on the original resolution but is still signi�cant.

6.8 Sensitivity Study
We study the sensitivity of PVF with respect to K and T , the two
knobs that a�ect the accuracy-latency trade-o�s. Due to limited
space, we use object detection as a case-study, but the general trend
holds. Fig. 7 shows the accuracy sensitivity, and this section focuses
on the latency and energy sensitivities.
Unchecked-Degree Fig. 11a shows the latency reduction of PVF
with di�erent unchecked-degrees (K ) under the same energy con-
straint (21.0 mJ for high resolution inputs and 5.0 mJ for low res-
olution inputs). Generally, as K increases, the front-end could be
switched o� more often, leaving more energy budget for the back-
end to active more IP blocks to reduce the frame latency. For high

100

80

60

40

20

0

La
te

nc
y 

R
ed

uc
tio

n 
(%

)

PVF Oracle

30

29

28

27

26

25
E

nergy P
er Fram

e (m
J)

(a) Back-end dominant case.

100

80

60

40

20

0

La
te

nc
y 

R
ed

uc
tio

n 
(%

)

PVF Oracle

5

4

3

2

1

0

E
nergy P

er Fram
e (m

J)

(b) Front-end dominant case.

Fig. 12: Oracle Analysis using object detection.

resolution inputs, the latency reduction improves from 51.0% to
57.8% as K increases from 3 to 5. The improvement plateaus as K
increases to 7. The reason is that by then the saved energy from
switching o� the front-end is not enough to allow the scheduler to
activate another IP block to gain more latency reduction.

For low resolution inputs, under a K of 3 the energy budget
is not enough to let the system �nish all the frames (denoted as
“too-low to �nish”, TLF). As K increases, the energy saved from
switching o� the front-end let the system �nish all the frames and
achieve signi�cant latency reduction. Similar to the high resolution
scenario, the latency reduction plateaus beyond K = 5.
Similarity Threshold A higher SSIM threshold (T ) would result
in more mis-predictions, leading to higher energy waste since the
vision results calculated on the mis-predicted frames will be dis-
carded. Thus, the latency reduction would decrease because the
back-end has less energy to activate new IP blocks to reduce la-
tency. Fig. 11b shows the latency reduction with di�erent T s under
the same energy constraint (22.8 mJ for high resolution input and
5.0 mJ for low resolution input). As T increases, the latency reduc-
tion decreases. For the low resolution case as T increases to 0.8 the
energy budget is too small for the system to �nish all the frames.

6.9 Oracle Analysis and Mis-Prediction Penalty
The e�ectiveness of PVF is correlated with the accuracy of the
frame predictor. We now assess how PVF would perform with an
oracle predictor (Oracle), which uses the same prediction algo-
rithm [43] and the same hardware, but has a perfect prediction
accuracy. That is, the only di�erence between PVF and Oracle is
that the latter does not pay the mis-speculation penalty (the energy
wasted on executing vision algorithms on mis-predicted frames).
By comparing PVF with Oracle, we can not only assess the full
potential of PVF, but also understand its mis-speculation penalty.

Fig. 12a shows the results of the back-end dominant scenario, in
which Oracle consume 5.2% lower energy (right �-axis) than PVF,
equivalent to PVF’s mis-speculation energy penalty. PVF has almost
identical latency reduction compared to Oracle. This is because
when the back-end dominates speculating the front-end has little
impact on improving the frame latency. The gap between Oracle
and PVF is more notable in the front-end dominant case, which
bene�ts from a more accurate frame predictor. The results of the
front-end dominant case are shown in Fig. 12b. Oracle consumes
12.3% lower energy and 8.0% lower latency compare to PVF.



7 Limitation and Discussion
Applicability The accuracy loss of PVF in its current is similar
to prior work on approximating vision computations [10, 71]. PVF
currently does not target mission-critical systems that have tight
accuracy requirements. PVF could be used in vision systems such
as AR and robotics navigation that are less accuracy sensitive. Note
that PVF is compatible with any frame predictor. Therefore, PVF
can readily bene�t from a higher quality frame predictor with the
algorithmic innovations from the vision community.
Predictor Alternatives PVF predict future frames. However, ob-
taining the exact pixels in future frames is not always necessary.
We discuss two alternatives here for future developments.

First, one could directly predict frame features rather than pix-
els [59]. This is potentially e�cient as CNNs extract features from
pixels anyways, and operate on features rather than raw pixels. The
challenge is that there is no well-established comparison metric in
the feature space, unlike the SSIM metric used in the pixel space.
We empirically �nd that simply comparing the Euclidean distance
between two feature vectors leads to high error rates.

Second, for applications where the semantics output is a region-
of-interest (ROI), we could directly predict the ROI location. How-
ever, predicting images allows PVF to be generally applicable to
any backend vision algorithms, including those that generate more
than ROIs (e.g., the object class in object detection).
Security Vulnerabilities The proposed speculative vision system
does not share the security vulnerabilities introduced by specula-
tions in CPU microarchitecture such as Spectre and Meltdown. The
fundamental reason is that Spectre and Meltdown exploit specula-
tion at the microarchitecture-level (branch prediction and out-of-
order execution) to leak information, whereas the proposed specu-
lative vision execution is an application-level technique, in which
the predicted frames are in non-speculative states from the microar-
chitecture’s perspective. Thus, our proposal does not expose new
security vulnerabilities to Spectre and Meltdown attacks.

However, predictive execution does expose mis-predicted frames,
which could be potentially be exploited to infer system internal
behaviors. The security implication of predictive vision execution
should be carefully studied, which we leave for future work.

8 Related Work
Vision Optimizations Literature is rich with techniques that op-
timize or approximate the vision algorithms. Classic techniques
include using smaller, simpli�ed models [35, 52, 67], model com-
pression [15, 30, 37], quantization [36, 63–65], and using specialized
hardware [14, 27, 48]. Recent developments have also leveraged
the temporal/spatial redundancies in real-time frames to simplify
computations [10, 22, 46, 55, 71].

PVF di�ers from prior work in two key ways. First, PVF expands
the optimization scope from optimizing only the back-end vision
stage to the whole continuous vision pipeline. Speci�cally, PVF
predicts the front-end, and is complementary to existing back-end
optimization techniques. Second, PVF presents a new form of vision
approximation by relaxing the checking constraint of the vision
pipeline front-end, saving energy from the vision front-end.
Heterogeneity in Mobile Computing Mobile SoCs are rich in
architectural heterogeneity to deal with a wide variety of use-cases

that have di�erent compute intensities. Industry has provided ma-
ture programming frameworks [50]. The heterogeneity has been
exploited in various contexts such as Web browsing [69, 70] and
machine learning [32, 41, 57].

Critical to exploiting hardware heterogeneity is scheduling, which
decides which tasks are executed on which IP block to meet a given
objective. While task scheduling in heterogeneous system has been
extensively studied before [8, 45, 62, 66], PVF introduces unique
challenges because the scheduler must deal with a stream of incom-
ing tasks that have dependencies. We formulate the scheduling task
in PVF as a constrained-optimization problem and demonstrate an
e�cient greedy algorithm that performs well in practice.

9 Conclusion
Long frame latency is detrimental to real-time vision systems. This
paper argues that the sequential execution model is the culprit of
the long latency. We propose PVF, a speculative vision execution
model that reduces the frame latency under the same or lower
energy budget. The key to PVF is to break the sequential execution
between vision front-end and back-end. We present an e�cient
implementation of PVF by leveraging the heterogeneities in mobile
SoCs and exploiting the error-tolerance nature of vision tasks.
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Appendices

A Latency Derivation in Scheduling
The latencies in Equ. 1 are calculated as the time di�erence between
the start time SUi (SCi ) and the �nish time FUi (FCi ). For both checked-
and unchecked-predicted frames, a frame start when its sensing
stage starts. Thus, we have:

L
U
i = F

U
i � Si , L

C
i = F

C
i � Si (3)

Si = (i � 1) ⇥Tsense (4)

where Tsense is sensing stage time, which is statically determined
given a particular sensor frame rate.

A frame’s �nish time depends on its type. An unchecked-predicted
frame �nishes when its vision stage �nishes. If two frames’ vision
stages are mapped to the same IP block, the latter starts only after
the former �nishes. Thus:

F
U
i =

i�1X
k=1

�ik ⇥ (Fk +Ti ),�ik 2 {0, 1},
i�1X
k=1

�ik = 1 (5)

whereTi represents the vision stage time of frame i, and the binary
variable �ik denotes whether or not Frame i is executed right after
Frame k on the same IP block. Frame k itself could either be an
approximate frame or a predicted frame.

For a checked-predicted frame, it �nishes when the checking
�nishes, which depends on whether the vision stage �nishes before



Table 1: Latency of object detection and object tracking us-
ing both high and low input resolution on di�erent IPs. All
numbers are in milliseconds.

High-Res Low-Res
IP YOLO O-YOLO ECO KCF Yolo O-YOLO ECO KCF

NPU 173 100 - - 13 7 - -
GPU 651 491 - - 447 421 - -
DSP 743 650 - - 521 490 - -
CPU >2000 >2000 83 22 >2000 >2000 72 14

or after the actual frame is generated:

F
C
i =max (

i�1X
k=1

�ik ⇥ (Fk +Ti ), i ⇥Tsense +Tisp ) +Ci ,

�ik 2 {0, 1},
i�1X
k=1

�ik = 1 (6)

where Tisp is imaging stage time, which is statically determined
given the ISP frame rate;Ci is the checking time, which is also stat-
ically determined given the similarity metric and image resolution.

Ti , the vision stage execution time of a frame i, depends on the
particular IP block that is scheduled to execute the frame. Thus,
they can be expressed as follows:

Ti =
NX
n=1

�in ⇥ Ln , �in 2 {0, 1},
NX
n=1

�in = 1 (7)

where Ln denotes IP block n’s latency, which is pro�led given a par-
ticular image resolution. The binary variable �in denotes whether
the frame i is scheduled to IP block n. The collection � = {�in }
(i 2 {1, 2, ...,M}, n 2 {1, 2, ...,N }) thus uniquely determines an
execution schedule for theM predicted frames.

Note that �ik is not an independent variable; it could be derived
from �in and �kn . If both �in and �kn are 1 and �zn is 0 for any
z 2 (k, i), indicating that frame k and frame i are scheduled to
execute on the same IP block n consecutively, �ik has to be 1.
Leveraging the arithmetic properties of binary values, �ik could be
expressed as:

�ik =!
NY
n=1

(�in ⇥ �kn ⇥ (
kX
z=i

�zn � 1) � 1) (8)

where ! is the logic negate that returns 0 for any non-zero values.

B Latency and Energy Characterizations
Table 1 and Table 2 show the latency and energy measurement
results used to parameterize the simulator described in Sec. 5.1.
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