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Abstract
Large-scale deep neural networks (DNNs), such as large

language models (LLMs), have revolutionized the artificial

intelligence (AI) field and become increasingly popular. How-

ever, training or fine-tuning such models requires substan-

tial computational power and resources, where the memory

capacity of a single acceleration device like a GPU is one

of the most important bottlenecks. Owing to the prohibi-

tively large overhead (e.g., 10×) of GPUs’ native memory

allocator, DNN frameworks like PyTorch and TensorFlow

adopt a caching allocator that maintains a memory pool

with a splitting mechanism for fast memory (de)allocation.

Unfortunately, the caching allocator’s efficiency degrades

quickly for popular memory reduction techniques such as re-

computation, offloading, distributed training, and low-rank

adaptation. The primary reason is that those memory reduc-

tion techniques introduce frequent and irregular memory
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(de)allocation requests, leading to severe fragmentation prob-

lems for the splitting-based caching allocator. To mitigate

this fragmentation problem, we propose a novel memory al-

location framework based on low-level GPU virtual memory

management called GPU memory lake (GMLake). GMLake

employs a novel virtual memory stitching (VMS) mecha-

nism, which can fuse or combine non-contiguous memory

blocks with a virtual memory address mapping. GMLake

can reduce average of 9.2 GB (up to 25 GB) GPU memory

usage and 15% (up to 33% ) fragmentation among eight LLM

models on GPU A100 with 80 GB memory. GMLake is

completely transparent to the DNN models and memory

reduction techniques and ensures the seamless execution

of resource-intensive deep-learning tasks. We have open-

sourced GMLake at https://github.com/intelligent-machine-

learning/glake/tree/main/GMLake.

CCS Concepts: • Computing methodologies→ Machine
learning; • Software and its engineering→ Virtual mem-
ory management schemes.

Keywords: Memory Defragmentation, GPU, Deep Learning,

Virtual Memory Stitching
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1 Introduction
Large-scale deep neural network (DNN) models, specifically

Large Language Models (LLMs), have revolutionized nat-

ural language processing (NLP) and artificial intelligence

(AI) research [88]. LLMs, such as the GPT-3 [8] architecture,

are sophisticated DNN models with remarkable capabilities

in understanding, generating, and processing human lan-

guage. These models leverage vast amounts of textual data

and employ Transformer-based architectures characterized

by attention mechanisms [78] to achieve state-of-the-art per-

formance on various NLP tasks. However, the widespread

adoption of LLMs comes with significant computational chal-

lenges, as training or fine-tuning such models requires sub-

stantial computational power and resources. For example,

OPT [87], with 175 billion parameters, needs 34 days on 1,024

A100 GPUs, and 65B-parameter LLaMA [77] processes 1.4T

tokens on 2048 A100 GPUs taking approximately 21 days.

Therefore, deep learning (DL) frameworks, e.g., PyTorch

[63] and TensorFlow [76], have emerged as the fundamental

infrastructure for DNN models due to their flexibility and

computational efficiency. Those DL frameworks have en-

abled the training of increasingly large and complex neural

network models. Meanwhile, the GPU architecture [12, 36,

60] has become the most widely used hardware to support

the high-performance execution of DNN models. On the

other side, the growing scale and complexity of DNN models

poses new challenges to GPU memory management. For

instance, using the CUDA’s native memory allocation APIs

like cudaMalloc and cudaFree incurs a large overhead. To
improve the efficiency of GPU memory allocation, DL frame-

works opt to implement a caching allocator that maintains a

memory pool with the best fit with coalescing (BFC) algo-

rithm [76]. Our experiments show that the caching allocator

outperforms the native memory allocator by almost 10×.
On the other side, the rapid growth in the memory require-

ments of large-scale DNN models [2, 75] has sparked the

development of methods at the system- and algorithm-level

to alleviate memory demands. Examples for these methods

include recomputation [40, 86], offloading [69], distributed

training [28, 30, 42, 45, 72, 83] and low-rank adaptation [29].

Even though these optimizations can effectively reduce mem-

ory footprint for training or fine-tuning large-scale DNN

models, they may lead to poor memory utilization. The rea-

son is that they also introduce a significant amount of reg-

ularity and dynamicity in the memory allocation requests,

which results in up to 30% GPU memory fragmentation.

As shown in Figure 1 left, DL frameworks manage the

memory allocation within the memory pool. They adopt the

“splitting” method to split the memory pool to fit the DNN

tensors’ arbitrary size and boost the utilization of the mem-

ory pool. However, that will cause severe memory fragmen-

tation for some new allocations. For example, the framework

splits the third line to store the new allocation of Block 4.
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2 5
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Figure 1. Representative example of memory allocation

problem. The original splitting method can boost GPU mem-

ory utilization but cause fragmentation. Our proposed virtual

memory stitching can complement and optimize the memory

fragmentation issues.

But the memory pool cannot hold Block 6 because the size of

Block 6 is larger than Block 5, which cannot be exploited and

becomes fragmented. Finally, the framework will report the

out-of-memory (OOM) error, one of the most common issues

in the training processing for DNN models. The aforemen-

tioned memory reduction techniques like recomputation and

offloading can mitigate the OOM issue, but also lead to more

frequent and irregular memory allocation and deallocation

requests, exacerbating the fragmentation problem.

To mitigate GPU memory fragmentation and improve

efficient memory utilization, this study focuses on explor-

ing the causes of GPU memory fragmentation and proposes

a novel memory allocation framework based on low-level

GPU virtual memory management, called GPU memory lake

(GMLake), to optimize GPU memory management with

low overhead. As shown in Figure 1 right, GMLake em-

ploys a novel virtual memory stitching (VMS) mecha-

nism, which is seemingly a reverse behavior to the splitting.

Compared to the original framework, it can fuse or combine

non-contiguous memory blocks with a virtual memory ad-

dress mapping. For example, the VMS can map Block 6 to

the Block 2 and 5 stitched block by a virtual memory ad-

dress, then store Block 6 in the physical memory chunks of

Block 2 and 5. Obviously, virtual memory stitching effectively

reduces memory fragmentation and improves memory uti-

lization. We implement the GMLake on the low level of the

DL framework and replace the original memory allocation

API of DNN training. GMLake is completely transparent to

the DNN models and other memory optimization methods,

e.g., recomputation and offloading, ensuring the seamless

execution of resource-intensive deep-learning tasks.

Overall, this work makes the following contributions:

• We perform a characterization study to show that the

caching allocator used in existing DL frameworks suf-

fers from up to 30% memory fragmentation when run-

ning large-scale DNN models with various memory

reduction techniques such as recomputation, offload-

ing, distributed training, and low-rank adaptation.
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• We design and implement GMLake, a novel memory

allocator that effectively reduces memory fragmen-

tation and improves memory utilization. GMLake is

transparent to the above existing memory reduction

techniques. It integrates the virtual memory stitch-

ing mechanism by using the low-level CUDA virtual

memory management knobs.

• We evaluate GMLake on multiple prominent LLM

optimization platforms with a set of representative

open-source LLMs to demonstrate its effectiveness,

efficiency, and robustness. In the best case, we can re-

duce GPU memory usage by 33%, translating to 25 GB

memory saving comparing to native caching allocator

in PyTorch on an A100 GPU with 80 GB HBMmemory.

2 Background and Motivation
In this section, we provide essential background concerning

the memory management of the DL framework and outline

the motivation behind conducting this study through our

experimental observations. To begin, we provide a concise

overview of the increasing trend of large-scale DNN such as

LLM. Subsequently, we conduct a comparative analysis of

various memory management methods. Following the com-

parison, we uncover significant fragmentation challenges

that arise in the context of LLMs during distributed training

and memory-efficient optimization strategies. As a result, it

is imperative for us to develop a novel and efficient memory

allocator that can effectively address these challenges.

2.1 Large-scale DNNs
LLM, such as OpenAI’s GPT series [33, 57, 88], represent

the success of large-scale DNNs and have led to significant

advancements in various language processing tasks. GPT-2

represents a significant advancement over its predecessor, of-

fering a ten-fold increase in model size and complexity [66],

followed by GPT-3 [7] with 175 billion parameters, and Chat-

GPT [49], fine-tuned for conversations.

However, the size and complexity of these models pose

considerable challenges in training and deployment. The re-

quirements for vast computational resources, enormous data,

and extensive time (e.g., OPT-175B [87] taking 34 days with

1024 A100 GPU) have intensified focus on efficient training

optimization. Therefore, this study emphasizes the impor-

tance of efficient memory management for LLM training.

2.2 Memory Management of DL Framework
Frameworks like PyTorch [61] and TensorFlow [1] play a

crucial role in DNN model training and inference. Concur-

rently, GPU [12, 36, 60] has become an important hardware

for high-performance model execution. This study focuses

on the memory management optimization for those popular

frameworks on GPUs. We compare the three types of mem-

ory management: GPU native allocator, caching allocator,

and virtual memory (VM) allocator. We conduct multiple

experiments to show the efficiency associated overhead for

each allocator.

Native Allocator. As depicted in Figure 2(a), the native

allocator is provided through GPU-vendor-supplied APIs,

i.e., cudaMalloc and cudaFree, which need device synchro-

nizations. The native allocator has a simplistic design that

lacks flexibility. This makes it unsuitable for applications

that need dynamic and resizable memory structures or com-

plex memory management, especially in the context of DL.

If the DL framework implements the native GPU allocator

without proper synchronization optimization, it may cause

unacceptable overhead for training the DNN models.

Our experimental results have quantified the overhead of

the native allocator. We disable the PyTorch caching alloca-

tor (presented in the next paragraph) to train the OPT-1.3B

model [87] on four A100-80G GPUs. The native allocator

in PyTorch provide identical programming model for users,

who can change the environment variables to set the allo-

cator. The throughput of the GPU native allocator is 9.7×
lower than the original PyTorch allocator. Therefore, an ef-

ficient memory management design should be one of the

most critical components of the DL framework.

CachingAllocator. DL frameworks usually use the caching

allocator with a memory pool for fast memory allocation and

deallocation without device synchronizations. Figure 2(b)

depicts the BFC algorithm [76] in the caching allocator em-

ployed by PyTorch and TensorFlow. The BFC implementa-

tions of PyTorch and TensorFlow are almost the same, with

minor differences in their data structures.

There are four main operations in the BFC algorithm. 1 It

begins with searching for themost suitable allocated but inac-

tive memory block, known as the “best fit”. If there is no suit-

able allocated memory block candidate, the caching allocator

invokes native GPU allocator APIs to allocate new memory

blocks. 2 If the requested memory is smaller than the best-

fit block, the algorithm splits the block into two blocks to

boost memory utilization. One of the split blocks is allocated

to fulfill the memory request, while the other remains in the

memory pool for future reallocation. To effectively manage

the memory, these two blocks are interconnected through a

bidirectional link, with each block monitoring the availabil-

ity status of its adjacent block. 3 For the free (deallocation)

operation, the algorithm does not invoke the native GPU API

cuMemFree but only releases the assignment (pointer) to the

block and sets the block to inactive. 4 Finally, the caching

allocator examines whether the blocks adjacent to the left

or right are also inactive. If so, the caching allocator would

merge those adjacent inactive blocks into a single block.

Obviously, the caching allocator can significantly reduce

the invocations of native GPU memory allocator APIs. In the

best case, all memory blocks are allocated and deallocated

only once through the native allocator. As such, the caching
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Figure 2. Three memory management strategies.

allocator can be much more efficient than the native GPU al-

locator and is widely adopted in existing DL frameworks. On

the other hand, the “splitting” mechanism will provoke a lot

of possible memory fragmentation issues when the memory

allocation requests are irregular and their sizes are signifi-

cantly different from each other. This fragmentation issue is

not notable previously because the models are usually regu-

lar and not large enough. For example, Transformer-based

model [78] is a stack of multiple identical layers with the

same size of tensor, leading to minor memory fragmentation.

However, as the size of LLM grows, the fragmentation

issue significantly deteriorates due to the distributed training

and complex training memory strategy, leading to limited

batching and inefficient memory management and training.

In the next subsections, we observe fragmentation issues

become challenging in these complex training scenarios.

2.3 Memory-efficient Optimization
The rapid growth in the memory requirements of large-scale

DNN models [2, 75] has sparked the development of meth-

ods at the system- and algorithm-level to alleviate memory

demands. Examples for these methods include recomputa-

tion [40], offloading [69], and low-rank adaptation [29].

Recomputation [40, 86], also known as checkpointing,

involves recalculating specific layer outputs during back-

propagation rather than storing them, allowing for memory

savings. Offloading (also known as swap), such as ZeRO-

Offload [69] shifts optimizer memory and computation from

97%
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Figure 3. Memory utiliza-

tion with five method com-

binations.
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Figure 4. Memory utiliza-

tion with different GPU num-

bers.

GPU to CPU, enabling training of large models on a sin-

gle GPU and scaling across multiple GPUs. In addition to

these system-level approaches, algorithmic methods can

also effectively reduce memory requirements. For example,

LoRA [29], designed for large-scale models, introduces rank-

decomposition matrices to minimize both trainable param-

eters and GPU memory requirements, achieving accuracy

similar to full model fine-tuning with reduced cost and time.

However, even though these optimizations can effectively

reduce memory footprint in GPU memory, they may some-

times lead to poor memory utilization. As depicted in Fig-

ure 3, we train the OPT-1.3B model on four A100-80G GPUs

with different optimizationmethod combinations. Using only

PyTorch (P) achieves high memory utilization, whereas em-

ploying techniques such as LoRA (L), Recomputation (R), or

Offload (O) significantly reduces memory utilization. Accord-

ing to our investigations, combining these techniques results

in high memory fragmentation. The reason is that these

memory optimization techniques inherently incur dynamic

and irregular allocation requests.

To explore the origin of this irregularity, we present the

memory footprint of a training process on the GPT-NeoX-

20B model. As shown in Figure 5, the left figure shows the

footprint on the original PyTorch, and the right figure is

collected from PyTorch with LR (LoRA and Recomputation)

optimization. Obviously, the right figure shows more irreg-

ularity than the left because of the usage strategy like re-

computation. Statistically, the left figure makes 46 thousand

allocations with a size of 93 MB on average, while the right

Original PyTorch PyTorch + LR

Figure 5. Memory footprint of GPT-Neox-20B training.
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figure has 76 thousand allocations with 85 MB on average,

indicating that complex strategies lead to more frequent and

smaller allocations thus causing fragmentation.

The results motivate us to address the memory fragmen-

tation issues for more efficient and scalable large-scale DNN

model training.

Observation 1: The more complex and irregular memory
optimization strategies used, the more fragmentation there
will be.

2.4 Distributed Training
With the increasing complexity of DNN models, distributed

training has become vital, especially for LLMs. Data paral-

lelism, supported by PyTorch distributed data parallel (DDP)

[43], duplicates the setup to process different portions of

data simultaneously, synchronizing after each training step.

Model parallelism splits the model across multiple GPUs,

each handling different stages. The model parallelism in-

cludes two categories: pipeline parallelism [42, 72, 83], plac-

ing individual layers on single GPUs, and tensor parallelism [28,

30, 45], dividing each tensor into chunks for specific GPUs.

Obviously, usingmore GPUs would cause more fragmenta-

tion due to its irregular memory allocation and deallocation.

To examine this effect, we conduct a test implemented on

OPT-13B on PyTorch. As depicted in Figure 4, when the num-

ber of GPUs is one, the memory utilization is >90%. However,

as the number of GPUs grows to 16, the memory utilization

declines to 76%, even though multi-GPU parallelism is es-

sential for training large models. Such fragmentation wastes

memory resources and limits the batch size of LLM training.

Observation 2: As the number of GPUs scales up, the issue of
memory fragmentation is likely to become more pronounced.

2.5 Low-level Virtual Memory (VM) Management
Recognizing the growing need among applications to man-

age memory quickly and efficiently, CUDA has introduced a

new feature called low-level virtualmemorymanagement [62],

similar toWindows’s VirtualAlloc [56] and Linux’smmap [48].

This feature breaks the malloc-like abstractions, and offers

primitive operations such as reserve and map to manipulate

Chunk Size 2 MB 128 MB 1024 MB

cuMemReserve 0.003 0.003 0.002

cuMemCreate 18.1 0.89 0.79

cuMemMap 0.70 0.01 0.002

cuMemSetAccess 96.8 8.2 0.7

Total 115.4 9.1 1.5

Table 1. The VMM API execution time breakdown normal-

ized by cuMalloc execution time.

the virtual address space. In our work, we show that this low-

level VM management can be used to reduce memory frag-

mentation and improve memory utilization for large-scale

DNN training, which we call as virtual memory allocator.

Figure 2(c) illustrates the basic idea of using this low-level

virtual memory management. The cuMemAddressReserve
function reserves a virtual memory address for the newmem-

ory allocation, and cuMemCreate allocates physical mem-

ory chunks on GPU. It is not revealed how the underlying

system translates memory in the physical address space.

Furthermore, there is no guarantee of contiguity of phys-

ical chunks. The cuMemMap function bridges the physical

and virtual memory, mapping the physical handle to the

reserved address. CUDA also offers a suite of memory deal-

location functions such as cuMemUnmap, cuMemAddressFree,
and cuMemRelease. Obviously, the advantage of low-level
VM API is that it can allocate and map the non-contiguous

physical chunks, which can tackle GPU memory fragmen-

tation issues. However, the virtual memory allocator costs

much more expensive overhead than native GPU allocator.

To verify the overhead of the VM allocator, we have the

experiments on memory allocation with three different sizes:

512 MB, 1 GB, and 2 GB, which are total allocated block

sizes. Figure 6 illustrates the comparative results between

the native memory allocator and the virtual memory alloca-

tor. The y-axis represents the allocation latency, taken on a

logarithmic scale. On the x-axis, 2MB, 4MB, . . . , and 1024MB

represent the sizes of internal physical chunks that construct

the allocation block. For example, the 1 GB allocation block

needs to map 512 chunks with 2 MB size. Finally, the result

in Figure 6 shows that the latency of virtual memory is ex-

ceedingly high. Specifically, if the virtual memory block is

partitioned into 2 MB chunks, it would be over 100× slower

than the native allocator, which is totally unacceptable.

To further explore the bottleneck of the VMM API, we

provide the execution time breakdown of allocation. Ta-

ble 1 shows the latency breakdown of the VMM API with

2 GB GPU memory allocation. All latency is normalized to

the cuMalloc. Each allocation in GMLake needs only one

cuMemAddressReserve butmultiple cuMemCreate, cuMemMap,
and cuMemSetAccess for each physical chunk. cuMemSetAccess
is a special function to make the map available provided by
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VMM. We can see that using a 2MB small chunk to allocate

2 GB of memory is 115× slower than native cuMalloc.
Observation 3: Although virtual memory can reduce memory
fragmentation, the original virtual memory allocator on GPU
still presents many challenges and needs further optimization.

3 GMLake
In this work, we introduce GMLake, an efficient memory al-

location method specifically designed for GPU memory (i.e.,

GPU memory lake). GMLake leverages CUDA’s low-level

VM management features to expedite memory allocation

and deallocation processes. Figure 7 provides an overview of

GMLake, which provides the same memory (de)allocation

interfaces to the existing caching allocator but internally

integrates the virtual memory stitching (VMS) mechanism.

This integration is achieved through the precise utilization

of CUDA’s low-level VM management APIs.

The original caching allocator in DL frameworks adopt

the BFC algorithm, as explained in Section 2.2 and shown in

Figure 2(b). To avoid synchronization and improve memory

management efficiency, those frameworks internally manage

the memory pool to handle the (de)allocation instead of

directly using the native APIs. Following this approach, our

GMLake also has the three following components:

Virtual memory API: This refers to the low-level APIs

employed to instruct the GPU to allocate and free memory

using virtual memory addresses, a process characterized by

significant overhead if not fully optimized.

Virtual memory pool: Serving as the foundational data

structure, this is designed for caching virtual memory. Its

implementation is crucial for enhancing efficiency.

GMLake allocator: This includes all functions, algo-

rithms, and strategies essential for managing the VM pool.

In this section, we describe the design and details for the

three integral components and assemble the GMLake frame-

work, proceeding from the foundational to the topmost layer.

3.1 Virtual Memory API
As introduced in Section 2.5 and illustrated in Figure 2(c),

the low-level VMM APIs serve as the fundamental interface

between the GPU and the application. As depicted in the

bottom of Figure 8, we utilize the VMM API to build the

primitive block (pBlock), a critical data structure for the

GMLake allocator. The operations within the pBlock include:

AddrReserve: Initially, the allocation of a primitive block

necessitates specifying the allocation size and reserving the

corresponding virtual address (VA).

Create: Following that, the primitive block creates the

physical chunks where the data is stored physically.

Map: Lastly, the primitive blockmaps all physical chunks to

the virtual address, enabling seamless access for the tensors.

To optimize defragmentation, we apply a uniform chunk

size of 2 MB across all chunks. While the overhead of this

Tensor Allocator
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Allocator
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New Tensor Delete Tensor

DL
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Figure 7. The overview of caching allocator and GMLake.

2 MB chunk size is considerable (Section 2.5), it can be miti-

gated through an efficient data structure and a well-designed

stitching strategy that achieves the best defragmentation

effect and the best compatibility with PyTorch code base.

Meanwhile, we use the following DNN-specific optimization

to reduce the frequency of stitching so that its end-to-end

overhead is negligible. GMLake uses VMM to tackle alloca-

tion larger than 2MB. For memory allocation less than 2MB,

we use the original PyTorch splitting method of the caching

allocator to deal with its internal fragmentation issues. More-

over, allocation < 2MB is rare in LLM training.

The map operation serves as the basic operation for vir-

tual memory stitching, allowing us to concatenate multiple

physically continuous chunks that may not be contiguous

in physical memory. Employing the VMM APIs, we can or-

chestrate the virtual memory into the virtual memory pool,

the underlying data structure for the GMLake allocator. The

details of VM pool are presented as follows.

3.2 Virtual Memory Pool
Given that original VMM APIs are time-consuming, it is cru-

cial to reduce their usages to achieve high efficiency for GM-

Lake. Drawing inspiration from the caching allocators, we

have designed our virtual memory pool (VMP) with caching

capability, thereby markedly reducing the instances of phys-

ical memory (de)allocations. Shown in Figure 8, we differ-

entiate between two types of memory pools: the primitive

memory pool (pPool) and the stitched memory pool (sPool).

pPool and pBlock. The data structure of pPool utilizes
a sorted set to store the pBlocks. For each pBlock, pPool

begins by constructing a structure to document the pointer

to the pBlock, including essential basic attributes, such as the

active state of the pBlock. Subsequently, the newly allocated

pBlock is inserted into the set, with all pBlocks sorted by

block size in descending order. The pBlock, serving as the
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Figure 8. The data structure of primitive and stitched mem-

ory pool.

primitive block, represents the smallest unit accessible to

high-level tensors, and it functions as a basic data structure

that can be stitched and pointed to by multiple sBlocks.

sPool and sBlock. The sPool is also organized into a

sorted set, similar to pPool. Its elements comprise the stitched

block structure, which integrates multiple pBlocks. For in-

stance, as illustrated in Figure 8, sBlock 3 contains pBlocks 3

and 5, which are stitched together, and pBlock 3 may also

be pointed to and stitched by sBlock 2. Consequently, the at-

tributes of the sBlock are influenced by the pBlocks, such that

if even one pBlock is active, all corresponding sBlocks are

labeled as active. In practice, the sBlock remaps virtual mem-

ory to all physical chunks of the pointed pBlocks, making it

accessible by high-level tensors. To streamline the process,

we stipulate that sBlock can only be allocated or assigned to

tensor allocations that match the sBlock size. Further details

on this constraint are provided in the subsequent section.

Comparing the physical chunk, pBlock, and sBlock reveals

their roles as data structures at different levels. While phys-

ical chunk is controlled by the low-level API and remains

transparent to the high-level tensors, pBlock and sBlock re-

side in the pPool and sPool, respectively, offering the virtual

memory address for access by high-level tensors. Moreover,

sBlock operates at a more advanced level, consisting of mul-

tiple pBlocks. Next, we describe how GMLake uses those

data structures to achieve efficient memory management.

3.3 Allocator
The allocator includes all the essential functions and algo-

rithms for the memory allocation and deallocation. Due to

the space limit, we only briefly explain the most important

functions used in the allocation and deallocation modules.

3.3.1 Allocation Module. The Alloc function is respon-

sible for allocating a new pBlock and inserting it into pPool,

as detailed in Figure 8. It serves as the exclusive interface

for allocating new physical chunks and incrementing the

allocated GPU memory.

The Split function divides a pBlock (primitive block)

into two smaller pBlocks, similar to the “Split” operation

depicted in Figure 2, but with an entirely distinct underlying

implementation. Specifically, the Split function in GMLake

operates based on the pBlock structure, resulting in two new

pBlocks with corresponding virtual memory addresses and

remapped physical chunks. The previous pBlock structure is

subsequently removed from the pPool set.

The Stitch function is the sole mechanism to create an

sBlock and insert it into the sPool, as shown in Figure 8

top. This function is an integral component of our alloca-

tor and can stitch together multiple pBlocks into a single

sBlock. We use the VMM API, i.e., the low-level API pro-

vided by NVIDIA specifically for Virtual Memory Manage-

ment (VMM), to “stitch” two pBlocks, as shown in Figure 2

(c). Assume we have two pBlocks, 𝑝1 (1GB) and 𝑝2 (2GB).

We adopt the VMM API cuMemCreate to create correspond-

ing physical chunks and reserve virtual address (VA) by

cuMemAddressReserve. Then, VA maps PA using cuMemMap.
Actually, we do not need to unmap the original VA-PA map-

ping for 𝑝1 and 𝑝2, as the PA in VMM can be pointed by

multiple VAs. Therefore, we only reserve a 3GB VA of the

sBlock 𝑠1 using cuMemAddressReserve. For all sBlocks, they
never create cuMemCreate new physical chunks. We use the

API cuMemMap to map the VA of 𝑠1 (3GB) to the physical

chunks of 𝑝1 and 𝑝2. Since multiple sBlocks can contain the

same physical chunks, we need more attributes to ensure

that each physical chunk is used by only a single tensor, such

as the active state of the pBlock.

The BestFit function identify the most suitable pBlock

or sBlock for memory allocation, returning the state and

candidate blocks for subsequent processing. As detailed in

Algorithm 1, we have designed four states, covering all sce-

narios GMLake may face. It operates on the assumption that

both sPool and pPool are sorted in descending order of size.

• Exactmatch (Line 2-4): This state arises when the size

of a candidate block matches the allocation size. The

block may be either an sBlock from sPool or pBlock

from pPool. This is the sole situation where an sBlock

can be assigned for new allocation. All other states

exclusively involve pBlock.

• Single block (Line 12): Here, BestFit identifies the
best-fit (minimum) pBlock that is larger than the re-

quested allocation size.

• Multiple blocks (Line 14): In scenarios where all

pBlocks are smaller than the required allocation size

while their total size satisifies allocation requirment,

the BestFit function greedily seeks multiple candi-

date pBlocks to stitch together.
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Algorithm 1: The BestFit Function.
Input: Allocating block size: 𝑏𝑆𝑖𝑧𝑒;

Inactive sBlocks and pBlocks: 𝑠𝐵𝑙𝑜𝑐𝑘𝑠, 𝑝𝐵𝑙𝑜𝑐𝑘𝑠 .

Output: State, 𝑠𝑡𝑎𝑡𝑒 ; Candidate pBlocks, 𝐶𝐵.

1 def BestFit(𝑏𝑆𝑖𝑧𝑒 , 𝑠𝐵𝑙𝑜𝑐𝑘𝑠 , 𝑝𝐵𝑙𝑜𝑐𝑘𝑠):
// SBlock only for S1: Exact match.

2 foreach 𝑏𝑙𝑜𝑐𝑘 ∈ 𝑠𝐵𝑙𝑜𝑐𝑘𝑠 ∪ 𝑝𝐵𝑙𝑜𝑐𝑘𝑠 do
3 if block.size == bSize then
4 return 1, [block]

5 CB=[]

6 𝐶𝐵𝑆𝑖𝑧𝑒 = 0

7 foreach 𝑏𝑙𝑜𝑐𝑘 ∈ 𝑝𝐵𝑙𝑜𝑐𝑘𝑠 do
8 if block.size ≥ bSize then
9 𝐶𝐵 = [𝑏𝑙𝑜𝑐𝑘]

10 𝐶𝐵𝑆𝑖𝑧𝑒 = 𝑏𝑙𝑜𝑐𝑘.𝑠𝑖𝑧𝑒

11 else if CBSize < bSize then
12 𝐶𝐵.append(𝑏𝑙𝑜𝑐𝑘)

13 𝐶𝐵𝑆𝑖𝑧𝑒 += 𝑏𝑙𝑜𝑐𝑘.𝑠𝑖𝑧𝑒

14 else
15 break

16 if CB.length == 1 & CBSize > bSize then
17 return 2, CB // S2: Single block.

18 else if CBSize ≥ bSize then
19 return 3, CB // S3: Multiple blocks.

20 else
21 return 4, CB // S4: Insufficient blocks.

• Insufficient blocks (Line 16): This state occurs when
there is no enough pBlocks to meet the requested allo-

cation size, though BestFit still returns a block list.

GMLake substitutes several of the internal functions of

the PyTorch caching allocator module. The “stitch” opera-

tion is completely user-transparent and doesn’t burden user

to modify their code. The CUDA VMM API refers to the

low-level API provided by NVIDIA specifically for Virtual

Memory Management (VMM).The CUDA API we adpot not

only includes the VMM-related, but also comprises regu-

lar ones like cuMemAlloc. The implementation of GMLake

APIs leverages CUDA APIs to achieve fine-grained memory

stitching and reusing, thus they belong to distinct levels and

serve corresponding functionalities.

3.3.2 Deallocation Module. The deallocation module re-

frains from actively deallocating physical GPU memory us-

ing the low-level VMM API. Instead, it only updates or re-

stores the stitched virtual memory blocks.

Update. Upon receiving a deallocation request for a high-

level tensor, we substitute the original VMM deallocation

function with the Update function. This function alternates

the state of active pBlocks and sBlocks, thereby effecting

the removal of links and assignments between tensors and
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pBlock 1 pBlock 2
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pB 2 pB 3 pB 4
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Figure 9. Memory allocation strategy in GMLake.

blocks. Throughout the program runtime, actual physical

memory remains under the control of corresponding pBlock.

StitchFree. The purpose of this function is to release

the Least Recently Used (LRU) sBlocks held within the sPool.

Due to space limitations, we skip intricate details here. We

have implemented complete algorithms and data structures

to support the LRU-based StitchFree. Notably, we only

release the inactive sBlock structure from sPool.

We have presented details for various components in GM-

Lake, including low-level APIs, data structures, and high-

level functions. Leveraging these thoughtfully engineered

features, we are equipped to execute efficient allocation

strategies within GMLake, which effectively tackle memory

defragmentation challenges in large-scale DNN training.

4 Defragmentation Strategy
In this section, we present the strategies to reduce the mem-

ory fragmentation issue. We first propose a sophisticated al-

gorithm that theoretically eliminates all fragmentation based

on GMLake allocator. We then discuss and describe our op-

timizations to guarantee its efficiency and robustness.

4.1 Memory Allocation Strategy
Figure 9 shows the GMLake allocation strategy to allocate

or assign a new memory block to a new tensor allocation

request. This strategy is based on the four states provided

by BestFit module, for each of which we design a post-

processing step.

In state S1 , an immediate return of existing pBlock or

sBlock is made for Allocation 1. If an exact matching block is

not foundwithin the inactive sPool and pPool, we progress to

state S2 , guided by a single block produced by the BestFit
function. This requires the partitioning (via Split) of the
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larger pBlock 1 into two distinct pBlocks, both inserted into

the pPool. The newly created pBlock 1 replaces its predeces-

sor and is allocated for Allocation 2. Simultaneously, GM-

Lake executes a Stitch function, merging pBlock 1 and

pBlock 2 into sBlock 1, which is then added to the sPool.

In state S3 , GMLake engages in merging (Stitch) multi-

ple pBlocks to create consolidated sBlock 3 for Allocation 3.

If needed, the final pBlock can be subdivided (Split) similar

to the procedure in S2 . The stage concludes with the intro-

duction of new pBlocks, specifically pBlock 4 and pBlock 5,

into pPool, while sBlock 2 and sBlock 3 are added to sPool.

In state S4 , it is possible that available blocks for stitching

and allocation are insufficient for Allocation 4. GMLake

then triggers the Alloc function, using the low-level API to

create pBlock 7 with new physical chunks and corresponding

virtual memory addresses. This new pBlock is added to the

pPool. Additionally, we merge (via Stitch) pBlock 5 and

pBlock 7 into a new sBlock 4, which is returned for Allocation

4 and added to the sPool. If no eligible candidate blocks

are present (i.e., the absence of pBlock 5), GMLake directly

allocates pBlock 7, without using the Stitch function. If the
Alloc function call fails, GMLake immediately reports an

Out-of-Memory (OOM) error in state S5 .

4.2 Strategy Analysis
We analyze the GMLake memory allocation strategy from

aspects of effectiveness, efficiency, and robustness.

4.2.1 Effectiveness. The GMLake allocation strategy ef-

fectively ensures that nearly all fragmentation is eliminated

from the GPU system.

Interface. The effectiveness of this strategy is aided by

our interface design, which consolidates all operations into

three main functions: Alloc, Split, and Stitch. Alloc is

the only function that can create a new pBlock, and only

Stitch can generate a new sBlock, while Split does not

increase the allocated memory.

Data Structure. The pPool represents a strict one-to-one
mapping of GPU memory, with each pBlock being distinct

from others. It is an allocated GPU memory set devoid of

duplicate elements and overlapping addresses. The sPool is

designed to store sBlocks, reserving links and pointers to

the pBlocks in a manner similar to a soft link mechanism.

GMLake prohibits the splitting of sBlocks as it may affect

the pBlocks. The sPool is considered a subset of the pPool.

In the end, each time the program reaches a new peak in

GPU memory usage, for example, when calling the Alloc
function, the pPool may not provide enough blocks for stitch-

ing and allocation, resulting in full memory utilization with-

out fragmentation. This contrasts with the original caching

allocator, which may leave many sub-blocks unused.

4.2.2 Efficiency. We incorporates several methods to achieve

high efficiency. Initially, the algorithmic problem in S3 rep-

resents a classic NP-hard packing problem [55]. Yet, through

the application of the Split and Stitch functions, an exactly-
matched block is generated to fit the allocation, resulting in

linear complexity.

Secondly, the union set comprising sPool and pPool chron-

icles all sizes and corresponding blocks for every tensor

allocation, akin to a tape recording the tensor allocation

pattern for DNN models. Fortunately, DNN model training

is highly regularized, as each iteration processes identical

model parameters and input data sizes. Therefore, after a few

iterations, GMLake will no longer execute S2 , S3 , and S4 .

GMLake will only utilize the S1 “exact match” strategy for

the remainder of the training, contrasting with the original

caching allocator, which continuously requires splitting and

merging operations.

4.2.3 Robustness. In practice, stitching and creating new

sBlocks cannot occur infinitely due to the total capacity limi-

tation on the GPU. Moreover, excessive stitching operations

can impair the efficiency of the GMLake allocator when run-

ning allocation modules on sPool, such as BestFit. When

the total capacity surpasses this limitation or threshold, GM-

Lake employs StitchFree to release the LRU sBlocks and

clear the pattern tape, thereby serving as a fallback mecha-

nism for robustness.

Furthermore, when DNN training exhibits an extremely

irregular pattern, it may generate numerous small blocks

leading to frequent splits and stitches, causing early attain-

ment of the limitation. To avoid unnecessary performance

loss, a minimal fragmentation limit is established. If a block

is smaller than this limit, GMLake will avoid stitching or

splitting it. Hence, all algorithms and modules adhere to the

fragmentation limit (e.g., 128 MB), to ensure high efficiency

and robustness in DNN training.

5 Evaluation
We implement GMLake with 5000 lines of C++ code and

integrate it into the caching allocator of PyTorch. We have

adapted GMLake to different versions of PyTorch, such as

PyTorch-1.13.1 and PyTorch-2.0.

We evaluate the performance of GMLake on fine-tuning

several popular LLMs. We compare GMLake virtual memory

allocator and PyTorch’s caching allocator under diverse con-

ditions, considering distinct training frameworks, GPU scala-

bility, and combinations of optimization strategies. Through

this analysis, we demonstrate the scalability of GMLake to

adapt seamlessly to complex environments and its effective-

ness in resolving memory fragmentation issues. Collectively,

GMLake achieves a significant reduction in the fragmen-

tation ratio of 15% on average and up to 33%, as well as a
decrease in reserved GPU memory of 9.2GB on average and
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Model Strategies DDP Framework

OPT-1.3b [87] L [29] R [86] O [69] Deepspeed [15]

GPT-2 [66] R O Colossal-AI [44]

GLM-10b [17] R O FSDP [89]

OPT-13b [87] L R O Deepspeed

Vicuna-13b [10] L R O Deepspeed

GPT-NeoX-20b [6] L R O Deepspeed

Table 2. Benchmark specifications. (L: LoRA; R: Recomputa-

tion; O: Offload; FSDP: Fully Sharded Data Parallel.)

up to 25GB, which is obtained from 76 workloads within 8

different models .

5.1 Evaluation Methodology
Testbed. The evaluation of GMLake is conducted utilizing

two distinct setups: single-node multi-GPU and multi-node

multi-GPU experiments. The single-node evaluations are

performed on a server equipped with an Intel Xeon Plat-

inum 8369B CPU boasting 1 TB of DRAM and eight NVIDIA

A100 GPUs (80 GB memory for each). These GPUs are inter-

linked via NVLink, running on CUDA 11.4 and cuDNN 8.5.

Correspondingly, the multi-node evaluations encompass two

servers, each mirroring the configuration of the single-node

server. In the finetuning phase, these two nodes engage in

distributed training facilitated by RDMA.

Training Scenarios. We evaluate GMLake across multi-

ple prominent LLM optimization platforms, including Deep-

speed [68] and FSDP [89], encompassing diverse optimiza-

tion strategies such as LORA [29], gradient-checkpointing(i.e.

Recomputation) [70], and offload [4, 69]. We focus on the

fine-tuning scenario.

Models and Datasets. We conduct evaluation on a set

of representative open-source LLMs from their official ex-

amples. The exhaustive list of evaluated models, datasets,

distributed data parallel (DDP) frameworks, and optimization

strategies employed during the finetuning stage is presented

in Table 2. Notably, the selection of default datasets from

open-source LLM applications is based on the consideration

that memory usage during finetuning remains unaffected by

dataset quality.

Baselines. We compare GMLake against PyTorch 2.0 with

various LLMs training, e.g., Deepspeed [68] and Colossal-

AI [44]. To our best knowledge, PyTorch caching allocator

represents a state-of-the-art, application-agnostic memory

allocator that demonstrates versatile compatibility across a

range of deep learning applications. Notably, the transition

between GMLake and PyTorch’s original allocator is notably

convenient by switching certain configurations. Additionally,

GMLake is equipped with a specific set of hyper-parameters,

empirically configured to achieve optimal performance out-

comes through best practices.

Metric. Different from the fragmentation metric FMFI [18,

41] for the virtual memory page with fixed length, the blocks

used in GMLake can be split with arbitrary size. Therefore,

we empirically define a specific fragmentation ratio for GM-

Lake, which equals (1 − utilization ratio). To measure the

memory fragmentation, we first calculate the memory uti-

lization ratio, which equals peak active memory divided by

peak reserved memory. The term “active memory” refers to

the cumulative memory occupied by all active blocks, cur-

rently allocated by high-level tensors and utilized within

DNN computations. On the other hand, “reserved memory”

pertains to the total memory allocation set aside by both

PyTorch and GMLake. These metrics are recorded at their

respective peak values. To depict the relationship before

and after the application of GMLake in terms of memory

reduction, we calculate the arithmetic average result of the

memory reduction ratio for multiple workloads. The formula

to calculate the arithmetic average is

𝑀𝑒𝑚𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 =

∑
𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 −∑

𝐺𝑀𝐿𝑎𝑘𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑∑
𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑

where "Reserved" and "GMLakeReserved" refer to the re-

served memory of PyTorch and GMLake, respectively. While

the reserved memory typically stabilizes as the training pro-

cess runs, fluctuations in active memory are more substantial

due to tensor (de)allocations during model execution. Given

the caching mechanism, the peak active memory is pertinent

for utilization or fragmentation analysis. We also employ

throughput (expressed in samples per second) to quantify

the speed of DNN training.

5.2 Scalability of GMLake
Firstly, we conduct serveral experiments to evaluate the scal-

ability of GMLake across distinct memory-efficient strate-

gies, GPU scale-out scenarios, and optimization platforms to

address our observations in Section 2.

5.2.1 Scalability on Memory-efficient Strategy. To ex-

plore the scalability of GMLake in terms of memory-efficient

strategies, we conduct finetuning experiments onOPT-13B [87],

Vicuna-13B [10], and GPT-NeoX-20B [6] models using Deep-

speed Zero3 [15] with four NVIDIA A100 (80 GB) GPUs,

all under a common batch size. Notably, our evaluation en-

tails influential memory-efficient strategies, including LoRA,

gradient-checkpointing (recomputation), and offload. Thus,

we systematically employ combinations of these strategies

during our assessment. We label the no strategy scenario as

N, recomputation as R, recomputation coupled with LoRA

as LR, recomputation with offload as RO, and the joint uti-

lization of recomputation, LoRA, and offload as LRO.



GMLake: Efficient and Transparent GPU Memory Defragmentation ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.7

0.9

1.1

20

40

60

80

N R LR RO LRO

U
til

iz
at

io
n

R
at

io
(R

U
)

R
es

er
ve

d 
M

em
or

y
(R

M
)(

G
B)

Strategy

RM w/o GML RM w/ GML
UR w/o GML UR w/ GML

(a) OPT-13B.

0.7

0.9

1.1

40

60

80

N R LR RO LRO

U
til

iz
at

io
n

R
at

io
(R

U
)

R
es

er
ve

d 
M

em
or

y
(R

M
)(

G
B)

Strategy

RM w/o GML RM w/ GML
UR w/o GML UR w/ GML

(b) Vicuna-13B.

0.7

0.9

1.1

40

60

80

N R LR RO LRO

U
til

iz
at

io
n

R
at

io
(R

U
)

R
es

er
ve

d 
M

em
or

y
(R

M
)(

G
B)

Strategy

RM w/o GML RM w/ GML
UR w/o GML UR w/ GML

(c) GPT-NeoX-20B.

Figure 10. Comparison of memory utilization ratio on memory-efficient strategy combinations.
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Figure 11. Comparison of memory utilization ratio on GPU scale-out.
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platforms.

Complicated strategies lead to fragmentation. Figure 10
illustrates the utilization ratio and reserved memory con-

sumption. In a comprehensive overview, the increase in uti-

lization ratio and reduction in reserved memory, when con-

trasted with PyTorch, ranges from approximately 5% to 24%

(or is around 10 GB and up to 17 GB), respectively. In con-

trast, GMLake effectively reduce this fragmentation ratio to

5% to 10%, mitigating the fragmentation issue.

When complex optimization strategies are employed, the

consequent fragmentation ratio on PyTorch can exceed 20%.

The contrast in utilization ratio between the application of

these optimization strategies and their absence becomes evi-

dent. To illustrate, consider the recomputation strategy: it

discards a portion of the activation tensor during the forward

pass. This introduces a higher frequency of small memory

allocation and deallocation operations, ultimately leading

to fragmentation. A similar scenario arises with the offload

strategy, where tensors frequently swap in and out between

the CPU memory and the GPU memory, further increasing

the frequency of memory allocation and deallocation oper-

ations. This situation highlights the need and features of

GMLake: its design is transparent and effective with those

increasingly complex optimization strategies.

5.2.2 Scalability onGPUScale-out. Employing LR strate-

gies along with the Deepspeed platform, we proceed to eval-

uate GMLake’s scalability in the context of GPU scale-out.

This evaluation entails scaling from 1 GPU to 16 GPUs in-

crementally. As depicted in Figure 11, GMLake consistently

exhibits lower fragmentation ratios (high utilization ratio)

and reserved memory consumption. Particularly notewor-

thy is the case of GPT-NeoX-20B in Figure 11c, where the

utilization ratio and reserved memory reduction can be as
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Figure 13. Comparison of memory utilization ratio and throughput on end-to-end effectiveness, utilizing varying batch sizes.

substantial as 23% or 17 GB, respectively. Moreover, the trend

becomes evident that, as the number of GPUs increases,

GMLake effectively maintains a utilization ratio of approxi-

mately 90% (i.e., fragmentation ratio less than 10%).

GPU scale-out leads to fragmentation. While tremen-

dous clusters speed up the training process, they also bring

about more and more GPUmemory fragmentation. Figure 11

presents the utilization ratio gradually decreases when the

GPU number scales up from 1 to 16. Despite certain outliers,

the Figure shows that the fragmentation ratio is enlarged

regarding PyTorch. To put it in detail, the distributed data-

parallel strategy causes this trend. DeepSpeed ZeRO-3 [67]

means partitioning the optimization states, gradients, and

weights. When more GPU is involved in training, the above

tensor size will be smaller. It will cause many large blocks to

split and cause more memory defragmentation. As shown in

Figure 11 bottom, GMLake also maintains high throughput,

similar to the original PyTorch. That indicates GMLake has

excellent scalability with very low overhead.

5.2.3 Scalability on Various Platforms. We utilize var-

ious platforms including Deepspeed [68], FSDP [89], and

Colossal-AI [44] to conduct finetuning on the OPT-13B [87],

GLM-10B [17], and GPT-2 [66] models, respectively. This pro-

cess employs static optimizing strategies, specifically LoRA

and recomputation, and involves the use of four NVIDIA

A100 (80 GB) GPUs. As illustrated in Figure ??, the results
demonstrate a noteworthy decrease in both fragmentation

and reserved memory, with reductions ranging from approxi-

mately 9% to 33%, and from 7GB to 25 GB, respectively. These

results confirm the high scalability exhibited by GMLake on

various optimized training platforms.

5.3 End-to-End Effectiveness of GMLake
In this study, we conduct a comparative analysis between

GMLake and the PyTorch caching allocator through end-

to-end fine-tuning of LLMs, utilizing varying batch sizes.

This evaluation uses four A100 GPUs and enables LoRA, re-

computation, and Zero3 optimizations on both frameworks.

Figure 13 shows that GMLake consistently demonstrates a

substantial reduction in peak memory consumption across

a range of model sizes from 1.3 to 20 billion parameters.

Notably, this memory consumption mitigation exhibits scal-

ability with increasing model sizes while maintaining a con-

sistent batch size.

The efficiency of memory usage is also demonstrated by

the trends presented in Figure 13. Significantly enhanced per-

formance is evident in comparison to the baseline. Notably,

as the model size increases, memory efficiency reaches levels

exceeding 95% (as seen with the 13 billion and 20 billion

parameter models), indicating minimal fragmentation and

waste. This starkly contrasts the baseline approach, which

struggles to achieve an 80% efficiency rate.

GMLake can reduce the framgmentaion and provide more

memory to run LLM without facing OOM errors. Especialy,

in fig:eval:end, we can see OPT-1.3B, OPT-13B and GPT-

NeoX-20B perform well with GMLake while encountering

OOM errors with PyTorch’s CUDA caching allocator in large

batch scenarios, indicating effectiveness of GMLake.

Furthermore, we quantify the overhead of defragmenta-

tion logic overhead using the end-to-end throughput. Fig-

ure 13 bottom shows that GMLake effectivelymaintains com-

parable throughput to the baseline approach. Interestingly, in

scenarios involving exceedingly large batch sizes, GMLake

exhibits the potential to achieve even higher throughput than

the PyTorch baseline due to its adept memory management

and reduced frequency of (de)allocation operations.
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Figure 14.Memory trace on GPT-NeoX with batch size 72.

5.4 Memory Trace Analysis
Finally, we track the memory allocation behaviors on GPT-

NeoX-20B on 4 GPUs with LoRA and recomputation strate-

gies for PyTorch and GMLake, as shown in Figure 14.

There are three noteworthy points that highlights the ad-

vantages of GMLake. Firstly, PyTorch terminates at about

200 s owing to the OOM exception, while GMLake func-

tions correctly for this batch size. Secondly, although the

active memory of GMLake and PyTorch is of the same level,

their reserved memory differs greatly, indicating the large

fragmentation issue in PyTorch.

Thirdly, during the 100s to 400s, the active memory of

both PyTorch and GMLake fluctuates regularly, showing the

memory pattern in the LLM fine-tuning stage, especially in

forward and backward passes. The rise of active memory

represents the forward pass memory allocation, while the

decrease of active memory stands for the backward pass. The

interval between two similar patterns reflects the time cost

of one single iteration.

Lastly, after four iterations, GMLake reaches stability and

achieves the same throughput as PyTorch. That indicates that

the allocation strategy used in GMLake can quickly adapt

to the memory fluctuation in the forward/backward training

passes, and find the best caching and stitching strategy.

We exploit the periodical nature of DNN training. Fig-

ure 14 shows that DNN training has a stable period in the

training, where similar VMM allocation requests repeat. This

periodicity presents the opportunity to reuse stiched sBlocks,

amortizing their cost. To achieve that, we design the stitched

memory pool (sPool) in GMLake to overscribe the sBlocks.

When a new sBlock is created, we add it to the sPool. When

the sBlock is freed, we still keep it presence. Next time when

the same sBlock needs to be created, it can directly reuse the

previously created sBlock. As long as we maintain enough

sPool instances, all allocations only search for its best-fit

sBlock without creating a new sBlock. We call it conver-

gence, e.g., after four iterations of Figure 14.

6 Related Works and Discussion
We compare GMLake with existing works in two aspects:

memory defragmentation andmemory optimizations of LLMs.

Memory Defragmentation. The memory defragmenta-

tion has been extensively investigated in various contexts [3,

35, 38]. In an effort to address fragment-related challenges,

an early literature introduced a straightforward approach

involving fine-grained fixed-sized chunks [73]. While this

approach eliminates data movement overhead, it introduces

increased access overhead and limited flexibility. To enhance

both efficiency and flexibility, researchers have proposed

compaction-based strategies, such as those involving the

consolidation of multiple small chunks into a larger, contigu-

ous unit through data movement [59, 79]. Other defragmen-

tation techniques, including copy-based garbage collection

systems [31, 53, 74], reduce complexity in data movement

logic at the expense of temporary memory wastage. While

sharing some conceptual similarities with the consolidation

of small chunks into larger ones, GMLake adopts a stitching-

based technique, which minimizes the need for frequent data

movement and copying, resulting in a significant enhance-

ment of memory efficiency. Beyond conventional memory

systems, recent research has also explored the defragmenta-

tion for persistent memories [84].

Efficient LLM. For Transformer-based LLMs, memory

has emerged as a paramount resource within computing

systems. The quadratic nature of attention mechanisms has

led to a substantial surge in memory consumption for LLMs,

thereby magnifying the significance of effective memory

management [8, 16, 58]. Researchers have proposed various

algorithmic optimizations aimed at curbing memory con-

sumption, including quantization techniques [22, 24–26, 32,

46, 47, 81, 94], pruning strategies [19–21, 27, 39, 52, 64, 65,

80, 93], and KV-cache compression approaches [5, 37], com-

pilation [9, 34, 90–92] and scheduling [11, 23, 50, 51, 54, 85].

There are various system-level memory optimizations.

The vLLM work leverages page-based virtual memory man-

agement techniques to substantially enhance resource ef-

ficiency and serving throughput [82]. FlashAttention em-

ploys tiling techniques to optimize attention computation

and notably mitigate memory consumption [13, 14]. The

FlexGen framework introduces an optimization strategy to

determine optimal memory-computation arrangements for

efficient pipeline execution [71]. In this landscape, GMLake

emerges as a user-transparent memory management system

that orchestrates intelligent and efficient memory reuse.

Novelty against otherworks. GMLakeworks on a unique

memory scope for DNN training, which is different from the

vLLM [82] and vMalloc [56]/CUDA VMM [62]. Neither them

can solve the problem that the GMLake solved.

The vLLM is an algorithm-based solution for the Self-

Attention operation and acts inside a tensor. LLMs originally
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Method Scope

vLLM [82] Tensor

GMLake Memory Pool

vMalloc/CUDA VMM [10] Physical Memory

Table 3. Technical differences to related work.

pad all sequences with variable-length tokens to the maxi-

mum length and cause significant redundancy. vLLM uses a

lookup table to remove the padded tokens. As such, vLLM is

specific to self-attention while GMLake targets DNN training

with a wider scenario. CUDA VMM, similar to vMalloc, is a

low-level system tool for defragmentation. However, CUDA

VMM/vMalloc cannot be aware of the memory pool com-

monly used in the DL framework. Without the memory pool

design, the performance will significantly degrade. There-

fore, these system-based memory tools cannot be directly

implemented on the DL framework.

7 Conclusion
This study introduces GMLake, a new memory allocator

with high efficiency and low fragmentation. Built upon the

low-level CUDA virtual memory management knob, it con-

solidates multiple non-contiguous physical memory blocks

into a singular, contiguous entity, thus mitigating the frag-

mentation issue. To facilitate seamless integration to existing

DL frameworks, we formulate a virtual memory manage-

ment API. Furthermore, we propose a multi-staged defrag-

mentation strategies to guarantee the allocation efficiency

and robustness. Our evaluation shows that GMLake reduces

the memory fragmentation to 5% ∼ 10% while maintaining

the same throughput.
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