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ABSTRACT
Energy e�ciency of GPU architectures has emerged as
an important aspect of computer system design. In this
paper, we explore the energy benefits of reducing the
GPU chip’s voltage to the safe limit, i.e. Vmin point.
We perform such a study on several commercial o↵-
the-shelf GPU cards. We find that there exists about
20% voltage guardband on those GPUs spanning two
architectural generations, which, if “eliminated” com-
pletely, can result in up to 25% energy savings on one
of the studied GPU cards. The exact improvement mag-
nitude depends on the program’s available guardband,
because our measurement results unveil a program de-
pendent Vmin behavior across the studied programs.
We make fundamental observations about the program-
dependent Vmin behavior. We experimentally deter-
mine that the voltage noise has a larger impact on Vmin

compared to the process and temperature variation, and
the activities during the kernel execution cause large
voltage droops. From these findings, we show how to
use a kernel’s microarchitectural performance counters
to predict its Vmin value accurately. The average and
maximum prediction errors are 0.5% and 3%, respec-
tively. The accurate Vmin prediction opens up new pos-
sibilities of a cross-layer dynamic guardbanding scheme
for GPUs, in which software predicts and manages the
voltage guardband, while the functional correctness is
ensured by a hardware safety net mechanism.

1. INTRODUCTION
General-purpose GPU (GPGPU) architectures are al-

ready important elements of mainstream computing.
Although the GPU provides enormous computation ca-
pability, it comes with the cost of consuming much more
power than its counterpart CPU. A high-performance
GPU card has a peak power consumption between 250W
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and 300 W, whereas many commodity CPUs plateau
around 130 W. In the context of latest GPU architec-
tures, we have seen a significant emphasis on improving
performance per watt metric. For example, NVIDIA
claims that the Kepler architecture achieves 3⇥ the per-
formance per watt of their previous-generation Fermi [1],
and the latest Maxwell architecture achieves 2⇥ perfor-
mance per watt improvement over the Kepler [2].
State-of-the-art GPU power-saving e↵orts strongly

reflect and follow the CPU power optimizations trend.
Typical optimizations include clock and power gating,
and dynamic voltage and frequency scaling (DVFS).
Although there has been increasing focus on applying
these traditional techniques to GPUs [1, 3], we need to
focus on new(er) opportunities for power optimization.
In this paper, we demonstrate the energy-e�ciency ben-
efits of pushing the GPU architecture’s voltage to its op-
erating limit. To combat the worst-case process, tem-
perature and voltage variation (noise), traditional de-
sign methodology relies on voltage guardbanding. The
voltage guardband relative to the nominal voltage is
predicted to grow due to increased variations as tech-
nology scales [4]. The industry standard practice of
designing for the worst-case condition leads to energy
ine�ciency because the chip could have operated at a
lower supply voltage in the nominal case [5, 6].
We explore the energy benefits of reducing the GPU

chip’s voltage to the Vmin point at a fixed frequency,
using NVIDIA’s o↵-the-shelf GPU cards spanning two
architectural generations (Fermi and Kepler). At the
Vmin point, the program executes correctly but fails if
the voltage is reduced any further. Our measured re-
sults demonstrate two fundamental observations. First,
the Vmin is program dependent. Second, the guardband
between the nominal voltage and Vmin is large (9% -
18%) on a GTX 680 card. The guardband protects
against the process, temperature and voltage variation.
We study each variation’s impact on Vmin and observe
that the voltage noise has the largest impact. Because
voltage noise depends on program characteristics [4], it
also matches the program-dependent Vmin observation.
Since voltage noise is the main determinant of Vmin,

we must understand its key characteristics. Specifically,
we need to determine the root cause of the largest volt-
age droop and when exactly that happens in the con-
text of CPU-initiated GPU execution. We profile each
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Figure 1: Overview of the experimental setup. 1. Undervolt: we use an overclocking tool to control the GPU chip’s
voltage. 2. Vmin test: we measure the Vmin point of each program by gradually undervolting the GPU and check
the program output correctness. 3. Power measurement: we use custom power-sensing circuitry to measure GPU
power. 4. Performance profile: we use nvprof to access performance counters. 5. Kernel-level instrumentation: we
use the callbacks before and after each kernel invocation to measure the Vmin and power of each kernel.

program’s performance characteristics and measure its
power consumption to study the interaction among per-
formance, power and Vmin. These measured program-
driven metrics and inter-relationships form the founda-
tion of facts from which we make observations about
the key characteristics of voltage noise in GPUs. With
these observations, we further show that we can pre-
dict each kernel’s Vmin value with at most 3% error,
using microarchitectural events. This enables a promis-
ing opportunity for maximizing energy e�ciency: the
software predicts and operates at the safe voltage limit,
and a lightweight “safety net” hardware mechanism en-
sures reliable operation for the rare case of a program
that exceeds the pre-set prediction error margin. We
study the potential in a conceptual exemplary design
through measurement on a real GPU card.

In summary, we make the following key contributions:
• We measure the voltage guardband between Vmin and
the nominal supply voltage on several o↵-the-shelf
GPU cards spanning two architectural generations.
The results reveal that a relatively large amount of
voltage guardband exists on all studied cards.

• We characterize the process, temperature and voltage
variation impact on the Vmin. We experimentally de-
termine that the di/dt droop part of voltage noise
during the kernel execution has the highest impact
and causes the program-dependent Vmin behavior.

• We perform a quantitative study of the relationship
between the program’s performance characteristics and
Vmin. We study how to use a kernel’s performance
counters to predict its Vmin accurately, and we demon-
strate the large energy-savings potential of a con-
ceptual exemplary design using the Vmin prediction
through measurement on a real GPU card.
We organize the paper as follows. Section 2 describes

our experimental setup. Section 3 presents the Vmin

measurement results and analysis. Section 4 analyzes
the root cause of the large Vmin variability. Section 5
studies the interaction between program characteristics
and Vmin, and how to predict Vmin values accurately us-
ing microarchitectural performance counters. Section 6

demonstrates a possible optimization opportunity de-
rived from our experimental insights. Section 7 dis-
cusses related work, and Section 8 concludes the paper.

2. EXPERIMENTAL SETUP
In this section, we describe our experimental setup

shown in Figure 1. The central piece is the fine-grained
voltage guardband exploration test, i.e. the Vmin test
( 1� and 2�). We also measure the program’s power con-
sumption ( 3�) and profile its performance characteris-
tics ( 4� and 5�) to study the interaction of a program’s
Vmin and its performance and power.

2.1 Voltage Guardband Exploration
We explore the voltage guardband on several o↵-the-

shelf GPU cards and a large set of representative pro-
grams via Vmin measurements. We describe the details
of Vmin test, studied GPU cards and programs.

Vmin Test We measure the voltage guardband for each
individual program by measuring the Vmin point, an op-
erating point at which the program executes correctly
but fails when the voltage is reduced any further. The
Vmin test includes two parts: 1� and 2� in Figure 1. We
decrease the GPU’s operating voltage from its stock set-
ting. The stock setting of the GTX 680 card is 1.09 V
at 1.1 GHz. We use the MSI Afterburner [7] to control
the GPU chip’s voltage at a fixed frequency. The gran-
ularity for controlling the voltage is 12 mV. We do not
modify the memory frequency and voltage.
With each step of 12 mV undervolting, we measure

each program’s Vmin point. At each step, we run the
program and check program correctness by validating
its output against a reference run at the nominal oper-
ating point. Each run is considered to be “pass” if i) for
integer programs, the output is identical to the refer-
ence run, or ii) for floating-point programs, the output
is within 10�2% of the reference run. We consider a
voltage level as a working voltage if the program passes
1,000 times. Vmin is the minimal working voltage. Note
that we also study the error behavior for each program



GPU GTX 480 GTX 580 GTX 680 GTX 780

Architecture Fermi Kepler

Core Counts 15 16 8 12

Core Clock (MHz) 700 875 1100 1100

Memory Clock (MHz) 1846 2004 3004 3004

Register Per Core (KB) 128 128 256 256

L1 Cache (KB) 48/16 (Configurable)

L2 Cache (KB) 768 768 512 1536

Read-Only Data Cache (KB) N/A N/A N/A 48

Memory Controllers 6 6 4 6

TDP (W) 250 250 195 250

Technology (nm) 40 28

Table 1: GPU cards’ microarchitectural specifications.

operating below its Vmin point, but we run it 100 times
for each voltage level due to long experimental time.

Measurement Noise Control We control tempera-
ture and background activities on the GPU that may
impact or skew the measured Vmin results. For tem-
perature control, we adjust the fan speed to stabilize
the temperature at 40 �C when the program starts exe-
cution. This guarantees similar measurement tempera-
ture for all studied programs. We observe only a small
temperature change during program execution given its
short execution time. We report all programs’ Vmin

value measured at 40 �C unless it is explicit. We nul-
lify irrelevant system activities during the experiment,
specifically the graphic activities, by installing another
GPU card dedicated to graphics tasks. We do not con-
trol the CPU activities, because they do not a↵ect the
Vmin on the stand-alone GPU card (see Section 4.2).

GPU Cards We perform Vmin measurements on sev-
eral o↵-the-shelf GPU cards. The studied GPUs in this
work span two architectural generations: Fermi (GTX
480 and 580) and Kepler (GTX 680 and 780). Table 1
lists their key microarchitectural specifications [1, 8].
Note that “core” refers to SM in Fermi, and SMX in
Kepler. Five di↵erent GTX 780 cards are used to verify
our experiments’ reproducibility and to study if there
is an observable di↵erence related to process variation.

CUDA Programs We study a set of 57 programs
from the CUDA SDK [9], Rodinia [10] and Lonestar [11]
benchmark suites. These programs have both diverse
performance and distinctive Vmin characteristics, which
help us make insightful observations of their interaction.

2.2 Power Measurement
We measure each program’s power consumption to

study the relationship between the program’s power be-
havior and Vmin, and quantify the energy-saving bene-
fits of operating at the Vmin point. The part 3� in Fig-
ure 1 shows our power measurement setup. The GPU
card consumes power from the PCIe connection and the
ATX power supply. We measure the power consumption
of both sources and add them up to get the GPU power.
We insert a 25 mOhm shunt resistor at each connection
to measure the instantaneous current and voltage and
calculate the power consumption. We use the data ac-
quisition unit NI DAQ 6133 [12] to record the data at a
rate of 2 million samples per second. This power mea-
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Figure 2: Vmin measurements for 57 programs on the GTX 680.

surement setup is independent of the GPU card and
lets us switch cards and measure their power consump-
tion. Note that the measured power consumption is at
board-level, which includes the GPU chip, DRAM and
peripheral circuits such as voltage regulator.

2.3 Profiling and Instrumentation
We use the NVIDIA profiler nvprof [13] to access GPU’s

performance counters. The counters profiled include
various cache misses and functional unit utilization. We
collect them at the kernel level; the run-to-run variation
of these counters reported by nvprof is within 1%.
In the Vmin test, we rely on kernel-level instrumenta-

tion to control the voltage during each kernel’s execu-
tion to measure its Vmin. The CUPTI (CUDA profiling
tools interface) library [14] provides instrumentation ca-
pability by registering the custom callbacks before and
after each kernel and runtime API call. We implement
our own callbacks to control each kernel’s voltage.

3. VOLTAGE GUARDBAND ANALYSIS
We study how much voltage guardband di↵erent pro-

grams require to execute correctly. More specifically,
we explore and quantify how far we can push the guard-
band for program performance and energy improvement
without impacting the correctness level assumed by an
application developer. We quantify the guardband op-
portunity between the nominal voltage and each pro-
gram’s safe limit (i.e. Vmin point) on four GPU cards
spanning two architectural generations. We also study
each program’s error behavior when it runs with the
voltage beyond its safe limit. We try to understand
whether more aggressive optimization is feasible by low-
ering the voltage further and allowing errors to happen.

3.1 Vmin Measurement Results
We perform Vmin measurement using the 57 represen-

tative programs on four di↵erent GPU cards spanning
two architectural generations (Fermi and Kepler archi-
tecture). The comprehensive measurement helps us to
study and quantify the program-specific voltage guard-
band behavior because the voltage guardband that ex-
ists for a program is the di↵erence between the card’s
nominal voltage and the program’s Vmin value.
We first study the voltage guardband of the 57 pro-

grams on a GTX 680 with Kepler architecture. The
voltage guardband for each program is the margin be-
tween the nominal voltage and its Vmin point. The volt-
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Figure 3: Comparing Vmin across di↵erent GPU cards.

age stock setting of studied GTX 680 is 1.09 V at a fre-
quency of 1.1 GHz. Figure 2 plots the measured Vmin

of these programs. We make two fundamental observa-
tions from the measured results as follows.

First, a relatively large amount of voltage guardband
exists for all studied programs. The Vmin value for these
programs varies from 0.89 V to 0.99 V. Considering that
the nominal voltage of the GTX 680 card is 1.09 V, we
can calculate that a relatively large percent of the volt-
age (9.2% to 18.3%) can be reduced without a↵ecting
the program’s functional correctness. The magnitude is
similar to the measured voltage guardband on an Intel
Core 2 Duo processor reported in prior work [4].

Second, Figure 2 shows a large variability in the stud-
ied programs’ Vmin values, which means that a pro-
gram’s Vmin value strongly depends on its character-
istics. The di↵erence between the highest Vmin value
(0.99 V) and the lowest Vmin value (0.89 V) is 0.1 V for
the studied programs. Two programs (FDTD3d and con-

volutionFFT2D) have the highest Vmin value of 0.99 V, and
three programs (simpleZeroCopy, NNC and myocyte) have
the lowest Vmin value of 0.89 V, as labelled in Figure 2.
Most of the programs have a Vmin value of about 0.93 V.

We further find that these two observations, i.e. the
relatively large voltage guardband and the program-
dependent Vmin behavior, exist on di↵erent GPU ar-
chitectures. In total, we perform Vmin measurements
on four GPU cards: GTX 480 and GTX 580 (Fermi ar-
chitecture) and GTX 680 and GTX 780 (Kepler archi-
tecture). Their specifications are described in Table 1.
Because each card has a di↵erent nominal voltage, we
normalize each card’s Vmin to its nominal voltage for
comparison. Figure 3 plots the normalized Vmin on
four cards and their comparison. The range of voltage
guardband is similar across these cards: 11.5% - 23.3%
on GTX 480, 11.6% - 20.3% on GTX 580, 9.2% - 18.3%
on GTX 680 and 14% - 22.5% on GTX 780.

We also observe that the program-dependent Vmin

behavior exists on all four cards: di↵erent programs
have di↵erent Vmin values. Moreover, Vmin values on

cards with same architecture are more correlated than
Vmin values on cards with di↵erent architectures. In
the last three plots of Figure 3, Vmin values on GTX
480 and GTX 580, and on GTX 680 and GTX 780, are
more correlated than Vmin values on GTX 480 and GTX
680. We can explain the lower correlation of Vmin be-
tween two di↵erent architectures by observing program-
dependent Vmin behavior. A program’s characteristics
may change when it is running on a di↵erent architec-
ture, which results in di↵erent Vmin behavior.

3.2 Error Distribution Below Vmin

We experimentally measure each program’s failure
probability when operating below its Vmin point. This
helps us to determine whether more aggressive opti-
mization of operating below the Vmin point is feasible.
We describe the details of error events and how we de-
tect their occurrence. There are four main types of er-
ror events: i) silent data corruption; ii) CUDA runtime
errors, GPU driver fault or segmentation fault; iii) op-
erating system crash; and iv) infinitely long execution.
Silent data corruption (SDC) [15] refers to when a

program finishes execution without any warning but
produces an incorrect end result. We detect it by com-
paring the test output from the undervolt run against
a golden output from a reference (fault-free) run. We
compare the integer and floating-point output separately,
as described earlier. CUDA runtime errors refer to the
erroneous execution of a program that fails at runtime
(e.g., memory and stream management). Such errors
are explicitly reported by the CUDA runtime system.
Driver fault occurs when the GPU driver code executed
by the CPU loses communication with the GPU. Often
this results in a screen freeze followed by an automatic
hard reset of the GPU card. These two types of errors
can be detected by inspecting the standard error out-
put. The harshest error is the OS crash, after which
a manual reboot is required. We stop the voltage re-
duction experiment once an OS crash happens. Some
programs, such as BFS and DMR, operate on graph data
structures and use iterative algorithms to converge to
the final output. An error may cause it to deviate from
convergence, and its execution time becomes longer or
infinitely long. Due to its rare occurrence, we manually
detect the error and do not study its probability.
We gradually increase the undervolt percent level.

We run the program 100 times and record the outcome
at each level. Figure 4 shows the undervolting exper-
iment results for six representative programs. In each
subplot, the x-axis shows the undervolt percent, i.e.,
percent reduction from the nominal voltage. The under-
volt percent at the leftmost x-axis point corresponds to
the program’s Vmin point. For example, the Vmin of con-
volutionFFT2D is 0.99 V, which corresponds to 9% under-
volting, marked as “Vmin Point” in Figure 4. The right-
most x-axis point is marked as “OS Safe Point,” beyond
which the program can cause an OS crash. The y-axis
plots the distribution of 100 runs that result in a pass,
SDC, CUDA runtime error or segmentation fault. For
example, at the 11.3% undervolt level, convolutionFFT2D



100

80

60

40

20

0

Pe
rc

en
t (

%
)

1211109

convolutionFFT2D

Vmin Point
OS Safe Point

181716151413

binomialOptions

141210

FDTD3d

100

80

60

40

20

0

Pe
rc

en
t (

%
)

1716151413
Undervolt (%)

LoneStar_BH

 Pass  Silent Data Corruption  CUDA Runtime Error/Segfault

17161514
Undervolt (%)

dxtc

1817161514
Undervolt (%)

mergeSort
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silent data corruption, CUDA runtime error or segmen-
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has 63 runs that result in a pass, 36 runs that result in
SDC and 1 run that results in a runtime error.

We summarize four key observations from this ex-
periment. First, all 100 runs at the Vmin point result
in pass, validating our Vmin measurement results. Sec-
ond, an additional 4-5% undervolt percent below the
Vmin point usually causes an OS crash. In other words,
the OS safe point is 4-5% lower than the Vmin point.

Third, we observe two program categories with dif-
ferent failure behaviors. The top three programs in
Figure 4 have significant SDC incidence during under-
volting, whereas the bottom three su↵er primarily from
crash failures (runtime error or segmentation fault). In
other words, the first category is “SDC-prone,” and the
second is “crash prone.” In our study, there are 37 and
20 programs for each category, respectively. We inspect
their source codes to diagnose the possible cause of their
behavioral di↵erences. We find that the most obvious
di↵erence between the two categories is the intra-loop
control dependency (i.e., conditional branches and em-
bedded function calls). Programs with large such de-
pendency are prone to crash errors. Instead, programs
with minimal such dependency and fixed loop counts
have a larger SDC incidence before the onset of crash
errors during undervolting. This observation matches
the common intuition that control-intensive codes have
higher crash probability, because of the higher proba-
bility of illegal memory address references.

Fourth, the program failure probability increases as
the undervolt level increases, because lower voltage trans-
lates to less timing margin and higher error probability.
Moreover, we observe an avalanche error e↵ect when
voltage is below a certain value. For example, the error
probability of FDTD3d increases from 3% to 90% when
the undervolt percent increases from 10% to 12%. This
avalanche error e↵ect may be caused by the common
design practice that most paths are skewed toward the
critical timing specification of the processor [16]. When
the voltage goes below Vmin, most paths would have a

timing violation, causing an avalanche error e↵ect.
In summary, more aggressive optimization by low-

ering the voltage further is possible because the pro-
gram can still execute correctly at times below the Vmin

point. However, the challenge is to detect the execution
error such as SDC. Moreover, the potential improve-
ment might be marginal given the avalanche error ef-
fect. Thus, we focus only on pushing the guardband for
energy improvement without impacting the correctness
level assumed by an application developer.

4. ROOT CAUSE OF Vmin VARIABILITY
In this section, we analyze the root cause of the large

Vmin variability so that we can perform voltage guard-
band optimizations. There are two fundamental ques-
tions regarding the root cause. First, which variation
causes the large Vmin variability? The voltage margin
mainly protects against the process, voltage and tem-
perature (PVT) variation and aging. Each variation has
a di↵erent implication for optimization. Second, which
program activity pattern causes the program-dependent
Vmin behavior? CUDA programs have complicated ac-
tivity patterns, such as the CUDA runtime execution,
initial kernel launch, kernel-to-kernel transition and the
kernel execution. We must identify the causative pat-
tern in order to determine the optimization e↵orts.

4.1 Variation Impact Analysis
We first determine which type of variation causes the

program Vmin variability, from the candidates of pro-
cess, temperature and voltage variation and aging. Af-
ter identifying the voltage variation (noise) as the cause
of the program Vmin variability, we further analyze its
dominant component (IR drop or di/dt droop).

4.1.1 Process, Temperature and Aging
In our work, we directly measure the process and tem-

perature variation impact on Vmin, and use the method
of exclusion to infer the impact of voltage noise.

Process Process variation causes variable device thresh-
old and speed, and thus di↵erent Vmin values. It results
from imperfect lithography [17, 18] and dopants di↵u-
sion [17, 19]. Process variation can be further divided
into inter-die variation, which means that the same de-
vice on a chip has di↵erent features from a di↵erent die,
and intra-die variation, which means the device feature
varies between locations on the same die [17, 20].
We use five GTX 780 cards to study the impact of

process variation. Figure 5a plots the Vmin of our stud-
ied programs, which are measured at 40 �C. Program
names are omitted because of space constraints. They
are sorted in the descending order of Card 2’s Vmin,
the highest among all cards. The largest observable dif-
ference of Vmin among the five cards is that the Vmin

values of all programs measured on one card shift up
or down by a relatively constant value compared to the
values on the other card. The largest Vmin di↵erence of
the same programs between two cards is about 0.07 V.
We also measure Card 2 and Card 5’s Vmin at three

frequencies: 1.1, 1.2 and 1.3 GHz. Each marker in Fig-



1.05

1.00

0.95

0.90

0.85

V
m

in
 (
V

)

Programs

 1   2
 3   4
 5 (Card #)

(a) Process variation impact on Vmin of
five GTX 780 cards.

1.2

1.0

0.8

Vm
in

 o
f G

TX
 7

80
-5

 (V
)

1.21.00.8

Vmin of GTX 780-2 (V)

 1.1 GHz
 1.2 GHz
 1.3 GHz

Process
Variation

(b) Process variation impact on Vmin of
two cards and three frequencies.

1.00

0.95

0.90

0.85

0.80

Vm
in 

@
 4

0 
°C

 (V
)

1.000.950.900.850.80

Vmin @ 70 °C (V)

Temperature 
Impact

(c) Temperature variation (40 �C and
70 �C) impact on Vmin.
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ure 5b plots the Vmin of the same program running on
two cards at a frequency point. If there were no vari-
ation at all, the Vmin of the same program would be
identical on both cards, which would result in markers
lying on the dashed 45-degree diagonal line in Figure 5b.
But, in fact, the Vmin on the GTX 780-2 card is con-
sistently higher than the values on the GTX 780-5 card
by a relatively constant o↵set, which increases slightly
as the frequency increases. We also find that the mag-
nitude of the Vmin di↵erence between two cards is not
identical for all programs in Figure 5a and Figure 5b.
For example, some programs have a greater Vmin dif-
ference between two cards than other programs.

Given the same experimental conditions for other fac-
tors, we attribute the cause of Vmin di↵erence on di↵er-
ent cards to the process variation. Both inter-die and
intra-die variation have the systematic component and
the random component. The former can explain the
constant di↵erence of Vmin on two cards, and the latter
can explain the small variability of the di↵erence pos-
sibly due to the critical timing path shift. Note that
additional measurements on more GPU cards are re-
quired to draw a more statistically sound conclusion.

Temperature We measure Vmin values at two tem-
peratures (40 �C and 70 �C) to study the temperature’s
impact. We observe 40 �C as the nominal temperature
and 70 �C as the highest temperature when running an
OpenGL stress test at the highest frequency and lowest
fan speed. Thus, the temperature 70 �C is a very un-
likely worst-case scenario for regular CUDA programs.
Figure 5c shows the results. We observe a similar im-
pact on Vmin as the process variation but with a smaller
magnitude: Vmin at 70 �C is consistently about 0.02 V
higher than the values at 40 �C. The temperature vari-
ation impact on Vmin is similar to the process variation.

Aging In our study, we cannot directly measure the
impact of aging on Vmin. However, it is unlikely that the
aging e↵ect caused such large Vmin variability among
the programs. The published measurement results on a
recent IBM z System shows that the circuit speed de-
grades only 1-2% in the long term [21]. Moreover, all
our experiments are done within a few months, thus
the impact of aging would be even smaller. Hence, the

magnitude of the observed Vmin variability between pro-
grams and cards cannot be explained by aging e↵ects.

In summary, we observe that both process and tem-
perature have a relatively uniform impact on the Vmin

across all programs. Neither can explain the large vari-
ability of measured Vmin across programs. Because the
voltage guardband protects against process, tempera-
ture and voltage variation (noise) and aging, voltage
noise remains the only possible cause, per method of ex-
clusion. In other words, the program with a higher Vmin

value is due to a greater magnitude of voltage noise.
This also matches with established knowledge that volt-
age noise results from the interaction between program
activity and the processor power delivery network [22],
and thus Vmin depends on the program characteristics.
Note that measuring the voltage noise directly through
the oscilloscope or on-chip sensors [4, 23] can directly
prove our observation. We leave it as future work.
We also observe that voltage noise has a larger im-

pact on the voltage guardband compared to process and
temperature variation. The measured Vmin ranges from
0.89 to 0.99 V on the same card with the same temper-
ature, which indicates the magnitude of voltage noise of
0.1 V. This is larger than the measured process variation
impact of 0.07 V and temperature impact of 0.02 V. In
the rest of the paper, we focus on voltage noise analysis
on the GTX 680 card, unless explicitly mentioned.

4.1.2 Voltage Noise: IR Drop vs di/dt Droop
After identifying the voltage noise as the causative

variation for the program Vmin variability, we also study
its dominant component in GPU architectures. There
are two components in voltage noise: IR drop and di/dt

droop as shown in Equation 1. These two components
have distinctive properties. The IR drop component is
determined purely by the instantaneous current draw,
whereas the di/dt droop component is determined by
the current draw’s increasing rate. Each component
has a di↵erent implication for determining optimization
e↵orts due to their distinctive properties, and as such
we must understand which component is dominant.

Vactual = VDD � I ⇥R� L⇥ di

dt

(1)
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Figure 6: Vmin vs IPC and measured power.

We leverage the IR drop’s property to test the hy-
pothesis that it is the dominant component. If the hy-
pothesis holds true, a program with high Vmin would
have a high power consumption, too. We first inspect
the relationship between the Vmin and the maximum
IPC of the program because the IPC is a good indi-
cator of power consumption [24]. Figure 6a plots the
results. The highest possible IPC is 4 because the Ke-
pler architecture can issue up to four warps per cycle.
Figure 6a shows that programs with higher IPC do not
necessarily have higher Vmin. Instead, the programs
with an IPC of about 2 have the highest Vmin. Thus,
there is no evident correlation between Vmin and IPC.

We also measure the GPU’s power consumption to di-
rectly inspect the relationship between Vmin and power.
Figure 6b shows the result. There is no evident corre-
lation between the Vmin and the GPU card power con-
sumption either. However, the measured power is at
board level, which includes both GPU chip and DRAM
power (Section 2.2). Only GPU chip power consump-
tion would impact Vmin, and DRAM power may disturb
the correlation that may have existed. Thus, Figure 6b
is not enough to draw the conclusion that the Vmin has
no correlation with the GPU power consumption.

To overcome this measurement limitation, we profile
and collect each program’s DRAM bandwidth utiliza-
tion to approximate its power consumption [25]. We in-
spect the programs in Region A and Region B in Figure 6b
separately. Programs in Region A all have a low Vmin

value of about 0.92 V but have a wide range of mea-
sured power. If the hypothesis that IR drop is the domi-
nant component holds true, those programs would have
similar chip power consumption. The high measured
power would be due to high DRAM power. Figure 7a
plots the relationship between the measured power and
DRAM bandwidth for those programs. There are pro-
grams with very low DRAM bandwidth but with high
power. This again contradicts the hypothesis.

Programs in Region B all have a high measured power
consumption but a wide range of Vmin. If the hypoth-
esis holds true, the programs with high Vmin would
have a high chip power consumption and low DRAM
power. Figure 7b plots Vmin against DRAM bandwidth
for those programs. Programs with higher Vmin also
have higher bandwidth. This is the counter example of
the hypothesis. Thus, the di/dt droop instead of the IR
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Figure 7: (a) Power vs DRAM bandwidth for programs
in Region A that have similar Vmin of 0.92 V. (b) Vmin vs
DRAM bandwidth for programs in Region B that have
similar power consumption around 120 watts.

drop is the dominant component of the voltage noise.

4.2 Program Activity Impact Analysis
Our previous analysis shows that the di/dt droop

causes the large Vmin variability among programs. In
this subsection, we analyze which program activity pat-
tern causes such di/dt droop by categorizing the pro-
gram activities and measuring each category’s Vmin.
We categorize the activities to four types: i) CUDA
runtime activity, ii) inter-kernel activity, which causes
the repeated current ramp up and down in GPU; iii)
initial-kernel launch activity, which causes the current
ramp up at the kernel invocation; and iv) intra-kernel
activity, which causes the current fluctuation due to mi-
croarchitectural events. Identifying the relevant activity
lets us mitigate the droop by suppressing the activity,
or predict the Vmin value using the activity metrics.

CUDA Runtime We find that many programs spend
a significant amount of time on CUDA runtime func-
tions such as transferring data back and forth between
CPU and GPU. But it is unclear what their impact on
Vmin is. Thus, we study several CUDA runtime func-
tions that commonly exist in CUDA programs. They
are cudaMalloc, cudaMemset, cudaMemcpy, cudaSetupArgument

and cudaConfigureCall. The first two allocate and set the
specified size of global memory space in a GPU to a
certain value, and cudaMemcpy transfers a trunk of data
between the CPU and the GPU. The last two are com-
mon before a kernel starts to execute, and they basically
push the kernel invocation arguments to registers [26].
To verify if any of these runtime functions is the

source of large di/dt droop, we measure each function’s
Vmin. We use the CUPTI library (see Section 2) to reg-
ister a callback, which controls the voltage, before every
runtime function invocation. We measure the five com-
monly seen functions’ Vmin by only performing under-
volting during the tested function execution. Figure 8
plots the results. The Vmin of these functions is 0.89 V,
which is 0.1 V lower than the highest measured Vmin

of all programs (FDTD3d). Thus, the activity of runtime
functions is not the source of the large di/dt droop.

Inter-Kernel Activity The inter-kernel activity is
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Figure 9: Kernel-level Vmin matches the program level, meaning that
voltage noise is from individual kernel execution.

another potential source of the large di/dt droop. In the
GPU programming model, a CPU launches a set of ker-
nels sequentially. The consecutive launch of kernels can
result in repetitive current fluctuations (ramp-up/ramp-
down) and therefore can cause large di/dt droops. Note
also that the transition from CUDA runtime to kernel
execution may result in similar current fluctuations.

We measure each kernel’s Vmin to verify if inter-kernel
or runtime-kernel transition activity is the main source
of the di/dt droop. The methodology is similar to the
CUDA runtime Vmin measurement. In addition, we in-
sert a 1-second delay before undervolting GPU’s voltage
during the kernel execution. Because the voltage regu-
lator can handle the current variation slower than mil-
lisecond [27], the 1-second delay is long enough to nullify
the impact of current fluctuations caused by inter-kernel
activity and runtime-kernel transitions. We define the
measured Vmin as kernel-level Vmin to distinguish from
the program-level Vmin, which is measured by perform-
ing undervolt for the entire program execution.

Figure 9 compares the program-level Vmin and its
maximum kernel-level Vmin. If the inter-kernel activ-
ity or runtime-kernel transition caused a large di/dt

droop, the measured kernel-level Vmin would be much
smaller than the program-level. We observe that the
kernel-level Vmin of all programs except concurrentKernel

match the program-level. Thus, neither of the two types
of activities causes large di/dt droops. The mismatch
for concurrentKernel can be attributed to the side-e↵ect of
kernel-level Vmin measurement due to the use of CUPTI
library, that is, serialized execution of all kernels. That
program originally has multiple kernels which run con-
currently. The serialization side e↵ect reduces the ac-
tivities on GPU, and therefore also reduces its Vmin.

Initial-Kernel Activity The individual kernel activ-
ity remains the dominating source of the large di/dt

droop because we have shown that neither the CUDA
runtime function nor the inter-kernel activity is the main
source. The individual kernel activity can be further di-
vided into initial-kernel and intra-kernel activity. When
a kernel is launched, all cores’ states change from the
idle state to the active state in a short period, similar to
the e↵ect of barrier synchronization point, which may
cause a large di/dt droop [28].

To verify if the initial-kernel activity is the source of
large di/dt droop, we design an experiment to stagger
the activation of cores and inspect if the Vmin decreases
after the staggering. Prior work in CPUs has shown this
can mitigate synchronization-induced voltage noise [28].
If the initial-kernel activity was the source of large di/dt
droop, we would observe a decrease of the kernel’s Vmin.
We develop a mechanism for thread-block execution

stagger. In GPUs, a thread block is the smallest unit
that is scheduled to a core [29]. The rate of core activa-
tion can be reduced by staggering the activity of issuing
thread blocks. The rate of stagger can be either linear
or exponential; we implement both in our experiment.
Because of space limitations, we describe briefly how

the stagger execution works. We use a global variable in
the CUDA global memory space to record the number
of thread blocks doing the actual work. Before start-
ing the actual computation, each thread block checks
if the present number of active thread blocks exceeds
the allowed number. If yes, the thread block waits un-
til the other thread blocks are complete. Otherwise, it
starts execution immediately. The control of the num-
ber of active thread blocks is the key to thread block
staggering. There are two implementation-related de-
tails. First, we declare the global variable as volatile

to bypass the non-coherent L1 cache [30] in both Fermi
and Kepler [1, 8]. Second, we use a spin lock to con-
trol multiple thread blocks’ concurrent accesses to this
global variable, which we implement with the atomic
compare-and-swap instruction atomicCAS in CUDA.
We validate our implementation of linear and expo-

nential stagger execution using a simple program vec-

torAdd. Figure 10 compares the measured and estimated
execution time for linear and exponential stagger with
16 thread blocks. The value of the x-axis indicates the
number of thread blocks in the beginning. A value of
2 means two thread blocks can be scheduled in the be-
ginning. After that, the number of thread blocks that
can be scheduled increases linearly or exponentially. Be-
cause each thread block processes the same size of data,
the execution time of each thread block is similar. The
overall execution time can be easily estimated. The
match between estimated time and the measured time
validates our implementation of the stagger execution.
We apply the stagger execution to the top 10 pro-
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Figure 10: Correctness validation for implementation
of linear and exponential stagger execution of thread
blocks during the initial kernel launch.

grams with the highest Vmin and inspect if the stagger
execution can alter their Vmin values. We measure their
Vmin under di↵erent scenarios: i) limiting the number
of thread blocks throughout the execution, and ii) stag-
gering the thread blocks’ execution linearly and expo-
nentially. We observe the same results among the pro-
grams and report only FDTD3D’s results. Figure 11a
shows Vmin increases as the number of active thread
blocks increases, which is expected because more active
cores can build up the di/dt droop [4, 23]. However,
in Figure 11b, we observe that neither linear nor ex-
ponential staggering a↵ects the Vmin. Thus, the initial
kernel activity does not cause large di/dt droops, pos-
sibly because chip designers may already have built in
some staggering mechanism, or the latency of ramping
up all the cores is too long so that the overall di/dt
droop e↵ect is small.

Intra-Kernel Activity Using the method of exclu-
sion, we infer that the intra-kernel activity causes large
di/dt droops because we have excluded all other sources
(CUDA runtime, inter-kernel and initial-kernel activ-
ity). The intra-kernel activities can be microarchitec-
tural events such as cache miss in the light of prior
simulation-based work [31]. They cause pipeline stalls,
and the pipeline suddenly becomes active after a stall,
resulting in a current surge and a large di/dt droop.

We study how a kernel’s input a↵ects its Vmin. Specif-
ically, a kernel can be launched multiple times with dif-
ferent input data in a CUDA program. We measure
each launch’s Vmin. Figure 12 shows the box plot for
the Vmin of kernels with multiple invocations. Most ker-
nels’ Vmin values only vary about 1%. Kernels in convo-

lutionFFT2D have the largest variation, ranging from 0.92
to 0.99 V. We inspect its source code and find that invo-
cations with much lower Vmin do not contribute to the
program output. Thus, our methodology of checking
program output cannot measure these launches’ Vmin

values. The Vmin variation of other launches that actu-
ally contribute to the program output is within 0.01 V.

We also observe that the Vmin of some kernels varies
up to 0.04 V with di↵erent input. Their performance
characteristics (counters) also have larger variability than
other programs. In summary, most kernels have small
Vmin variation regarding the input, and some kernels’
Vmin is more sensitive to the input because of the sensi-
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Figure 11: Vmin increases as the number of thread
blocks increases but stays constant regardless of linear
or exponential staggering. This indicates that activities
within the kernel cause a large di/dt droop.

tivity of their performance characteristics to the input.

5. PROGRAM-CENTRIC Vmin ANALYSIS
AND Vmin PREDICTION

Our analysis indicates that the di/dt droop caused by
the microarchitectural events during the kernel execu-
tion causes the large Vmin variability. This finding mo-
tivates us to explore the feasibility of using microarchi-
tectural performance counters to predict the programs’
Vmin value. We study several di↵erent approaches of
using microarchitectural performance counters to pre-
dict the Vmin value, which enables the possibility of
software-driven voltage margin reduction scheme.

5.1 Program Category and Vmin

We first study whether a set of programs with sim-
ilar performance characteristics have similar Vmin val-
ues, and whether they have distinctive Vmin values com-
pared to another set of programs with di↵erent charac-
teristics. We categorize CUDA programs into four types
by their performance characteristics: memory bound,
whose execution time is bound by the memory band-
width; compute bound, whose execution time is bound
by the core’s computational capabilities; latency bound,
which do not have enough threads and thus have very
low utilization of both compute units and main memory
bandwidth; and balanced, which achieves high utiliza-
tion on both the compute units and memory bandwidth.

1.00

0.98

0.96

0.94

0.92

0.90

0.88

Vm
in

 (V
)

Kernels

60

50

40

30

20

10

0

Launch C
ounts (

)

Kernels in convolutionFFT2D

Figure 12: The Vmin variation of each kernel with multi-
ple launches. The kernels in convolutionFFT2D have large
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contribute to the final program output.
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Figure 13: Vmin for the di↵erent program types.

Figure 13 shows the Vmin for the di↵erent program
types. Compute- and latency-bound programs tend to
have lower Vmin (i.e., smaller droop). Both memory-
bound and balanced programs have diverse Vmin val-
ues, and two of the memory-bound programs have the
highest Vmin among all programs (i.e., larger droop).
Prior work for CPUs has shown that two conditions are
needed for large voltage droops to occur: pipeline stalls,
and synchronized stalls among multiple cores. They
can explain why the memory-bound programs can have
large droops: they have memory-related pipeline stalls,
and these kinds of stalls tend to synchronize because
of memory subsystem contention. Although pipeline
stalls also exist in latency-bound programs, they are
not likely aligned because of the lack of shared resources
contention. Compute-bound programs either have sta-
ble power draw or unsynchronized stalls. In summary,
we observe that the program’s performance characteris-
tics correlate well with its Vmin value. This encourages
us to study how to predict the Vmin accurately.

5.2 Top-Down Approach for Vmin Prediction
In this subsection, we study two top-down approaches

for Vmin prediction that let us to quickly evaluate the
feasibility and the accuracy of the performance counter
based Vmin prediction model. The top-down approach
does not require any prior knowledge about Vmin. In-
stead, it uses all possible performance counters from a
large number of programs and automatically constructs
the prediction model, allowing a fast implementation
and evaluation. We consider two methods: linear re-
gression and neural network. The former produces a
linear model, and the latter produces a nonlinear model.

We collect 28 performance counters to construct the
Vmin prediction model. These are IPC, utilization level
of di↵erent functional units (arithmetic logic, floating-
point and load-store units), single- and double-precision
floating-point operations per second (FLOPS) and hit
and miss rates of various caches (instruction, data and
texture cache). These counters are input features for
both the linear regression and neural network approaches.

We calculate three error metrics for determining the
prediction model’s e�cacy. We calculate the root mean
square error (RMSE) as the metric to indicate average
prediction accuracy. We also calculate the maximum
overprediction error, which means the predicted under-
volting level is higher than the actual value. The actual
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Figure 14: The predicted undervolt vs measured un-
dervolt using microarchitectural events. (a) uses linear
regression, and (b) uses neural network.

value corresponds to the program’s Vmin point, and un-
dervolting more than that level can cause the program
to fail. The third error metric we calculate is the maxi-
mum underprediction error, which means the predicted
undervolting level is lower than the actual value. In
this case, extra guardband is wasted because the pro-
gram could have run at a lower voltage level.
For the linear regression, we collect the 28 perfor-

mance counters from 557 kernel launches. Thus, these
data form a 557⇥ 28 input matrix for the linear regres-
sion. Figure 14a shows the predicted value against the
actual undervolt level. Although linear regression has
an RMSE value of only 2.2%, it overpredicts many ker-
nels’ undervolting levels by 7%, where the maximum is
10%. This requires additional guardband to tolerate.
Moreover, the maximum underprediction error is 10%:
the predicted undervolt level is 5% but the actual level
is 15%. This results in a 10% guardband wastage.
We use the same 557 ⇥ 28 matrix to train a neural

network to predict the undervolting level. The trained
neural network has one hidden layer. Its input layer has
28 neurons, and the hidden layer has 10 neurons. Fig-
ure 14b shows prediction accuracy, with an RMSE value
of 0.5%. Not only does the neural network outperform
the linear regression approach in the average error, but
the maximum overprediction error is only 3%. More-
over, the maximum underprediction error is only 2%,
which guarantees the least guardband wastage. Thus,
the neural network produces a more accurate Vmin pre-
diction model than the model constructed using the lin-
ear regression method, which indicates a nonlinear re-
lationship between Vmin and performance counters.

5.3 Bottom-Up Approach for Vmin Prediction
The use of all performance counters yields an accurate

Vmin prediction model. In this subsection, we evaluate a
bottom-up approach for Vmin prediction. The bottom-
up approach identifies a small set of performance coun-
ters that strongly correlate with Vmin, and constructs a
simple model with comparable accuracy. Because these
events cause di↵erent di/dt droop, it matches with the
previous observation in Section 4.2 that the di/dt droop
during kernel execution determines the Vmin.
We first identify the most relevant performance coun-
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Figure 15: The details of using the bottom-up approach for Vmin prediction, and the prediction model accuracy.

ters (i.e. features). We rank the 28 features using the
Boruta package [32], which iteratively sorts each fea-
ture’s relevance and ranks them by their relevance to
the dependent variable Vmin. We find that DRAM read
throughput, IPC and single-precision floating-point op-
erations per second rank highest among all counters.
The reason for them being the most relevant to Vmin

might be that they represent the general pipeline activ-
ity, which determines the voltage noise profile.

We construct the Vmin prediction model with the
three most relevant counters using the following method-
ology. Because the peak achievable IPC in the Kepler
architecture is four, we first categorize the kernels to
four types by their IPC values: [0, 1), [1, 2), [2, 3)

and [3, 4]. The heuristic we use is that the IPC is a
good indicator of the pipeline stall degree. For exam-
ple, kernels in the IPC [3, 4] region have Vmin from
0.93 to 0.95 V. In this region, stalls are rare, and there-
fore the di/dt droop is small. In contrast, kernels in
region [0, 1) have a larger Vmin variability, from 0.9 to
0.97 V. In this region, pipeline stalls are frequent, and
thus the di/dt droop may have a larger magnitude. IPC
alone is not enough to capture the Vmin variability. In
each IPC region, we perform a piecewise linear regres-
sion with one breakpoint against the other two counters
(DRAM read throughput and single precision FLOPS)
separately. We show the results with better accuracy in
Figure 15a. We summarize the key findings below.

IPC [0, 1) The undervolt level decreases as DRAM
read throughput increases in this region. When both
the read throughput and IPC are low, the pipeline stalls
are most likely due to the lack of threads (i.e. latency
bound in Section 5.1). In this case, the di/dt droop is
small and the undervolt level is large. Kernels with high
read throughput and low IPC are memory bound. They
have enough threads utilizing the memory bandwidth,
which is the prerequisite for generating a large current
surge after the stall and thus large di/dt droop.

IPC [1, 2) Single-precision FLOPS correlates better
with Vmin than DRAM read throughput in this region.
The undervolt level decreases rapidly as the FLOPS in-
creases until 10 GFLOPS and plateaus. This can be
attributed to the fact that higher FLOPS can cause a
larger current surge and therefore a larger di/dt droop.

IPC [2, 3) The undervolt level first increases but then

decreases as the read throughput increases. Kernels
with low read throughput and medium IPC are com-
puting bound. They have mostly dependence-induced
stalls. The increased read throughput means more mem-
ory stalls, but the two types of stalls are unlikely to
align with each other, and thus the noise begins to
decrease [23, 31]. However, the kernel becomes mem-
ory bound after the read throughput increases above
20 GB/s. Then, the di/dt droop starts to increase sim-
ilar to the kernels in the IPC region of [0, 1).

IPC [3, 4] As mentioned earlier, kernels in this region
have a small Vmin variability because stalls are rare, and
therefore the di/dt droop is small. The undervolt level
increases slightly as the read throughput increases.

Figure 15b shows the accuracy of the final predic-
tion model derived using the above method. It has the
RMSE of 0.9%, and the maximum overprediction and
underprediction error is 2.7% and 3.3%, respectively.
The accuracy of this model using three key counters
is comparable with the model produced by the neural
network approach using all performance counters.

6. ENERGY EFFICIENCY OPTIMIZATION
In this section, we discuss the energy e�ciency im-

provement potential of reducing the voltage operating
margin to the safe limits. We first present the energy-
e�ciency benefit analysis of the oracle case when oper-
ating the GPU at the Vmin point. We then discuss the
energy benefits in the context of an exemplary design
concept that reduces the operating margin by deploy-
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(a) Undervolting level at Vmin point and predicted Vmin point.
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(b) Energy savings with oracle scheme versus predictive scheme.

Figure 17: Comparison of (a) undervolting level and (b) energy savings at the measured and predicted Vmin point.

ing the Vmin prediction model and ensures functional
correctness with a sensor-based safety mechanism.

6.1 Oracle Analysis
We first show the measured energy savings by run-

ning each program at its Vmin point. Initially, we ex-
perimentally measure a program’s Vmin as shown in pre-
vious sections. We then measure the overall GPU’s en-
ergy consumption under two scenarios: i) with nominal
frequency and voltage, and ii) with nominal frequency
and Vmin. We measure a subset of programs shown in
Section 2 that have long-running kernels. We measure
GPU power at the card level, which includes the power
consumption of the GPU chip, DRAM and peripherals.

Figure 16 shows the energy savings on two di↵erent
GPU cards: GTX 480 and GTX 680. By lowering the
core voltage without changing the frequency, we can
improve energy e�ciency. On (geometric) average, the
energy saving is about 21% for GTX 680 and 15.8% for
GTX 480. The energy savings range from 14% to 25%
for GTX 680, and from 8% to 22% for GTX 480.

The energy savings depend on two factors: the per-
centage of voltage that can be reduced, and the ratio of
GPU chip power consumption at the card level. Note
that the undervolting impacts only the GPU chip power
consumption but not the DRAM power consumption.
For GTX 680, the smallest improvement is seen with
convolutionFFT2D. We can reduce its energy consumption
by 14%. It has the highest Vmin value of 0.99 V, which
results in the smallest gain in energy savings. The
benchmark MonteCarlo has the largest saving of 25%,
although it has only a medium Vmin value of 0.94 V.
This is because the card-level power is dominated by
the GPU chip power but not the DRAM power. We ob-
serve that the energy savings with GTX 480 are gener-
ally lower than GTX 680. This can be explained by the
higher DRAM power consumption for GTX 480 card.

6.2 Exemplary Design and Benefit Analysis
Having established the (oracular) opportunity of en-

ergy savings, we now consider an exemplary design to

claim the potential energy benefits shown previously.
Note again that our goal is to improve the GPU’s en-
ergy e�ciency while ensuring absolute correctness.
In this conceptual design, the system firmware (or

runtime software) reduces the voltage operating margin
to save energy. It uses specially architected hardware
performance counters and a Vmin prediction model to
predict and operate with the reduced margin. Although
our model predicts Vmin within 3% error margin for
training programs, the prediction error for unseen pro-
grams, whose characteristics are very di↵erent from the
training programs, could exceed the 3% error margin.
This kind of corner case can result in a system failure.
Thus, our design must be augmented with an overall
“safety net” to ensure functional correctness.

Our scheme requires only a lightweight safety net in
the hardware because the software takes the role of
margin detection (via prediction) from the hardware.
The existing lightweight voltage droop sensor, called the
skitter circuit [33, 34], suits our system well. The con-
trol firmware can use this sensor to detect the corner
case, i.e., the larger-than-expected voltage droop that
causes a violation of the 3% error margin established
from model training. Upon detecting such a case, the
control firmware would restore the voltage to the nom-
inal level and roll back to the last checkpoint to guard
against any timing-error-related corruption that could
have occurred. Then, this program can be added to the
o✏ine training set to recalibrate the prediction model.
Our exemplary software-hardware (cross-layer) design

for reducing voltage margin is distinct from the hardware-
only feedback control loop. The latter relies on complex
and high-calibration-overhead sensors like critical path
monitors [35]. This exemplary design relies only on a
lightweight skitter circuit. Other lower-complexity er-
ror detectors, such as parity or ECC sensors [36, 37]
available in large SRAM macros (e.g. caches or regis-
ter files), can also provide an alert about error-prone
voltage levels and can help in the exemplary design.
Because these hardware detectors are limited to mem-
ory arrays, we also need the skitter circuits for the logic



paths that are engaged in computation and control.
We demonstrate that we can achieve energy savings

close to the oracle case using the prediction models pre-
sented in Section 5.2. We evaluate two cases of execut-
ing each program at the undervolting level predicted by
the neural network and the piecewise linear prediction
model separately. Because both models have a maxi-
mum overprediction of less than 3%, we add another
3% margin to guardband this model prediction error.
Figure 17a compares the undervolting level at the Vmin

point and the level predicted by the two models plus the
additional 3% margin. The predicted undervolting level
of both models is always lower than the level at the Vmin

point, which means that all those programs execute cor-
rectly without any faults. However, the safety net mech-
anism is still required for the functional correctness of
other programs. The average gap between the actual
and predicted undervolting level is only 2.7% for both
models, which minimizes the guardband wastage.

Figure 17b compares the energy savings running at
the undervolting level predicted by the two models with
the savings in the oracle case. The energy savings range
from 11.3% to 23.2% using the neural network model
and 10.5% to 22% using the piecewise linear model, as
opposed to 14% to 25% in the oracle case. The average
savings are 16.9% and 16.3% using the two models and
21% in the oracle case. Using both models achieves over
80% of the energy-savings benefits of the oracle case.

7. RELATED WORK
To the best of our knowledge, our work is the first to

perform a comprehensive measurement-based study of
voltage guardband in GPUs. We compare and contrast
our work with prior work on voltage guardband both in
CPU and GPU domains. In our work, we conduct the
Vmin test on a class of o↵-the-shelf GPU cards to charac-
terize their voltage guardband. Prior work on reducing
the CPU voltage guardband is categorized into one of
two types. The first type reduces the voltage guardband
while the processors continue to function correctly [5],
whereas the second type tolerates timing speculation
errors with the aid of an error detection and recovery
mechanism [38]. Similar to the former scenario, the
Vmin test assumes that no error occurs at the Vmin

point. However, our work’s emphasis is to characterize
the voltage guardband and build a fundamental under-
standing of its important characteristics on a GPU.

Our measurement results reveal that the di/dt droop
during the kernel execution is the largest contributor to
voltage guardband in the multiple studied GPUs. Many
prior works adopt the simulation approach to study the
di/dt droop in the single-core [27, 39, 40] and multi-
core [28, 41] CPUs. There are also prior e↵orts that
conduct a measurement-based study of voltage noise in
CPUs [4, 23, 42]. Prior work on voltage noise in GPUs
focus on modeling [43] and characterization [31] via sim-
ulation. Our work is the first to perform a comprehen-
sive measurement study of voltage noise using multiple
o↵-the-shelf GPU cards. We measure each program’s
Vmin and characterize its error behavior and probabil-

ity when the GPU chip’s voltage goes below Vmin.
Prior work in CPUs relies on hardware sensors such

as the critical path monitor [5], shadow latches [38] or
ECC feedback [36, 37] to reduce the operating margin
for energy saving. To the best of our knowledge, our
work is the first to use performance counter measure-
ment for each kernel to predict its Vmin value accurately
and achieve near-optimal energy savings by operating
the GPU with a program-specific undervolting level.

8. CONCLUSION
We demonstrated that we can achieve energy-reduction

benefits as high as 25% by lowering the GPU’s core volt-
age without inducing errors. The challenge for leverag-
ing this opportunity lies in understanding what influ-
ences the choice of the safe limit. We find that the
di/dt droop is the largest determinant of Vmin. We
find that GPU Vmin is program specific. We character-
ize the impact of program characteristics on the Vmin,
and show that we can predict the Vmin of each individ-
ual kernel using performance counter information. We
demonstrate that we can achieve a large energy savings
by operating the GPU at the predicted Vmin point.
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