
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 1

Predictive Guardbanding: Program-driven
Timing Margin Reduction for GPUs

Jingwen Leng, Member, IEEE, Alper Buyuktosunoglu, Fellow, IEEE, Ramon Bertran, Member, IEEE, Pradip
Bose, Fellow, IEEE, Yazhou Zu, Member, IEEE, and Vijay Janapa Reddi, Member, IEEE,

Abstract—Energy efficiency of GPU architectures has emerged
as an essential aspect of computer system design. In this paper,
we explore the energy benefits of reducing the GPU chip’s voltage
to the safe limit, i.e., Vmin point, using predictive software
techniques. We perform such a study on several commercial
off-the-shelf GPU cards. We find that there exists about 20%
voltage guardband on those GPUs spanning two architectural
generations, which, if “eliminated”entirely, can result in up to
25% energy savings on one of the studied GPU cards. Our
measurement results unveil a program dependent Vmin behavior
across the studied applications, and the exact improvement
magnitude depends on the program’s available guardband. We
make fundamental observations about the program-dependent
Vmin behavior. We experimentally determine that the voltage
noise has a more substantial impact on Vmin compared to the
process and temperature variation, and the activities during the
kernel execution cause large voltage droops. From these findings,
we show how to use kernels’ microarchitectural performance
counters to predict its Vmin value accurately. The average and
maximum prediction errors are 0.5% and 3%, respectively. The
accurate Vmin prediction opens up new possibilities of a cross-
layer dynamic guardbanding scheme for GPUs, in which software
predicts and manages the voltage guardband, while the functional
correctness is ensured by a hardware safety net mechanism.

Index Terms—Multi-core processors, single instruction and
multiple data, GPU, voltage guardband, PVT variation.

I. INTRODUCTION

General-purpose GPU (GPGPU) architectures are already
essential mainstream computing elements. Heterogenous sys-
tems such as the next two world’s fastest supercomputers
Summit and Sierra that couple the throughput optimized GPUs
with the latency optimized CPUs provide superior computa-
tional horsepower for modern killer workloads [2]. As such,
the energy efficiency of GPU becomes critical for our society
owing to its enormous impact on the economy because one
such supercomputer can consume over 30 MW peak power
consumption, and produce a monthly electricity bill of several
millions of dollars.

State-of-the-art GPU power-saving efforts strongly reflect
and follow the CPU trend. Typical optimizations include
power gating and dynamic voltage and frequency scaling
(DVFS) [29], [40]. These techniques mainly leverage a pro-
cessor’s supply voltage as a knob to balance the performance
and power consumption because the supply voltage directly

J. Leng is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, 200240.
E-mail: leng-jw@sjtu.edu.cn

A. Buyuktosunoglu, R. Bertran, and P. Bose are with IBM Research. Y. Zu
is with Google and J. Reddi is with Harvard University.

Manuscript received XX XX, 2018; revised XX XX, 2018.

determines the power consumption [54]. However, none of
them addresses the fundamental energy inefficiency that exists
at the voltage guardband level.

Typically, designers allocate a large portion of supply volt-
age, i.e., voltage guardband, to combat the worst-case process,
temperature and voltage variation (noise). This design-for-
worst-case methodology leads to energy wastage because the
chip could have operated at a lower supply voltage most of the
time when the worst case condition rarely occurs [13], [17],
[27], [46]. In the future, the voltage guardband relative to the
nominal voltage is predicted to grow due to increased varia-
tions as technology scales [48], which requires us to actively
manage the guardband to maximize the energy efficiency.

In this work, we provide a measurement-based study to
quantify the energy saving potential of pushing the GPU
supply voltage to its safe limit. We achieve so by conducting
the Vmin measurement on several off-the-shelf GPU cards
spanning two architectural generations (Fermi and Kepler).
At the Vmin point, a program executes correctly but fails
if the supply voltage is reduced any further. We make two
key observations from measurement results. First, all studied
GPUs have significant margins between the nominal voltage
and the Vmin point. For example, on a GTX 680 card, we
can reduce the voltage by up to 18%, which indicates 25%
energy saving potential. Second, the variability of the margin
among programs is also significant (10%), which necessitates
program-specific guardband optimizations.

To safely restore the potential for voltage guardband op-
timization, we must understand the cause of the program-
specific Vmin phenomenon. To this end, we make two critical
contributions. We first determine the cause of the program
dependent guardband behavior from the candidates of the
process, temperature, and voltage variation, against which
the voltage guardband mainly protects. We observe that the
voltage noise has the largest impact, and causes the program
dependent Vmin behavior. Because voltage noise depends
on program characteristics [16], [47], it also matches the
program-dependent Vmin observation. Second, we identify the
critical voltage noise characteristics. We profile each program’s
performance characteristics, measure its power consumption,
and use these measured program-driven metrics to study the
interaction among performance, power, and Vmin. We find
that the di/dt droops caused by microarchitectural stall events
during a kernel’s execution determine its Vmin value.

These experimentally derived insights lead to our finding
that we can predict each kernel’s Vmin value with at most
3% error, using microarchitectural performance counters. We

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 2

Program
Output

Reference
Run

=
Pass

Silent Data Corruption
CUDA Runtime Error
Segmentation Fault

OS Crash

CUDA
Programs

Undervolt

Nominal
VDD

Vmin Test
2

… cudamemcpy() Kernel1 <<<…>>> Kernel2 <<<…>>> …

Callback

Execution Timeline

Callback Callback Callback Callback CallbackCUDA
Programs

Kernel-level
Instrumentation5

CUDA
Programs

nvprof
L1 Cache Hit/Miss

Texture Cache Hit/Miss
Instruction Per Cycle

…

Performance Profile4

Undervolt

VDD Stock VDD

1

GPU
I
VDD

Power = VDD x I

Power Measure3

I
VDD

PCIe ATX

Figure 1: Overview of the experimental setup. 1. Undervolt: we use an overclocking tool to control the voltage. 2. Vmin test: we measure
the Vmin point of each program by gradually undervolting the GPU and check the program output correctness. 3. Power measurement:
we use custom power-sensing circuitry to measure GPU power. 4. Performance profile: we use nvprof to access performance counters. 5.
Kernel-level instrumentation: we use the callbacks before and after each kernel invocation to measure the Vmin and power of each kernel.

explore different Vmin prediction methods, and show that a
neural network based predictor and a hand-engineered piece-
wise linear model both achieve high prediction accuracy. Fur-
thermore, the proposed Vmin predictor enables the feasibility
of a dynamic guardbanding system, where the GPU supply
voltage is regulated on a kernel basis. We describe a conceptual
system centered around the Vmin predictor. In such a system,
which we name as predictive guardbanding, the supply voltage
of each kernel is determined by Vmin predictor’s output.
We show that a predictive guardbanding system can closely
match the kernel’s voltage guardband to its characteristics, and
therefore allows the kernel to operate with the reduced voltage
and achieves significant energy saving benefits.

In summary, we make the following key contributions:
1) We find that there consistently exists a large amount of

voltage margin across several off-the-shelf GPU cards,
where the voltage margin is measured between a pro-
gram’s Vmin and the nominal supply voltage.

2) We observe that the Vmin values are strongly program-
dependent as different programs Vmin vary significantly.
We experimentally determine that its root cause is voltage
noise because it has a much greater impact compared
to process and temperature variation. We further identify
that the di/dt droop during the kernel execution is the
dominant component of voltage noise.

3) We perform a quantitative study of the relationship
between the program’s performance characteristics and
Vmin, and study methods on how to use a kernel’s
performance counters to predict its Vmin accurately.

4) We demonstrate the significant energy-savings potential
of a conceptual exemplary design of predictive guard-
banding that adopts the derived Vmin prediction model
through measurement on a real GPU. We also show the
total cost ownership (TCO) improvement benefits in a
datacenter that deploys multi-GPU servers.

We organize the paper as follows. Section II describes our
experimental setup. Section III presents the Vmin measurement
results and analysis. Section IV analyzes the root cause of the
large Vmin variability. Section V studies the Vmin prediction
and Section VI details the proposed predictive guardbanding.
Section VII evaluates our Vmin predictor, and shows the GPU

energy savings as well as a datacenter’s TCO improvements
achieved by a conceptual predictive guardbanding system
centered around a Vmin predictor. Section VIII discusses
related work, and Section IX gives the conclusion remark.

II. EXPERIMENTAL SETUP

This section describes our experimental setup in Figure 1.
The central piece of our setup is the fine-grained voltage
guardband exploration test, i.e. the Vmin test (labeled using
1© and 2© in Figure 1). We also measure the program’s
power consumption (label 3©) and profile its performance
characteristics (label 4© and 5©) to study the interaction of
a program’s Vmin and its performance and power.

A. Voltage Guardband Exploration

We explore the voltage guardband on several off-the-shelf
GPU cards and a large set of representative programs via Vmin

measurements. We describe the details of Vmin test, studied
GPU cards and programs.
Vmin Test We quantify the voltage guardband for each pro-
gram by measuring its Vmin point, a supply voltage point at
which a program executes correctly but fails when the voltage
is reduced any further. The Vmin test includes two parts. In the
first part (1© in Figure 1), we decrease the GPU’s operating
voltage from its stock setting. For example, the stock setting of
a studied GPU cards, GTX 680 card, is 1.09 V at the frequency
of 1.1 GHz. Table I lists the stock settings of other GPU cards.
We use a publicly available utility, MSI Afterburner [1] version
2.3, to control the GPU chip’s voltage at a fixed frequency.
We control the voltage at the granularity of 12 mV, and we
do not modify the memory voltage and frequency.

We then measure each program’s Vmin point with a step
of 12 mV undervolting, as the 2© part in Figure 1 shows. At
each step, we run each program and check its correctness by
validating its output against the reference run at the nominal
voltage. We consider each run as “pass” if i) for integer
programs, the output is identical to the reference run, or ii)
for floating-point programs, the output is within 10−2% of
the reference run. We consider a voltage level as a working
level if the program passes 1,000 times. Vmin is the minimal

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 3

working voltage. We also study the error behavior for each
program operating below its Vmin point, but we run it only
100 times for each voltage level due to long experimental time.
Measurement Noise Control We control temperature and
background activities on the GPU that may impact or skew
the results. For temperature control, we adjust the fan speed
to stabilize it at 40 ◦C when the program starts execution. This
guarantees similar measurement temperature across studied
programs: we observe only a small temperature change during
program execution given its short execution time. We report
all programs’ Vmin value measured at 40 ◦C and explicitly
point out results measured at other temperatures. We nullify
irrelevant system activities during the experiment, specifically
the graphics activities, by installing another GPU card dedi-
cated to graphics tasks. We do not control the activities on the
CPU because they do not affect the Vmin on the stand-alone
GPU card (see Section IV-B for our results and analysis).
GPU Cards We perform Vmin measurements on several off-
the-shelf GPU cards. The studied cards span two architectural
generations: Fermi (GTX 480 and 580) and Kepler (GTX 680
and 780).Table I lists their key microarchitectural specifica-
tions [39], [40]. Note that “core” refers to SM in Fermi and
SMX in Kepler. Five different GTX 780 cards are used to
verify the result reproducibility and to study if there is an
observable difference related to process variation.
CUDA Programs We study a set of 58 representative pro-
grams from the CUDA SDK [38], Rodinia [9], AlexNet [25]
on Caffe framework [22], and Lonestar [8] benchmark suites.
These programs have diverse performance characteristics as
they include computation and memory intensive programs,
and regular and irregular programs. Their diverse performance
characteristics leads to distinctive Vmin behaviors, which lets
us make insightful observations of the interaction between pro-
gram characteristics and Vmin. We will provide the complete
list of the programs later.

B. Power Measurement

We measure each program’s power consumption to study
the relationship between the program’s power behavior and
Vmin, and quantify the energy-saving benefits of operating at
the Vmin point. The part 3© in Figure 1 shows our power
measurement setup. The GPU card consumes power from the
PCIe connection and the ATX power supply. We measure
the power consumption of both sources and add them up
to get the GPU power. We insert a 25 mOhm shunt resistor
at each connection to measure the instantaneous current and
voltage and calculate the power consumption. We use the data

GPU GTX 480 GTX 580 GTX 680 GTX 780

Architecture Fermi Kepler

Core Counts 15 16 8 12

Core Clock (MHz) 700 875 1100 1100

Register Per Core (KB) 128 128 256 256

L1 Cache (KB) 48/16 (Configurable)

L2 Cache (KB) 768 768 512 1536

TDP (W) 250 250 195 250

Technology (nm) 40 28

Table I: Microarchitectural specifications of four GPUs.

acquisition unit NI DAQ 6133 [35] to record the data at a rate
of 2 million samples per second. This power measurement
setup is independent of the GPU card and lets us switch cards
and measure their power consumption. Note that the measured
power consumption is at board-level, which includes the GPU
chip, DRAM and peripheral circuits such as voltage regulator.

C. Profiling and Instrumentation

We use the NVIDIA profiler nvprof [41] to access GPU’s
performance counters. The counters profiled include various
cache misses and functional unit utilization. We collect them
at the kernel level; the run-to-run variation of these counters
reported by nvprof is within 1%. In the Vmin test, we rely on
kernel-level instrumentation to control the voltage during each
kernel’s execution to measure its Vmin. The CUPTI (CUDA
profiling tools interface) library [37] provides instrumentation
capability by registering the custom callbacks before and after
each kernel and runtime API call. We implement our own
callbacks to control each kernel’s voltage.

III. PROGRAM-SPECIFIC Vmin MEASUREMENT

In this section, we use the measurement results to explain
why it is desirable to optimize the guardband for the individual
program, i.e., program-driven guardbanding. In particular, we
study how far we can reduce the GPU’s supply voltage
from its nominal level to the safe limit that still satisfies
the correctness level assumed by an application developer.
Our results demonstrate the existence of significant guardband
optimization potential, i.e., the margin between the nominal
level and the safe limit for all GPUs, which can translate to
substantial energy savings. Moreover, we also find a significant
variability of required guardband for different programs, which
suggests the need for program-driven guardbanding to fulfill
the optimization potential. We also explore the feasibility of
more aggressive optimization that lowers the voltage further
below the safe limit and allows the error to happen. We observe
that the catastrophic failure at the system level only occurs at
a voltage level much below the safe limit, which suggests the
feasibility of the more aggressive guardband optimization.

A. Quantifying the Potential with Vmin Measurement

We perform the Vmin measurement to quantify the voltage
guardband reduction opportunity that still guarantees the pro-
gram’s reliable execution same as the nominal voltage level.
At the Vmin level, the program executes correctly but fails
when the voltage is reduced any further. As such, we can
reduce the supply voltage to the Vmin level without affecting
the program’s correct execution, leading to substantial energy
savings or performance improvements as we will discuss later.

We study both the card-specific and program-specific opti-
mization opportunity. Specifically, we follow the methodology
described in Section II-A, and conduct Vmin measurement
using the 58 representative programs on four GPU cards
listed in Table I spanning two architectural generations (Fermi
and Kepler architecture). The comprehensive measurement
helps us to study and quantify the program-specific voltage

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 4

1.10

1.05

1.00

0.95

0.90

0.85

Vo
lta

ge
 (V

)

CUDA Programs

 Nominal VDD @ 1.1 GHz
 Vmin @ 1.1 GHz

Voltage
Guardband

convolutionFFT2D &
FDTD3d

simpleZeroCopy,
NNC & myocyte

Figure 2: Vmin measurements for 58 programs on the GTX 680.

guardband behavior because the voltage guardband that exists
for a program is the difference between the card’s nominal
voltage and the program’s Vmin value.

We first study the voltage guardband of the 58 programs on
a GTX 680 card. Recall that the voltage guardband for a pro-
gram is the margin between the nominal voltage and its Vmin

point. The voltage stock setting of the studied GTX 680 is
1.09 V at a frequency of 1.1 GHz. Figure 2 plots the measured
results, from which we make two fundamental observations.
First, a relatively large amount of guardban d optimization
potential exists for all the studied programs. The measured
Vmin value varies from 0.89 V to 0.99 V. Considering that
the nominal supply voltage of the GTX 680 card is 1.09 V,
we can calculate that a relatively large percentage of the supply
voltage (i.e. 9.2% to 18.3%) can be reduced without affecting
the program’s functional correctness. The magnitude is similar
to the measured voltage guardband percentage on an Intel Core
2 Duo processor reported in prior work [48].

Second, Figure 2 shows a large variability in the Vmin

values of studied programs, indicating that a program’s Vmin

value strongly depends on its characteristics. The difference
between the highest Vmin value (0.99 V) and the lowest value
(0.89 V) is 0.1 V for the studied programs. Two programs
(FDTD3d and convolutionFFT2D) have the highest Vmin value,
and three programs (simpleZeroCopy, NNC and myocyte) have
the lowest value, as labelled in Figure 2. Most of the programs
have a Vmin value of about 0.93 V.

We further find that these two observations, i.e., the rel-
atively large voltage guardband and the program-dependent
Vmin behavior, exist on different GPU architectures. In total,
we perform Vmin measurements on four GPU cards: GTX 480
and GTX 580 (Fermi architecture) and GTX 680 and GTX
780 (Kepler architecture). Their specifications are described
in Table I. Because each card has a different nominal voltage,
we normalize each card’s Vmin to its nominal voltage for
comparison. Figure 3 plots the normalized Vmin on four
cards and their comparison. The range of voltage guardband
is similar across these cards: 11.5% - 23.3% on GTX 480,
11.6% - 20.3% on GTX 580, 9.2% - 18.3% on GTX 680 and
14% - 22.5% on GTX 780, as shown in Figure 3a.

We also observe the existence of program-dependent Vmin

behavior, i.e., different programs with different Vmin values,
across all the four cards. Moreover, Vmin values on cards with
same architecture are more correlated than those on cards with
different architectures. In Figure 3b, Vmin values on GTX 480
and 580, and on GTX 680 and 780, are more correlated than
Vmin values on GTX 480 and 680. We can explain the lower

0.90

0.85

0.80

0.75

No
rm

ali
ze

d
V m

in

Programs

 GTX 480 580 0.90

0.85

0.80

0.75

No
rm

ali
ze

d
V m

in

Programs

 GTX 680 780

(a) Similar Vmin range on different cards.

No
rm

. V
m

in
(4

80
)

0.900.850.800.75
Normalized Vmin (580)

No
rm

. V
m

in
(6

80
)

0.900.850.800.75
Normalized Vmin (780)

No
rm

. V
m

in
(4

80
)

0.900.850.800.75
Normalized Vmin (680)

(b) Vmin correlation on different cards.

Figure 3: Measured normalized Vmin across four GPU cards.

correlation of Vmin between two different architectures by
program’s runtime behavior. A program’s characteristics may
change when it is running on a different architecture, leading
to a different Vmin value.

In summary, we demonstrate that there is a substantial volt-
age guardband optimization potential for GPUs. Moreover, we
also find that the variability of different programs’ guardband
requirement is significant (e.g., 0.1 V in the GTX 680 card). As
such, we must design a program-driven voltage guardbanding
scheme to realize the optimization potential.

B. Agressive Optimization Beyond the Vmin

We further explore whether it is possible to operate aggres-
sively below the safe voltage limit, i.e., the Vmin. In specific,
we conduct experiments to inspect how the errors manifest
for different programs when they operate below their Vmin

levels. We observe four dominant types of error events from
our experiments. The most catastrophic error is the operating
system crash; while the rest three, i) silent data corruption, ii)
CUDA runtime errors, GPU driver fault or segmentation fault,
ii) infinitely long execution are relatively benign and easier to
handle compared to the operating system crash. We describe
the details of error events and how we detect their occurrence
and measure their probabilities in this section.

Silent data corruption (SDC) [10] refers to when a program
finishes execution without any warning but produces an incor-
rect end result. We detect it by comparing the test output from
the undervolt run against a golden output from a reference
(fault-free) run. We examine the integer and floating-point out-
put separately, as described earlier. CUDA runtime errors refer
to the erroneous execution of a program that fails at runtime
(e.g., memory and stream management). The CUDA runtime
explicitly reports such errors. Driver fault occurs when the
GPU driver code executed by the CPU loses communication
with the GPU. Often this results in a screen freeze followed
by an automatic hard reset of the GPU. These two types of
errors can be detected from the standard error output. The
harshest error is the OS crash, after which a manual reboot is
required. We stop the voltage reduction experiment once an

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 5

100

80

60
40

20

0

Pe
rc

en
t (

%
)

1211109

convolutionFFT2D

Vmin Point
OS Safe Point

181716151413

binomialOptions

141210

FDTD3d

100

80

60
40

20

0

Pe
rc

en
t (

%
)

1716151413
Undervolt (%)

LoneStar_BH

 Pass Silent Data Corruption CUDA Runtime Error/Segfault

17161514
Undervolt (%)

dxtc

1817161514
Undervolt (%)

mergeSort

Figure 4: The distribution of runs for pass, SDC, CUDA runtime
error or segmentation fault when increasing undervolt percent.

OS crash happens. Some programs, such as BFS and DMR,
operate on graph data structures and use iterative algorithms to
converge to the final output. An error may cause it to deviate
from convergence, and its execution time becomes longer or
infinitely long. Due to its rare occurrence, we manually detect
the error and do not study its probability.

We gradually increase the undervolt percent level. At each
undervolt level, we run the program 100 times and record
the outcome. Figure 4 shows the undervolting experiment
results for six representative programs. In each subplot, the
x-axis shows the undervolt percent, i.e., percent reduction
from the nominal voltage. The percent value at the leftmost
x-axis point corresponds to the program’s Vmin point: the
Vmin of convolutionFFT2D is 0.99 V, which corresponds to
9% undervolting, marked as “Vmin Point” in Figure 4. The
rightmost x-axis point is marked as “OS Safe Point,” beyond
which the program can cause an OS crash. The y-axis plots
the distribution of 100 runs that result in a pass, SDC,
CUDA runtime error or segmentation fault. E.g., at the 11.3%
undervolt level, convolutionFFT2D has 63 runs that lead to a
pass, 36 runs of SDC, and one run of runtime error.

We summarize three key observations from this experiment.
First, an additional 4-5% undervolt percent below the Vmin

point usually causes an OS crash. In other words, the OS
safe point is 4-5% lower than the Vmin point. Second, we
observe two program categories through their different failure
behaviors. The top three programs in Figure 4 have significant
SDC incidence during undervolting, whereas the bottom three
suffer primarily from crash failures (runtime error or segmen-
tation fault). As such, we call the first category as “SDC-
prone,” and the second as “crash prone.” In our study, there
are 37 and 20 programs for each category, respectively. We
inspect their source codes to diagnose the possible cause of
their behavioral differences. We find that the most noticeable
difference between the two categories is the intra-loop control
dependency (i.e., conditional branches and embedded function
calls). Programs with large such dependency are prone to crash
errors. Instead, programs with minimal such dependency and

fixed loop counts have more significant SDC incidences before
the onset of crash errors during undervolting. This observation
matches the common intuition that control-intensive codes
have higher crash probability, because of the higher likelihood
of illegal memory address references.

Third, the program failure probability increases as the
undervolt level increases. The possible reason is that a lower
voltage translates to less timing margin and therefore a higher
error probability. Moreover, we observe an avalanche error
effect when the voltage is below a particular value. For
example, the error probability of FDTD3d increases from 3%
to 90% when the undervolt percent increases from 10% to
12%. The common design practice that most paths are skewed
toward the critical timing specification of the processor [21]
may cause this avalanche error effect. When the voltage goes
below Vmin, most paths would have a timing violation, causing
an avalanche error effect.

In summary, more aggressive optimization by lowering
the voltage further is possible because the program can still
execute correctly at times below the Vmin point. However,
the challenge is to detect the execution error such as SDC.
Moreover, the potential improvement might be marginal given
the small additional margin and the avalanche error effect.
As such, we focus on pushing the guardband for energy
improvement while still operating above the Vmin.

IV. ROOT CAUSE ANALYSIS OF Vmin VARIABILITY

In this section, we analyze the root cause of the significant
program-level Vmin variability. We analyze two crucial aspects
of the root cause that can impact how we design the program-
driven guardbanding scheme. First, our measurement-based
analysis indicates that among the candidates of the process,
voltage, temperature variation (PVT), and aging, which the
voltage guardband mostly protect against, voltage variation
(i.e. voltage noise) is the cause of the program-level Vmin

variability. Second, we identify that the GPU microarchitecture
activities with every kernel’s execution are the sources of large
voltage noise events. This observation is non-intuitive owing to
the existence of complicated activity patterns, such as runtime
execution, initial kernel launch, and kernel-to-kernel transition.
Our observation encourages to manage the guardband at the
granularity of individual kernel as we will detail later.

A. Identifying the Dominant Variation Kind

We first determine which kind of variation causes the
program Vmin variability, from the candidates of the process,
temperature, voltage variation and aging. Understanding this
problem is the first step towards designing the most appropriate
guardbanding scheme because each type of variation has a
different implication for optimization. After identifying the
voltage variation (noise) as the cause of the program Vmin

variability, we further analyze its dominant component (IR
drop or di/dt droop).
Process Variation Process variation, usually caused by imper-
fect lithography [7], [43] and dopants diffusion [7], [51], can
lead to variable transistor thresholds and speeds, and therefore
different Vmin values. It can be further divided into inter-die

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 6

1.05

1.00

0.95

0.90

0.85

Vm
in

(V
)

Programs

 1 2
 3 4
 5 (Card #)

(a) Process variation impact on Vmin of
five GTX 780 cards.

1.2

1.0

0.8

Vm
in

of
 G

TX
 7

80
-5

 (V
)

1.21.00.8
Vmin of GTX 780-2 (V)

 1.1 GHz
 1.2 GHz
 1.3 GHz

Process
Variation

(b) Process variation impact on Vmin of two
cards and three frequencies.

1.00

0.95

0.90

0.85

0.80

Vm
in

@
 4

0
°C

 (V
)

1.000.950.900.850.80

Vmin @ 70 °C (V)

Temperature
Impact

(c) Temperature variation (40 ◦C and
70 ◦C) impact on Vmin.

Figure 5: (a) and (b) study process variation impact on Vmin, and (c) studies temperature variation impact on Vmin.

variation, i.e., variable features of the same transistor from
different dies, and intra-die variation, i.e., variable features of
transistors on the same die [7], [42].

We use five GTX 780 cards to study the impact of process
variation. Figure 5a plots the Vmin values of studied programs,
which are measured at 40 ◦C. Program names are omitted
because of space constraints and are sorted in the descending
order of Card 2’s Vmin, the highest among all cards. The
largest noticeable difference of Vmin among the five cards
is that the Vmin values of all programs on one card shift up
or down by a relatively constant value compared to the values
on the other card. The largest Vmin difference of the same
programs between two cards is about 0.07 V.

We also measure Card 2 and 5’s Vmin values at three
frequency points: 1.1, 1.2, and 1.3 GHz. Each marker in
Figure 5b plots the Vmin of the same program running on
two cards at a frequency point. If there were no variation,
a program’s Vmin would be identical on both cards, which
would result in markers lying on the 45-degree diagonal
line in Figure 5b. However, in fact, the Vmin values on the
Card 2 are consistently higher than those on the Card 5 by
a relatively constant offset, which increases slightly as the
frequency increases. We also find that the magnitude of the
Vmin difference between two cards is not identical for all
programs in Figure 5a and Figure 5b: some programs have
a greater Vmin difference between two cards than others.

Given the same experimental conditions for other factors,
we attribute the cause of Vmin disagreements over different
GPUs to process variation. Both the inter-die and the intra-
die variation have a systematic and a random component. The
systematic component can explain the constant offset of the
Vmin differences over two cards and the random component
can explain the small “turbulence” of the Vmin differences
by causing a critical timing path shift. Note that additional
measurements on more GPUs are required to draw a more
statistically sound conclusion.
Temperature Variation The processor’s temperature con-
stantly changes over time due to its time-varying power
consumption profile. Because of the processor’s cooling sys-
tem’s inability to completely remove the generated heat, the
temperature increases when it continuously consumes high

power and decreases when it idles down [20]. As the transistor
speed varies as temperature increases [55], designers must add
voltage margin to offset its effect for reliable operation.

We measure the Vmin at two temperatures (40 ◦C and
70 ◦C) to study the temperature variation impact. The former
is the nominal temperature while the latter is the highest
temperature when running a stress test at the highest frequency
and lowest fan speed. Thus, the 70 ◦C is an improbable worst-
case scenario for regular CUDA programs. Figure 5c shows
the results. We observe a similar impact on Vmin as the process
variation but with a smaller magnitude: Vmin at 70 ◦C is
consistently about 0.02 V higher than those at 40 ◦C.
Aging Effect In our study, we cannot directly measure the
impact of aging on Vmin. We believe it is unlikely that it is
the aging effect that causes such large Vmin variability among
the programs. The published measurement results on a recent
IBM z System shows that the circuit speed degrades only 1-2%
in the long term [32]. Moreover, all our experiments are done
within a few months. Thus the impact of aging would be even
smaller. Hence, the aging effect cannot explain the magnitude
of observed Vmin variability between programs and cards.
Voltage Noise In summary, we observe that both process
and temperature have a relatively uniform impact on the
Vmin across all programs. Neither can explain the large
program-level Vmin variability. The voltage noise remains
the only possible cause, per method of exclusion. In other
words, the program with a higher Vmin value is due to a
higher magnitude of voltage noise. This also matches with
the established knowledge that voltage noise results from the
interaction between program activity and the processor power
delivery network [16], and thus Vmin depends on the program
characteristics. Note that measuring the voltage noise directly
through the oscilloscope or on-chip sensors [6], [48] can
directly prove our observation. We leave it for future work.

We also observe that voltage noise has a more substantial
impact on the voltage guardband compared to process and
temperature variation. The measured Vmin values range from
0.89 to 0.99 V on the same card with the same temperature,
which indicates the magnitude of voltage noise of 0.1 V. This
is larger than the measured process variation impact of 0.07 V
and temperature variation impact of 0.02 V. In the rest of the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 7

1.00

0.95

0.90

0.85

V m
in
 (V

)

cu
da

M
all

oc
cu

da
M

em
cp

y
cu

da
M

em
se

t
cu

da
Se

tu
pA

rg
um

en
t

cu
da

Co
nfi

gu
re

Ca
ll

FD
TD

3D
Figure 6: CUDA runtime functions Vmin

measurement results.

1.00

0.96

0.92

0.88

V m
in
 (V

)
co

nv
olu

tio
nF

FT
2D

FD
TD

3d
m

at
rix

M
ul

fa
stW

als
hT

ra
ns

fo
rm

dw
tH

aa
r1

D

bin
om

ial
Op

tio
ns

dx
tc

sc
ala

rP
ro

d
M

on
te

Ca
rlo

sim
ple

Te
xt

ur
e

ve
ct

or
Ad

d
his

to
gr

am
SR

AD
m

er
ge

So
rt

M
GS

T

sim
ple

At
om

icI
nt

rin
sic

s

co
nv

olu
tio

nS
ep

ar
ab

le

sim
ple

Su
rfa

ce
W

rit
e

co
nv

olu
tio

nT
ex

tu
re

KM
N

BA
CK

P
ro

din
ia_

lav
aM

D
ND

L

sim
ple

Ze
ro

Co
py

LK
YT

qu
as

ira
nd

om
Ge

ne
ra

to
r

ro
din

ia_
bf

s
HR

TW
L

sim
ple

M
ult

iC
op

y

sim
ple

M
ult

iG
PU

sim
ple

Vo
te

Int
rin

sic
s

te
m

pla
te

_r
un

tim
e

NN
C

co
nc

ur
re

nt
Ke

rn
els

ro
din

ia_
pa

th
fin

de
r

sim
ple

Te
m

pla
te

s

 Max Kernel-level Vmin
 Program-level Vmin

Figure 7: Program-level and max. kernel-level Vmin match. Thus, individual
kernel acitivity decides Vmin.

paper, we focus on voltage noise analysis on the GTX 680
card, unless it is explicitly mentioned.

We further analyze the impact of different components
of voltage noise, including IR drop and di/dt droop in
Equation 1. The IR drop component is determined purely
by the instantaneous current draw, whereas the di/dt droop
component is determined by the current draw’s increasing
rate. Owing to their distinctive properties, we must understand
which component has a more dominant impact to determine
the proper optimization effort.

Vactual = VDD − I ×R− L× di

dt
(1)

We leverage the IR drop’s property to test the hypothesis on
its dominant impact. Owing to the space limitation, we briefly
describe the process and refer to our prior publication for
more details [28]. We measured the GPU power consumption
and collected various power-related performance counters such
as IPC and DRAM utilization. We find that there is no
direct correlation between a program’s Vmin and its power
consumption. Thus, the di/dt droop component has a more
dominant impact on the Vmin than the IR drop component.

B. Identifying the Dominant Program Activity

After identifying the di/dt droop as the root cause of the
large program-level Vmin variability, we further analyze which
program activity pattern causes such di/dt droop. Given the
existence of complicated interleaved CPU-GPU activity, we
first categorize program activities to different types centering
around kernels as a kernel is the scheduling unit from the CPU
to GPU. Our analysis unveils that the activity during individual
kernel execution has the most dominant impact on the Vmin.
This encourages to explore a dynamic guardbanding scheme
at the granularity of kernel.
CUDA Runtime We find that many programs spend a sig-
nificant amount of time on CUDA runtime functions such as
transferring data back and forth between CPU and GPU. But
it is not intuitive what their impact on Vmin is. Thus, we
study several runtime functions that commonly exist in CUDA
programs. They are cudaMalloc, cudaMemset, cudaMemcpy,
cudaSetupArgument and cudaConfigureCall. The first two al-
locate and set the specified size of global memory space in

a GPU to a certain value, and cudaMemcpy transfers data
between the CPU and the GPU. The last two push the kernel
invocation arguments to the GPU stack memory [36], which
are common before a kernel execution.

To verify if any of these functions is the source of large
di/dt droop, we measure each function’s Vmin. We use the
CUPTI library (see Section II) to register a callback, which
controls the voltage, before every runtime function invocation.
We measure the five functions’ Vmin by only performing
undervolting during the tested function execution. Figure 6
plots the results. The Vmin of these functions is 0.89 V, which
is 0.1 V lower than the highest measured Vmin of all programs
(FDTD3d). Therefore, the activity during runtime functions is
not the source of large di/dt droops.
Kernel Activity The kernel activity is another potential source
of large di/dt droops, which can be divided into inter-kernel
activity and intra-kernel activity. The former refers to the
consecutive launch of kernels in GPU programs while the latter
refers to the pipeline activation and stall owing to various
microarchitectural events [30]. Both can result in repetitive
current fluctuations (ramp-up/ramp-down) and therefore can
cause large di/dt droops. We measure the Vmin value of each
kernel to study which kernel activity is the main source of
large di/dt droops. The methodology is similar to the one
used in runtime Vmin measurement. We define the measured
Vmin as kernel-level Vmin to distinguish from the program-
level Vmin, which is measured by performing undervolt for
the entire program execution.

We compare the program-level Vmin and its maximum
kernel-level Vmin to test the hypothesis that the inter-kernel
activity determines the program’s Vmin value. If the hypothesis
holds true, the measured kernel-level Vmin would be much
smaller than the program-level. However, we observe that
the kernel-level Vmin of all programs except concurrentKernel
match the program-level as shown in Figure 7. Thus, neither
of the two types of activities causes large di/dt droops. The
mismatch for concurrentKernel can be attributed to the side-
effect of kernel-level Vmin measurement due to the use of
CUPTI library, that is, serialized execution of all kernels. That
program originally has multiple kernels which run concur-
rently. The serialization side effect reduces the activities on
GPU, and therefore also reduces its Vmin.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 8

1.00

0.96

0.92

0.88

V m
in
 (V

)

Kernels

60
50

40

30
20
10

0

Launch C
ounts (

)

Kernels in
convolutionFFT2D

Figure 8: The Vmin variability with different inputs.

In summary, the di/dt droop caused by the intra-kernel
microarchitectural events is the determinant of the kernel’s
Vmin, whose maximum value also determines each program’s
Vmin. Such observation lays the foundations for managing the
voltage guardband for at the granularity of a kernel according
to its microarchitectural performance characteristics.

V. Vmin PREDICTION

In this section, we demonstrate how a program can predict
its Vmin value accurately. We study Vmin prediction at the
kernel granularity using each kernel’s microarchitectural per-
formance counters because our previous analysis shows that
di/dt droops caused by microarchitectural events during the
kernel execution cause the large Vmin variability. We discuss
two approaches that use a kernel’s performance characteristics
metrics, i.e., performance counters to predict its Vmin value ac-
curately. The two approaches feature a top-down and a bottom-
up methodology. The top-down method treats the predictive
model as a black box and disregards the causal relationship
between kernel’s performance characteristics and Vmin during
construction. The bottom-up approach tries to interpret the
contribution of different performance characteristics instead
and involves more human effort in constructing the model.

A. Program Characteristics and Input Impact on Vmin

To study the impact of the input, we measure the Vmin

value of different invocations of the same kernel. In CUDA
programs, a kernel can be launched multiple times with
different input data. Figure 8 shows the box plot for the Vmin

of kernels with multiple invocations. The results show that
most kernels’ Vmin values only vary about 1%. Kernels in
convolutionFFT2D have the greatest variability, ranging from
0.92 to 0.99 V. We inspect its source code and find that
invocations with much lower Vmin do not contribute to the
program output. Thus, our methodology of checking program
output cannot measure these launches’ Vmin values accurately.
The Vmin variability of other launches that contribute to the
program output is within 0.01 V.

In summary, most kernels have small Vmin variability
regarding the input, and some kernels’ Vmin is more sensitive
to the input because of the sensitivity of their performance
characteristics to the input. For example, we observe that the
Vmin of some kernels varies up to 0.04 V with different input
in Figure 8. Their performance characteristics (counters) also
have larger variability than other programs.

In the rest of this subsection, we study the Vmin prediction
at the granularity of a kernel owing to three reasons. First, pre-
dicting each kernel’s Vmin value will incorporate information

dr
am
_r
ea
d_
th
ro
ug
hp
ut ip
c

flo
p_
co
un
t_
sp
_m
ul

is
su
e_
sl
ot
s

ld
st
_f
u_
ut
ili
za
tio
n

dr
am
_w
rit
e_
th
ro
ug
hp
ut

l2
_l
1_
re
ad
_h
it_
ra
te

al
u_
fu
_u
til
iz
at
io
n

l1
_s
ha
re
d_
ut
ili
za
tio
n

l2
_u
til
iz
at
io
n

dr
am
_u
til
iz
at
io
n

flo
p_
co
un
t_
sp
_f
m
a

flo
p_
co
un
t_
sp

flo
p_
co
un
t_
sp
_a
dd

l2
_t
ex
tu
re
_r
ea
d_
hi
t_
ra
te

flo
p_
co
un
t_
sp
_s
pe
ci
al

flo
p_
co
un
t_
dp
_a
dd

ec
c_
tra
ns
ac
tio
ns

flo
p_
co
un
t_
dp
_m
ul

te
x_
ut
ili
za
tio
n

l1
_c
ac
he
_l
oc
al
_h
it_
ra
te

te
x_
fu
_u
til
iz
at
io
n

flo
p_
co
un
t_
dp

te
x_
ca
ch
e_
hi
t_
ra
te

cf
_f
u_
ut
ili
za
tio
n

flo
p_
co
un
t_
dp
_f
m
a

sh
ad
ow
M
ax

sh
ad
ow
M
ea
n

l1
_c
ac
he
_g
lo
ba
l_
hi
t_
ra
te

sh
ad
ow
M
in

sy
sm
em
_u
til
iz
at
io
n

Fe
at

ur
e

Im
po

rta
nc

e

0
5

15
25

Figure 9: The importance of all performance counters ranked
by the Boruta algorithm.
of the program’s Vmin value because the program-level Vmin

is determined by the maximum kernel-level Vmin as shown in
Section IV-B. Second, predicting at the kernel-level exposes
larger optimization scope because a program can have multiple
kernels and each kernel can have a different Vmin value. Third,
a kernel’s Vmin value is insensitive to its input. In other words,
we can simply use the performance counter without the input
information to predict the Vmin value.

B. Top-Down Approach for Vmin Prediction

We first study two top-down Vmin prediction approaches
using the performance counter, which let us to quickly evaluate
its feasibility and accuracy. The top-down approach does not
require any prior knowledge about the interaction between
performance counters and Vmin. Instead, it uses all possible
performance counters from a large number of programs and
automatically constructs the prediction model, allowing a fast
implementation and evaluation. We consider two methods:
linear regression and neural network. The former produces a
linear model, and the latter produces a nonlinear model.

We collect 28 performance counters to construct the predic-
tion model, including instruction per cycle (IPC), utilization
level of different functional units (arithmetic logic, floating-
point and load-store units), single-precision (SP) and double-
precision (DP) floating-point operations per second (FLOPS)
and hit and miss rates of various caches (instruction, data and
texture cache). These counters are input features for both the
linear regression and neural network prediction models.

For the linear regression, we collect the 28 performance
counters from 557 kernel launches, which form a 557 × 28
input matrix for the linear regression. We use the same 557×28
matrix to train a neural network to predict the undervolting
level. We choose a neural network with one hidden layer,
which we show later yields a sufficiently accurate model.
There are 28 neurons in the input layer, and ten neurons in
the hidden layer, according to the rule of thumb for selecting
the size of hidden layer [33]. The neural network is trained
for 1,000 epochs for the convergence of model accuracy.

C. Bottom-Up Approach for Vmin Prediction

We then evaluate a bottom-up approach for Vmin prediction.
The bottom-up approach identifies a small set of performance
counters that strongly correlate with Vmin, and constructs
a simple model with a comparable accuracy of the top-
down approach. The benefit of using bottom-up is the derived

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 9

●

●

●

●

●

●●● ● ● ●●

●●●●●●●●●●●●

●●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●

●

●●●

●

●

●●●●●●

●●

●

●●

● ●●

●●●●●●●●●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

● ●●●●●●

●

●

●●●●

●●●●● ●●●●●●●●●●●●

●●●

●

●●●

●

●

8

10

12

14

16

18

0 25 50 75 100
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [0.0 − 1.0)

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●● ● ●

●

● ●●

●

●

●● ●

● ●

● ●● ●●

●●●●●●

●●

8

10

12

14

16

18

0 10 20 30 40
SP FLOPS

(GFLOPS/s)

Un
de

rv
ol

t (
%

) IPC [1.0 − 2.0)
●

●

●

●

● ●●●●●●●●●●●●

●

●●

●

●●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

8

10

12

14

16

18

0 10 20 30 40
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [2.0 − 3.0)

●●

●● ●●●●●● ●●● ●

●

●● ●●

●

●●

●● ●●●●●

●

●●

●

●

8

10

12

14

16

18

0 5 10 15
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [3.0 − 4.0]

Single Precision FLOPS
(GFLOPS)

●

●

●

●

●

●●● ● ● ●●

●●●●●●●●●●●●

●●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●

●

●●●

●

●

●●●●●●

●●

●

●●

● ●●

●●●●●●●●●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

● ●●●●●●

●

●

●●●●

●●●●● ●●●●●●●●●●●●

●●●

●

●●●

●

●

8

10

12

14

16

18

0 25 50 75 100
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [0.0 − 1.0)

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●● ● ●

●

● ●●

●

●

●● ●

● ●

● ●● ●●

●●●●●●

●●

8

10

12

14

16

18

0 10 20 30 40
SP FLOPS

(GFLOPS/s)

Un
de

rv
ol

t (
%

) IPC [1.0 − 2.0)
●

●

●

●

● ●●●●●●●●●●●●

●

●●

●

●●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

8

10

12

14

16

18

0 10 20 30 40
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [2.0 − 3.0)

●●

●● ●●●●●● ●●● ●

●

●● ●●

●

●●

●● ●●●●●

●

●●

●

●

8

10

12

14

16

18

0 5 10 15
DRAM Read

Throughput (GB/s)

U
nd

er
vo

lt
(%

)

IPC [3.0 − 4.0]

Single Precision FLOPS
(GFLOPS)

Figure 10: Piecewise linear Vmin model using the IPC, DRAM
read throughtput and single precision FLOPS.

model’s interpretability. For example, we find that the set of
events that correlate most with Vmin match those that our
prior work has identified as the root cause of large di/dt
droops [30]. The match of those events confirms the previous
observation in Section IV-B that the di/dt droop during kernel
execution determines the Vmin value.

We first identify the most relevant performance counters
(i.e., features). We rank the 28 features using the Boruta pack-
age [26], which iteratively sorts each feature’s relevance and
ranks them by their relevance to the dependent variable Vmin.
Figure 9 shows the results, wherein we find that DRAM read
throughput, IPC, and single-precision floating-point multiply
operations per second rank highest among all counters. The
reason for them being the most relevant to Vmin might be that
they represent the general pipeline activity, which determines
the voltage noise profile. In the below, we construct an accurate
Vmin model with those three performance counters and then
interpret the model with the relationship of voltage noise.

We construct the Vmin prediction model with the three most
relevant counters using the following methodology. Because
the peak achievable IPC in the Kepler architecture is four,
we first categorize the kernels to four types by their IPC
values: [0, 1), [1, 2), [2, 3) and [3, 4]. The heuristic we
use is that the IPC is a good indicator of the pipeline stall
degree. For example, kernels in the IPC [3, 4] region have
Vmin from 0.93 to 0.95 V. In this region, stalls are rare,
and therefore the di/dt droop is small. In contrast, kernels
in region [0, 1) have a larger Vmin variability, from 0.9 to
0.97 V. In this region, pipeline stalls are frequent, and thus
the di/dt droop may have a larger magnitude. IPC alone is
not enough to capture the Vmin variability. In each IPC region,
we perform a piecewise linear regression with one breakpoint
against the other two counters (DRAM read throughput and
single precision FLOPS) separately. We show the results in
Figure 10. We summarize the key findings below:
IPC [0, 1) The undervolt level decreases as DRAM read
throughput increases in this region. When both the read
throughput and IPC are low, the pipeline stalls are most likely

CPM
CPM
Data

Clock
Freq.

Voltage
V
R
M

CPU µController

Voltage
Adjustment

Fast loop

Slow loop

D
P
L
L

(a) Adaptive guardbanding.

CPM
Voltage V

R
M

GPU CPU

Vmin
Predictor

Perf. Counters

(b) Predictive guardbanding.

Figure 11: Diagram of adaptive and predictive guardbanding.

due to the lack of threads (i.e., latency bound in Section V-A).
In this case, the di/dt droop is small, and the undervolt
level is large. Kernels with high read throughput and low IPC
are memory bound. They have enough threads utilizing the
memory bandwidth, which can generate a large current surge
after the stall and therefore large droop.
IPC [1, 2) The metric FLOPS correlates better with Vmin than
read throughput in this region. The undervolt level decreases
rapidly as the FLOPS increases and then plateaus after 10
GFLOPS. The possible reason is that higher FLOPS causes a
greater current surge and therefore a larger droop.
IPC [2, 3) The undervolt level first increases but then
decreases as the read throughput increases. Kernels with low
read throughput and medium IPC are compute bound. They
have mostly dependence-induced stalls. The increased read
throughput means more memory stalls, but the two types of
stalls are unlikely to align with each other, and thus the noise
begins to decrease [6], [30]. However, the kernel becomes
memory bound after the read throughput increases above
20 GB/s. Then, the di/dt droop starts to increase similar to
the kernels in the IPC region of [0, 1).
IPC [3, 4] As mentioned earlier, kernels in this region have
a small Vmin variability because stalls are rare, and therefore
the di/dt droop is small. The undervolt level increases slightly
as the read throughput increases.

VI. PREDICTIVE GUARDBANDING

In this section, we present the details of our dynamic
program-driven voltage optimization scheme to reliably reduce
the GPU timing margin. We name our scheme predicitve
guardbanding because its fundamental novelty lies in the use
of performance counters by the runtime system to predict the
selection of supply voltage level. Different from prior circuit-
or microarchitecture-only guardband management techniques
that can impose significant hardware design complexity, our
proposed scheme minimizes the hardware complexity by lever-
aging the cross-layer optimization.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 10

A. Design Overview

We describe the principles and implementation of predictive
guardbanding, which relies on the collaboration between the
software runtime and the hardware to optimize the voltage
guardband accurately and reliably.

Before presenting the details, we first explain how the tradi-
tional voltage guardbanding mechanism works. The adaptive
guardbanding, that is shown in Figure 11a and used in IBM
Power 7 [27], relies on the critical path monitor (CPM) to
detect timing margin. It uses a fast CPM-DPLL (digital phase
lock loop) control loop to avoid possible timing failures: when
the detected margin is low, the fast loop quickly stretches
the clock. To mitigate the possible frequency loss, adaptive
guardbanding also uses a slow loop to boost the voltage when
the averaged clock frequency is below the target.

The adaptive guardbanding is a circuit-only solution and
its design complexity is significantly higher than normal pro-
cessors. In contrast, we propose the predictive guardbanding
shown in Figure 11b, which is a cross-layer solution and
therefore more light-weight in terms of hardware complexity.
The proposed solution exploits the feasibility of kernel-level
Vmin prediction and the fact that the GPU exists as a co-
processor in the system. The only modification for the GPU
is the deployment of CPM for error detection as we will detail
in the next subsection. All the other modifications can be
implemented in the runtime software on the CPU.

We propose to use the CPU to manage the GPU’s guardband
at the granularity of kernel, which is the minimal control and
scheduling unit by the CPU. Instead of using the complicated
CPM-DPLL loop for margin detection, our scheme collects
each kernel’s performance counters and uses the Vmin pre-
dictor detailed in Section II-C to reduce the operating margin.
Moreover, it is unlikely that managing the guardband at a finer
granularity could bring more benefits. The reason is the highly
possible recurring pattern of large voltage droops during a
kernel execution. Although we cannot measure it from the
hardware, prior simulation-based study has shown that large
voltage droops frequently occur during the kernel execution
because of the throughput-optimized GPU architecture [30]. If
large voltage droops happen frequently, managing the voltage
with a finer granularity is unlikely to lead to more benefits.

We implement the predictive guardbanding on the existing
GPU by leveraging the instrumentation capability of CUPTI,
as described in Section II-C. For the every first invocation
of a kernel, we execute the kernel with the nominal voltage
and record the necessary hardware performance counters after
it completes the execution. As a kernel in CUDA programs
is typically launched multiple times (Figure 8), we use the
recorded performance counters as the input to the Vmin

prediction model for the kernel’s future invocations. When
our predictive guardbanding runtime finds the recorded per-
formance counters for a kernel, it predicts its Vmin value and
operates with the reduced margin.

In summary, the predictive guardbanding is a proactive
program-driven dynamic guardbanding scheme. It uses perfor-
mance counters, instead of complicated voltage margin sensors
such critical path monitor (CPM) [11], to avoid the substantial

30

25

20

15

10

5

P
re

d
ic

te
d

 U
n
d

e
rv

o
lt

(%
)

30252015105

Undervolt (%)

'Linear Regression

5 10 15 20 25 30
Undervolt (%)

5

10

15

20

25

30
Linear Regression

Pr
ed

ic
te

d
U

nd
er

vo
lt

(%
)

(a) Linear regression.

22

20

18

16

14

12

10

8

P
re

d
ic

te
d

 U
n
d

e
rv

o
lt

(%
)

222018161412108

Undervolt (%)

'Neural Network

Undervolt (%)

Pr
ed

ic
te

d
U

nd
er

vo
lt

(%
) Neural Network

22

20

18

16

14

12

8

10

2220181614128 10

(b) Neural network.

20

18

16

14

12

10

8

Pr
ed

ic
te

d
U

nd
er

vo
lt

(%
)

2018161412108
Undervolt (%)

Piecewise Linear

(c) Piecewise linear.

Figure 12: Different Vmin prediction model accuracy.

calibration overhead. It adopts the Vmin prediction model to
directly determine the available timing margin, which achieves
the advantage of not requiring the complex CPM-DPLL con-
trol loop in existing commercial CPU processors [27].

B. Handling Vmin Prediction Failure

Although our model predicts Vmin within 3% error mar-
gin for training programs, the prediction error for unseen
programs, whose characteristics are very different from the
training programs, could exceed the 3% error margin. This
kind of corner case can result in a system failure, which makes
the safety net necessary in the predictive guardbanding. In our
work, we recognize the fact that the GPU is a co-processor
and propose to offload the GPU error recovery to the CPU.

To ensure the full reliability coverage for all cases, we need
to augment the GPU with “always-on” error detection. Hard-
ware sensors can provide such constant monitoring capability
more efficiently than software solutions. We can use existing
lightweight voltage droop sensor, such as skitter circuit [15],
[50], in our error detection process. Other lower-complexity
error detectors, such as parity or ECC sensors [4], [5] available
in large SRAM macros (e.g. caches or register files), can also
provide an alert to error-prone voltage levels and can help in
the exemplary design. Because these hardware detectors are
limited to memory arrays, we also need the skitter circuits for
the logic paths that are engaged in computation and control.
The runtime system can use these sensors to detect the corner
case, i.e., the larger-than-expected droop that causes a violation
of the 3% error margin established from model training.

Upon detecting an error event, the GPU aborts the current
kernel execution and reports it to the runtime system running
on the CPU, which takes care of the error recovery. The
runtime system first restores the voltage to the nominal level.
Because the studied CPU-GPU system adopts the discrete
memory subsystem, the error in GPU cannot corrupt the CPU
memory. As such, the runtime system can restore the kernel’s
input memory by re-copying the relevant CPU memory. It
can then launch the kernel again to recover from any timing-
error-related corruption that could have occurred. The runtime
system can collect this kernel’s data, and add it to the offline
training set to recalibrate the prediction model.

VII. EVALUATION

We perform a comprehensive evaluation of the GPU predic-
tive guardbanding system enabled by our Vmin predictor. We

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 11

Pr
ed

ic
te

d
U

nd
er

vo
lt

(m
V)

Measured Undervolt (mV)

Neural Network with 2 features Neural Network with 4 features Neural Network with 8 features

Neural Network with 16 features

100 120 140 160 180 200

Neural Network with 28 features

80

100

120

140

160

180

200

80
Measured Undervolt (mV)
100 120 140 160 180 200

Measured Undervolt (mV)
100 120 140 160 180 20080

Measured Undervolt (mV)
100 120 140 160 180 20080

Measured Undervolt (mV)
100 120 140 160 180 20080

Pr
ed

ic
te

d
U

nd
er

vo
lt

(m
V)

80

100

120

140

160

180

200

Pr
ed

ic
te

d
U

nd
er

vo
lt

(m
V)

80

100

120

140

160

180

200

Pr
ed

ic
te

d
U

nd
er

vo
lt

(m
V)

80

100

120

140

160

180

200

Pr
ed

ic
te

d
U

nd
er

vo
lt

(m
V)

80

100

120

140

160

180

200

80

Figure 13: Number of features used in the neural network.

first evaluate the accuracy and robustness (i.e. cross-validation
results) of the Vmin prediction models studied in Section V.
We then study the energy efficiency improvement potential
of a conceptual GPU predictive guardbanding system, and
show that with our Vmin predictor, predictive guardbanding
can achieve most, i.e., up to 80%, of the energy-efficiency
benefits of the oracle case that operates at the Vmin point.

A. Vmin Prediction Accuracy

In this subsection, we first evaluate the accuracy of the
Vmin prediction model. We analyze the robustness of the Vmin

predictor constructed from the top-down (Section V-B) and
bottom-up (Section V-C) method by design space exploration
and cross-validation. In this process, we use three error metrics
to evaluate the predictor’s accuracy.

We use the root mean square error (RMSE) as the metric
for prediction accuracy. We also evaluate the maximum over-
prediction error, i.e., the maximum value of measured Vmin

minus the predicted value. Reducing voltage below the actual
Vmin can cause program failure, so we need extra margin to
tolerate the maximum overprediction error. Similarly, we also
use the maximum underprediction error, i.e., the maximum
value of predicted Vmin minus the measured value. The
underprediction error causes power wastage because the kernel
could have run at a lower voltage level.

Figure 12a shows the prediction accuracy of the linear
regression approach. Although it has an RMSE value of only
2.2%, it overpredicts many kernels’ undervolting levels by
7%, where the maximum is 10%. Such overprediction error
requires an additional voltage guardband to tolerate. Moreover,
the maximum underprediction error is 10%, which means that
the predicted undervolt level is 5% but the actual level is 15%.
This results in a 10% guardband wastage.

Figure 12b shows prediction accuracy of the neural network
model, which has an RMSE value of 0.5%. Between the two
top-down models (linear regression and neural network), not
only does the neural network outperform the linear regression
approach in the average error, but the maximum overprediction
error is only 3%. Moreover, the maximum underprediction
error is only 2%, which translates to the less voltage guardband
wastage. Thus, the neural network approach produces a more
accurate Vmin prediction model than the model constructed
using the linear regression method, which suggests a nonlinear
relationship between Vmin and performance counters.

Figure 12c shows the accuracy of the bottom-up model, i.e.
the piece-wise linear model with pruned features. As explained
Section V-C, we only used three most relevant performance

counters in building this model. The final model has an RMSE
of 0.9%, and the maximum overprediction error and under-
prediction error is 2.7% and 3.3%, respectively. The accuracy
of the piece-wise linear model using three key performance
counters is comparable with the model produced by the neural
network approach using all performance counters.

We also study the possibility of reducing the number of
features in the neural network model. We construct the neural
network model using 2, 4, 8, 16, and, 28 features (i.e.
performance counters), which are selected according to their
importance as shown in Figure 9. For example, when using
2 features, we choose DRAM read throughput and instruction
per cycle owing to their greatest importance for determining
the Vmin. Figure 13 shows the accuracy increases with more
features used. However, it plateaus after 16 features (not
shown), which indicates the possibility of reducing feature
count for the minimum overhead.

We evaluate the robustness of the bottom-up model via
the 10-fold cross-validation test. We randomly partition the
data into 10 sets, where 9 sets are used for training and one
remaining set is used for validation. This process is repeated
10 times so that all the 10 sets are used for validation. We
summarize the result as follows. We find that the modeling
approach results in an almost zero bias, i.e. an even distri-
bution between positive and negative errors. Furthermore, the
approach is very insensitive to the rotation of validation set,
which suggests a very low likelihood of model overfitting.

B. Energy Savings with Predictive Guardbanding
We now evaluate predictive guardbanding’s energy saving

benefits using the neural network and the piecewise linear
prediction model. Because both models have a maximum
overprediction of less than 3%, we add another 3% margin to
guardband this model prediction error. Our results demonstrate
that the great accuracy of Vmin predictor is key to reclaim the
possible voltage guardband.

Figure 14a compares the undervolting level at the Vmin

point and the level predicted by the two models plus the
additional 3% margin. The predicted undervolting level of
both models is always lower than the level at the Vmin, which
ensures that all programs execute correctly without any faults.
However, the rollback mechanism for Vmin misprediction is
still required to ensure the functional correctness of other
programs. The average gap between the actual and predicted
undervolting level is only 2.7% for both models, which mini-
mizes the guardband wastage.

Figure 14b compares the energy savings running at the level
predicted by the two models with the oracle case. The energy
savings range from 11.3% to 23.2% using the neural network
model and 10.5% to 22% using the piecewise linear model,
as opposed to 14% to 25% in the oracle case. The average
savings are 16.9% and 16.3% using the two models and 21%
in the oracle case. Using both models achieves over 80% of
the energy-savings benefits of the oracle case.

C. Total Cost of Ownership Improvement
In the end, we evaluate the scenario of deploying GPUs with

predictive guardbanding into a datacenter. Modern datacenters

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 12

18

15

12

9

6

Un
de

rv
ol

t (
%

)

BACKP

Blac
kS

ch
ole

s

FD
TD

3d
MGST

Mon
teC

arlo
SRAD

alig
ne

dTy
pe

s

bin
om

ialO
pti

on
s

co
nvo

luti
on

FF
T2

D

co
nvo

luti
on

Sep
ara

ble

co
nvo

luti
on

Tex
tur

e
dc

t8x
8

dx
tc

eig
en

val
ue

s

fas
tW

als
hTr

an
sfo

rm

his
tog

ram

line
OfSigh

t

matr
ixM

ul

merg
eS

ort

qu
asi

ran
do

mGen
era

tor

seg
men

tat
ion

Tre
eT

hru
st

sim
ple

Multi
Cop

y

sim
ple

Multi
GPU

sim
ple

Pitch
Lin

ea
rTe

xtu
re

sim
ple

Surf
ac

eW
rite

sim
ple

Tex
tur

e

so
rtin

gN
etw

ork
s

Undervolt %: @ Vmin Neural Network Piecewise Linear

(a) Undervolt level at measured and predicted Vmin.

25

20

15

10

5

En
er

gy
 S

av
ing

 (%
)

BACKP

Blac
kS

ch
ole

s

FD
TD

3d
MGST

Mon
teC

arlo
SRAD

alig
ne

dTy
pe

s

bin
om

ialO
pti

on
s

co
nvo

luti
on

FF
T2

D

co
nvo

luti
on

Sep
ara

ble

co
nvo

luti
on

Tex
tur

e
dc

t8x
8

dx
tc

eig
en

val
ue

s

fas
tW

als
hTr

an
sfo

rm

his
tog

ram

line
OfSigh

t

matr
ixM

ul

merg
eS

ort

qu
asi

ran
do

mGen
era

tor

seg
men

tat
ion

Tre
eT

hru
st

sim
ple

Multi
Cop

y

sim
ple

Multi
GPU

sim
ple

Pitch
Lin

ea
rTe

xtu
re

sim
ple

Surf
ac

eW
rite

sim
ple

Tex
tur

e

so
rtin

gN
etw

ork
s

Energy Saving: Oracle Neural Network Piecewise Linear

(b) Energy savings with oracle and predictive scheme.

Figure 14: (a) undervolt level and (b) energy savings at measured and predicted Vmin.

have begun to adopt GPU even multi-GPU servers due to
the increasing prevalence of large-scale machine learning
applications [14]. As GPUs typically consume more power
than CPUs, the energy efficiency of GPUs are critical for
datacenter cost. We study how Vmin prediction and kernel-
level voltage guardband management can improve the cost to
maintain a server equipped with GPUs.

Table II summarizes the estimated datacenter cost. The
figures are primarily drawn from public sources [3], [19]. As a
comparison, we evaluate the maintenance cost of a GPU server
over its lifetime with and without predictive guardbanding. In
this study, a high-end NVIDIA Tesla K-80 GPU designed for
datacenter is used. We approximate the price of one K-80 GPU
to be around $4000. We assume the undervolting and energy
saving benefits of the Vmin predictors evaluated on GTX 680
apply to this GPU architecture as it is the case among the GPU
architectures evaluated in our study. For each GPU card, we
estimate that using Vmin prediction can save 15% card power.

The power reduction of GPU through predictive guard-
banding translates to about 12% power reduction for a four-
GPU server. This enables more servers to be accommodated
in a datacenter under a particular IT power budget, which
better amortizes facility investment or CapEx over the long
run. Table III shows the monthly maintenance cost of the
entire datacenter with and without predictive guardbanding. As
the predictive guardbanding leads to more servers, the server
cost increases, which is amortized over its three-year lifetime.
Power cost is the same because the facility’s power budget
is the fixed. We calculate power cost under the premise that
the datacenter’s normal load level is 80% of its peak. Capital
expense is amortized over the 15-year lifetime.

In total, the datacenter cost for maintenance and operation
is higher with predictive guardbanding because of the greater
server count. However, on a per-server basis, the cost of
ownership drops from $731 to $705 per month, because more

IT Power Budget (MW) 15 Power Conversion Ratio 0.6 Electricity Fee ($/kWh) 0.07

CapEx ($) 200 M Facility Lifetime (yrs) 15 Server Lifetime (yrs) 3

CPU Server Power (W) 250 CPU Server Cost ($) 3000 PCIe slots 4

GPU Power (W) 300 GPU Cost ($) 4000 Average load level 0.8

Table II: Estimation of cost of a datacenter with GPU servers.

30

20

10

0N
um

be
r

of
 S

er
ve

r
(1

03)
4321

Number of GPU card / server

 Predictive Guardbanding
 Baseline

(a) Number of servers.

700

600

500

400

T
C

O
 /

S
er

ve
r

4321

Number of GPU card / server

 Predictive Guardbanding
 Baseline

(b) TCO per server per month.

Figure 15: Datacenter TCO and compute capability.

servers amortize capital and other fixed expenses over the
long run. In other words, for the same space, predictive
guardbanding enables the datacenter to house more GPU
servers and to provide higher compute capability, which is
a more economic strategy. The cost of maintaining one GPU
server is high compared conventional CPU-only server [49]
because the GPU server we model can insert four high-end
GPU cards, which amounts to more than 10,000$ purchase
cost. Overall, by reducing GPU power with Vmin prediction,
the datacenter can reduce per-server maintenance cost by 3.7%
and provide 15% more compute capability.

Figure 15 expands our TCO analysis to several different
server configurations. We evaluate a CPU-GPU balanced
configuration where each server has one GPU card, to a
GPU-centric configuration where each server has four cards.
In all cases, our solution consistently makes the datacenter
accommodate more servers, and consequently more GPUs to
compute. The higher server number also amortizes TCO more
economically, which drops per server maintenance cost. We
find that using two GPU cards per server achieves a sweet
spot for cost per server. The reason is that the GPU purchase
cost and the server power achieves a balance at this point.

Baseline GPU Server With Predictive Guardbanding
Server ($M) 5.46 6.23
CapEx ($M) 1.1 1.1
Power ($M) 1.0 1.0

Total $M 7.56 8.33

Server count (103) 10.34 11.81
TCO/Server ($) 731 705

Table III: Monthly maintenance cost of a GPU server.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 13

VIII. RELATED WORK

Our work is one of the first to perform a comprehensive
measurement-based study of voltage guardband in GPUs [28].
We compare and contrast our work with prior work on voltage
guardband both in CPU and GPU domains.
Voltage Guardband Characterization In our work, we
conduct Vmin test on a class of off-the-shelf GPU cards to
characterize their voltage guardband. In the Vmin test, we
measure each program’s Vmin and study its error behavior
and probability when the voltage goes below Vmin. Our
measurement results unveil a large voltage guardband potential
and a program-dependent guardband behavior that has not
been identified by any prior work. We also show that the di/dt
droop during the kernel execution is the root-cause analysis for
the program-dependent guardband behavior.

Many prior arts adopt the simulation approach to study
voltage noise in the single-core [23], [44], [45] and multi-
core [18], [34] CPUs. Researchers also conduct measurement-
based study of voltage noise in CPUs [6], [24], [48]. In
contrast, our work examines the problem in GPUs whose
architecture is fundamentally different from CPUs.

There have also been prior studies that target voltage noise
in GPUs. However, they all focus on modeling of voltage
noise [31] and characterization of voltage noise via simula-
tion [30], [52], [53]. In contrast, our work is the first to perform
a comprehensive measurement study of voltage guardband
using multiple off-the-shelf GPU cards.
Voltage Guardband Optimization We compare our voltage
guardband optimization technique with prior works as shown
in Table IV. Prior work on optimizing the voltage guard-
band can be categorized into two types. The first category
reduces the voltage guardband while the processors continue to
function correctly [27], whereas the second category tolerates
timing speculation errors with the aid of an error detection
and recovery mechanism [13]. Similar to the former scenario,
our Vmin test assumes that no error occurs at the Vmin

point. However, our work’s emphasis is to characterize the
voltage guardband and build a fundamental understanding of
its essential characteristics in the context of GPU architecture.

Our work proposes a novel guardband management scheme,
which reduces the supply voltage according to the program’s
performance characteristics. The proposed scheme, predictive
guardbanding, is a cross-layer approach where the software
takes the role of margin detection and error recovery while
the hardware is responsible for error detection. Compared to
the prior efforts including Razor [13] and adaptive guardband-
ing [27] shown in Table IV that are mostly hardware only, our
scheme is simpler and more hardware cost-effective.

Both prior and our work rely on hardware sensors to
reduce the operating margin for energy saving. The adaptive
guardbanding in POWER7+ requires critical path monitor

Razor [13] Adaptive guardbanding [27] Predictive guardbanding

Margin Detection N/A CPM Vmin prediction model

Error Detection Shadow flip flop CPM Skitter circuit

Error Recovery Branch misprediction CPM-DPLL control loop Relaunch kernel

Table IV: Comparison with prior work.

(CPM) [12] while Razor uses shadow latches [13], and another
work uses ECC signal [4]. To the best of our knowledge, our
work is the first to use performance counter for guardband
management. Voltage sensors like CPM used in prior work
incur significant calibration overhead as they need to measure a
range of margin accurately. In contrast, our work only requires
sensors to detect the event of voltage dropping a threshold
instead of the entire margin range, because the software
performs the margin detection (via prediction). Lightweight
sensors such as skitter circuit [15], [50] suit our system.

IX. CONCLUSION

In this work, we propose and evaluate a novel dynamic
guardbanding scheme called predictive guardbanding, which
can achieve energy-reduction benefits by lowering the GPU’s
processor voltage without inducing errors. The proposed
scheme works in program-driven fashion as our comprehensive
Vmin measurement study unveils a strong program-dependent
Vmin behavior, which is also the fundamental challenge for
the guardband optimization. We perform root cause analysis
and identify that the di/dt droop during the kernel execution
is the largest determinant of Vmin. We further characterize
the impact of program characteristics on the Vmin, and show
that we can predict the Vmin of each individual kernel using
performance counter information. The predictive guardbanding
follows the principle of cross-layer optimization and uses the
derived Vmin prediction model to fulfill the energy savings
potential by operating the GPU at the predicted Vmin point.

ACKNOWLEDGMENT

This work is sponsored in part by Defense Advanced Research
Projects Agency (DARPA), Microsystems Technology Office (MTO),
under contract HR0011-13-C-0022, National Science Foundation
(NSF) grant CCF-1218474, Semiconductor Research Corporation
(SRC), and National Natural Science Foundation of China (NSFC)
grant 61702328. The views expressed are those of the authors and
do not reflect the official policy or position of the NSFC, the Depart-
ment of Defense, the NSF, the SRC or the U.S. Government. This
document is: Approved for Public Release, Distribution Unlimited.

REFERENCES

[1] M. Afterburner, “MSI Afterburner,” http://goo.gl/fs2pti, 2016.
[2] S. Anthony, “IBM and NVIDIA to build 100 petaflop+ supercomputers,”

https://goo.gl/vjhpCt, 2014.
[3] Aspen Server Cost, “GPU Server Cost,”

https://www.aspsys.com/servers/category/410/, 2015.
[4] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage margins

by leveraging on-chip ECC in itanium II processors,” in International
Symposium on Computer Architecture, 2013.

[5] ——, “Using ECC feedback to guide voltage speculation in low-voltage
processors,” in International Symposium on Microarchitecture, 2014,
pp. 306–318.

[6] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem, S. M.
Carey, R. F. Rizzolo, and T. Strach, “Voltage noise in multi-core
processors: Empirical characterization and optimization opportunities,”
in International Symposium on Microarchitecture, 2014, pp. 368–380.

[7] S. Bhardwaj, S. B. K. Vrudhula, P. Ghanta, and Y. Cao, “Modeling
of intra-die process variations for accurate analysis and optimization
of nano-scale circuits,” in Design Automation Conference, 2006, pp.
791–796.

[8] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in International Symposium on Workload
Characterization, 2012, pp. 141–151.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2019 14

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in International Symposium on Workload Characterization,
2009, pp. 44–54.

[10] C. Constantinescu, I. Parulkar, R. Harper, and S. Michalak, “Silent
data corruption - myth or reality?” in International Conference on
Dependable Systems and Networks, 2008, pp. 108–109.

[11] A. Drake, M. Floyd, R. Willaman, D. Hathaway, J. Hernandez, C. Soja,
M. Tiner, G. Carpenter, and R. Senger, “Single-cycle, pulse-shaped
critical path monitor in the POWER7 microprocessor,” in International
Symposium on Low Power Electronics and Design, 2013.

[12] A. J. Drake, R. M. Senger, H. Deogun, G. D. Carpenter, S. Ghiasi,
T. Nguyen, N. K. James, M. S. Floyd, and V. Pokala, “A distributed
critical-path timing monitor for a 65nm high-performance microproces-
sor,” in International Solid-State Circuits Conference, 2007.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler,
D. Blaauw, T. M. Austin, K. Flautner, and T. N. Mudge, “Razor:
A low-power pipeline based on circuit-level timing speculation,” in
International Symposium on Microarchitecture, 2003.

[14] Facebook AI Hardware, “Facebook to open-source AI hardware design,”
https://goo.gl/iDJIDN, 2015.

[15] R. L. Franch, P. Restle, J. K. Norman, W. V. Huott, J. Friedrich,
R. Dixon, S. Weitzel, K. van Goor, and G. Salem, “On-chip timing
uncertainty measurements on IBM microprocessors,” in International
Test Conference, 2008, pp. 1–7.

[16] E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural simulation
and control of di/dt-induced power supply voltage variation,” in
International Symposium on High-Performance Computer Architecture,
2002, pp. 7–16.

[17] M. S. Gupta, J. A. Rivers, P. Bose, G.-Y. Wei, and D. Brooks,
“Tribeca: Design for pvt variations with local recovery and fine-
grained adaptation,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 435–446.

[18] M. S. Gupta, J. L. Oatley, R. Joseph, G. Wei, and D. M. Brooks,
“Understanding voltage variations in chip multiprocessors using a
distributed power-delivery network,” in Design, Automation Test in
Europe Conference, 2007, pp. 624–629.

[19] J. Hamilton, “Cost of power in large-scale data centers,”
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-
scale-data-centers/, 2008.

[20] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: a compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, no. 5, pp. 501–513, May 2006.

[21] Janak Patel, “CMOS process variations: A critical operation point
hypothesis.” http://goo.gl/K0yWkf, 2008.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia, 2014.

[23] R. Joseph, D. M. Brooks, and M. Martonosi, “Control techniques
to eliminate voltage emergencies in high performance processors,” in
International Symposium on High-Performance Computer Architecture,
2003, pp. 79–90.

[24] Y. Kim, L. K. John, S. Pant, S. Manne, M. J. Schulte, W. L. Bircher,
and M. S. S. Govindan, “AUDIT: stress testing the automatic way,” in
International Symposium on Microarchitecture, 2012.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the Inter-
national Conference on Neural Information Processing Systems, 2012.

[26] M. Kursa and W. Rudnicki, “Feature Selection with the Boruta Package,”
Journal of Statistical Software, vol. 36, no. 11, 2010.

[27] C. Lefurgy, A. J. Drake, M. S. Floyd, M. Allen-Ware, B. Brock,
J. A. Tierno, and J. B. Carter, “Active management of timing
guardband to save energy in POWER7,” in International Symposium
on Microarchitecture, 2011, pp. 1–11.

[28] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi, “Safe
limits on voltage reduction efficiency in gpus: a direct measurement
approach,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO), 2015.

[29] J. Leng, T. H. Hetherington, A. ElTantawy, S. Z. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch: enabling energy
optimizations in GPGPUs,” in International Symposium on Computer
Architecture, 2013, pp. 487–498.

[30] J. Leng, Y. Zu, and V. J. Reddi, “GPU voltage noise: Characterization
and hierarchical smoothing of spatial and temporal voltage noise

interference in GPU architectures,” in International Symposium on
High Performance Computer Architecture, 2015, pp. 161–173.

[31] J. Leng, Y. Zu, M. Rhu, M. S. Gupta, and V. J. Reddi, “GPUVolt:
modeling and characterizing voltage noise in GPU architectures,” in
International Symposium on Low Power Electronics and Design, 2014,
pp. 141–146.

[32] P. Lu, K. A. Jenkins, T. Webel, O. Marquardt, and B. Schubert,
“Long-term NBTI degradation under real-use conditions in IBM
microprocessors,” Microelectronics Reliability, vol. 54, no. 11, 2014.

[33] Mic, “Selecting the number of neurons in the hidden layer of a neural
network,” http://goo.gl/frjVt7.

[34] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “VRSync:
Characterizing and eliminating synchronization-induced voltage
emergencies in many-core processors,” in International Symposium on
Computer Architecture, 2012, pp. 249–260.

[35] National Instruments DAQ 6133, “NI DAQ 6133,” http://goo.gl/ez2mof.
[36] NVIDIA CUDA API, “CUDA Runtime API,” http://goo.gl/G27upA.
[37] NVIDIA CUDA Profiling, “CUDA Profiling Tools Interface,”

http://goo.gl/nbAVCf, 2015.
[38] NVIDIA CUDA SDK, “CUDA C/C++ SDK CODE Samples,” 2011.
[39] NVIDIA Fermi, “NVIDIA’s Next Generation CUDA Compute Archi-

tecture: Fermi,” http://goo.gl/zmoJkZ, 2009.
[40] NVIDIA Kepler, “GTX 680 Kepler Whitepaper - GeForce,”

http://goo.gl/fyg2z1, 2012.
[41] NVIDIA Visual Profiler, “NVIDIA Visual Profiler User Guide,”

http://goo.gl/gefn6p, 2015.
[42] K. Okada and H. Onodera, “Statistical parameter extraction for intra-

and inter-chip variabilities of metal–oxide–semiconductor field-effect
transistor characteristics,” Japanese journal of applied physics, vol. 44,
no. 1R, p. 131, 2005.

[43] M. Orshansky, L. Milor, and C. Hu, “Characterization of spatial intrafield
gate CD variability, its impact on circuit performance, and spatial mask-
level correction,” IEEE Transactions on Semiconductor Manufacturing,
vol. 17, no. 1, pp. 2 – 11, 2004.

[44] M. D. Powell and T. N. Vijaykumar, “Pipeline damping: A
microarchitectural technique to reduce inductive noise in supply
voltage,” in International Symposium on Computer Architecture, 2003,
pp. 72–83.

[45] ——, “Pipeline muffling and a priori current ramping: architectural
techniques to reduce high-frequency inductive noise,” in International
Symposium on Low Power Electronics and Design, 2003, pp. 223–228.

[46] V. J. Reddi, M. S. Gupta, G. H. Holloway, M. D. Smith, G. Wei, and
D. M. Brooks, “Predicting voltage droops using recurring program and
microarchitectural event activity,” IEEE Micro, vol. 30, no. 1, p. 110,
2010.

[47] V. J. Reddi, M. S. Gupta, G. H. Holloway, G. Wei, M. D.
Smith, and D. M. Brooks, “Voltage emergency prediction: Using
signatures to reduce operating margins,” in International Conference
on High-Performance Computer Architecture, 2009, pp. 18–29.

[48] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G. Wei,
and D. M. Brooks, “Voltage smoothing: Characterizing and mitigating
voltage noise in production processors via software-guided thread
scheduling,” in International Symposium on Microarchitecture, 2010,
pp. 77–88.

[49] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Mobile processors for
energy-efficient web search,” ACM Transactions on Computer Systems
(TOCS), vol. 29, no. 3, p. 9, 2011.

[50] P. J. Restle, R. L. Franch, N. K. James, W. V. Huott, T. M. Skergan,
S. C. Wilson, N. S. Schwartz, and J. G. Clabes, “Timing uncertainty
measurements on the power5 microprocessor,” in International Solid-
State Circuits Conference, Feb 2004, pp. 354–355 Vol.1.

[51] S. Roy and A. Asenov, “Where Do the Dopants Go?” Science, vol. 309,
no. 5733, pp. 388 – 390, 2005.

[52] R. Thomas, K. Barber, N. Sedaghati, L. Zhou, and R. Teodorescu,
“Core tunneling: Variation-aware voltage noise mitigation in GPUs,” in
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 151–162.

[53] R. Thomas, N. Sedaghati, and R. Teodorescu, “EmerGPU: Understand-
ing and mitigating resonance-induced voltage noise in GPU architec-
tures,” in 2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), April 2016, pp. 79 – 89.

[54] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Addison-Wesley Publishing Company, 2010.

[55] Y. Zu, W. Huang, I. Paul, and V. J. Reddi, “Ti-states: Processor
power management in the temperature inversion region,” in International
Symposium on Microarchitecture (MICRO). IEEE, 2016.

	Introduction
	Experimental Setup
	Voltage Guardband Exploration
	Power Measurement
	Profiling and Instrumentation

	Program-specific Vmin Measurement
	Quantifying the Potential with Vmin Measurement
	Agressive Optimization Beyond the Vmin

	Root Cause Analysis of Vmin Variability
	Identifying the Dominant Variation Kind
	Identifying the Dominant Program Activity

	Vmin Prediction
	Program Characteristics and Input Impact on Vmin
	Top-Down Approach for Vmin Prediction
	Bottom-Up Approach for Vmin Prediction

	Predictive Guardbanding
	Design Overview
	Handling Vmin Prediction Failure

	Evaluation
	Vmin Prediction Accuracy
	Energy Savings with Predictive Guardbanding
	Total Cost of Ownership Improvement

	Related Work
	Conclusion
	References

