
GPU Voltage Noise: Characterization and Hierarchical Smoothing of
Spatial and Temporal Voltage Noise Interference in GPU Architectures

Jingwen Leng Yazhou Zu Vijay Janapa Reddi
Department of Electrical and Computer Engineering

The University of Texas at Austin
jingwen@utexas.edu, yzu@utexas.edu, vj@ece.utexas.edu

Abstract
Energy efficiency is undoubtedly important for GPU archi-

tectures. Besides the traditionally explored energy-efficiency
optimization techniques, exploiting the supply voltage guard-
band remains a promising yet unexplored opportunity. Our
hardware measurements show that up to 23% of the nomi-
nal supply voltage can be eliminated to improve GPU energy
efficiency by as much as 25%. The key obstacle for exploit-
ing this opportunity lies in understanding the characteristics
and root causes of large voltage droops in GPU architectures
and subsequently smoothing them away without severe per-
formance penalties. The GPU’s manycore nature complicates
the voltage noise phenomenon, and its distinctive architecture
features from the CPU necessitate a GPU-specific voltage
noise analysis. In this paper, we make the following con-
tributions. First, we provide a voltage noise categorization
framework to identify, characterize, and understand voltage
noise in the manycore GPU architecture. Second, we perform
a microarchitecture-level voltage-droop root-cause analysis
for the two major droop types we identify, namely the local
first-order droop and the global second-order droop. Third,
on the basis of our categorization and characterization, we
propose a hierarchical voltage smoothing mechanism that mit-
igates each type of voltage droop. Our evaluation shows it
can reduce up to 31% worst-case droop, which translates to
11.8% core-level and 7.8% processor-level energy reduction.

1. Introduction
The Green500 list shows an increasing trend of heterogeneous
supercomputing systems at the top of the energy-efficiency
list [1]. As general-purpose GPU architectures increasingly
take the place of CPU computing in datacenters and supercom-
puters, each GPU unit’s energy efficiency plays a critical role
because of the overall energy costs and economies of scale
involved. To that end, it has become important to reduce GPU
power consumption without impacting its performance.

We focus on improving the GPU’s energy efficiency by
optimizing away inefficiency at the guardband level. GPU
architectures, as do CPU architectures, typically rely on large
voltage guardbands to tolerate real-world worst-case operat-
ing conditions that occur because of deviations in process,
voltage, and thermal (PVT) variations. Prior work in CPU
architectures shows that the voltage guardband can be as large

25

20

15

10
Vo

lta
ge

 G
ua

rd
ba

nd
 (%

)

GTX 480
GTX 580

GTX 680
GTX 780

 Voltage Margin

(a) Voltage guardband.

105

100

95

90

85

80

75

N
orm

alized Energy (%
)

24 Benchmarks

 Normalized Energy

Energy
Reduction

(b) Energy reduction.

Fig. 1: Opportunity of exploiting the voltage guardband.
(a) Measured voltage guardband on four commercial graphics
cards. (b) Measured energy reduction benefits on GTX 480.

as 20% [13], which can lead to significant energy inefficiency
because worst-case conditions rarely occur during execution.
Measurement results in Fig. 1a show that GPUs require sim-
ilarly large voltage guardbands to tolerate worst-case condi-
tions. The measurement approach is similar to prior work [18].

Typically, a large portion of the voltage guardband is allo-
cated to tolerate supply voltage noise [8], i.e., the turbulence at
the on-chip Vdd plane, due to interactions between the proces-
sor’s current flow and its nonzero impedance power delivery
network. Voltage noise can cause unreliability in the system
due to sudden droops in the operating voltage. If the operat-
ing voltage transiently dips below assumed conditions, it may
cause circuit-timing violations that result in processor failure
or the generation of incorrect execution results.

Because large supply voltage noise is a rare event, it presents
us with a unique opportunity to improve energy efficiency.
Lowering the guardband to typical operating conditions and
smoothing away large transient voltage droops improve energy
efficiency. Various techniques have been proposed to smooth
voltage noise in CPU architectures [6, 9, 10, 12, 15, 23, 24,
26, 27]. However, to the best of our knowledge, no such
characterization and techniques exist for GPU architectures.

In this paper, we perform a thorough characterization and
provide a deep understanding of voltage noise activity in GPU
architectures. Our ultimate goal is to reduce the voltage guard-
band by smoothing voltage noise to improve energy efficiency.
Fig. 1b shows measured results of energy efficiency improve-
ments that can be achieved on the GTX 480 hardware while

running a variety of programs from the Rodinia, LoneStar,
and CUDA SDK suites. On existing off-the-shelf hardware,
we can achieve improvements between 8% and 25%. The
improvements vary because different workloads have different
program characteristics and microarchitectural activity that
impact on-chip voltage noise by varying magnitudes. Thus,
unlocking the potential for changing the guardband relies on a
fundamental understanding of the voltage noise root causes.

Fig. 2 presents an overview of our work. Given the GPU’s
manycore architecture and single-program, multiple-data ex-
ecution model, we first propose a generally applicable spa-
tial and temporal voltage noise categorization framework to
comprehensively analyze voltage noise in manycore GPU ar-
chitectures. The temporal noise analysis focuses on the time
domain response of voltage noise as it interacts with the PDN
impedance profile. The spatial noise analysis focuses on how
different cores, (i.e., single-instruction, multiple-data execu-
tion units) interfere with each other to aggravate or alleviate
voltage noise. We demonstrate that studying both together is
necessary to capture all interactions occurring in the GPU.

Our spatial and temporal analysis reveals two major volt-
age noise droop types in GPU architectures. First, the fast-
occurring transient first-order droops impact only a small clus-
ter of cores. Second, the more slowly occurring transient
second-order droops have a chip-wide effect, impacting all
cores across the entire die. In order to smooth voltage noise in
GPUs, it is necessary to tackle both forms of voltage droops.

To understand the activity leading to the two voltage droop
types, we conduct microarchitecture-level analysis. The lo-
cal first-order droops are caused by microarchitectural stalls
followed by bursty activity at the register file and dispatch
units. The GPU has a large power-hungry (banked) register
file to support the massive set of parallel SIMD pipelines. The
dispatch unit controls warp execution. Suddenly dispatching a
large number of warps to idling execution units causes a large
surge in current that leads to a fast-occurring voltage transient.

The global second-order droops are caused by implicit syn-
chronization points that are induced by I- and D-cache aligned
miss activity, as well as thread block execution alignment.
Unlike CPUs, GPUs lack an explicit chip-wide thread syn-
chronization primitive at the software layer. Thus, global
synchronization manifests only through low-level microarchi-
tectural activity. Implicit synchronization happens sufficiently
enough in some programs that it is the dominant droop type.

These two types of voltage droops have distinctive require-
ments for voltage smoothing. For example, first-order droop
happens very quickly, which makes it difficult to detect and
provides little response time for smoothing. On the other
hand, the global second-order droop happens more slowly
but involves the chip-wide activities. Naively throttling the
chip-wide activities could incur a large performance overhead.

To smooth GPU voltage noise, we propose a novel hierar-
chical voltage smoothing mechanism, where each level specifi-
cally targets one type of voltage droop, as shown in Fig. 2. For

Mitigation

Root
Cause

Voltage Droop
Categorization

Register File
Dispatch Unit Stall

I/D-Cache Miss
Thread Block Execution
(Implicit Synchronization)

Model
TrainingLocal First-

Order Droop

Global Second-
Order Droop

Microarcitectural Root
Cause Identification

Hierarchical
Voltage Smoothing

20

15

10

5

0

M
is

s
P

re
d

ic
tio

n
 (
%

)

108642

False Positive (%)

Finial Prediction Model

Local Droop
Prediction

Mitigation

Root
Cause

Throttle

Thread
Block

Scheduler

Detection

Delay
Execution

Fig. 2: Overview of our work.

the first-order droop, we train a prediction model to predict
the local first-order droop using our root-cause analysis data
based on register file and dispatch unit activity. The model is
trained offline to avoid an expensive first-order droop detection
mechanism and provide enough response time for smoothing
to work. For the second-order droop, caused by the implicit
synchronization due to aligned I- and D-cache misses and
thread block execution, our smoothing mechanism leverages
current hardware communication mechanisms and delays exe-
cution to disrupt the current and future synchronization pattern.
As a result, it effectively smooths the voltage with negligible
performance overhead.

The hierarchical voltage smoothing mechanism reduces the
worst-case droop by 31% and eliminates 99% of all voltage
emergencies. The effectiveness of our proposed mechanism
confirms the insights we made in our characterization. The
reduced worst-case droop enables a smaller voltage guardband
that enables energy-efficiency improvements. We observe an
average 7.8% energy savings. The reduced voltage emergen-
cies can also enlarge the energy benefits for future resilient
GPU architectures with a hardware fail-safe mechanism that
can tolerate voltage emergencies at an additional penalty.

The rest of the paper is organized as follows. Sec. 2 in-
troduces the experimental setup we use for modeling and
studying voltage noise in a simulated environment. We rely on
simulation to gather highly specific insights. Sec. 3 explains
the discovery of dominant droop types. Sec. 4 presents their
microarchitecture-level root-cause analysis. Sec. 5 discusses
how we mitigate the worst-case voltage droop on the basis of
the hierarchical voltage smoothing mechanism. Sec. 6 evalu-
ates our proposed mitigation method. Sec. 7 discusses related
work and compares our GPU voltage noise findings with char-
acterization and techniques that are well established for CPUs.
We close with our concluding thoughts in Sec. 8.

2. Experimental Methodology

In this section, we describe our simulation infrastructure setup
to study voltage noise in GPU architectures. Modeling the
voltage noise requires the support of a GPU performance
model, power model, and a power delivery network (PDN)
model. We use cycle-based simulation for these components.
Performance Simulation We use GPGPU-Sim (version
3.2.0) [2, 3], a cycle-level performance simulator, running

2

·

`

R pcb,s
0.1m

R pcb,s L pcb,s
21pH

R pkg,s
0.55m

L pkg,s

R pkg,s L pkg,s
60pH

C pcb
240µF

R pkg,p

L pkg,p
2.8 pH
C pkg
52µF

R pcb,p
0.27m

L bumP
0.36pH

R bump
20m

PCB Package

On-Chip GridsL pcb,s

(a) Details of power delivery network model (PCB, package, and on-chip PDN).

SM
Core 0

SM
Core 1

SM
Core 2

SM
Core 3

SM
Core 8

SM
Core 9

SM
Core 10

SM
Core 11

SM
Core 12

SM
Core 13

SM
Core 14

Not
Used

L2 Cache
Network on Chip

Memory Controller

SM
Core 4

SM
Core 5

SM
Core 6

SM
Core 7

(b) GPU processor layout.

5

4

3

2

1

0

Im
pe

da
nc

e
(m

oh
m

)

Frequency (MHz)

First-order
 droop

Second-order
 droop

1 10 100 1000

 Default
 Pacakge I
 Pacakge II
 Pacakge III

(c) Package impedance profile.

Fig. 3: Voltage modeling details. (a) Default PDN details. (b) Simulated GTX 480 layout. (c) Simulated PDNs’ impedance profile.

CUDA 4.0 [22] and its PTX ISA. The key simulated microar-
chitectural parameters are summarized in Table 1. We use the
default GTX 480 configuration provided by the simulator.
Power Simulation We use GPUWattch [16, 17] for the
power simulation. GPUWattch is integrated with GPGPU-Sim
for cycle-level power calculation. The authors of GPUWattch
claim that the power model has an average accuracy that is
within 9.9% error of the measured results for the GTX 480.
Voltage Simulation We use the GPUVolt [19], which is a
GPU-specific voltage simulator. GPUVolt simulates the power
delivery network (PDN) and its electrical characteristics to
calculate voltage at every cycle. The input to the voltage
simulator is the cycle-level current profile from GPUWattch.

Fig. 3a illustrates the power delivery network model that is
assumed and simulated by GPUVolt. It consists of the printed
circuit board (PCB), the package, and the on-chip PDN. For
the on-chip PDN, we follow GPUVolt’s modeling assumption
that a GPU processor adopts a shared PDN among all the
cores. Prior work has shown that a shared PDN in a manycore
CPU is more robust to voltage noise than a split power grid
where cores are connected to separate power grids [13]. In
addition, GPUVolt uses a distributed shared grid model to cap-
ture intercore interference activity. The grids are configured
to correspond to the GTX 480 layout that is shown in Fig. 3b.

The off-chip model used in GPUVolt is derived by scaling
the parameters used in the original Pentium 4 model published
by Gupta et al. [11]. The scaling factor is determined by the
ratio of GPU’s peak thermal design power (TDP) compared
to the Pentium 4 processor, based on the assumption that the

Configuration Value Configuration Value

Number of SMs 15 SM clock frequency 700 MHz

Threads per SM 1536 Threads per warp 32

Registers per SM 128 KB Memory controller FR-FCFS

Shared memory 48 KB Memory bandwidth 179.2 GB/s

Memory channels 6 Memory controller FR-FCFS

Warp scheduling policy Greedy-then-oldest [28]

L1 cache (size/assoc/block size) 16 KB/4-way/128 B

L2 cache (size/assoc/block size) 768 KB/16-way/128 B

Table 1: GPGPU-Sim parameters.

design PDN should match the target processor architecture’s
peak current draw [7,14]. GPUVolt uses a conservative scaling
2⇥ (compared to the 4⇥ TDP ratio between two processors).

We show the impedance profile of our simulated PDN in
Fig. 3c. We use the default configuration (2⇥ scaling) for GTX
480 to conduct our analysis. The PDN model together with
GPGPU-Sim and GPUWattch are co-configured to resemble
GTX 480. GPUVolt has a correlation factor of 0.9 against
experimental measurement for this default setup [19].

We also sweep the parameters of both on-chip and off-chip
components in order to provided sensitivity analysis for our
work. Package I has about 2⇥ both first-order and second-
order droop impedance compared to the default package in
Fig. 3c. Package II has the same first-order impedance but 2⇥
second-order impedance. Package III has the same second-
order impedance but 2⇥ first-order impedance.

In the rest of this paper, we rely on breaking down and asso-
ciating the magnitude of the voltage noise caused by activity
on different cores (Sec. 3). We also need the breakdown to
understand voltage noise’s association with microarchitectural
activity to identify the voltage noise root causes (Sec. 4). But
because GPUVolt takes the power trace of all SM cores to com-
pute the PDN’s supply voltage profile as a whole, it cannot
reveal core-level noise activity. To decompose the contribu-
tion to voltage droop from the different sources, i.e. cores,
we leverage the PDN’s linear property. The PDN model is
simply an RLC network; thus, its voltage response from all
the cores is equivalent to the case when each core’s current
trace is supplied separately and then added all together. We
verify that this linear property holds true by simulating each
individual core, aggregating the voltage output of all the cores,
and comparing that sum with GPUVolt’s simulated output.
The resulting difference is less than 1%, i.e., negligible.
Benchmark Selection & Characteristics We use applica-
tions from a diverse set of benchmark suites to faithfully char-
acterize voltage noise in GPUs. The simulated worst-case
voltage noise of these chosen applications has been compared
and validated against hardware measurements. Moreover, the
applications demonstrate a large range of voltage droop behav-
ior [19]. Both these reasons make them ideal for our study.

The application set includes five large programs from the
CUDA SDK: BlackScholes (BLS), convolutionSeparable (CVLS),

3

Local Global

Space

Time

Local
First-Order

Global
First-Order

Local
Second-Order

Global
Second-Order

First-Order
(100 MHz)

Second-Order
(1 MHz)

Fig. 4: GPU voltage noise categorization framework.

convolutionTexture (CVLS), dct8x8 (DCT), and binomialOptions
(BO); seven from Rodinia [5]: BACKP, KMN, SSSP, NNC, CFD,
MGST, and NDL; and the DMR program from LoneStarGPU [4].

The BLS program has the largest worst-case voltage droop
(12%), whereas NNC has the smallest (4.6%). The large worst-
case droop is what the allocated guardband must tolerate, so
we conservatively assume the operating margin is determined
by BLS. In reality, however, the worst-case guardband is much
larger because it is required tolerate the other variations types.

3. Temporal and Spatial Voltage Noise Analysis
In this section, we present a conceptual framework for charac-
terizing voltage noise in the manycore GPU architecture. We
examine voltage noise in the temporal (i.e., time varying) and
spatial (i.e., core versus chip-wide) dimensions. Using this
framework, we show that there are two main types of GPU
voltage noise: the fast-occurring first-order droops that are
localized to a small cluster of neighboring cores, and the slow-
occurring chip-wide second-order droops. We explain why
and how these two types manifest in the GPU. We also explain
why identifying and understanding these types is important.

3.1. Why Temporal and Spatial Analysis?

Understanding voltage noise activity in the GPU architecture
is particularly challenging because of the nature of the GPU’s
manycore architecture. In GPUs, each core is an independent
source of voltage noise, and a large transient voltage droop
anywhere in the chip is the result of interactions between
voltage noise generated from different cores. Therefore, to
characterize GPU voltage noise thoroughly, we must quantify
its spatial interference effects between the different cores. In
addition, we also need to consider voltage noise’s frequency-
domain characteristics because the impedance profile of the
GPU’s power delivery network (Fig. 3c) has both first- and
second-order peak values that can enlarge voltage noise occur-
ring at the corresponding rates. Overlooking either of these
factors can lead to incomplete characterization results.

To tackle this issue, we propose a characterization frame-
work that contains two dimensions: temporal and spatial analy-
sis. Temporal analysis is designed to study the voltage noise’s
frequency-domain characteristics. It filters out voltage noise
at different rates and captures their features individually. Next,
for each type of voltage noise categorized in temporal analysis,

1.0

0.9 1800160014001200
Cycle

First-Order
Dominant

1.0

0.9

Second-Order Component

1.0

0.9

Orginal Trace

1.0

0.9

Second-Order Component

Second-Order
Dominant

1.0

0.9 1800160014001200
Cycle

First-Order Component

1.0

0.9

Orginal Trace

Vo
lta

ge
 (V

)

(a) Second-Order Dominant. (b) First-Order Dominant.

Fig. 5: Comparison between the first- and second-order droop
effects: (a) second-order dominant. (b) first-order dominant.

the spatial analysis decomposes its noise contribution from
different sets of cores to expose spatial interference. These
two steps, along with two orthogonal dimensions, allow us to
comprehensively characterize voltage noise in GPUs.

The characterization framework has four quadrants, as
shown in Fig. 4. The y-axis focuses on temporal analysis.
The frequency ranges we focus on are limited to the first-
(100 MHz) and second- (1 MHz) order frequencies (Fig. 3c)
because they have higher impedance values and cover most of
the frequency spectrum. The x-axis focuses on spatial analysis,
which is divided into local and global regions. Local analysis
studies a cluster of four neighboring cores (e.g., cores 1, 2, 5,
and 6 in Fig. 3b). Global analysis focuses on all the cores.

Each of the four quadrants in Fig. 4 indicates a specific
type of voltage droop: local first- and second-order droop,
and global first- and second-order droop. Prior work [14, 23]
focused on single-core voltage noise pointed out that the chip-
wide current fluctuation around the first-order droop frequency
is the most important and noticeable form of voltage noise.
However, our analysis shows that 1) voltage noise in the many-
core architecture is significantly different from that in the
single-core architecture; and 2) all four types of droop do not
occur in the GPU architecture. The only two possible types are
the local first-order droops and global second-order droops.

3.2. Temporal Analysis: First- vs. Second-Order Droop

The results of our analysis emphasize that both first- and
second-order droop are important in GPU architectures. Un-
like prior work [14, 23] that only shows the severity of first-
order droop in the single-core CPU architecture, we show that
the second-order droop also matters in the manycore architec-
ture. In some cases, it can be the leading cause of droops.

The first step is to separate a voltage droop into its first- and
second-order droop components. The voltage model calcu-
lates the time domain response of the power delivery network,
which mixes both the first- and second-order droops together.
To separate the two types of droops, we apply a low-pass filter
to the original voltage trace. Because the first-order droop
happens at a much higher frequency (100 MHz as compared
to 1 MHz), the resulting trace contains only the second-order

4

1.0

0.8

0.6

0.4

0.2

0.0

Ra
tio

 o
f V

ol
ta

ge
 D

ro
op

s

KMN
BACKP

MGST BLS CFD DCT
CVLT

CVLS

 First-Order Dominant
 Second-Order Dominant
 Balanced

Fig. 6: The ratio of first- and second-order droops.

droop. The subtraction of the original trace from the second-
order droop trace results in the first-order droop trace.

Fig. 5 illustrates the separation process. The top plot shows
the original simulated voltage trace, which is the superposition
of the first- and second-order droop components. The middle
plot shows the low-pass filtered voltage trace, i.e. second-
order droop component. The bottom plot shows the trace
of first-order droop component, derived by subtracting the
second-order component from the original trace.

After applying the filter to separate the first- and second-
order droop components, it is easy to identify the droop types.
Fig. 5a shows a voltage droop that is caused by the second-
order component. The duration of the droop matches the
expected second-order droop characteristics, approximately
700 cycles, because the cores are operating at 700 MHz. Sim-
ilarly, Fig. 5b shows an example where the voltage droop is
caused by the first-order component. Its droop duration also
matches the expected first-order droop characteristics for the
simulated architecture’s clock frequency and PDN behavior.

On the basis of this proposed approach, we are able to
quantify the extent to which a program is affected by the
first-order and second-order droops. We define a droop as
first-order (or second-order) dominant if the first-order (or
second-order droop) contributes more than 60% to the total
droop. We call the remaining cases balanced because neither
droop is dominant. We first focus on the voltage droops larger
than 8%, and expand the analysis to other droops in the end.

Fig. 6 shows the percentage of first- and second-order domi-
nant droops for the simulated workloads. The figure shows that
both first- and second-order dominant droops exist in GPUs. It
also shows that the benchmarks have different behaviors. For
example, KMN and BACKP are first-order dominant, whereas
CFD, DCT, CVLT and CVLS are dominated by second-order
droops. Some other workloads, such as MGST and BLS, con-
sist mainly of balanced droops. From here on forward, we use
shorthand and refer to first-order and second-order dominant
droop types succinctly as first-order and second-order droops.

3.3. Spatial Analysis: Local vs. Global Droop

In this section, we demonstrate how the physical spatial local-
ity of the cores interacts with the temporal components (i.e.
first- and second-order) of the voltage droop. We show that
although first- and second-order voltage droop are important,
they manifest under two different circumstances. Our analysis

1.00

0.95

0.90

Vo
lta

ge
 (V

)

1000 1005 1010 1015
Cycle

Local first-
order droop

1020

(a) First-order droop.

1.05
1.00
0.95
0.90
0.85

Vo
lta

ge
 (V

)

10008006004002000
Cycle

Global second-
order droop

1000

(b) Second-order droop.

Fig. 7: Example of local first- and global second-order droop.

demonstrates that the first-order droop is caused only when a
small cluster of neighboring cores interact. For example, only
SM 0 experiences a large first-order droop in Fig. 7a (each line
represents the voltage trace of an SM core). As such, we define
this type of voltage droop as local first-order droop. However,
the second-order droop is caused by global chip-wide activity.
As a result, all SM cores experience the second-order droop in
Fig. 7b, which we define as global second-order droop.

We conduct the spatial analysis on all voltage droops that
are greater than 8%. We pick 8% because when we analyze
the distribution of the droop magnitude, we find that 8% distin-
guishes the worst-case droop from the typical-case droop [19].
We postprocess the data for spatial analysis. We decompose
the ratio of voltage droop contributed by each core (as de-
scribed previously in Sec. 2), and then decouple its first- and
second-order components (as described previously in Sec. 3.2).
We aggregate the droop contribution into different numbers of
SM cores, depending on the “cluster size.” A cluster size of
two means that we consider four adjacent cores (e.g., cores 1,
2, 5, and 6 in Fig. 3b). A cluster size of four implies all cores
and a cluster size of one means only one SM core.

Our characterization data in Fig. 8 shows that the first- and
second-order droops have distinctive spatial properties. Al-
though both the first- and second-order voltage droops increase
with a higher number of active cores, the manner in which they
increase is markedly different. The first-order droop shown
in Fig. 8a increases noticeably from a cluster size of one to
two, but beyond that point it shows marginal increase, mean-
ing that a large number of active cores does not help much
in building first-order droops. Second-order droop, however,
shown in Fig. 8b, increases much more as the cluster sizes
increase. Therefore, we determine that a small cluster of local
cores is the main contributor of first-order droops, whereas the
second-order droop is mostly caused by chip-wide activities.

10

8

6

4

2

0

Fi
rs

t-O
rd

er
 D

ro
op

 (%
)

1 2 3 4
Cluster Size

Max

Median

Min

 Contribution
 Of Cluster

(a) First-order droop.

10

8

6

4

2

0Se
co

nd
 O

rd
er

 D
ro

op
 (%

)

1 2 3 4
Cluster Size

(b) Second-order droop.

Fig. 8: Voltage droop contribution from core clusters.

5

30

20

10

0

W
or

st
 C

as
e

Dr
oo

p
(%

)

6543210
Misaligned Cycles

First Order Droop

(a) First-order droop.

15

10

5

0
W

or
st

 C
as

e
Dr

oo
p

(%
)

1 4 16 64
Misaligned Cycles

Second Order Droop

(b) Second-order droop.

Fig. 9: Sensitivity analysis of the first-order and second-order
droop toward misaligned core execution activity.

3.4. Only Local First- and Global Second-Order Matter

In this section, we explain why only local first-order and global
second-order droops are important in GPUs. The other two
temporal and spatial combinations illustrated in Fig. 4 are not
critical because they do not contribute to large voltage droops.

Prior work has shown that the degree of activity alignment
across cores is important because in-phase current surge build
up large voltage droops [27]. The key determinant here, how-
ever, is the likelihood that multiple small GPU cores simultane-
ously align at either the first-order or second-order frequency
to cause a corresponding large voltage droop. We use Fig. 9
to explain the sensitivity analysis of the first-order and second-
order droops toward activity (mis)alignment. The experiment
is conducted by feeding synthesized sine-waveform current
traces matching first- or second-order droop frequency to each
core, and varying the alignment cycles between them.
Local First-Order Droop The first-order droop is a fast-
occurring transient effect. As such, the likelihood that activity
across a large die consisting of multiple small cores is largely
aligned is minimal, especially because voltage noise has a de-
caying effect that affects how a voltage droop propagates [13].

Fig. 9a shows that the first-order droop is extremely sen-
sitive to misalignment. Even a one-cycle misalignment can
reduce the worst-case droop from 28% to 9% because the
first-order frequency is high (100 MHz) and gives the cores
little time to align their activities. As a result, only a small
number of cores can run into aligned activities. Note that this
28% is not the absolute worst-case droop for the simulated ap-
plications, but rather a theoretical upper limit of the worst-case
droop magnitude assuming the identical current fluctuation of
all cores matching the first-order droop frequency.

Furthermore, the first-order droop effects can only be felt by
neighboring cores, not far apart cores, owing to the aforemen-
tioned decaying propagation effect. We find that the voltage
droop caused by two cores can vary from 3% to 6% depending
on the core’s spatial distance to the two active cores.
Global Second-Order Droop The second-order droop, on
the other hand, has a much higher tolerance for activity mis-
alignment. Fig. 9b shows the second-order droop’s sensitivity
alignment. It can tolerate up to 20 cycles of misalignment
because of its relatively lower frequency (around 1 MHz).

1.0
0.8
0.6
0.4
0.2
0.0

D
ro

op
 R

at
io

12108642

Droop Magnitude (%)

10
0

 10
3

 10
6

CVLT

1.0
0.8
0.6
0.4
0.2
0.0

12108642

Droop Magnitude (%)

10
0

 10
3

 10
6

 D
roop C

ountsCVLS

1.0
0.8
0.6
0.4
0.2
0.0 10

1

10

3

10

5

10

7
 D

roop C
ountsBLS

 Second-Order Droop Count
1.0
0.8
0.6
0.4
0.2
0.0

D
ro

op
 R

at
io

10
0

10

2

10

4

10

6

BACKP

 First-Order Balanced

Fig. 10: Ratio of first- and second-order droops, and total num-
ber of droops (in log scale) with different droop thresholds.

Chip-wide activities can synchronize at the rate, and lead to
the global second-order voltage droops that affect all the cores.

Furthermore, the second-order droop manifests as a
global, rather than a local, chip-wide droop because of
the PDN’s impedance characteristics. The second-order
droop’s impedance is lower than the first-order droop’s
impedance (Fig. 3c), and therefore it requires much larger
current fluctuations to cause a large droop as compared to the
first-order droop. Large and sudden current variations do not
occur at the first-order droop because of the first-order droop’s
misalignment sensitivity, as discussed previously, but such
large current variations can occur at the more slowly accumu-
lating second-order droop frequency. Thus, only the global
second-order droop occurs, and the local does not manifest.
Maximum Droop We conclude this subsection with a com-
parison between the local first- and global second-order droop
for their maximum magnitude. Fig. 8 shows that the maxi-
mum magnitude of first- and second-order droop is 6.4% and
9.5%, respectively. This means that the second-order droop
caused by chip-wide activities has a larger maximum droop
magnitude than the first-order droop caused by local activities.

3.5. Voltage Droop Threshold Sensitivity Analysis

The magnitude of worst-case droop determines the supply-
voltage operating margin. We demonstrate that the results of
our spatial and temporal analysis are similar for droops >4%,
and as such the insights from our previous analysis on droops
>8% are applicable while operating with a different threshold.

We perform the temporal and spatial analysis for voltage
droops with magnitudes greater than 2%, all the way to their
maximum droop (e.g. CVLT only goes to 8%). The results
are shown in Fig. 10 for four representative benchmarks. The
value on the x-axis indicates that we analyze droops greater
than that value. The y-axis on the left plots the ratio between
the different types (first-order, balanced, and second-order
dominant). The y-axis on the right plots the total droop count.

By inspecting the total droop count in Fig. 10, we observe
that the 5% droop threshold (compared to the 8% threshold we
assume for our analysis) is also capable of distinguishing the

6

Fetch

I-Cache Decode

ALU FPU

SFU

D$ C$

T$ Sh

Scalar Front End

Register
File

SIMD Back End Datapath

Operand
Collector

Score
Board

SIMT
Stack

Issue

I-Buffer

1Scheduler

2Warp Scheduler

3Dispatch Unit

Fig. 11: SM core microarchitecture and its schedulers.

typical-case from the non-typical-case droop. In other words,
droops >5% account for only 1-10% of the total droop counts.

Fig. 10 also shows that all three droop types are prevalent
for droops >4%. Moreover, we observe workload-dependent
behavior. For example, BACKP has mostly first-order droops,
whereas CVLS has mostly second-order droops. However, the
workload characteristics can be represented by our analysis
with the 8% threshold. Thus, our conclusions from the previ-
ous sections also applies to the non-typical-case droops.

4. Microarchitecture-Level Root Cause Analysis

In this section, we analyze the microarchitecture-level root
causes of the local first-order and global second-order droops.
We examine all first- and second-order droops larger than 8%.

For the local first-order droop (Sec. 4.1), we divide the
chip into four clusters. Each cluster contains four cores. We
identify the cores responsible for the droop by examining
each core’s current surge at the first-order droop frequency.
Next, to capture the root cause we inspect microarchitectural
stalls. Prior work in CPUs has shown that stalls can lead to
large droops, owing to the sudden activity burst following the
stall [11]. Given that an SM has three schedulers in the scalar
front end and SIMD backend (Fig. 11) and that the relationship
between these schedulers and voltage droop is unknown, we
consider stalls of the three schedulers (e.g., warp scheduler)
and also the major microarchitectural components in an SM.

For the global second-order droop (Sec. 4.2), almost ev-
ery large second-order droop involves synchronized current
surge, contributed by at least nine cores. Prior to the current
surge of each core is a stall period that spans over a few hun-
dred cycles (i.e., second-order droop frequency). We consider
microarchitecture-level root causes for the long stall period.
The microarchitectural activity we consider includes all the
possible events that prevent the threads from being issued, such
as barrier synchronization, as well as various cache misses.

Our key findings are as follows. The dispatch unit stalls and
register file activity are the major causes of local first-order
droop, and implicit synchronization of the activities across
cores is the predominant cause of second-order voltage droops.
These root causes comprehensively identify 99% of all droops.

1.0

0.8

0.6

0.4

0.2

0.0

Ra
tio

 o
f V

ol
ta

ge
 D

ro
op

s

KMN
BACKP

MGST BLS CFD DCT
CVLT

CVLS

 Register File
 Dispatch Stall
 Non First-Order

 Dominant

Fig. 12: Breakdown of local first-order droop root causes.

4.1. Local First-Order Voltage-Droop Root Causes

Dispatch Unit Stall A GPU core has three schedulers to
maximize throughput, as shown in Fig. 11. The front-end fetch
scheduler takes instructions from the I-cache in a round-robin
manner to create an instruction pool of different warps. The
issue scheduler, more commonly known as the warp scheduler,
selects and sends warps to the backend in accordance with
operand data availability and dependencies. The last scheduler
located in the backend, also called the dispatch unit, accesses
the register file, taking bank conflicts and write reservations
into consideration, and sends instructions to the SIMD units.

Of the three schedulers, the issue scheduler is mostly studied
due to its large impact on performance [28]. However, we find
that the last scheduler (i.e., the dispatch unit) rather than the
issue scheduler is the direct cause of large first-order droops.

Execution activity stalls in the dispatch unit can induce local
first-order droops for two reasons. First, the SIMD backend
is the most power-consuming component in GPUs [17]. The
dispatch unit is closely and tightly coupled with the power-
hungry backend components that can cause current surges,
such as the register file. Second, the time the dispatch unit
takes to ramp up the backend aligns with the first-order droop’s
frequency. By comparison, when the two other schedulers
stall, the cycles it takes to ramp up the power of the backend
datapath exceeds the first-order droop cycles, because it takes
time for the activity to propagate through the schedulers.
Register File Modern GPUs require a large register file to
hold the architectural states of thousands of threads in each
core. It is 128 KB in our simulated GTX 480 architecture.
Compared to all the other power-hungry components in the
backend, the register file experiences the largest and fastest
current changes, in a manner that aligns with the first-order
droop frequency, thus making the register file a voltage noise
hotspot inside the core. We extended the analysis of our local
first-order droop to include the register file, and find that the
sudden current surges cause a large number of voltage droops.
Cause Distribution Fig. 12 shows the ratio of the first-order
droops caused by the register file and dispatch unit. The ratio
only applies to the first-order droop here, and the “non-first-
order dominant” droop (second-order or balanced) will be
analyzed later. We find the register file and dispatch unit
contribute roughly the same in BACKP, BLS and CVLT. KMN

7

...

st.global.f32 [%rd7+0], %f2;

ld.const.f32 %f3, [ff_variable+8];

mul.lo.s32 %r6, %r4, 2;

add.s32 %r7, %r3, %r6;

cvt.s64.s32 %rd8, %r7;

mul.wide.s32 %rd9, %r7, 4;

add.u64 %rd10, %rd1, %rd9;

st.global.f32 [%rd10+0], %f3;

ld.const.f32 %f4, [ff_variable+12];

mul.lo.s32 %r8, %r4, 3;

...

Fig. 13: PTX code of kernel cuda_initialize_variables() in CFD.

has mostly register-file-induced droops. We examine its PTX
source code to verify this observation and find that it has a large
sequence of back-to-back PTX instructions that manipulate
and move operands around in the register file. Because the
register file consumes a large portion of the total power [17],
its dominant cause to voltage droops in KMN makes sense.

4.2. Global Second-Order Voltage-Droop Root Causes

The global second-order droop is the result of temporally
aligned multicore activity. Prior work (VRSync [20]) con-
cludes that explicit synchronization points in CPU programs
can cause large voltage droops. However, our analysis of
the global second-order voltage droop in GPUs reveals that
implicit synchronization is the major source of temporally
aligned activity across multiple GPU cores.

The implicit synchronization across cores is the artifact of
the GPU architecture’s single-program, multiple-data (SPMD)
execution model: all the cores execute the same code. The con-
sequence of the SPMD model is that each core can experience
very similar microarchitectural events, such as instruction or
data cache misses. Another important observation of the im-
plicit synchronization is that it has a recurring pattern because
the microarchitectural event causing the synchronization is
also recurring. We identify three dominant types of microar-
chitectural root causes for implicit synchronization in the GPU
architecture. These are the data-cache miss stalls, instruction-
cache miss stalls, and thread block alignment.
Data-Cache Miss Stall Although GPUs are designed to
hide memory access latency, a cache miss can still stall the
pipeline. The pipeline stalls when all executing threads miss
in the D-cache and no threads can be issued. Data hazards are
intuitive because the GPU cannot perform out-of-order execu-
tion. Therefore, following a data-cache miss return, there can
be a surge of activity that causes a voltage droop.

However, we find that there is one more reason for data-
cache miss stalls that can lead to large voltage droops. When
the memory request rate of the threads exceeds a core’s abil-
ity to hide the access latency, all threads may stall for the
outstanding/pending memory requests to complete due to a
structural hazard. Because the memory requests are serviced
in a round-robin fashion, after the stall each core starts up

400035003000
Execution Cycle

Core 12 - 15
10

5

0
400035003000

Execution Cycle

Core 8 - 11

Core 4 - 7
10

5

0

Core 0 - 3

of

 W
ar

ps
 R

ea
dy

 to
 Is

su
e

Fig. 14: Snapshot of showing D-cache misses alignment.

at almost the same time, which can cause a globally aligned
sudden power increase that can cause a voltage droop.

Fig. 13 shows a code example. In Fig. 13, there are multiple
st.global instructions that store the result back to the global
memory address space. Each thread executing the first store
instruction experiences a D-cache write miss. The cores con-
tinue executing the following instructions because there is no
true dependency on this st.global. However, as more threads
experience the write misses, the memory request buffer in the
load-store unit becomes full, and the threads cannot issue the
second store instruction, as well as any other instructions that
follow. As a result, all cores ramp down to a halt, as seen in
the corresponding execution graph (Fig. 14). As the structural
hazard eases, warp activity starts ramping up across all the
cores, which creates the chip-wide aligned current burst that
ultimately results in a global second-order droop.
Instruction-Cache Miss Stall Another cause of global
second-order droop is core-wide instruction-cache miss ac-
tivity. The simulated GTX 480 architecture has a 2 KB I-
cache [29]. When the program’s instruction footprint exceeds
the I-cache, each core experiences an I-cache miss stall when
a branch or an instruction outside the I-cache is executed.

Fig. 15 shows an example of an I-cache miss stall that occurs
across many cores. We show an execution snapshot of a kernel
in benchmark CFD. The kernel’s binary size is about 4 KB,
which exceeds the I-cache size. To demonstrate the correlation
between the I-cache miss and a voltage droop, each subplot
in the figure shows the power on the left y-axis and number
of warps experiencing I-cache misses per cycle on the right y-
axis. In the highlighted interval, almost all the cores except 4,
11, and 13 experience I-cache misses and incur a power surge
afterward. The last subplot shows the total power from all
cores increases from 40 watts to 100 watts in the highlighted
interval, which leads to a large global second-order droop.
Thread Block Alignment Thread blocks can cause second-
order voltage droops in one of two forms. First, thread block
launches can cause global second-order droops when multiple
thread blocks align with each other at the start of execution.
The resulting power variation behavior is equivalent in activity
to a bursty pipeline following a microarchitectural stall. When
a kernel launches, multiple thread blocks sent to all cores can
cause aligned activity that leads to a current surge.

8

0

5

10

15

Po
w

er
 (W

) Core 0

0

5

10

15

0

5

10

15
Core 1

0

5

10

15

0

5

10

15
Core 2

0

5

10

15

0

5

10

15
Core 3

0

5

10

15

0

5

10

15
Core 4

0

5

10

15

W
ar

p
C

ou
nt

s
(I−

C
ac

he
 M

is
s)

0

5

10

15

Po
w

er
 (W

)

Execution Cycle

Core 5

3500 4000 4500 5000
0

5

10

15

0

5

10

15

Execution Cycle

Core 6

3500 4000 4500 5000
0

5

10

15

0

5

10

15

Execution Cycle

Core 7

3500 4000 4500 5000
0

5

10

15

0

5

10

15

Execution Cycle

Core 8

3500 4000 4500 5000
0

5

10

15

Execution Cycle

Total Power

3500 4000 4500 5000
0

50

100

150

Po
w

er
 (W

)

Power Warp Count

Fig. 15: Snapshot of a kernel in CFD. The aligned power surge is due to chip-wide I-cache misses in all cores except 4.

Second, aligned thread block execution activity can also
happen in the middle of kernel execution. In regular programs,
thread blocks typically have similar execution times. It im-
plies that a batch of thread block launches may likely end
at the same time, immediately followed by the simultaneous
issue of pending thread blocks, thus leading to sudden power
variation. Fig. 16 shows this effect happening repeatedly mid-
way through execution by plotting the number of active warps
per cycles for a kernel in DCT. The launch of a new batch of
thread block results in repeated power spikes at around 14,000,
15,500, and ⇠ 17,000 cycles. The aligned thread block activity
across all cores causes recurring global second-order droop.

Cause Distribution To understand the importance of each
global second-order droop root cause, we show the ratio of
droops caused by the three sources in Fig. 17. The data-
cache and instruction-cache misses are the two most important
causes for second-order dominant droops. However, this does
not necessarily mean that the thread block launch is less impor-
tant, because it can cause extremely large droops (10% in BLS
and CVLS). Each program has only one dominant cause. For
example, voltage droops in CFD and DCT are mostly caused
by the data-cache misses, which conforms with prior work
that describes their memory-bound characteristics [17]. The
dominant cause in CVLT and CVLS is instruction-cache misses,
because their kernel size exceeds the instruction-cache size.

5. Voltage Smoothing

In this section, we describe the details of our voltage smooth-
ing mechanism for the two dominant types of voltage droops
we have identified: local first-order and global second-order
droops. We first show how the space-time voltage-droop cat-

15

10

5

0

17x10
3161514

Execution Cycle

Core 8 - 11

Core 4 - 7
15

10

5

0

Core 0 - 3

#
 o

f
A

c
tiv

e
 W

a
rp

s

17x10
3161514

Execution Cycle

100

50

0

P
o

w
e
r (W

)

 Total Power

Fig. 16: Snapshot of showing thread block alignment.

egorization framework helps us to reason about the voltage
smoothing requirement for each type of droop. Recogniz-
ing that the two dominant types of droops have distinctive
smoothing requirements, we propose a hierarchical smoothing
mechanism. In particular, we propose a two-level hierarchical
smoothing mechanism where each level smooths one droop
type. Our hierarchical method is succinct and adds little over-
head to the design process when implemented in hardware.

5.1. The Need for a Hierarchical Smoothing Mechanism

We explain the need for a hierarchical voltage smoothing mech-
anism in GPUs by understanding the design requirement of
smoothing mechanisms imposed from voltage-droop spatial
and temporal characteristics. Because in the GPU architecture
each type of voltage droop has its unique temporal and spa-
tial characteristics, hardware-smoothing mechanisms must be
designed accordingly to match their needs. The rest of this
subsection explains our design considerations in detail.
Voltage Smoothing Mechanism Characteristics Typi-
cally, a voltage smoothing mechanism has two parts – a front-
end detector and an actuator. The front end monitors the trend
of processor voltage variation, either by inferring it through
certain processor microarchitectural events [20, 23, 26], or by
measuring it directly with voltage sensors [14, 15]. Once the
front end decides the supply voltage would likely drop below a
certain threshold, it triggers the actuator, which is responsible
for mitigating the droop (e.g., via processor throttling).

The smoothing mechanism has three characteristics: re-
sponse time, actuation scope, and duration. The first one
pertains to the front end and describes the time slack it has to
detect the droop, whereas the other two describe the actuator.

1.0

0.8

0.6

0.4

0.2

0.0

Ra
tio

 o
f V

ol
ta

ge
 D

ro
op

s

KMN
BACKP

MGST BLS CFD DCT
CVLT

CVLS

 Non Second-Order
 Dominant

 Instruction Cache Miss
 Data Cache Miss
 Thread Block
 Uncategorized

Fig. 17: Breakdown of global second-order droop root causes.

9

Power History Buffer (4 Cycles)

Power
Proxy
ModelRegister File

Access Counts
2

Dispatched Instruction
Types Counts

Droop
Prediction

Model

Would Large
Droop Happen?

(a) Model details.

20

15

10

5

0
F
a
ls

e
 N

e
g

a
tiv

e
 (
%

)

108642

False Positive (%)

Finial Prediction Model

(b) Prediction accuracy.

Fig. 18: Local first-order droop predictor. (a) Overview. (b) The
prediction accuracy: false negative versus false positive.

Droop Type and Smoothing Characteristics Our pro-
posed temporal and spatial analysis framework in Sec. 3.1
helps us reason about the aforementioned voltage smooth-
ing mechanism characteristics. For high-frequency first-order
droop, the front end has less than 10 cycles’ response time.
Failing to respond to it in time will miss predicting the droop.
Meanwhile, the short duration of first-order droops also means
that it requires a very short mitigation duration. In contrast, a
second-order droop spans over 500 cycles. Therefore, it has a
more relaxed response-time requirement and needs a longer
duration to mitigate the droop. In terms of spatial character-
istics, local droops require the actuation scope to focus on a
small cluster of local cores, whereas global droops require full
chip actuation because they are caused by chip-wide activities.

Effectively smoothing voltage noise with minimal perfor-
mance overhead requires the smoothing mechanism to cater
to the droop’s spatial and temporal characteristics. A naive
smoothing mechanism throttling the whole chip for a long
duration would incur large performance and power overhead.

5.2. Local Voltage Smoothing

The first level in our smoothing mechanism is designed for
the local first-order voltage droops. In Sec. 4.1 we pointed
out that local first-order droops are mostly caused by dispatch
unit stall and register file accesses. Based on this finding, we
construct a model that uses the dispatch unit and register file
activities to predict if large first-order droops will occur. Then
the actuator will throttle core activities accordingly.
Front End We train a local voltage-droop prediction model
to detect the local first-order droop. Because the first-order
droop has a very short transition time, a prediction model
provides fast enough response time for the actuator.

Fig. 18a shows the details of our prediction model. The
local first-order droop is predicted by inspecting each core’s
power variation rate. A four-entry FIFO is adopted to record
the power history in the past four cycles. In each cycle, a
new power estimation gets enqueued, and a new prediction is
made based on the history information. We find a four-cycle
duration long enough to predict first-order droops.

For instantaneous power estimation, the model uses the
number of instructions issued from the dispatch unit (including

integer, floating-point, special functional, and load/store in-
structions), and register file access counts, as shown in Fig. 18a.
We adopt these metrics because they are the dominant causes
of first-order droops. We extract their energy information from
GPUWattch to estimate the power consumption.

The predictor extracts the maximum power increment across
two, three, and four cycles from the FIFO and compares them
against a set of thresholds. If any of the power increment
exceeds the corresponding threshold, a large droop is predicted.
The threshold values are derived offline and deployed for
online prediction. We trained this prediction model using a
number (about 200) of large local droops (first-order droop
larger than 8%) and a set of randomly chosen small droops.

We evaluate the prediction accuracy Pareto frontier of our
model with a different set of thresholds in Fig. 18b. We select
a final model with 7% false negative and 9% false positive
rate. We can improve the local prediction model’s accuracy
by considering neighbor cores’ activities. But we find our
single-SM-based prediction works effectively for smoothing.
Actuator The actuator for local smoothing throttles the dis-
patch unit or the register file if a large droop is predicted. Each
cycle, the local predictor examines the power history buffer.
The warp dispatch or register file access will be throttled if the
predictor deems that doing so would cause a large droop.

5.3. Global Voltage Smoothing

The second level in our hierarchical smoothing mechanism
is for reducing the global second-order voltage droops. Be-
cause of its global spatial property, detecting the second-order
droop requires knowledge of chip-wide activities. Our mech-
anism reuses the existing hardware components for global
droop detection, and thus avoids the overhead of building an
extra, expensive global chip-wide communication network or
channels. Also, due to the long duration of the second-order
droop, throttling the whole chip’s activities would likely incur
a large performance overhead. Thus, we have come up with
a technique that effectively mitigates the second-order droop
with minimal performance overhead. To achieve this, we must
leverage the architecture’s throughput-optimization features.
Front End Our root-cause analysis shows that implicit syn-
chronization due to I-/D- cache miss and thread-block exe-
cution is the root cause for the global second-order droop.
An important implication of this is that we can the detect
global second-order droop by monitoring each SM’s active
warp counts. A warp becomes inactive if it experiences I- or
D-cache misses, or finishes all of its instructions. From Fig. 14
to Fig. 16, we observe that the global droop occurs when most
SMs transit from a small number of active warps to a large
number of active warps. Our front end decides a global droop
would happen if it detects at least nine cores transiting from
zero active warps to at least one active warp in a 30-cycle
window. The reason we choose this value is that if the align-
ment cycle among cores exceeds that value, the voltage droop

10

1.2

0.9

0.6

0.3

0.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

KMN
BACKP

MGST
BLS

CFD
DCT

CVLT
CLVS

 Baseline Local Global Hierarchical
12

10

8

6

4

D
ro

op
 (%

)

KMN
BACKP

MGST
BLS

CFD
DCT

CVLT
CLVS

 Baseline Local Global Hierarchical

(a) (b)
Fig. 19: Evaluation of local-only, global-only and hierarchical smoothing. (a) Worst-case droop. (b) Normalized execution time.

magnitude drops dramatically, as shown previously in Fig. 9b.
We leverage the GPU’s thread block scheduler to make

the aforementioned decision. Each SM has a communication
channel to the thread block scheduler to inform when a thread
block has finished the execution [21]. This channel is rarely
used because a thread block normally takes at least thousands
of cycles to finish. Thus, the SM can use it to report the number
of active warps periodically (10 cycles in our implementation)
to the thread block scheduler. The scheduler then performs
detection based on the global information of all SMs. This
centralized method makes global second-order droop detection
practical and requires only a small hardware modification.
Actuator An intuitive actuator for mitigating global second-
order droop is to throttle chip-wide activities for a long enough
period. But this would cause large performance degradation.
Other than throttling, our actuator delays each SM’s execution
by 50 cycles when a global droop is detected. This minimizes
the performance degradation for two reasons. First, as shown
in Fig. 9b, a misalignment of 50 cycles, which accounts for
only 1/10 of the second-order droop duration, can effectively
reduce the second-order droop. Second, we find the global
alignment in GPUs often demonstrates a recurring pattern
(e.g. Fig. 14 and Fig. 16). Staggering the execution not only
mitigates the current alignment, but also the future recurring
alignment. This reduces the number of times the global actua-
tor is triggered, further minimizing the smoothing overhead.

6. Evaluation
In this section, we evaluate the proposed hierarchical voltage
smoothing mechanism, considering its smoothing effect on
the worst-case droop magnitude reduction. We then discuss
the impact of voltage smoothing on energy improvements
by reducing the voltage guardband. Besides the hierarchical
mechanism, we also evaluate the two smoothing levels individ-
ually – local only and global only – and show that they are not
as effective as the combined hierarchical smoothing. We also
discuss the performance overhead and the sensitivity of the
hierarchical smoothing to different packages characteristics.
Worst-Case Droop We evaluate the smoothing mecha-
nism’s effect on worst-case droop reduction because the the
worst-case decides the amount of voltage guardband needed.
Fig. 19a shows the worst-case droop of the simulated applica-
tions over baseline, local-only, global-only, and hierarchical

voltage smoothing. The baseline has no smoothing applied. In
Fig. 19a, the local-only smoothing can reduce the worst-case
droop in local first-order-droop-dominant applications such
as KMN and BACKP, but cannot mitigate the worst-case droop
in global second-order-droop-dominant applications such as
CVLT and CVLT. We observe the opposite effect for global-only
smoothing. However, the combined hierarchical smoothing
effectively reduces the worst-case droop of all applications.
The reduction is 21% for the first-order-dominant application
KMN, 29% for the balanced-droop-dominant application BLS,
and 45% for the second-order-dominant application CVLS. The
geometric mean of reduction for all applications is 27%.
Performance Overhead We also evaluate the performance
overhead of our smoothing mechanism. Fig. 19b shows the
normalized execution time for the same four scenarios as in
Fig. 19a. Generally, the geometric average execution time
increase is 3.5% for hierarchical voltage smoothing. We also
show the overhead of local-only and global-only smoothing,
which is only 1.2% and 2.3%, respectively. Note that global
smoothing increases the execution time of MGST by 16%
because the global synchronization in the application does
not have a regularly recurring pattern and that makes global
smoothing trigger many more times. Overall, the overhead is
small because large voltage droops are rare and do not occur
frequently during execution. Thus, the benefit of hierarchical
voltage smoothing is that it does not hurt performance when
droops are occurring infrequently, and performance degrada-
tion is only experienced when droops are predicted.
Energy Consumption We also evaluate the energy saving
benefit of voltage smoothing by lowering the supply voltage.
With hierarchical smoothing in place, the worst-case droop
among all applications decreases from 12% to 8.3% in BLS.
So we assume the supply voltage can reduce from the nominal
1 V to 0.96 V. Fig. 20 shows the normalized energy consump-
tion from core and noncore (L2 cache, NoC, and memory
controller) for all applications. Note that we assume that the
noncore components do not share the PDN with cores; thus,
there is not much energy reduction for noncore components.
The average energy saving after lowering the supply voltage
is 11.8% for all cores and 7.8% for the whole processor.
Package Sensitivity We also consider the sensitivity of the
hierarchical smoothing mechanism to package characteristics
and show that it can still effectively reduce the worst-case

11

1.0

0.8

0.6

0.4

0.2

0.0

N
o

rm
a
liz

e
d

 E
n
e
rg

y

KMN

BACKP
MGST

BLS
CFD

DCT
CVLT

CLV
S

 Core Non-Core

B
as

el
in
e

H
ie
ra
rc
hi
ca

l

Fig. 20: Normalized energy savings of smoothing.

droop of all applications, regardless of package parameters.
Due to space constraints we summarize only our key results.

We performed the sensitivity study on the three packages de-
scribed in Sec. 2. The hierarchical voltage smoothing reduces
the worst-case droop of all applications by 33.8%, 37.7%, and
22.75% for three packages. The average worst case droop
reduction is 28%, 29%, and 21.6%. We notice that hierarchi-
cal smoothing is relatively more sensitive to the first-order
impedance. Recall that the local prediction model was trained
offline using the default package droop values, and that makes
the model less effective for predicting large local droops in a
package with higher first-order droop frequency. The model
requires re-training to perform better for a different package.
Smoothing Aggressiveness Our smoothing mechanism can
be tuned to target different operating voltage margins. Smooth-
ing voltage noise aggressively lets the processor operate with a
tighter margin, which can reduce energy consumption further.
But the trade-off is the added performance overhead.

We discuss such a trade-off using Fig. 21. We use the
target droop threshold (x-axis) as the metric for evaluating
hierarchical smoothing aggresiveness. The 12% target is the
baseline, i.e., no smoothing applied. The 8% target is the
smoothing target evaluated previously. The 5% target is an
aggressive optimization goal.

The worst-case droop of all benchmarks decreases as
smoothing aggressiveness is increased, as shown in the left
subplot of Fig. 21. However, performance overhead can be
high. For example, the execution time (middle subplot) of
DCT increases to 1.35⇥ the baseline under the most aggressive
case. The increased slowdown neutralizes energy improve-
ment, resulting in no energy reduction for DCT (right subplot).
We also note workload-dependent behavior: KMN’s execution
also increases to 1.25⇥ under the most aggressive case but
it still has over 10% energy reduction. This is caused by the
difference in ratio between dynamic and static energy. KMN
has a high portion of static energy, which is greatly increased
during smoothing, whereas DCT has a high portion of dynamic
energy, which is not increased as much during smoothing.

7. Related Work
To the best of our knowledge, this work represents the first
comprehensive voltage noise characterization and smoothing
effort for voltage noise in GPU architectures. We first study
the voltage droop types categorized by our spatial and tem-
poral analysis framework and subsequently analyze voltage

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

N
or

m
. E

xe
cu

tio
n

Ti
m

e

12 8 7 6 5
Target Droop (%)

1.02

1.00

0.98

0.96

0.94

0.92

0.90

0.88

N
or

m
. E

ne
rg

y

12 8 7 6 5
Target Droop (%)

12

11

10

9

8

7

6

5

W
or

st
-C

as
e

Dr
oo

p
(%

)

12 8 7 6 5
Target Droop (%)

 KMN
 BLS
 DCT
 CLVS

Fig. 21: Worst-case droop (left), performance (middle), and en-
ergy (right) trade-off with different smoothing aggressiveness.

interference in the manycore architecture. Following that,
we study the microarchitectural root cause for each type of
voltage droop, and propose a hierarchical voltage smoothing
mechanism. To effectively smooth voltage noise, we present a
systematic approach involving four key aspects. We compare
and contrast with prior work in CPUs for all of the above.
Spatial and Temporal Analysis Most prior works in CPUs
demonstrate the severity of the first-order voltage droop [14,
23, 24]. However, the scope of these works is only at the
single-core level. Thus, their insight is mostly relevant to the
local first-order droop in a multicore CPU. VRSync studies the
global second-order droop in a 32-core CPU processor. The
authors do not mention that they target on second-order droop,
but we infer that by examining the droop duration in the paper.

In contrast, our work studies both the spatial and temporal
properties of voltage droops in GPUs. The characterization
effort reveals that both second-order and first-order droops
are important. While the second-order droop is omitted by
most works in the CPU domain, the second-order droop can
be dominant in certain workloads for GPUs. Further more, our
analysis demonstrates that only two types of voltage droop in
GPUs matter: local first-order and global second-order droop.
Voltage Interference A shared power delivery network in
the manycore architecture can amplify the amount of voltage
droop. Both temporal alignment and spatial distance of cores’
activities impact the amount of voltage nose interference that is
experienced by the processor. Prior works in CPUs [10,13,27]
focused only on the temporal alignment effect.

Our work shows that the GPU’s manycore nature increases
the role of spatial distance between cores’ activities on voltage
noise. Spatial distance combined with temporal alignment can
lead to the constructive build-up of voltage noise that leads to
both the local first- and global second-order droops in GPUs.
Microarchitectural Root Cause The local first- and global
second-order voltage droops have different microarchitectural
causes in both the CPU and GPU. In the CPU, the current
surge after pipeline stall is the root cause of first-order droop.
The microarchitectural events that cause pipeline stall include
cache & TLB misses, and branch misprediction [7, 9, 14, 23].

Our work shows the complete pipeline stall does not cause
the large first-order droop in GPUs. Instead, we identify that

12

stalls in last scheduler (out of three schedulers) – i.e., the
dispatch unit – causes the large first-order droop. Besides that,
the large power-consuming register file is another source.

In multicore CPUs, explicit synchronization such as barrier
synchronization has been identified as a cause of the global
second-order droop [20]. However, our analysis attributes im-
plicit synchronization as a major root cause of such droop in
GPUs. The microarchitectural events that cause implicit syn-
chronization include the I- & D-cache miss and thread block
launch. Moreover, explicit synchronization causes only a
one-time voltage droop, whereas we find that implicit synchro-
nization tends to induce recurring voltage droops in GPUs.
Smoothing Various hardware and software methods have
been proposed to mitigate CPU voltage noise [9,11,20,23–26].
Our work differs from these in that our smoothing mechanism
is hierarchical, more specifically two-level, and targets the
GPU’s unique microarchitecture-level voltage-droop causes.

8. Conclusion
We propose a hierarchical mechanism to smooth out voltage
noise in GPU architectures. Our mechanism mitigates local
first-order droops with a per-core voltage droop predictor and
reduces global second-order droops by staggering the execu-
tion of core activities such as thread block issuing. The hierar-
chical mechanism is motivated by our voltage noise space-time
characterization and the associated microarchitecture-level
root-cause analysis. Our evaluation shows that the smoothing
mechanism reduces up to 31% of the worst-case droop, which
translates to 11.8% core-level energy reduction. But more im-
portantly, the characterization work can enable future effort in
exploring more aggressive guardbanding solutions for larger
energy gain. Our work opens up new research possibilities,
such as identifying the ideal operating voltage guardband for
individual GPU kernels, dynamically tuning the guardband for
various kernels during execution, performing timing specula-
tion in GPUs using fail-safe hardware recovery mechanisms,
smoothing voltage noise using novel compiler techniques, etc.

Acknowledgments
This work is supported by the National Science Foundation
grant CCF-1218474. The views expressed in this paper are
those of the authors only and do not reflect the official policy
or position of the NSF or the U.S. Government.

References
[1] “Green500 List,” www.green500.org, [Last accessed: Sep. 12, 2014].
[2] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“GPGPU-Sim,” www.gpgpu-sim.org.
[3] ——, “Analyzing CUDA Workloads Using a Detailed GPU Simula-

tor,” in Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009.

[4] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of
Irregular Programs on GPUs,” in Proceedings of the International
Symposium on Workload Characterization (IISWC), 2012.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), 2009.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner et al., “Razor: A low-power pipeline
based on circuit-level timing speculation,” in Proceedings of the Inter-
national Symposium on Microarchitecture (MICRO), 2003.

[7] E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural simu-
lation and control of di/dt-induced power supply voltage variation,”
in Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2002.

[8] M. Gupta, “Variation-Aware Processor Architectures with Aggressive
Operating Margins,” Ph.D. thesis, Harvard, 2009.

[9] M. S. Gupta et al., “An event-guided approach to handling inductive
noise in processors,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), 2009.

[10] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. M. Brooks,
“Understanding Voltage Variations in Chip Multiprocessors Using a
Distributed Power-delivery Network,” in Proceedings of the Conference
on Design, Automation and Test in Europe (DATE), 2007.

[11] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks,
“Towards a software approach to mitigate voltage emergencies,” in
Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), 2007.

[12] ——, “Decor: A delayed commit and rollback mechanism for handling
inductive noise in processors,” in High Performance Computer Archi-
tecture, 2008. HPCA 2008. IEEE 14th International Symposium on.
IEEE, 2008, pp. 381–392.

[13] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie, “Compari-
son of Split-Versus Connected-Core Supplies in the POWER6 Micro-
processor,” in International Solid-State Circuits Conference (ISSCC),
2007.

[14] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to elimi-
nate voltage emergencies in high performance processors,” in Proceed-
ings of the International Symposium on High-Performance Computer
Architecture (HPCA), 2003.

[15] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock,
J. A. Tierno, and J. B. Carter, “Active Management of Timing Guard-
band to Save Energy in POWER7,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2011.

[16] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch,” gpuwattch.ece.utexas.edu.

[17] ——, “GPUWattch: Enabling Energy Optimizations in GPGPUs,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2013.

[18] J. Leng, Y. Zu, and V. J. Reddi, “Energy Efficiency Benefits of Reducing
the Voltage Guardband on the Kepler GPU Architecture,” in Workshop
on Silicon Errors in Logic - System Effects (SELSE), 2014.

[19] J. Leng, Y. Zu, M. Rhu, M. Gupta, and V. J. Reddi, “GPUVolt: Modeling
and Characterizing Voltage Noise in GPU Architectures,” in Proceed-
ings of the International Symposium on Low Power Electronics and
Design (ISLPED), 2014.

[20] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “VRSync: Charac-
terizing and Eliminating Synchronization-induced Voltage Emergencies
in Many-core Processors,” in Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), 2012.

[21] NVIDIA, Fermi Compute Architecture Whitepaper, 2009.
[22] NVIDIA Corporation, “NVIDIA CUDA Programming Guide,” 2011.
[23] M. D. Powell et al., “Pipeline damping: a microarchitectural technique

to reduce inductive noise in supply voltage,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2003.

[24] M. D. Powell and T. N. Vijaykumar, “Pipeline Muffling and a Priori
Current Ramping: Architectural Techniques to Reduce High-frequency
Inductive Noise,” in Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED), 2003.

[25] V. J. Reddi, M. S. Gupta, M. D. Smith, G.-y. Wei, D. Brooks, and
S. Campanoni, “Software-assisted hardware reliability: abstracting
circuit-level challenges to the software stack,” in Proceedings of the
Design Automation Conference (DAC), 2009.

[26] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and
D. Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2009.

[27] V. Reddi, S. Kanev, W. Kim, S. Campanoni, M. Smith, G.-Y. Wei,
and D. Brooks, “Voltage Smoothing: Characterizing and Mitigating
Voltage Noise in Production Processors via Software-Guided Thread
Scheduling,” in Proceedings of the International Symposium on Mi-
croarchitecture (MICRO), 2010.

[28] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2012.

[29] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture Through Mi-
crobenchmarking,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2010.

13

