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ABSTRACT
As graph neural networks (GNNs) have achieved great success in
many graph learning problems, it is of paramount importance to
support their efficient execution. Different graphs and different
operators present different patterns during execution. However,
there is still a gap in the existing GNN acceleration research to
explore adaptive parallelism. We show that existing GNN frame-
works rely on handwritten static kernels, which fail to achieve
the best performance across different graph operators and input
graph structures. In this work, we propose 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , a unified in-
terface that achieves general high performance for different graph
operators and datasets. The existing GNN frameworks can easily
integrate our design for its simple and unified API. We take a prin-
cipled approach that decouples a graph operator’s computation and
schedule to achieve that. We first build a GNN-specific operator
abstraction that incorporates the semantics of graph tensors and
graph loops. We explore various schedule strategies based on the
abstraction that can balance the well-established trade-off relation-
ship between parallelism, locality, and efficiency. Our evaluation
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shows that 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 can bring up to 29.1× (3.5× on average) per-
formance improvement over the state-of-the-art baselines on two
studied NVIDIA GPUs.
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1 INTRODUCTION
In recent years, graph neural networks (GNNs) have emerged as
a graph computing paradigm and achieved great success in ma-
chine learning for the graph field. Existing deep neural networks
(DNNs) can only handle structured data such as images, sounds,
and text. However, many real-world applications have the input
of non-Euclidean graphs, such as chemistry [12], neurology [27],
electronics [8], and social networks [9, 10], for which DNNs are
not applicable. In contrast, GNNs can extend DNNs’ learning ca-
pabilities to these graph-related tasks and have led to significant
breakthroughs [3, 47, 52].
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Figure 1: The normalized latency comparison of DGL, PyG, GNNAd-
visor, and 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 (this work) with different models (𝑥-axis) and
graph datasets (𝑦-axis) on V100 GPU. In the heatmap, lower numbers
are better, with one being the fastest for the givenmodel and dataset.

There is a huge architectural space for GNN models that are con-
stantly evolving. As a result, the variability and complexity of the
graph operators used by GNNs rapidly increase. For example, from
the early GCN [26] to the later GAT [43] and GIN [48], the number
of graph operators in GNN models increases significantly. Mean-
while, these new graph operators also becomemore complex, which
makes the high-performance GNN execution more challenging [1].

Besides the large design space of graph operators, GNN models
also operate on different graph structure datasets with distinctive
characteristics such as density and cluster locality. As such, tra-
ditional graph processing systems [41, 45] explore the adaptive
parallelization patterns in different scenarios to obtain high perfor-
mance. However, such adaptivity is still absent for GNNs, which
demonstrate different patterns and bottlenecks for different graph
datasets and graph operators [32]. Meanwhile, GNNs differ from
traditional graph algorithms as they do not have the complex con-
trol flow brought by frontier, but involve the traversal of feature
dimensions and more complex computations while traversing the
graph.

Current frameworks rely on handwritten implementation to
execute graph operators incompatible with static kernels. However,
these handwritten kernels only perform well for a specific GNN
model and input graph dataset. They have sub-optimal performance
when the GNN model and its input graph dataset change. Fig. 1
compares the normalized execution latency of DGL [44], PyG [11],
and GNNAdvisor [46] for several representative GNN models and
different graph datasets on the V100 GPU. Our results confirm that
all studied frameworks can only achieve the best performance for
a limited range of GNN models and datasets.

The reason for the above performance variability problem is that
these frameworks all use a fixed execution strategy for different
graph operators and input graphs. However, achieving the best
performance for different GNN models and input graph structures
requires a dynamic trade-off between locality, parallelism, and work
efficiency. As the input to GNN models, graphs vary significantly
in terms of the number of vertices, the number of edges, sparsity,
size of input feature, and distribution characteristics of edges inside
the graph [24, 46, 51]. Meanwhile, graph operators in different
GNN models have distinctive computational and memory access

Table 1: Comparison of existing graph operator acceleration
methods with our proposed uGrapher.

Work Parallelization
Strategy

Extension
Overhead Scalibility

GNNAdvisor [46] Static Handwritten CUDA Low
GE-SpMM [19] Static Handwritten CUDA Low
FeatGraph [18] Static TVM Template Middle

uGrapher(Ours) Adaptive Simple Op Info High

characteristics [20]. For example, the graph operator in GCN [26]
accumulates each vertex’s feature embedding from its neighbors.
In contrast, the graph operator in GAT [43] first calculates a weight
for each edge and then performs a weighted accumulation. Thus,
a fixed execution strategy yields varying performance results for
different GNN models and datasets.

In this work, we propose 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , a unified and high-perfor-
mance interface for supporting graph operators that can be easily
integrated into existing GNN frameworks. We take a principled
approach that decouples the computation and schedule of a graph
operator to adapt to the dynamics of different GNN operators and
datasets. We analyze all the graph operators and abstract them
as a unified form of nested sparse-dense for-loops. Specifically,
the innermost level of the nested loop captures the semantics of
different graph operators, while the outermost loop offers the op-
portunity for a unified and comprehensive parallelization space
exploration. Based on the unified abstraction, we explore various
execution strategies and their trade-off relationships of different
loop transformations corresponding to different graph operators
on GPUs.

Meanwhile, 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 also provides a unified and easy-to-use
API for the upper-level GNN framework, for which the underly-
ing performance tuning is transparent. We conduct a comprehen-
sive analysis of 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 performance using fifteen real-world
graph datasets with different embedding sizes and structures and
six typical GNN models with different computational characteris-
tics. We compare the performance of our work with current state-
of-the-art GNN frameworks. The experimental results in Fig. 1
show that our design achieves optimal results in almost all sce-
narios and near-optimal results in the rest cases, compared to
the existing frameworks. With the flexible and adaptive nature
of 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , we believe that our work can be useful for supporting
the high-performance acceleration of fast-evolving GNN models
and datasets.

Besides providing high-performance for a wide range of graph
operators and datasets, 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 is extremely flexible and scalable
compared to existing manual optimization methods. As shown in
Tbl. 1, existing solutions only support fixed parallelization strate-
gies, while for graph operator extensions, GE-SpMM [19] and GN-
NAdvisor [46] need to rewrite handwritten CUDA code completely,
and FeatGraph [18] requires users to provide new TVM templates.
In contrast, our proposed 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 can provide high-performance
automatic CUDA code generation for all graph operators in GNNs
with just minimal operator information.

Overall, our work makes the following contributions:
• We analyze the inefficiency of existing GNN frameworks at the
kernel level for different graph operators and datasets.
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Figure 2: (a) An example graph structure; (b) Workload im-
balance using a simple fixed mapping strategy.

• We propose a unified abstraction for all the graph operators in
GNNs, which also defines a comprehensive optimization space
for different parallel execution strategies on GPUs. We are the
first work that exploits adaptive parallelization strategies for high
performance in different graphs and different operators of GNNs.

• Based on the unified abstraction, we are able to automatically
provide high-performance generation of cuda code for all graph
operators, requiring only simple operator information, which
brings significant flexibility and scalability.

• We design a unified API 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , which can support all the
graph operators in existing frameworks and explore their optimal
parallel execution strategy on different graph datasets. Practi-
cally, we implement the integration of uGrapher with existing
frameworks. Based on 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , we are able to improve the
performance of existing frameworks by 3.5× on average.

2 BACKGROUND AND MOTIVATION
This section presents a brief background on the existing frame-
works, including DGL [44] and PyG [11] for GraphNeural Networks
(GNNs), with an emphasis on their programming interface and exe-
cution strategy. We then demonstrate their execution inefficiency
through experiments on GPUs.

2.1 Graph Neural Networks
In recent years, GNNs have received wide attention from academia
and industry for their powerful learning and inference capabilities
for graph structures in non-Euclidean spaces [47]. The output of a
GNN model is a 𝑑-dimensional embedding vector for each node in
the input graph. For vertices with similar properties (e.g., subgraph
structures), their embeddings are also close to each other, enabling
fast reasoning about graph-related problems [14, 26].
GNN Model. To obtain these embeddings, GNNs combine DNN-
based feature transformation and graph-based operations that prop-
agate and aggregate information along the graph structure. Owing
to the mixture of DNN operations and graph operations, existing
GNN frameworks like DGL [44] and PyTorch-Geometric (PyG) [11]
extend the existing DNN frameworks like TensorFlow and PyTorch
with the key concept of message, which is an intermediate feature
embedding associated with each edge. We use the following equa-
tions to formalize graph operations centering around the message.

For any operation on a graph𝐺 = (𝑉 , 𝐸), it can be classified into
three stages, namely message creation, message aggregation, and
feature update, based on the properties of the data and the direction
of data movement as following:

Table 2: Classification of Graph operators. ’V’ means vertex
embedding tensor and ’E’ means edge embedding tensor.

Operator Type Message
Creation

Message
Aggregation

Fused
Aggregation

Input Type V E V&E E V V&E
Output Type E E E V V V

Operator Count 11 1 20 4 44 80

𝑚𝑒 = Message_Creation (ℎ𝑢 , ℎ𝑣,𝑤𝑒 ) , (𝑢, 𝑒, 𝑣) ∈ E (1)
ℎ𝑣 = Message_Aggregation ({𝑚𝑒 : (𝑢, 𝑒, 𝑣) ∈ E}) (2)

𝑥𝑛𝑒𝑤𝑣 = Combination (ℎ𝑣, ℎ𝑣) , 𝑣 ∈ V, (3)

where 𝑢 and 𝑣 are vertex (or node) indices, 𝑒 is the index for the
edge between 𝑢 and 𝑣 ; ℎ𝑣 refers to the feature embedding of vertex
𝑣 , and𝑚𝑒 is the message associated with the edge 𝑒 .

In Equation (1), each edge creates its message𝑚𝑒 by applying an
edge-wise message function to its own edge feature and associated
vertex features. In Equation (2), each vertex aggregates themessages
from incoming edges using an aggregation function. In Equation (3),
each vertex updates its features using a vertex-wise combination
function. In GNNs, the collection of the feature embeddings of all
vertices (edges) is called vertex (edge) embedding tensor.
Graph Operator Definition. We define the graph operators as
ones that need to traverse the input graph structure. The message-
creation and message-aggregation explained above are two types of
graph operators. When the message-creation operator is a simple
copy operation, it can be fused into message-aggregation opera-
tor to avoid redundant accesses, which is used by both DGL and
PyG. As such, there exists a third type graph operator called fused-
aggregation operator that fuses the original message creation and
message aggregation operators. 1

In short, graph operators include message-creation and message-
aggregation, and fused-aggregation operators. They include both
irregular memory behaviors due to graph structures and complex
arithmetic computations, thus introducing a critical challenge to
high-performance GNN computation. Therefore, the computational
optimization of graph operators becomes the optimization scope of
our work.
Complexity of Graph Operators. Different GNN models use
different graph operators, which have a large design space. Tbl. 2
categorizes the 160 graph operators supported by DGL according to
their input and output tensor types. Even with the same input/out-
put tensors, graph operators can perform different computation
patterns. Therefore, providing practical high-performance support
for all these operations is challenging and requires a systematic
and automatic solution.
Variability of Graph Data. Real-world graph datasets also have a
large variability. As shown in the Tbl. 3, we select 15 commonly used
graph datasets for our analysis. We collect the number of vertices
and edges of different graphs to reflect the size scale of the graph.
We also derive the standard deviation of non-zeros (“std of nnz”
column) in rows of adjacency matrix, which reflects the degree of

1In this paper, the aggregation operator refers to the fused-aggregation operator, if not
explicitly specified.
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Table 3: Details of graph datasets used for evaluation.

dataset #Vertex #Edge std of nnz #Feature #Class
cora(CO) 2708 10556 5.23 1433 7
citeseer(CI) 3327 9228 3.38 3703 6
pubmed(PU) 19717 99203 7.82 500 3
PROTEINS_full(PR) 43466 162088 1.15 29 2
artist(AR) 50515 1638396 63.47 100 12
ppi(PP) 56944 818716 23.29 50 121
soc-BlogCatalog(SB) 88784 2093195 206.81 128 39
com-amazon(CA) 334863 1851744 5.76 96 22
DD(DD) 334925 1686092 1.69 89 2
amazon0601(AM06) 403394 3387388 15.28 96 22
amazon0505(AM05) 410236 4878874 15.05 96 22
TWITTER-Partial(TW) 580768 1435116 1.52 1323 2
Yeast(YE) 1710902 3636546 0.75 74 2
SW-620H(SW) 1888584 3944206 1.16 66 2
OVCAR-8H(OV) 1889542 3946402 1.16 66 2

graph balancing. Different graph datasets also have diverse features
and class sizes, which affects the memory usage and computation
complexity of some graph operators. As can be seen from the table,
the properties vary significantly between the different graphs.

2.2 Execution Efficiency Analysis on GPU
We choose Nvidia GPUs [35, 37] with CUDA programming lan-
guage as the target hardware in this paper. The GPU architecture
is highly parallel, and has many streaming multiprocessors (SMs).
An SM executes threads in the SIMT (Single Instruction Multiple
Threads) fashion, and a warp with 32 threads run simultaneously.
The massive computing and memory resources make the GPU in-
creasingly important for deep learning acceleration [42]. We show
that, due to the lack of systematic optimization methodology, the
underlying CUDA kernels used by existing GNN frameworks suf-
fer from inefficiency and inflexibility. We use only DGL in this
subsection, but the kernels in PyG have similar issues.

The DGL calls static CUDA kernels to support the message pass-
ing programming interface shown in the previous subsection, which
does not adaptively adjust to different computing scenarios. We
analyze their inefficiencies as below.

We choose two graph operators commonly used in GNN for
quantitative analysis. The first one is the weighted-aggr-sum graph
operator in GCN [26] and GAT [43], and the other one is the
unweighted-aggr-max in SageMax [14], the former is heavier in
access and computation than the latter due to the addition of edge
weights. We use AR and SO as representatives of imbalance graphs,
and PR and DD as representatives of balance graphs, and collect
their occupancy metric via nvprof [36]. Furthermore, we also used
CO and CI as representatives of small graphs, and SW and OV as
examples of large graphs, and collected their sm efficiency and L2
cache hit under different operators.

The results are shown in the Fig. 3, and there are some similar
patterns of results in both different operators. The occupancy is sig-
nificantly lower for the imbalance graphs compared to the balance
graphs. Moreover, smaller graphs get higher L2 cache hit rate while
obtaining lower sm efficiency compared to larger graphs. Addition-
ally, there is a variation in the results between the operators. For
the lightweight unweighted-aggr-max, the difference in occupancy
results between imbalance and balance graphs is larger, but the

Occupancy
SM Efficiency
Cache Hit Rate

0

0.5

1.0

balance
imbalance

small
large

(a)weighted-aggr-sum kernel.

0

0.5

1.0
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(b) unweighted-aggr-max kernel.

Figure 3: Evaluation of DGL kernel limitation. The feature size for
all experiments is 32, and the results are collected via nvprof on
V100.

difference in sm efficiency and cache hit rate between small and
large graphs is relatively smaller.

These results imply that when executing imbalance graphs, the
low occupancy of the GPU leads to the underutilization of hardware
resources. And when executing small graphs, GPU performance
is usually bounded by the underutilization of hardware resources
due to parallelism, while access bandwidth becomes a bottleneck
due to low locality when executing large graphs. Meanwhile, these
metrics can vary from operators.
Summary. Existing GNN frameworks rely on handwritten kernels
with fixed execution strategies, which have inefficiencies for execut-
ing GNN models owing to the diversity of graph-related operations
and the diversity of real-world graph structures. This motivates us
to design a unified interface𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 for supporting existing GNN
frameworks. Our unified interface captures the complete semantic
representation of all common graph operators in GNNs, while en-
abling different dynamic and flexible execution strategies for input
graph data and graph operators with different characteristics.

3 UNIFIED GRAPH OPERATOR
ABSTRACTION

Previous works only decompose GNNs into different stages [11, 31,
44], but lack modeling abstraction of the underlying graph-related
operators. This section describes our unified abstraction for all the
graph operators in current GNN models, which adopts the nested
sparse-dense loops.We first start with the aggregation-sum operator
as an example to illustrate our abstraction. We then describe its
generalization capability to represent all the graph operators.

3.1 Nested For-Loop Notation for Graph
Operators

We use the same example of aggregation-sum operator in Sec. 2.2
to illustrate our graph operator abstraction. This operator is widely
used in GNNs, and for each vertex in the graph, the operator tra-
verses its neighboring vertices and accumulates their feature em-
beddings.

As shown in Fig. 4, it is natural to use the nested-loops to repre-
sent the aggregation-sum operator. The graph operator abstraction
consists of three loops, where Line 5 and 6 represent the traversal
of all vertices in the graph and their respective incoming edges, and
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1 Input: Graph G=(V,E), Vertex Embedding Tensor X[V][F] 

2 Output: Vertex Embedding Tensor Y[V][F] 

3  

4 Aggregation-Sum: 

5     for dst in V: 

6         for edge in dst.get_inedges(): 

7             src = edge.src_v 

8             for feat in F: 
9                 Y[dst][feat] += X[src][feat] 
 

Figure 4: The nested-loop-based aggregation-sum graph op-
erator.

Line 8 represents the traversal in the feature dimension. The inner-
most statement (Line 9) implements the combined accumulation of
the data from the source vertex towards the destination vertex.

Our abstraction also incorporates several GNN-specific data
structures that capture the operator’s graph-level semantics. In
Fig. 4, the inputs to the aggregation-sum graph operator are the
graph G and the vertex feature embedding tensor X, which outputs
a new vertex embedding tensor Y. A graph is a pair formed by
combining two sets, where V and E denote the sets of all vertices
and all edges inside the graph. Each element of the set V represents
a vertex, and each vertex can get the incoming and outgoing edges
of the vertex by get_inedges() and get_outedges() interface, respec-
tively. Each element of the set E represents an edge, which is a pair
of vertices, and the corresponding source and destination vertices
can be obtained by src_v and dst_v.

3.2 Unified Abstraction Design
We analyze all graph operators in GNNs and find that they share
a common pattern. Specifically, they contain the following three
execution stages: moving data from vertices to edges, performing
the edge-wise computation for all edges, and executing a reduction
function from edges to their associated vertices. Different operators
perform different edge-wise and reduction computation, and may
skip certain stages.

For example, the aggregation-sum operator in the SageSum [14]
model simply copies each edge’s source vertex feature to form the
edge feature, and performs no edge computation. For each vertex,
it then reduces the edge features of all its incoming edges to a
new vertex feature. By contrast, GAT [43] model contains several
graph operators with other different computation patterns. The first
message-creation operator is very lightweight, where the features of
the source vertex and destination vertex of each edge are summed as
edge feature for calculating the attention weight, skipping the final
reduction stage. In contrast, the second aggregation-sum operator
involves the computations in all three stages. This operator first
copies features from the source vertex, then performs an edge-wise
multiplication with the previously generated edge weights, and
lastly reduces the transformed edge features to vertex features. As
such, the second operator is more computation-heavy than the first
operator.

Given the similarities and differences in these graph operators,
we keep the nested loop as the basis of our graph operator abstrac-
tion and allow users to customize input tensors and element-wise

1 edge_op_list = [copy_lhs, copy_rhs, mul, add, sub, div] 
2 gather_op_list = [copy_lhs, copy_rhs, sum, max, min, mean] 
3 tensor_type_list = [Src_V, Dst_V, Edge] 
4 type_idx_dict = {Src_V: src, Dst_V: Dst, Edge: edge, NULL: 

NULL} 
5  
6 Input: edge_op, gather_op, Tensor A, Tensor B, Tensor C, 

 Graph G=(V,E) 
7 Output: Tensor C 
8  
9 Unified Abstraction: 
10     a_idx = type_idx_dict[A.type] 
11     b_idx = type_idx_dict[B.type] 
12     c_idx = type_idx_dict[C.type] 
13  
14     for dst in V: 
15         for edge in dst.get_inedges(): 
16             src = edge.src_v   
17             for feat in F: 
18                 edge_tmp = edge_op(A[a_idx][feat],                 

B[b_idx][feat]) 
19                 C[c_idx][feat] = gather_op(C[c_idx][feat], 

edge_tmp)  
 

Figure 5: Our unified graph operator abstraction.

operations to represent different operators. Fig. 5 gives the details
of unified abstraction. Compared to the aggregation-sum represen-
tation in Fig. 4, the nested loops remain identical, but the innermost
code block introduces two additional dynamic operators: edge_op
and gather_op, which can be defined by users.

The edge_op implements the edge-wise computation on each
edge, while gather_op implements the edge-to-vertex reduction
operation. For example, to represent the aggregation-sum in Fig. 4,
the two functions can be set to copy_lhs (i.e., copy from the left-hand
side) and copy_rhs (i.e., copy from the right-hand side), respectively.

Besides the input of edge_op, gather_op and graph structure G,
the unified abstraction in Fig. 5 also requires three additional input
embedding tensors. To maintain the flexibility to represent different
graph operators, the types of these three embedding tensors can be
any of the following ones: source vertex embedding tensor (Src_V),
destination vertex embedding tensor (Dst_V), edge embedding ten-
sor (Edge), and NULL. The different data types also determine the
different addressing patterns in the loop computation (Line 10 to
12). For instance, the output tensor Y of aggregation-sum in Fig. 4
corresponds to the C tensor with destination vertex feature type,
while its addressing dimension of Line 9 is always based on dst.

In summary, the combination of edge_op and gather_op, together
with the tensor types in A, B, C capture the complete semantics
of a graph operator, including its computation and memory move-
ment patterns. The equation below formally defines our unified
abstraction, with𝜓 as the edge_op function, and 𝜌 as the gather_op
function.

𝐶𝑐_𝑖𝑑𝑥,𝑓 =
∑︁

𝑑𝑠𝑡 ∈𝑉

∑︁
𝑠𝑟𝑐∈𝑉

∑︁
𝑓 ∈𝐹

𝜓 (𝐶𝑐_𝑖𝑑𝑥,𝑓 , 𝜌
(
𝐴𝑎_𝑖𝑑𝑥,𝑓 , 𝐵𝑏_𝑖𝑑𝑥,𝑓

)
)
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warp-parallel for dst in V: 
F1, F2 = F.split(WarpSize) 

    lane-parallel for f_idx2 in F2:  
     for edge in dst.get_inedges() 
         src = edge.src_v 
            for f_idx1 in F1: 
             f_idx = f_idx1 * WarpSize + f_idx2 
             h_o[dst][f_idx] += h[src][f_idx] 
 

Algorithm: Aggregation-Sum 
Input: Graph g=(V,E), h[V][F] 
Output: h_o[V][F] 
 
for dst in V: 
    for edge in dst. get_inedges(): 

src = edge.src_v 
for f_idx in F: 

h_o[dst][f_idx] += h[src][f_idx] 
 

Thread-Vertex

Warp-Edge

Thread-Edge

Warp-Vertex

Warp-Edge_EGrouping_FeatTiling

(a)

(b) (c)

(d) (e)

(f)
thread-parallel for dst in V: 
    for edge in dst.get_inedges(): 
        src = edge.src_v 
        for f_idx in F: 
            h_o[dst][f_idx] += h[src][f_idx] 
 

warp-parallel for edge in E: 
src = edge.src_v 
dst = edge.dst_v 
F1, F2 = F.split(WarpSize) 
lane-parallel for f_idx2 in F2:  
 for f_idx1 in F1: 

   f_idx = f_idx1 * WarpSize + f_idx2 
   h_o[dst][f_idx] += h[src][f_idx] 
 

thread-parallel for edge in E: 
    src = edge.src_v 
    dst = edge.dst_v 
    for f_idx in F: 
     h_o[dst][f_idx] += h[src][f_idx] 
 

Figure 6: Examples of different parallelization strategies for the aggregation-sum operator.

Table 4: Complete graph operator representation of𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 .

Graph Op edge_op gather_op A B C

Message Creation

copy_lhs copy_rhs V Null E

copy_rhs copy_rhs Null V E

add/sub/mul/div copy_rhs
V V E
V E E
E V E

Message Aggregation copy_lhs sum/max/min/mean E Null V

copy_rhs sum/max/min/mean Null E V

Fused Aggregation

add/sub/mul/div sum/max/min/mean E E V

add/sub/mul/div sum/max/min/mean
V V V
V E V
E V V

The complete implementation of all graph operation semantics
and the corresponding parameter configurations are shown in Tbl. 4.
Thus it can be seen that our unified abstraction, for the message
creation and message aggregation, along with the graph seman-
tics after fusion, are all supported, which gives us the basis for
implementing a unified interface.

4 OPTIMIZATION SPACE ANALYSIS
In this section, we identify the optimization space that is critical to
achieve high-performance graph operator execution. Specifically,
we explore the tradeoff space for different parallelization strategies
of graph operator execution on GPUs, and demonstrate that the
optimal strategy varies for different datasets and different graph
operators.

4.1 Tradeoff Space
We first describe the tradeoff space that impacts the performance
of graph operator on GPUs. Specifically, we focus on the well-
understood three-dimensional optimization space: locality, paral-
lelism, and work-efficiency [16, 29, 51].

Locality describes the quantity of spatial and temporal reuse
in a program. The better locality increases the cache hit rate and
potentially improves the program performance. The GPU contains
the per-SM (streaming multiprocessor) L1 cache and shared L2
cache. To improve the locality of graph operators, we can apply
tiling or blocking to the nested loop, which restricts the working
set of each SM.

Parallelism refers to the amount of computations that can be
performed concurrently. Modern GPUs typically contain thousands
of computing units, so higher parallelism can improve hardware
resource utilization, hide memory access latency, and thus improve
program performance. The simplest way for increasing the par-
allelism of graph operators is to launch more threads, warps, or
thread blocks.

Work-efficiency is expressed as the inverse of the amount of
overhead. Different execution strategies for the same operator may
introduce additional computations such as address calculations.
Meanwhile, for executing graph operators in GPUs, atomic instruc-
tions are required when write conflict exists, which introduces lock
overhead and hence detriments the work-efficency. For example, it
is possible to map an edge to each thread. Since different edges can
share the same vertices, atomic addition instruction is necessary
when performing the accumulation reduction from edge features
to vertex features.

Locality, parallelism and work-efficiency form an impossible
triangle, meaning there is no single strategy that improves these
three metrics simultaneously. In the next subsection, we describe
different execution strategies based on our unified abstraction that
lets us explore this space systematically.

4.2 Parallelization Strategies Exploration
We now detail the different parallelization strategies and show that
they have both positive and negative impacts on various metrics in
the aforementioned trade-off space. Given the diversity of graph
operators and graph datasets characteristics, we demonstrate that
a fixed parallelization strategy only leads to optimal performance
in a few cases.

We use the previously explained aggregation-sum graph oper-
ator in Fig. 6 as a representative example to illustrate the impact
of various parallelization strategies on the three trade-off met-
rics. We first follow two classical parallelization strategies used
in existing graph processing systems: vertex-parallel [15] and edge-
parallel [40], whose GPU implementation means that one thread
handles all the computations of a vertex or an edge. As such, we de-
fine them as thread-vertex and thread-edge, where different threads
execute in parallel. Since the edge count in a graph is usually much
greater than the vertex count, thread-vertex reduces parallelism
compared to thread-edge, but improves the reuse of output data and
hence locality. Meanwhile, thread-edge reduces the work-efficiency
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Table 5: Comparison of the parallelization strategy space in
our work against previous works.

Parallelization
Strategy

Warp
Vertex

Warp
Edge

Thread
Vertex

Thread
Edge

V/E
Grouping

Feature
Tiling

Adaptive
Pattern

GNNAdvisor ✓ ✓ ✓
GE-SpMM ✓
FeatGraph ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: The tradeoff of different parallelization strategies.

Parallelization Strategy Locality Parallelism Work-efficiency
Thread-Edge → → →
Warp-Edge ↓ ↑ →
Warp-Vertex ↑ ↓ ↑
Thread-Vertex ↑↑ ↓↓ ↑
V/E-Grouping ↑ ↓ ↓
Feature Tiling ↓ ↑ ↓

because multiple threads can update the same vertex and thus
require atomic update operations.

Meanwhile, since the vertex/edge features in GNNs are vector,
while the traditional graph processing algorithms like PageRank
use scalar values, we use this GNN-specific feature dimension par-
allelization strategy called warp-vertex and warp-edge in Fig. 6(d)(e).
In these strategies, each warp (a group of 32 threads in GPU) only
processes a single vertex or edge at a time, and different threads (or
lanes) in the warp process the different feature elements. Compared
to thread-vertex/edge strategies, the warp-vertex/edge strategies can
launch more warps and thus increases the parallelism. However,
they also hurt the locality because the per-warp cache capacity is
reduced.

For the above four strategies, we introduce two fine-grained
parameters to further explore the tradeoff between locality and
parallelism. The first parameter, which we call V/E grouping, means
that we combine multiple edges or vertex into a group. For example,
for thread-edge, setting this parameter to four means a thread can
process four edges instead of the original one edge, which improves
the locality but also reduces the parallelism. This also reduces work-
efficiency owing to the additional group computation overhead.

The second parameter is feature tiling, which launches more
threads by exploiting the parallelism from the feature dimension.
For example, for the feature size of 64 and warp size of 32, setting
the feature tiling parameter to two would make a vertex/edge map
to two warps instead of one single warp when no feature tiling is ap-
plied. In contrast to V/E grouping, this strategy increases parallelism
but reduces locality. Meanwhile, it also reduces work-efficiency be-
cause of the extra address calculation for feature tiling.

Tbl. 5 summarizes the comparison between our parallelization
strategy space and the previous manual kernel optimization. It can
be seen that 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 achieves flexible adaptability while provid-
ing new parallel strategies, which brings the capability to achieve
higher performance for a wide set of graph operators in GNNs.

Tbl. 6 summarizes the impact of different parallelization strate-
gies on locality, parallelism, and work-efficiency. Note that a single
fixed parallelization strategy cannot simultaneously improve these
three metrics.

thread-vertex
warp-vertex

thread-edge
warp-edge
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Figure 7: The optimal execution strategy for the aggregation-sum
operator varies for different feature sizes and graph datasets. The
feature size is 8 on the left, and 16 on the right.

Figure 8: The overview of 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 .

4.3 Optimal Execution Strategy Analysis
In this subsection, we use the aggregation-sum graph operator to
demonstrate that the optimal execution strategy for a given graph
operator varies across datasets and feature sizes.

We measure the execution time of this graph operator under
the four basic strategies (i.e., without V/E grouping nor feature
tiling) under the V100 GPU. We set the feature size to 8 and 16
in this experiment. Fig. 7 shows the normalized execution time,
confirming that different strategies achieve the optimal results in
different cases.

5 DETAILED DESIGN OF 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟
In this section, we propose 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , a high-performance and uni-
fied graph operator interface for GNNs, which adopts the unified
abstraction discussed in Sec. 3 and incorporates the parallelization
strategies described in Sec. 4. Fig. 8 shows its overview with two
main features, i.e., the ability to provide complete semantic rep-
resentation for various graph operators and the ability to achieve
efficient execution by automatically exploring the flexible and dy-
namic parallelization strategies. As a result, 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 can provide
specialized and optimal kernels for all GNN graph operators on
different GPU architectures and graph datasets. We also describe
how it can be easily integrated into existing frameworks.

5.1 Unified Interface Design
Based on the unified abstraction and various decoupled paralleliza-
tion strategies, we implement our unified graph operator interface
called 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 as shown in Fig. 9.

The𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 API contains three arguments: graph_tensor, which
is the graph data; op_info, which passes information about the com-
putation of edge_op, gather_op, and input tensors; and parallel_info,
which specifies the parallelization strategy.

884



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Y. Zhou, J. Leng, Y. Song, S. Lu, M. Wang, C. Li, M. Guo, W. Shen, Y. Li, W. Lin, X. Liu, and H. Wu.

op_info = [edge_op, gather_op, Tensor_A, A_Type,
Tensor_B, B_Type, Tensor_C, C_Type]

parallel_info = [parallel_strategy, Grouping_Param,
Tiling_Param]

uGrapher(Graph_Tensor, op_info, parallel_info)

Figure 9: The details of 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 API.

1#-------------------DGL GCN---------------------#
2def gcn_forward(self, graph, h, edge_weight):
3 h = torch.mm(h, self.W)
4 graph.srcdata['h'] = h
5 graph.edata['_edge_weight'] = edge_weight
6 graph.update_all(fn.u_mul_e('h', '_edge_weight', 'm'),

fn.sum(msg='m', out='rst'))
7 rst = graph.dstdata['rst']
8 return torch.relu(rst + self.bias)

Figure 10: DGL’s implementation of GCN.

The above API separates the operator computation, the graph
data, and the parallelization strategy so that users can come up with
their own heuristics to identify the optimal strategy for different
operators and graph structures. Meanwhile, when users do not
specify any parallelization strategy, our interface would currently
perform an automatic tuning to find the optimal parallelization
strategy, which we detail later.

5.2 Implementation of 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟
We now describe howwe implement the𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 interface. Specif-
ically, we focus on how to generate the CUDA kernels for operators
defined via 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 API. At a high level, our CUDA code genera-
tor also follows the 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 design principle that fully decouples
the operator’s scheduling strategy from its computation.
Decoupling Scheduling and Computation. To provide full
scheduling support for various graph operators, we leverage the
template-based programming. We first manually implement the
CUDA kernel templates for each of the parallelization strategies
described in Sec. 4. We then reserve a device function interface in
each of these templates to support various graph operators.
Code Generation Implementation. We implement an auto-
mated end-to-end code generation process that ensures the cor-
rectness and performs optimizations of generated CUDA kernels
for different graph operators. The entire process consists of two
passes and is also flexible and extensible to support future operators.
The first pass fuses the two innermost code statements when the
members of op_info such as edge_op or gather_op are NULL, thus
reducing register usage and read/write overhead. The second pass
generates the final device function code, where it may choose to use
atomic operations by analyzing whether different threads would
compete for the same data or not.

1from uGrapher import update_all
2
3#------------------uGrapher GCN------------------#
4def gcn_forward(self, graph, h, edge_weight):
5 h = torch.mm(h, self.W)
6 graph.srcdata['h'] = h
7 graph.edata['_edge_weight'] = edge_weight
8 uGrapher.update_all(graph, fn.u_mul_e('h', '_edge_weight',

'm'), fn.sum(msg='m', out='rst'))
9 # op_info = ['mul', 'sum', h, 'Src_V', edge_weight,

'Edge', rst, 'Dst_V']
10 # parallel_info = ['warp-edge', 8, 4]
11 # uGrapher(graph, op_info, parallel_info)
12
13 rst = graph.dstdata['rst']
14 return torch.relu(rst + self.bias)

Figure 11: Our implementation of GCN

The above design leads to the flexible and efficient implementa-
tion for different operators by freely combining global functions
with device functions. The former provides support for different par-
allelization strategies, and the latter provides support for different
arithmetics in the graph operator.

5.3 Integration with Existing Frameworks
Since existing frameworks all adopt Python-based programming
interfaces [11, 44], we use pybind11 [21] to implement the Python
invocation interface of CUDA kernels generated by our code gen-
erator. Meanwhile, we take DGL as an example of implementing
automatic interface replacement. As such, we can keep the exist-
ing framework’s code base unchanged, thus minimizing the user’s
burden of using 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 .

DGL implements its own specific interfaces for graph operators:
apply_edge and update_all. The former is mainly used to imple-
ment message creation operators, and the latter is mainly used to
implement the message aggregation or fused aggregation opera-
tors. DGL passes in the corresponding built-in function name by
string, and we can recognize the passing of the graph operator inter-
face of DGL. The program development burden for the integration
with existing frameworks is limited only to the implementation of
pattern recognition and switching table. Thus, we can implement
𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 as the underlying interface to be called without changing
the user code. The code snippets in Fig. 10 and Fig. 11 show how
GCN is implemented in DGL and 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 . As we can see from
the code, 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 requires only a simple substitution to achieve
the functionality accomplished by the different interfaces for graph
operators used by existing GNN frameworks.

5.4 Adaptive Predict Optimal Parallelization
Strategies

Finding the optimal parallelization strategy can be challenging and
time-consuming because there is a total number of 104 valid strate-
gies for a graph operator in 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 . The exhaustive grid search
would require days of time. Therefore, we leverage the gradient
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Table 7: Extracted features in predict strategy.

Graph Info Operator Info
Feature #Vertex #Edge std_nnz Edge_op Gather_op A/B/C Type

Table 8: Detailed experimental setup.

GPU NVIDIA Tesla V100(80 SMs) Nvidia Ampere A100 (108 SMs)

CPU Intel(R) Xeon(R) Silver
4210 CPU @ 2.20GHz

Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz

OS Ubuntu 18.04.5 (kernel 5.4.0) Ubuntu 20.04.2 (kernel 5.11.0)

Software GPU Driver Version: 470.57;
CUDA Version: 11.1; Pytorch Version: 1.8

boosting framework LightGBM [23] to train a prediction model to
select the optimal strategy in parallelization space. We synthetically
construct the training dataset by randomly selecting 128 graphs in
the network graph dataset [39], and use the features of graph data
and operator information for model training as shown in Tbl. 7. We
further analyze the selection choices of the optimal strategies in
different scenarios in Sec. 7.

6 METHODOLOGY
Experiments. To evaluate 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , we use two different GPUs
as our hardware platforms: Tesla V100 [37] and Ampere A100 [35].
Tbl. 8 details our experimental setup.
Baselines. We choose several baseline implementations for com-
parison: 1) Deep Graph Library (DGL) is the state-of-the-art GNN
framework that works for multiple DL frameworks, and in our ex-
periments, we choose PyTorch for the fair comparison; 2) Pytorch-
Geometric (PyG) is another GNN framework which is built upon
PyTorch; 3) GNNAdvisor by Wang et al. presents a system with the
handwritten optimized kernels that aims to systematically accel-
erate GNNs on GPUs; In our experiments with GNNAdvisor, we
keep its default configuration and disable the node renumbering
optimization for a fair comparison.
Benchmarks. We choose the four representative GNN models
widely that are also used by previous works: GCN [26], GIN [48],
GAT [43], GraphSage [14]. We evaluate three different aggregators,
max, sum, and mean in the GraphSage model. For all benchmarks,
the layer, head, and hidden feature parameters follow the default
configuration in the original paper for all baselines and 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 .
Note that GNNAdvisor only supports the GCN and GIN models.
Batchsize. Our experiments target full-graph inference so the
number of vertices in the input graph dataset is the batchsize. There
is another GNN inference scenario called mini-batch inference,
which performs the inference for a set of vertices in the graph. The
typical execution flow is to perform sampling preprocessing first,
and then execute the graph operator. As such, this falls back to
full-graph inference in our case.
Datasets. We use 15 datasets that have also been used in many pre-
vious GNN-related works. The total count, sparsity, and distribution
characteristics of edges vary significantly among these datasets. As
such, our chosen datasets are sufficient to represent the graph in
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Figure 12: Comparison of the performance results obtained
by the predictor and grid search for the first layer of GCN on
V100.

real-world scenarios. Tbl. 3 provides the detailed information for
these datasets.

7 EVALUATION
7.1 Prediction Validation
Given the rich set of parallelization strategy space, we use light-
gbm [23] to train a prediction model to select the optimal strategy
in parallelization space. Thus, the overhead of searching for op-
timal scheduling can be eliminated almost completely. To verify
the effectiveness of the prediction, we compare the predicted op-
timal strategies with the optimal strategies found by grid search.
As shown in Fig. 12, the predictor is able to achieve performance
results close to those of grid search. As a result, we chose lightGBM
as the default prediction method in our following experiments.

7.2 Comparisons with State-of-the-Art
Frameworks

Fig. 13 shows the normalized end-to-end execution time on two
GPUs. On both GPUs, 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 obtains a significant performance
improvement over baselines, which comes from the ability in avoid-
ing redundant computations while enabling flexible exploration of
parallelization strategies. The geometric averaged speedup values
𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 over the DGL, PyG, GNNAdvisor are 3.04, 3.75, and 1.76
on V100 and 4.07, 5.13, and 2.04 on A100, respectively.

Fig. 14 summarizes the per-model speedups on two GPUs. We
find that the different speedup values for differentmodels aremainly
owing to the different execution time ratios of the graph operators
in different models. As 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 only targets graph operators, we
are able to achieve a greater performance improvement in models
that spend a large proportion of time on graph operators, such as
GCN and SageMean. In contrast, SageMax has a larger proportion of
general matrix multiplication (GEMM), and its speedup is smaller.

Fig. 15 summarizes the per-dataset speedups on two GPUs. Also
comparing Fig. 15a and Fig. 15b,𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 achieves a higher speedup
value on the A100 GPU. The reason is that the A100 GPU provides
tensor core support for the float data type, so its GEMM perfor-
mance is faster than the V100 GPU. We obtain different speedup
values for different datasets. It also reveals that these baselines
can only achieve relatively high performance for partially limited
datasets due to the lack of adaptive parallelization.
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Figure 13: End-to-end inference time result on two GPUs. The first "S" in "SMax", "SSum" and "SMean" denotes "GraphSage".
GNNAdvisor only supports GCN and GIN, so certain places have missing data.
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Figure 14: Per-model speedup averaged on all datasets.

We further use NVIDIA profiling tool nvprof [36] to collect the
GPU performance metrics to inspect the source of improvements in
𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 . Fig. 16 shows the collected results for a typical operator
on V100.𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 significantly improves the GPU’s SM utilization,
L2 cache hit rate, and occupancy.

7.3 Execution Strategy Analysis
We also analyze the impact of various parallelization strategies on
performance improvement. Tbl. 9 shows the optimal parallelization
strategy of typical graph operators for different datasets on V100
and A100. The results show that different graph operators tend
to choose different optimal strategies on different datasets and
different hardware platforms.

Generally, the thread-edge strategy is used most often as the
optimal parallelization strategy. For example, for the message cre-
ation graph operator for the first layer of GAT (GAT_L1_MsgC),
thread-edge is the optimal strategy for all datasets and two GPUs.
We also find that large graph datasets favor better locality over
parallelism. For example, the first two layers of SageMax both
choose the thread-vertex strategy with better locality but worse
parallelism on OVACR-8H dataset. Comparing the two GPUs, we
observe that they tend to choose similar optimal strategies but often
different fine-grained parameters (i.e., V/E grouping and feature
tiling). Meanwhile, another difference between the two GPUs is
that the overall number of using vertex-mapping as the optimal
strategy on V100 is more than that of A100. The reason is that V100
has fewer SMs so it favors less parallelism.

The above results confirm the necessity of the four basic paral-
lelization strategies as each of them would be chosen as the optimal
under different operators and datasets. We further study the perfor-
mance impact of the two additional parameters, i.e., V/E grouping
and feature tiling. Fig. 17 compares the normalized execution time
of the basic strategies (without V/E grouping and feature tiling)
for two operators against their optimal strategies on V100. The
performance has a large gap from the optimal results when only
using the basic strategy. As such, choosing these fine-grained con-
trol knobs is also critical for achieving the optimal performance for
graph operators.
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Table 9: Optimal strategies of different graph operators for different datasets on V100 and A100. The graph operators are denoted as model-
layer-type. ‘MsgC’ denotes message creation operator and ‘Aggr’ denotes aggregation. The optimal strategy is denoted as (parallelization
strategy)-(V/E grouping)-(feature tiling). ‘TE’, ‘WE’, ‘TV’, ‘WV’ are ‘thread-edge’, ‘warp-edge’, ‘thread-vertex’, ‘warp-vertex’ parallelization strategies,
respectively. They are also highlighted with red, yellow, green, and gray backgrounds, respectively.

Dataset GPU GAT_L1_MsgC GAT_L1_Aggr GIN_L1_Aggr GIN_L2_Aggr GIN_L5_Aggr SageMax_L1_Aggr SageMax_L2_Aggr

V100 TE_G1_T16 TE_G2_T32 WE_G4_T16 TE_G4_T32 TE_G4_T32 WE_G4_T16 TE_G1_T32CO A100 TE_G1_T32 WE_G2_T1 WE_G8_T64 WE_G2_T1 TE_G2_T32 WE_G4_T16 WE_G2_T1

V100 TE_G1_T32 TE_G2_T32 WV_G2_T64 WE_G4_T16 TE_G4_T64 WV_G4_T64 WE_G2_T2CI A100 TE_G1_T4 TE_G2_T32 WV_G16_T64 WE_G2_T1 WE_G2_T1 WV_G4_T64 WE_G2_T8

V100 TE_G2_T32 TE_G4_T32 WE_G8_T1 TE_G16_T64 WE_G8_T1 WV_G2_T8 TV_G1_T8PR A100 TE_G2_T64 WE_G8_T1 WE_G4_T8 TE_G8_T32 TE_G8_T32 WV_G1_T2 TV_G1_T64

V100 TE_G4_T32 TE_G32_T32 TE_G16_T32 TE_G64_T32 TE_G64_T32 TE_G8_T32 TE_G8_T8AR A100 TE_G8_T64 WE_G64_T1 WE_G32_T1 TE_G64_T32 TE_G64_T32 TE_G8_T32 TE_G16_T16

V100 TE_G4_T16 WE_G64_T1 WE_G64_T1 TE_G64_T32 TE_G64_T32 TE_G8_T32 TE_G8_T8SB A100 TE_G8_T16 WE_G64_T1 WE_G16_T1 WE_G64_T1 TE_G64_T32 TE_G8_T32 TE_G16_T64

V100 TE_G4_T8 WE_G8_T1 TE_G4_T32 WV_G8_T32 WV_G8_T2 TV_G2_T32 TV_G1_T8DD A100 TE_G4_T8 TE_G16_T32 TE_G16_T32 TE_G64_T32 WE_G64_T8 TV_G4_T32 TV_G1_T8

V100 TE_G4_T8 WE_G4_T1 WV_G16_T8 WV_G16_T8 WV_G16_T2 WV_G4_T8 TV_G2_T8TW A100 TE_G2_T4 TE_G16_T32 WV_G64_T8 WE_G8_T1 TE_G8_T32 WV_G32_T16 TV_G1_T4

V100 TE_G4_T64 WV_G16_T64 TE_G4_T32 WV_G16_T16 WV_G16_T32 WV_G2_T1 TV_G1_T4YE A100 TE_G1_T4 TE_G2_T16 WE_G8_T1 TE_G8_T32 WV_G32_T4 TV_G4_T32 TV_G1_T4

V100 TE_G4_T32 TE_G4_T32 TE_G4_T32 WV_G8_T4 WV_G8_T4 TV_G4_T32 TV_G1_T4OV A100 TE_G8_T8 WE_G16_T1 TE_G4_T32 WE_G16_T8 TE_G8_T32 TV_G4_T32 TV_G1_T4

Over DGL Over PyG Over GNNA

N
or

m
. S

pe
ed

up

0

5

10

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo. Mean

(a) V100.

Over DGL Over PyG Over GNNA

N
or

m
. S

pe
ed

up

0

5

10

15

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo. Mean

(b) A100.

Figure 15: Per-dataset speedup averaged on all models.

Fig. 18 shows the results obtained with varying V/E grouping
and feature tiling parameters for the first layer of GIN with the
TWITTER-Partial dataset on V100. It can be seen that the change of
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Figure 16: GPU performance metrics collected by nvprof for the
second layer of SageMax. The left metric is SM utilization, themiddle
is L2 cache hit rate, and the right is achieved occupancy.
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Figure 17: The normalized time of different base strategies com-
pared to the optimal. The left figure shows the message creation
operator for the first layer of GAT, and the right figure shows the
aggregation operator for the first layer of GIN.

grouping and tiling parameters under different basic parallelization
strategies will bring different effects on the performance. Thus, it is
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Figure 18: Execution time obtained by varying the grouping (𝑦-axis)
and tiling parameters (𝑥-axis) in basic strategies for the first layer of
GIN model with the TWITTER-Partial dataset on V100.
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Figure 19: Comparison of the performance results obtained
with node renumbering of GCN on V100.

necessary to fine-tune the V/E grouping and feature tiling parame-
ters in different scenarios to achieve the optimal performance.

7.4 Additional Studies
Graph data preprocessing Data preprocessing, as a typical op-
timization method in graph algorithms, has also been explored in
some research work on GNN [7, 33, 46, 49]. The 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 ’s design
does not restrict the optimizations of graph data preprocessing (e.g.
node renumbering in GNNAdvisor), as they are orthogonal to our
parallelization-centric optimizations. Fig. 19 shows the performance
results compared to baselines with Rabbit node renumbering [2].
𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 can still obtain substantial performance improvement.
OverheadAnalysis The scheduling overhead of𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 mainly
comes from prediction model inference of LightGBM. However, the
prediction only needs to be executed once before the GNN model
inference, and the time is less than 0.2 ms for a single prediction,
which has a negligible impact on performance.

8 RELATEDWORK
GNN Frameworks. DGL [44] and PyG [11] are two popular GNN
frameworks, which both use a message-passing programming in-
terface based on DNN frameworks. Other frameworks including
Roc [22], NeuGraph [31], and AliGraph [53] target large-scale dis-
tributed GNNprocessing.𝐺3 [30] focuses on using graph processing
frameworks to train GNNs on GPUs. GNNAdvisor [46] presents a

runtime system for accelerating GNNs on GPUs, but only supports
GCN and GIN.

Existing works do not pay attention to the performance bot-
tleneck of the graph operators, therefore cannot achieve optimal
performance on GPUs.
Graph Processing on GPUs. Numerous graph processing sys-
tems [13, 24, 25, 28, 34, 40, 45] have been proposed to accelerate
traditional graph algorithms onGPUs. Some of these researchworks
have also tried to explore different parallelization strategies includ-
ing vertex parallelism, edge parallelism, etc. There are also efforts to
explore dynamic parallelization strategies through domain-specific
language (DSL) [4, 5, 17, 50, 51].

However, GNNs differ from traditional graph algorithms in terms
of graph operation characteristics and feature embedding dimen-
sion, for which the parallelization strategy space is beyond the
capability of traditional graph processing systems.
Graph Kernel Optimization. There are also some works that
try to explore the graph operators in GNNs to optimize GNNs.
GE-SpMM [19] focuses on optimizing SPMM-like graph opera-
tors in GNNs. FeatGraph [18] extends TVM [6], and designs an
execution mode on GPU for SPMM-like and SDDMM-like graph
operators. However, these graph operator optimization efforts still
take a manual optimization approach to optimize graph operators.
FusedMM [38] provides an abstraction for SDDMM-SpMM kernels.
However, this abstraction does not have the ability to decouple
computation and scheduling, and thus cannot explore adaptive
parallelization strategies.

Without providing an independent abstraction for graph opera-
tors and without exploring different parallelization strategies, there
are limitations in the aspects of providing complete support for
different operators and achieving optimal performance for these
operators.

9 CONCLUSION
In this work, we propose𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 , a unified and high-performance
interface that can support various graph operators in GNNs. Our
design can decouple the computation and scheduling of graph
operators by introducing a GNN-specific operator abstraction and
exploring various parallelization strategies. Experimental results
demonstrate that 𝑢𝐺𝑟𝑎𝑝ℎ𝑒𝑟 is able to achieve an average speedup
of 3.5× compared to existing SOTA frameworks, which can easily
adopt our design owing to its simple and unified API.
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