
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Tapping into NFV Environment for Opportunistic
Serverless Edge Function Deployment

Lu Zhang, Weiqi Feng, Student Member, IEEE, Chao Li, Senior Member, IEEE, Xiaofeng Hou, Pengyu
Wang, Jing Wang, Student Member, IEEE, and Minyi Guo, Fellow, IEEE

Abstract—Even with Network Function Virtualization (NFV), many commodity network servers have spare cycles. Despite that they
are small and irregularly occur, spare cycles are fit for deploying short-lived serverless computing functions at the network edge. In this
work, we perform detailed analyses of the benefits and limitations of co-locating serverless functions on NFV-ready servers. We
propose NEMO, a novel platform that enables efficient serverless edge function deployment in the NFV environment. NEMO can
intelligently harvest spare cycles of network functions to warm up the serverless functions and speed up the function invocation in an
agile manner. Besides, NEMO can judiciously manage the thread conflict in a resource-limited environment. We build a prototype of
NEMO. Our thorough evaluations show that NEMO can harvest up to 41% spare cycles and achieve about 12.5∼25X performance
improvement compared with straightforward co-location.

Index Terms—Network function virtualization, serverless functions, spare cycle

F

1 INTRODUCTION

D RIVEN by the growing needs of serving various smart
devices with low latency, the enthusiasm for edge com-

puting continues unabated [13], [19]. Besides, the emergence
of serverless architecture greatly facilitates the adoption of
edge computing [8]. Today, serverless edge computing rep-
resents a more flexible way of edge application deployment
(e.g., executing a function at the edge). It allows one to create
and host applications that scale well, enabling a high degree
of multi-tenancy on limited resources [8].

However, supporting serverless edge computing [2], [8]
still requires non-trivial engineering work to set up the right
infrastructure if we choose to deploy specific hardware at
the network edge. One way to alleviate this issue is to
take advantage of existing network facilities. According to a
recent survey conducted by Emerson Network Power [16],
over half of the companies believe that a great percentage
(> 60%) of network facilities will also undertake the role of
cloud in 2025. The results reveal the growing importance of
network systems as more computing resources need to be
pushed closer to end-users in the near future.

The rationale behind tapping into network systems for
serverless edge computing is that they are generally virtual-
ized commodity servers with CPU slacks (e.g., spare/idle
CPU cycles of servers that are underutilized by network
functions). Today, Network Function Virtualization (NFV)
technology [9] is redefining the data transmission path for
deploying network functions as software instead of specific
hardware. It has been shown that servers that deploy net-
work functions (NFV-ready servers) are not fully utilized at
the network edge [23], [25]. In this paper we argue that it

• L. Zhang, W. Feng, C. Li, X. Hou, P. Wang, J. Wang, and M.
Guo are with the department of Computer Science and Engineering,
Shanghai Jiao Tong University, Dongchuan Rd 800, Minhang District,
Shanghai 200240, China. E-mail: {luzhang, fengweiqi, xfhelen, wpybtw,
jing618}@sjtu.edu.cn, {lichao, guo-my}@cs.sjtu.edu.cn.

Manuscript received April 19, 2005; revised August 26, 2015.
(Corresponding author: Chao Li.)

图表标题

NF CPU Slacks

initTime
exeTime
slacks

0 0.2 0.4 0.6 0.8 1

EF CPU Time

NF CPU Slacks

Normalized time

initTime exeTime
slacks

Fig. 1. CPU slacks of NFs normalized to EFs duration

can be a win-win proposition to co-locate edge functions
(EFs) with network functions (NFs). By taking advantage of
the existing system infrastructure, we can avoid the upfront
capital expenditure and the lengthy construction lead time
of dedicated edge servers.

A significant challenge associated with deploying edge
functions on network servers is resource allocation. Due
to the highly dynamic network traffic, spare cycles are
not always available. In addition, with network packets
transmitting quickly, spare cycles in the NFV environment
are usually highly fragmented [25]. As shown in Figure 1,
we measure the average CPU slacks of network functions
and the duration of edge functions. There is a big differ-
ence between the average CPU slacks and the duration of
serverless computing, which implies that the CPU slacks can
not be easily utilized by EF without a resource harvesting
mechanism. It is challenging to design a resource harvesting
mechanism which can efficiently utilize spare cycles of NFV-
ready servers for serverless edge computing, not to mention
long-lived applications in the traditional cloud.

We explore the possibility of efficient EF execution while
maintaining NF performance, rather than aggressively grab
resources in the NFV environment. When functions are
firstly invoked, the system needs to create and launch a
container or a VM, and install the necessary libraries and
dependencies, before the function itself can be executed. The
initialization phase adds considerable latency for serverless
functions. In this case, warming up functions [5], [7] using

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the harvested resources can improve the performance of
EFs. Specifically, we intend to opportunistically utilize the
spare cycles to warm up and speed up the execution of edge
functions. Since co-locating edge functions with network
functions may cause resource contention, it is crucial to keep
a watchful eye on the execution of them.

We propose NEMO, a novel system platform that can
gracefully manage edge functions that co-locate with net-
work functions. NEMO1 is short for “Network function
and Edge function, Managed and Optimized together”.
The basic idea behind NEMO is to harvest spare cycles in
the edge NFV environment; meanwhile, NEMO judiciously
utilizes the spare cycles to deploy serverless edge functions.

When edge computing requests arrive, NEMO can har-
vest spare cycles from NFs using a resource harvesting
mechanism. NEMO speeds up the processing of edge func-
tions in several different ways. First, it controls the function
pre-warm thread periodically to utilize spare cycles of a
NFV-ready server to warm up edge functions before they
are invoked. Second, it uses a function invocation thread
to intelligently manage the computing resources to boost
the execution of serverless functions. Further, NEMO also
monitors the two important threads and coordinates them.
Doing so allows one to reap the benefits of edge functions
while guaranteeing the QoS of NFs.

This paper makes the following key contributions:
• We demonstrate the availability of spare cycles on NFV-

ready servers. We show that one can optimize serverless
functions with resource harvesting.

• We propose NEMO, a platform that can gracefully man-
age serverless edge functions when co-locating with
NFs. NEMO can speed up edge functions.

• We implement NEMO on a real server. We show that
NEMO can harvest 41% spare cycles and achieve about
12.5∼25X performance improvement.

2 BACKGROUND AND MOTIVATION

2.1 Serverless Edge Computing

Faced with a growing reliance on timely information access
and efficient data processing, edge computing paradigms
have become an evolving necessity [12], [13], [19]. By filter-
ing and pre-processing data locally, one can quickly respond
to related events while preventing extraneous data from
saturating back-haul links to the cloud.

Emerging serverless computing model [5], [18] is well-
suited for light-weight edge computing. In serverless com-
puting frameworks, one can provide services through sev-
eral functions. Serverless computing is a complement to
the edge by enabling a high degree of multi-tenancy with
reduced resource occupation [2], [8]. Serverless functions are
typically short and can be used to increase the server uti-
lization [18]. Besides, when serverless functions first invoke,
creating a container and installing the necessary libraries
can lead to long initialization overheads for deployment
[5], [7]. Pre-warming function in advance can reduce the

1. NEMO is also named after Finding Nemo, a Pixar animated film
depicting an energetic clownfish called Nemo. Clownfish and the sea
anemone provide a good example of mutualism. Our design aims to
gracefully manage NF and EF.

TABLE 1
Characterization Functions Description

Function Description Runtime
Network Function

Firewall Monitor packets based on rules C++
Nat Network address translator C++
LoadBalancer Balance packets of applications C++

Edge Function
markdown Render Markdown to HTML Python
img-resize Resize image to icons NodeJS
sentiment Sentiment analysis of text Python
ocr-img Find text in images by OCR NodeJS/binary

initialization overhead [5], [7]. The above features of server-
less functions motivate us to improve the performance of
serverless functions considering both function execution
and function initialization.

2.2 Virtualized Network Servers
An ideal candidate for hosting serverless edge functions is
virtualized network servers that are placed near the user.
Today, network function virtualization (NFV) [9] proposes
to deploy network functions as software on commodity
servers instead of specific hardware. NFV has many advan-
tages such as agile network management and fast network
deployment. Many prior works focus on high-performance
packet processing in the data center NFV environment, [6],
[15] or NF placement at the edge [14], [21], but very few on
resource efficiency at the edge [23], [25].

Nevertheless, network servers can face low utilization
issues [23], [24], [25], due to the limited and time-varying
packet rate. The spare cycles in these NFV-ready servers are
wasted if not being utilized properly. Co-locating resource-
hungry IaaS applications with network functions is not a
good choice. This is because spare cycles on NFV-ready
servers are short and network functions have strict QoS
requirements. Differently, the execution time of serverless
functions is usually short. Thus, it has a great potential to
utilize these spare cycles for cost-efficient edge computing.

Note that we do not argue that tapping into NFV-
ready servers is the only way of deploying serverless edge
computing. We intend to show that opportunistic resource
sharing on network facilities provides an attractive alterna-
tive of serving edge user requests without incurring the sig-
nificant upfront cost. As discussed in the following sections,
utilizing these spare cycles is challenging in a highly dy-
namic environment. Smart resource harvesting/allocation is
necessary to maintain the best design trade-off.

3 CHARACTERIZATION

In this section, we analyze the characteristics of spare cycles
in the NFV environment. We use Click [10] to build our NFV
platform and we choose Openwhisk [4] as our serverless
computing platform. Table 1 shows the workload we eval-
uated, including three click-based network functions which
are also used in prior works and four serverless functions
presented in recent work [23]. Besides, to understand the
behavior of serverless functions, we also implement a subset
of functions in the Python Performance Benchmark Suite
[20]. We present detailed evaluation platform in Section 5.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Firewall
0.00

0.25

0.50

0.75

1.00
C

PU
 u

til
iz

at
io

n
64 128 256 512 1024 1500

Nat
0.00

0.25

0.50

0.75

1.00

LoadBalancer
0.00

0.25

0.50

0.75

1.00

Fig. 2. Average CPU utilization of different network functions

3.1 Understanding NFV Spare Cycles

We set up experiments to explore the characteristics of
spare cycles on NFV-ready servers. On the sender server,
we use pktgen to generate UDP packets with different
sizes (64bytes, 128bytes, 256bytes, 512bytes, 1024bytes, and
1500bytes). We mainly focus on two mechanisms that may
have a great impact on spare cycles: interrupt coalescing,
and burst processing. Interrupt coalescing is a method
preventing interrupts from being raised by a device until
a specific amount of work is pending [17]. The Network
Interface Card (NIC) uses direct memory access (DMA) to
copy the packets to RAM and it raises an interrupt request
(IRQ) to the CPU. With interrupt coalescing, one can reduce
the number of interrupts posted to the processor [17]. Fewer
interrupts bring more CPU slacks without compromising
the network throughput. Additionally, NFs deployed in
Click can further optimize CPU utilization by copying data
in burst mode. When NFs are running, Click monitors and
copies packets from the kernel space to the userspace. Upon
receiving a packet from the sender, Click will immediately
copy it to the user space by default. We can modify the
number of packets to copy from the kernel to the userspace.
With the coordination of interrupt coalescing and burst
processing, more spare cycles can be harvested. To measure
the CPU utilization of NFs, we monitor NFs every 100ms
using the perf tool. We measure the CPU utilization for
300 times to report the average value.

3.1.1 Spare cycles on network servers
We use Linux performance counters to estimate the CPU
utilization of network functions. Figure 2 shows the average
CPU utilization of the evaluated network functions of differ-
ent packet sizes. We obverse that, NFs occupy almost 100%
CPU with packet size lower than 512bytes. This is mainly
because NFs are saturated and the CPU core is always busy
handling the arriving packets. In this situation, one can not
harvest spare cycles. When the packet size becomes larger
(i.e., 1024bytes and 1500bytes), idle CPU cycles appear.
Therefore, in the following analysis, we mainly focus on
large packet sizes when discussing spare cycle harvesting
and allocation. Even though there are notable spare cycles
in NFV-ready servers, they are too small to be utilized by
serverless edge functions.

3.1.2 Implications of system management
To figure out whether we can get more spare cycles with
appropriate system management, we experiment with dif-
ferent NIC settings. For each of the evaluated three network
functions, the packet size of NFs of 1024bytes and 1500bytes.

15
20
25
30
35
40
45
50

Coalesce usec

1024bytes-interrupt-w/o burst 1500bytes-interrupt-w/o burst
1024bytes-interrupt-w/ burst 1500bytes-interrupt-w/ burst

C
P

U
 I
d
le

 C
y
c
le

Firewall

30

35

40

45

50

55

60

Coalesce usec

10

20

30

40

50

60

Coalesce usec

Nat LoadBalancer

Fig. 3. CPU idle cycles of network functions with interrupt coalescing
and packet burst processing

We first evaluate the impact of interrupt coalescing on
CPU utilization and then the impact of burst processing.
We modify the value of rx-usecs of NIC with ethtool
tools to coalesce interrupts and the default configuration is
rx-usecs=1. Larger rx-usecs means that there will be
more interrupts coalesced. To satisfy the QoS requirement,
we only select the rx-usecs that does not degrade NF’s
overall throughput in our experiment.

Interrupt coalescing can harvest more spare cycles from
NFV-ready servers. As shown in Figure 3, the available
spare cycles increase under interrupt coalescing. When the
packet size is 1024bytes, interrupt coalescing brings extra
spare cycles by 3% in Firewall, 6.5% in Nat, and 27% in
LoadBalancer. In total, there are at most 22% and 40% in
Firewall, 37% and 51% in Nat, 38% and 49% in LoadBalancer
spare cycles for 1024bytes and 1500bytes, respectively.

Aggressive coalescing will not harvest more spare cy-
cles but only increase the latency of NFs. Once the Linux
network stack receives packets from NIC, it will trigger
hardware interrupts and SoftIRQ to handle packets. How-
ever, interrupt coalescing can only coalesce the hardware
interrupt. If we coalesce too many interrupts into one, the
SoftIRQ will poll these interrupts, which may cost more
CPU cycles. In Figure 3, the inflection point of the plot in Nat
and LoadBalancer indicates a balance between hardware
interrupt coalescing and SoftIRQ cost. We mainly focus on
the region before reaching the inflection point.

In addition, one can also use burst processing to gain
more spare cycles. When packets arrive, Click needs to
copy packets from kernel space to network functions in
userspace. By default, Click transfers one packet at a time,
which may not take advantage of interrupt coalescing. Click
can enable burst processing to copy multiple packets once.
In this case, the number of calling functions to processing
packets will decrease including the number of CPU switches
between kernel and user mode. As shown in Figure 3,
there are more spare cycles harvested by the coordination
of interrupt coalescing and Click burst processing.

3.2 Serverless Edge Function Behaviors
We set up experiments to analyze the obstacle to efficient
serverless function deployment on network servers. We
invoke a group of serverless functions and record their
initiation and execution time. Figure 4 shows the latency
breakdown of serverless functions. We can see that the
initialization time of most functions is even larger than
their execution time. On average, initialization accounts
for 60% latency of the evaluated serverless functions. The

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

NF1 NF2 … NFn

NEMO

Slack Harvester Slack Controller

EF1 EF2 … EFn

Edge Functions
tag: (T_init,T_exec)

(ivk_freq, last_ivk)

Network Functions
tag: (nf_name, pkt_size)

(𝛥interrupt, 𝛥slacks)

Larger CPU Slacks

CPU Slacks

Change

Mode

Click

Receiver

Burst

process

tag Interrupt

coalescing

N
IC

ethtool

Shared

memory

Slack

Harvester

0

0.2

0.4

0.6

0.8

1
R

a
ti
o

init Time execution Time

0 100 200 300

co-run w/
1024bytes

co-run w/
1500bytes

without co-run init Time execution Time

0 100 200

init Time execution Time

0 100 200

init Time execution Time

(a) Firewall (b) Nat (c) LoadBalancer

Time (s) Time (s) Time (s)

Fig. 4. The latency breakdown of EFs

NF1 NF2 … NFn

NEMO

Slack Harvester Slack Controller

EF1 EF2 … EFn

Edge Functions
tag: (T_init,T_exec)

(ivk_freq, last_ivk)

Network Functions
tag: (nf_name, pkt_size)

(𝛥interrupt, 𝛥slacks)

Larger CPU Slacks

CPU Slacks

Change

Mode

Click

Receiver

Burst

process

tag Interrupt

coalescing

N
IC

ethtool

Shared

memory

Slack

Harvester

0

0.2

0.4

0.6

0.8

1

R
a
ti
o

init Time execution Time

0 100 200 300

co-run w/
1024bytes

co-run w/
1500bytes

without co-run init Time execution Time

0 100 200

init Time execution Time

0 100 200

init Time execution Time

(a) Firewall (b) Nat (c) LoadBalancer

Time (s) Time (s) Time (s)

Fig. 5. The latency breakdown of serverless EF w/ and w/o co-locating with NFs

0 200 400 600 800 1000
Running time (s)

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 (G

b/
s)

W/o thread management W/ thread management

Fig. 6. The throughput of NFs w/ or w/o thread management

initialization cost of json loads can even reach 98.6%. The
large proportion of initialization time of serverless functions
motivates us to warm up serverless functions in advance to
reduce the cold-start cost.

We further conduct experiments to analyze the perfor-
mance degradation of serverless edge functions while di-
rectly co-locating with NFs. We invoke four edge functions
described in Table 1 in two scenarios. Firstly, EFs occupy all
the CPU resources without co-locating with NFs. Secondly,
EFs co-locate with NFs of different packet sizes without re-
source harvesting. The total initialization cost and execution
cost of EFs is shown in Figure 5. Due to inadequate spare
cycles of NFs, the initialization and execution time both
increase greatly. The above results motivate us to harvest
more spare cycles for deploying serverless functions.

3.3 Interference Issue of Colocation
When we deploy serverless edge functions on NFV-ready
servers, there are mainly three types of threads running con-
currently: edge function pre-warm thread, edge function invoca-
tion thread, and network function thread. Simply speeding up
edge function invocation and adopting function pre-warm
using harvested spare cycles may cause thread conflict due
to inadequate resources.

To motivate the necessity of smart thread management,
we compare the throughput of NFs with the same configura-
tion (offered load and window size) in two situations: with
thread management and without thread management. Fig-
ure 6 shows the throughput (Gb/s) in different situations.
with thread management, the throughput of NF is stable
which guarantees the QoS of NFs (1Gb/s). It is also evident
that the throughput of NFs fluctuates severely (even from
1Gb/s to 0.25Gb/s) without thread management. The rea-
son of throughput degradation is that NFs have insufficient
resources to process packets due to thread conflict.

Using interrupt coalescing and burst processing, we can
harvest more spare cycles without any throughput degra-
dation for NFs. However, resource harvesting may affect
the latency of NFs. While our design is throughput-centric,
it is important to guarantee that the latency overhead of

NFs is within acceptable limits. We model and calculate
the latency overhead, which is bounded by the value of
rx_usec. If the packets follow a uniform distribution, the
interrupt coalescing method will increase the latency of NFs
by rx usec/2 on average. In other cases like exponential
distribution, the latency overhead is expected to be less than
rx usec. In our experiments, the value of rx usec is usually
small than 60 us.

Summary of Design Consideration: The above study
shows that there are valuable spare cycles in the NFV en-
vironment that can be utilized by serverless edge functions.
In particular, with interrupt coalescing and packet burst
processing, more spare cycles can be harvested. The benefits
of resource harvesting are two-fold: 1) one can speed up the
invocation of edge functions; 2) it also accelerates the warm-
up process of popular functions. In addition, to avoid thread
conflict under limited resources, it is necessary to monitor
workload running status and manage them accordingly to
guarantee the throughput of the network functions.

4 NEMO DESIGN

In this section, we propose NEMO, a novel platform that
makes the best use of network facilities and enhances the
performance of serverless edge functions.

4.1 Overview of NEMO
Figure 7 gives an overview of NEMO. Our system is mainly
composed of two parts. The slack harvester harvests spare
cycles according to the feature of NFs. Then the function
controller can utilize the harvested spare cycles of NFV-
Ready servers to optimize serverless function execution
from the following aspects: 1) speeding up the function
invocation, 2) accelerating the function pre-warm process.
3) coordinating the threads of both function invocation and
function pre-warm for ensuring the QoS of NFs.

Particularly, the thread scheduling between NFs and EFs
depends on the Linux scheduler. To guarantee the perfor-
mance of NF, we configure NF threads with the highest
priority. Thus, EFs can get access to the CPU cycles when
the platform has spare cycles. Once packets arrive, network
functions will get all the CPU to process packets. In this
paper, EFs processed on NEMO do not have strict deadlines
and if there is a burst of EF requests, NEMO will only
process EFs that it can safely accommodate.

4.2 Slack Harvester
In this work, we design a slack harvester to gain more spare
cycles when edge functions invoke. The core of slack har-
vester is a resource management handler called changeMode

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

NF1 NF2 … NFn

NEMO

Slack Harvester Slack Controller

EF1 EF2 … EFn

Edge Functions
tag: (T_init,T_exec)

(ivk_freq, last_ivk)

Network Functions
tag: (nf_name, pkt_size)

(𝛥interrupt, 𝛥slacks)

Larger CPU Slacks

CPU Slacks

Change

Mode

Click

Receiver

Burst

process

tag Interrupt

coalescing

N
IC

ethtool

Shared

memory

Slack

Harvester

Fig. 7. The overview of NEMO

NF1 NF2 … NFn

NEMO

Slack Harvester Slack Controller

EF1 EF2 … EFn

Edge Functions
tag: (T_init,T_exec)

(ivk_freq, last_ivk)

Network Functions
tag: (nf_name, pkt_size)

(𝛥interrupt, 𝛥slacks)

Larger CPU Slacks

CPU Slacks

Change

Mode

Click

Receiver

Burst

process
tag

Interrupt

coalescing

N
IC

ethtool

Shared

memory

Slack

Harvester
0

0.2

0.4

0.6

0.8

1

R
a

ti
o

init Time execution Time

0 100 200 300

co-run w/
1024bytes

co-run w/
1500bytes

without co-run init Time execution Time

0 100 200

init Time execution Time

0 100 200

init Time execution Time

(a) Firewall (b) Nat (c) LoadBalancer

Time (s) Time (s) Time (s)

Fig. 8. The slack harvester

NFV-Ready Servers

NF Processes

NIC

Edge

Requirements

Core Core Core Core

……

EF Processes

Packets

NEMO Workflow

Warm

Pool

Function

Invocation

Historical data

NEMO

Init. Exec.

Core

Function

Selector

Function

Pre-warm

tag:cold

/warm
Update

Not full

tag:

warming

tag:

warmed

Function Controller

S1: Warm up

Functions

S2: Function

Invocation

S3: Warm

Invocation

W/Pre-warm

S4: Cold

Invocation

W/Pre-warm

Function

Invocation

Function

Pre-warm

tag:

warm

tag:

cold

CPU Slacks

Function ControllerSlack Harvester

Colocation Harvesting

NFV-Ready Servers

NF Processes

NIC

Edge

Requirements

Core Core Core

……

EF Processes

Packets

NEMO Workflow

Warm

Pool

Function

Invocation

Historical data

NEMO

Init. Exec.

Core

Function

Selector

Function

Pre-warm
tag:cold/

warm
Update

Not full

tag:

warming

tag:

warmed

Function Controller

S1: Warm up

Functions

S2: Function

Invocation

S3: Warm

Invocation

W/Pre-warm

S4: Cold

Invocation

W/Pre-warm

Function

Invocation

Function

Pre-warm

tag:

warm

tag:

cold

CPU Slacks

Function

Controller

Slack

Harvester

Colocation Harvesting

Fig. 9. The workflow of NEMO’s function controller

as shown in Figure 8. The changeMode handler controls the
status of interrupt coalescing and burst processing to har-
vest cycles. Specifically, it controls the interrupt coalescing
using ethtool rx-usecs to adjust the size of interrupt
coalescing in NIC according to the tag of running NFs. In the
meantime, it also transmits messages to the Click receiver
to enable burst packet processing through shared memory
which causes negligible overhead.

The spare cycles of NFV-ready servers depend on the
NF type and packet size. The slack harvester profiles NFs
and tags them with (nf name, pkt size) for determining the
effectiveness of resource harvesting. Since NFs keep running
on the server, it is easy to gather their runtime statistics.

4.3 Function Controller
The goal of NEMO’s function controller is to make the
best use of the harvested spare cycles for improving edge
function performance. The detailed workflow is shown in
Figure 9. It maintains two components: ¶ Function Pre-
warm thread warms up functions in advance to alleviate the
cold start latency, and · Function Invocation thread invokes
serverless functions upon request on the NFV-ready servers.
Note that it may cause thread conflict between function
pre-warm and function invocation if they run concurrently.
In this case, the function controller further manages the
contention of different threads.

1) Function Pre-warm: Since the initiation time hinders
fast execution of serverless functions, function pre-warm is
necessary to prepare the runtime for serverless functions
to reduce the initialization cost. NEMO initializes functions
in advance to reduce the possibility of cold start using
the harvested cycles. NEMO chooses functions based on
historical data when warming up containers. The historical
data we use in NEMO contains b warm, ivk freq, last ivk.
Specifically, b warm is defined as the initialization time di-
vided by the total duration of each function, ivk freq is the
invocation frequency of functions, and last ivk indicates
the last invocation time. Using these historical data, we can

Algorithm 1: Preemptive Thread Management
Input: coming actions action, the tag of actions

tagaction, function pre-warm thread Twarming

while True do
if tagaction is warmed in warm pool then

// S3
stop Twarming ;
run function invocation thread;
continue Twarming

else if tagaction is warming in warm pool then
// S4-1
wait for Twarming finished;
invoke action;
update action in warm pool;

else if tabaction is not in warm pool then
// S4-2
stop Twarming ;
run function invocation thread;
continue Twarming

else
// No thread conflict - S1 or S2
run function invocation or function pre-warm
thread

end
wait for action;

end

calculate the pre-warming possibility of each function and
choose functions with the biggest possibility to pre-warm.

The function pre-warm is implemented as a daemon
thread for checking the system periodically. NEMO main-
tains a warm pool to store the warmed functions. The size
of the warm pool is limited by memory. NEMO monitors the
status of the warm pool periodically and it stops functions
that are not invoked for a certain period. If the warm func-
tion pool is not full, NEMO will choose proper functions
to warm based on the historical data. When a function is
warming, NEMO enables resource harvesting to speed up
the warming process. A function is tagged as warming
when the pre-warm thread is running and warmed when
the warming process finishes.

2) Function Invocation: Once an edge computing request
arrives, NEMO enables the resource harvesting to invoke
edge functions which can provide more spare cycles. Doing
so allows one to speed up the invocation process.

Given a warm function pool, NEMO first checks whether
the pool contains the requested function. If it is found in the
warm pool, NEMO will update the information (last invo-
cation time) of the function after this invocation. Otherwise,
if the pool is full, NEMO will have to update the warm pool
and delete the function whose last invocation time is the
oldest. Then, the warm pool will add new functions to the
warm pool. After each invocation, NEMO will update the
historical data and disable resource harvesting for minimiz-
ing the impact on network functions.

3) Thread Management: Without appropriate manage-
ment, the function pre-warm thread and the function in-
vocation thread may cause thread conflict due to resource
scarcity. To avoid the thread conflict, the function controller
intelligently coordinates the function pre-warm and func-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

tion invocation thread. The function controller manages four
states of NEMO as shown in Figure 9: S1) only function pre-
warm; S2) only function invocation; S3) warm function invo-
cation with pre-warm thread conflict and S4) cold function
invocation thread with pre-warm thread conflict.

The function controller just performs function pre-warm
and function invocation respectively in the state S1 or S2 due
to no thread conflict. However, in states S3 and S4, NEMO
needs to carefully handle the thread conflict for the QoS of
NFs. We propose Preemptive Thread Management to avoid the
thread conflict, as detailed in Algorithm 1. Since function
pre-warm is only an optimization for function invocation,
we give high priority to the function invocation thread.
Thus, in S3, NEMO needs to guarantee the performance
of warm function invocation by pausing the function pre-
warm thread. After the invocation, the function controller
continues processing the function pre-warm thread. In this
way, it also avoids the memory conflict between the function
pre-warm and function invocation thread.

Additionally, NEMO handles S4 in two ways: 1) The
coming function is contained in the warm pool but tagged
warming. In other words, the function pre-warm thread
and function invocation thread process the same function.
In this case, the function invocation thread waits for the
function pre-warm thread. Afterward, the function invo-
cation thread invokes the function with a warm start. 2)
The incoming function is not in the warm pool. In this
state, the function controller will pause the pre-warm thread
immediately to ensure the processing of function invocation
thread. Meanwhile, it strives to harvest more spare cycles
to reduce invocation latency. After invocation, the function
pre-warm thread continues processing.

5 EVALUATION

5.1 Evaluation Methodology
We evaluate NEMO on our proof-of-concept system. We
implement NEMO in C++ with 1649 SLOC. NEMO’s con-
figuration file is in JSON format and NEMO parses it to
set up the whole system. Users can change the size of the
container pool, add/delete edge functions, and the path of
the log file by editing the configuration file.

EF Layer: We use the open-source serverless platform
named OpenWhisk to run EFs. The EF is from prior work
[18] as shown in Table 1. Meanwhile, we rewrite and de-
ploy a subset of Python Performance Benchmark Suite in
Openwhisk. We also modify the source code of Openwhisk
to bind serverless functions running on the same core with
NFs. In Openwhisk, we allocate 2048M memory (the default
configuration) for processing edge functions. Openwhisk
will allocate 256M memory for each function. As a result,
our server node can run at most 8 functions at the same
time. We configure the size of the pre-warm function pool
which can support at most 6 functions to be warmed. The
remaining 512M memory space is used to handle functions
with cold invocations. Our light-weight thread management
of NEMO runs on a single core with little resource consump-
tion and it will not add contention to the system.

NF Layer: We use Click [10] as our NFV platform and
we slightly modifies it by adding 54 SLOC. To adjust the
interrupt coalescing rate, NEMO invokes ethtool utility

to reconfigure the NIC. We change the rx_usecs parameter
of NIC, which controls the time to delay an interrupt after
a packet arrives. In addition, NEMO has a shared memory
buffer with Click to enable/disable burst packet processing.
There are several works using Click router to implement
their NFV platforms such as ClickNF [6] and ClickOS [15].
We use a more conservative Click platform to emulate the
NFV environment since we focus on analyzing the resource
slacks of underutilized NFV servers at the edge. As shown
in Table 1, we choose three click-based NFs. We deploy each
NF on a dedicated core by setting the core affinity.

Server Specification: We conduct our experiments on a
two-socket Intel Xeon Sliver server with 40 cores. The server
has 13.75MB of L3 cache and 64GB of 2666MHz DDR4 RAM.
By using pktgen (kernel mode), the network sender server
can generate packets with a maximum rate of 1Gb/s. We
use Perf to collect the runtime statistics of NFs and EFs.

Additional Remarks of Evaluation: When we evaluate
the overall benefits of NEMO, we design a workload that
consists of a sequence of edge functions. The workload con-
sists 10 functions (4 functions from Table 1 and 6 functions
from python suite.) and the functions are invoked in an
interval following Poisson distribution. We set 3 seconds as
the time interval to pre-warm functions. All evaluations in-
clude the performance impact of control operations/events
like invoking ethtool.

5.2 Effectiveness of NEMO Design

1) Effectiveness of Resource Harvesting: We first evaluate
the effectiveness of resource harvesting in NEMO. We co-
locate four EFs with three NFs and generate two kinds
of packet sizes: 1024Bytes and 1500Bytes for each NF. The
latency is normalized to the latency without resource har-
vesting in different scenarios.

Figure 10 shows the normalized latency of EFs in four
different scenarios. We observe that resource harvesting
brings 1.83∼12.7X performance improvement. For all the
situations, it can achieve 6.2x performance improvement
on average for edge functions. Note that the availability of
spare cycles highly depends on the type of network func-
tions. For example, the performance improvement of EFs
co-locating with LoadBalancer is less than the others since
fewer spare cycles can be harvested from LoadBalancer.

2) Effectiveness of Function Pre-warm: NEMO judi-
ciously warms up containers in advance. Doing so allevi-
ates the initialization overhead which may jeopardize the
performance of serverless edge functions. To illustrate the
benefits of NEMO’s function pre-warm ability, we compare
the latency of EF warm invocation with EF cold invocation
under different network functions.

We record the latency of edge functions in four different
scenarios. Figure 11 shows that all EFs can benefit from
warm invocation in different scenarios. Specifically, the ac-
tual speedup varies with different EF behaviors. For exam-
ple, the latency of ocr-img is only reduced by about 3∼11X.
Differently, The function sentiment achieves 47∼127X per-
formance improvement with warm invocation. The reason
for such a significant improvement is that the initialization
overhead of sentiment-analysis accounts for a large portion
of its overall latency.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Img-resize

markdown2html

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Ocr-img

0
2
4
6
8

10
12

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

sentiment

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

(a) ocr-img

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Img-resize

markdown2html

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Ocr-img

0
2
4
6
8

10
12

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

sentiment

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

(b) sentiment

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a
t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Img-resize

markdown2html

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Ocr-img

0
2
4
6
8

10
12

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

sentiment

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

(c) img-resize

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a
t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Img-resize

markdown2html

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

Ocr-img

0
2
4
6
8

10
12

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

sentiment

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

cold-1024 warm-1024 cold-1500 warm-1500 /

N
o

rm
.
L

a
te

n
c
y

w/o harvest w/ harvest

(d) markdown2html

Fig. 10. The normalized latency of serverless functions when co-locating with NFs w/ or w/o resource harvesting (cold-1024 means functions are
cold invocation and packet size of NF is 1024B)

Img-resize

sentiment
markdown

Ocr-img

0

5

10

15

20

25

30

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0
10
20
30
40
50
60
70

F
ire

w
a
ll

N
a

t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

2

4

6

8

10

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

20

40

60

80

100

120

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

(a) ocr-img

Img-resize

sentiment
markdown

Ocr-img

0

5

10

15

20

25

30

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o

rm
.
L

a
te

n
c
y

cold start warm start

0
10
20
30
40
50
60
70

F
ire

w
a

ll

N
a
t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o

rm
.
L

a
te

n
c
y

cold start warm start

0

2

4

6

8

10

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o

rm
.
L

a
te

n
c
y

cold start warm start

0

20

40

60

80

100

120

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

F
ire

w
a

ll

N
a

t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o

rm
.
L

a
te

n
c
y

cold start warm start

(b) sentiment

Img-resize

sentiment
markdown

Ocr-img

0

5

10

15

20

25

30

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0
10
20
30
40
50
60
70

F
ire

w
a
ll

N
a

t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

2

4

6

8

10

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

20

40

60

80

100

120

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

(c) img-resize

Img-resize

sentiment
markdown

Ocr-img

0

5

10

15

20

25

30

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0
10
20
30
40
50
60
70

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

2

4

6

8

10

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

0

20

40

60

80

100

120

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

F
ire

w
a
ll

N
a
t

L
B

a
v
g

w/o harvest-
1024

w/ harvest-
1024

w/o harvest-
1500

w/ harvest-
1500

/

N
o
rm

.
L
a
te

n
c
y

cold start warm start

(d) markdown2html

Fig. 11. The normalized latency of serverless functions when co-locating with NFs w/ or w/o the warm function pool (w/o harvest-1024 means no
resource harvesting and packet size of NF is 1024B)

0

0.5

1

1.5

Firewall Nat LB

direct colocation native EF NEMO

1024bytes 1500bytes

0

0.5

1

1.5

Firewall Nat LB

direct colocation native EF NEMO

N
o

rm
.
P

e
rf

o
rm

a
n
c
e 3.25

1 1 1 1
0

100

200

300

400

500

600

Best Case:1024bytes Best Case:1500bytes Worst Case

N
o
rm

.
P

e
rf

o
rm

a
n

c
e

With Firewall

1 1 1 1
0

100

200

300

400

500

600

1 1 1 1
0

100

200

300

400

With Nat With LB

0

0.5

1

1.5

2

native-cold native-warm NEMO-oracle

Fig. 12. The normalized performance of functions w/ or w/o NEMO. Best
Case: w/ NEMO; Worst Case: w/o NEMO

3) Joint Effectiveness of Resource Harvesting and Func-
tion Pre-Warm: NEMO seeks a synergism of resource har-
vesting and function pre-warm, and therefore it can achieve
significant performance improvement. To demonstrate this,
we further evaluate how much speedup NEMO can obtain
compared to a straightforward co-location scheme.

In Figure 12, We treat direct co-location (w/o NEMO)
as our baseline. It relies on the OS to coordinate EF and NF
and therefore shows the worst performance; We observe 16x
∼ 628x performance improvement when both resource har-
vesting and warm invocation are enabled (i.e., w/ NEMO).

5.3 Comparison with Native Processing
Co-locating EFs with NFs unavoidably worsens the perfor-
mance due to resource contention. To demonstrate the per-
formance impact of NEMO on edge functions, we compare
NEMO with the native invocations. In Figure 13, native-cold
and native-warm refer to a scenario that the edge function
is executed on dedicated hardware without NF interfer-
ence. NEMO-oracle means that functions are processed with
warm start and resource harvesting while co-locating with
NFs. All results are normalized to NEMO-oracle.

Since co-location will worsen the performance of EFs,
NEMO-oracle can hardly achieve higher performance than
native-warm. However, NEMO-oracle greatly outperforms

0

0.5

1

1.5

2

native-cold native-warm NEMO-oracle

0

0.5

1

1.5

2

0

0.5

1

1.5

2

NEMO with LoadBalancer

N
o
rm

.
P

e
rf

o
rm

a
n

c
e

2.32 2.18 3.37 2.82

NEMO with Firewall NEMO with Nat

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

native-cold native-warm NEMO-oracle
3.44 3.11 3.02 2.57 4.14 3.42

NEMO with Firewall

N
o

rm
.
P

e
rf

o
rm

a
n

c
e

NEMO with Nat NEMO with LoadBalancer

(a) Network functions with 1024bytes packets

0

0.5

1

1.5

2

native-cold native-warm NEMO-oracle

0

0.5

1

1.5

2

0

0.5

1

1.5

2

NEMO with LoadBalancer

N
o

rm
.
P

e
rf

o
rm

a
n

c
e

2.32 2.18 3.37 2.82

NEMO with Firewall NEMO with Nat

(b) Network functions with 1500bytes packets

Fig. 13. The normalized performance of NEMO and native invocations

native-cold invocation. NEMO-oracle lowers the perfor-
mance by 1.15x ∼ 4.14x compared with native-warm but
obtains 1.64x ∼ 25x performance improvement compared to
native-cold. This demonstrates the advantage of our design.

5.4 Performance of Mixed Edge Function Stream
When edge computing requests arrive, edge functions may
not always be warm invocations. We utilize the workload
described in Section 5.1 to evaluate the mixed function in-
vocations. We compare NEMO with two schemes: direct co-
location (EFs directly co-locates with NFs without NEMO)
and native EF (EFs invokes without co-location).

Figure 14 shows the performance of mixed edge func-
tions. All the results are normalized to NEMO. Compared

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0

0.5

1

1.5

Firewall Nat LB

direct colocation native EF NEMO

1024bytes 1500bytes

0

0.5

1

1.5

Firewall Nat LB

direct colocation native EF NEMO
N

o
rm

.
P

e
rf

o
rm

a
n
c
e 3.25

Fig. 14. The overall performance of EFs with native processing and
naive co-location normalized to NEMO

with direct co-location, NEMO improves the performance
of edge functions by 12.5x ∼ 25X. The performance of
native edge functions is higher than NEMO as a result of
unlimited, abundant resources. The average latency of EFs
on NEMO is only increased by 60% compared to native
invocations. In a word, NEMO can greatly improve the
performance of EFs by opportunistically utilizing the spare
resources of NFV-ready servers.

6 RELATED WORK

1) Serverless Computing Platform: Serverless computing is
popular at the edge [2], [8]. It has been adopted in various
IoT scenarios [1], [3]. To achieve better performance, prior
works [5], [7] focus on addressing the cold start problem. Be-
sides, the resource scheduling of serverless functions [22] are
also proposed. However, no work has been done in terms
of deploying serverless functions on network facilities. Our
work aims to fill this void.

2) System Optimization for NFs: Many prior works of
NFV aim to provide high performance and design flexibility
[6], [15]. There are also works considering the resource
utilization of NFV. For example, NFVnice [11] benefit from
running multiple NFs on a single core. HyperNF [24] aims
at maximizing server performance when concurrently run-
ning large numbers of NFs. Moreover, there are also prior
works [14], [21] on optimizing network functions at the
edge. However, these works mainly emphasize the NF itself.
Differently, we focus on opportunistically utilizing the spare
cycles on network facilities to host serverless EFs in an
efficient, cost-effective manner.

3) Towards NF/EF Colocation: There are some prior
works on performing edge computing in the NFV environ-
ment [23], [25]. They propose to jointly manage both NFs
and EFs. However, these works focus on orchestration for
applications. Wang et al. [23] characterize the resource usage
patterns of edge NFV which only shows the possibility of
deploying EFs on NFV-ready servers. The most relevant
work is EdgeMiner [25] which can harvest the idle CPU
cycles in a DPDK-based NFV environment. Different from
EdgeMiner, NEMO focuses on serverless edge function,
which is more suitable for deploying edge applications.
NEMO’s unique management strategy allows one to better
utilize the spare cycles.

7 CONCLUSION

Looking ahead, the distributed network facilities are an
ideal infrastructure for ubiquitous edge computing. The
spare cycles on NFV-ready servers at the edge are untapped

opportunities for supporting serverless edge functions. In
this paper, we demonstrate that the fragmented resources
can be harvested for warming up edge functions and
speeding up their invocation process. We build NEMO, a
system framework tailored to the behaviors of serverless
EFs as well as NFs. NEMO shows 12.5∼25X performance
improvement compared with direct co-location and only
worsen the performance by 60% on average compared to
an oracle case. Since NEMO focuses on spare CPU cycles
that are almost free, we expect that it will encourage and
facilitate the adoption of edge computing applications.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No.61972247). We thank all the anony-
mous reviewers for their valuable feedback.

REFERENCES

[1] L. Ao et al., “Sprocket: A serverless video processing framework,”
in SoCC, 2018.

[2] E. de Lara et al., “Hierarchical serverless computing for the mobile
edge,” in SEC, 2016.

[3] S. Fouladi et al., “Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads,” in NSDI, 2017.

[4] A. S. Foundation, “Apache openwhisk,” https://bit.ly/36veTUX.
[5] A. Fuerst et al., “Faascache: keeping serverless computing alive

with greedy-dual caching,” in ASPLOS, 2021.
[6] M. Gallo et al., “Clicknf: a modular stack for custom network

functions,” in ATC, 2018.
[7] A. U. Gias et al., “Cocoa: Cold start aware capacity planning for

function-as-a-service platforms,” in MASCOTS, 2020.
[8] A. Hall et al., “An execution model for serverless functions at the

edge,” in IoTDI, 2019.
[9] B. Han et al., “Network function virtualization: Challenges and

opportunities for innovations,” IEEE Communications Magazine,
2015.

[10] E. Kohler et al., “The click modular router,” TOCS, 2000.
[11] S. G. Kulkarni et al., “Nfvnice: Dynamic backpressure and schedul-

ing for nfv service chains,” in SIGCOMM, 2017, pp. 71–84.
[12] C. Li et al., “Towards sustainable in-situ server systems in the big

data era,” in ISCA, 2015.
[13] C. Li et al., “Edge-oriented computing paradigms: A survey on

architecture design and system management,” CSUR, 2018.
[14] M. Li et al., “Finedge: A dynamic cost-efficient edge resource

management platform for nfv network,” in IWQoS, 2020.
[15] J. Martins et al., “Clickos and the art of network function virtual-

ization,” in NSDI, 2014.
[16] E. N. Power, “Data center 2025: Exploring the possibilities,” Avail-

able: https://Vertiv.com/DC2025, 2014.
[17] R. Prasad et al., “Effects of interrupt coalescence on network

measurements,” in PAM, 2004.
[18] M. Shahrad et al., “Architectural implications of function-as-a-

service computing,” in MICRO, 2019.
[19] W. Shi et al., “Edge computing: Vision and challenges,” IoT-J, 2016.
[20] V. Stinner, “The python performance benchmark suite, version

0.7.0,” Available: https://pyperformance.readthedocs.io.
[21] T. Subramanya et al., “Machine learning-driven service function

chain placement and scaling in mec-enabled 5g networks,” Com-
puter Networks, 2020.

[22] A. Suresh et al., “Fnsched: An efficient scheduler for serverless
functions,” in WoSC, 2019.

[23] J. Wang et al., “Architectural and cost implications of the 5g edge
nfv systems,” in ICCD, 2019.

[24] K. Yasukata et al., “Hypernf: Building a high performance, high
utilization and fair nfv platform,” in SoCC, 2017.

[25] L. Zhang et al., “Characterizing and orchestrating nfv-ready
servers for efficient edge data processing,” in IWQoS, 2019.

