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Abstract

Coverage is a fundamental problem in sensor networks, which usually dictates the overall network performance. Previous
studies on coverage issues mainly focused on sensor networks deployed on a 2D plane or in 3D space. However, in many real
world applications, the target fields can be complex 3D surfaces where the existing coverage analysis methodology cannot be
applied. This paper investigates the coverage of mobile sensor networks deployed over convex 3D surfaces. This setting is highly
challenging because this dynamic type of coverage depends on not only sensors’ movement but also the characteristics of the target
field. Specifically, we have made three major contributions. First, we generalize the previous analysis of coverage in the 2D plane
case. Second, we derive the coverage characterization for the sphere case. Finally, we next consider the general convex 3D surface
case and derive the coverage ratio as a function of sensor mobility, sensor density and surface features. Our work timely fills
the blank of coverage characterization for sensor networks and provides insights into the essence of the coverage hole problem.
Numerical simulation and real-world evaluation verify our theoretical results. The results can serve as basic guidelines for mobile
sensor network deployment in applications concerning complex sensing fields.
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1. Introduction

Sensor networks are widely deployed in many commercial
and military scenarios because of their unique advantages, such
as low cost, ease of deployment and unattended operation. Typ-
ical applications include tracking wild animals [1][2], forest
fire detection [3], forest carbon monitoring [4], volcano surveil-
lance [5] and environmental data reconstruction [6][7].

Ensuring coverage is a fundamental problem in sensor net-
works and one of the main considerations for system designers
[8]. The coverage of a sensor network answers important ques-
tions, e.g., what are the traces of the moving objects? What
are the chances that an abnormal event like an intrusion will be
detected during its lifetime? How well can the sensor network
monitor a target field? How accurate is it if the sampled data are
used to virtually reconstruct the environmental conditions of the
field? Furthermore, the coverage property closely relates to the
surveillance quality of a sensor network, the monitoring ability
of an intrusion detection system and the connectivity of a k-hop
clustered mobile wireless network [9]. Thus, it is importan-
t to understand the relationship between coverage and system
parameters including the sensor density, sensors’ mobility and
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field’s properties. This will help designers better deploy sensor
networks for various practical applications concerning complex
sensing fields.

Recent years have witnessed the increasing adoption of mo-
bile sensor networks. Sensors can be mounted on autonomous
robots, such as the Pioneer 3DX [10] and the Starburg [11],
or be mounted on wild animals [1][2]. System designers em-
brace mobile sensors since mobility enables self-deployment
and adaptability. For example, in a hostile environment where
sensors cannot be manually deployed, mobile sensors can
move to the desired positions during the redeployment phase
[12][13][14]; in ocean environments where sensors move with
the surrounding ocean currents [11], mobile sensors can adap-
t to the floating water. Moreover, mobility can be exploited
to compensate for the insufficient number of sensors, to im-
prove the area coverage of a randomly deployed sensor network
[18][19] and to optimize the data collection operation [6]. Re-
cent studies have already shown that mobility can increase com-
munication capacity [20], network connectivity [9] and security
[21] in ad hoc networks.

1.1. Motivation
For the coverage characterization, most existing works as-

sume that the target field is a 2D plane or 3D space. However,
in many real world applications, the fields of interest (FoIs) are
complex 3D surfaces (Fig 1(a)). Such examples appear in the
ZebraNet project [1], the GreenOrbs project [4], and the Tun-
gurahua volcano monitoring project [5]. In a 2D plane or 3D
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Figure 1: a). An example of a mobile sensor network deployed over a 3D
surface; b). A cross section view of the coverage hole problem: model the
surface as a 2D plane, the deployment strategy that achieves full coverage on
the 2D plane, however, will leave holes for the surface because sensors can only
be positioned on the exposed area of the surface.

space, sensors can move freely within the whole FoI, but for
3D surfaces, sensors are restricted to move only on the surface.
This implies that existing results derived under the 2D plane or
3D space model may be inappropriate when being applied to
the 3D surface case.

Surface coverage is first introduced by M. Zhao et al. [22]
and extended in [23]. They point out that coverage strate-
gies derived on 2D planes do not work for 3D surfaces since
they will encounter the coverage hole problem (Fig 1(b)). In
[22][23], however, only surface coverage of static sensor net-
works is studied. The coverage ratio is determined by the ini-
tial network configuration and remains unchanged over time.
B. Liu et al. [18] have analyzed the coverage of mobile sensor
networks, but they concentrate on the 2D plane case and their
results cannot be directly applied to the 3D surface case since
their analysis fails to take into account the properties of the FoI.
As a result, it is still not clear how mobility affects the coverage
of mobile sensor networks on 3D surfaces.

To fill this gap, we study the surface coverage of a mobile
sensor network deployed over a convex 3D surface. Specifical-
ly, we are interested in the surface coverage ratio over a time pe-
riod, which is achieved by the continuous movement of sensors.
Unlike traditional approaches that aim to provide simultaneous
coverage of all locations at each time instant, or exploit mobil-
ity to obtain a new stationary configuration that improves the
coverage ratio after the sensors move to the desired positions,
the surface coverage in mobile scenarios aims at covering the
locations once during an event’s lifetime. This kind of surface
coverage can be reduced to the scenario in [22][23] by making
the sensors move at zero speed. Characterizing the surface cov-
erage ratio of a mobile sensor network requires comprehensive
consideration of the initial network configuration, features of
the convex 3D surface and dynamic aspects of sensors’ move-
ment. In contrast, the stationary 2D plane coverage, mobile 2D
plane coverage and stationary surface coverage consider only
one or two of those three aspects.

1.2. Our Contributions
The main contributions in this paper are summarized as fol-

lowing:

• To the best of our knowledge, this is the first attempt at
characterizing the surface coverage of distributed mobile

sensor networks. We propose a theoretical analysis frame-
work for coverage studies on general convex 3D surfaces.

• We derive theoretical results for 2D planes, spheres and
general convex 3D surfaces under three mobility models.
Our results show that mobility increases the surface cover-
age.

• Numerical simulation and real-world evaluation testify the
accuracy of our theoretical results. Results using a 2D
plane model perform poorly for 3D surfaces due to the
coverage hole problem, which verifies our motivation.

• Our theoretical results provide insights into the essence of
the coverage hole problem: the nonzero Gaussian curva-
ture is the root cause for the invalidity of the 2D plane
model for the surface coverage case.

The paper is organized as follows. Section 2 gives a brief
review of related works, then in Section 3 we summarize our
main results and give corresponding interpretations. The net-
work model and coverage metrics are introduced in Section 4.
Section 5 is devoted to consider the 2D plane case, while the
sphere case is presented in Section 6. Section 7 shows our anal-
ysis framework for general surfaces, followed by our simula-
tion and evaluation results in Section 8. In Section 9, we give a
brief discussion, then conclude our work and point out possible
directions for future work.

2. Related Works

Coverage of sensor networks has been extensively studied.
Existing works on coverage can be divided into two categories:
those focusing on stationary sensor networks and those focus-
ing on mobile sensor networks. For the first class, various type-
s of coverage have been investigated, such as area coverage
[24][8][25][26], barrier coverage [27] and path coverage [28].
For the second class, two mobility models have been investigat-
ed: limited mobility [10][12][19][13][14], which assumes that
the sensors can move only once over a short distance, and con-
tinuous mobility [11][18][29]. More thorough surveys on the
coverage problem are provided by [28][30].

For stationary sensor networks, there are mainly four kinds
of FoI models used: strip-shaped barrier, 3D space, 2D plane
and 3D surface. Barrier coverage seeks to minimize the prob-
ability of undetected network penetrations [27]. 3D full space
coverage [34][26] differs fundamentally from 3D complex sur-
face coverage, because in the latter case sensors can only be
deployed on the exposed surface area, not freely within the w-
hole target FoI. For 2D plane coverage, Meguerdichian et al.
[8] consider the coverage as a measure of the quality of service
(QoS) of the sensor networks and design a robust, efficient, and
scalable polynomial-time algorithm for connectivity and cov-
erage based on Voronoi diagrams and Delaunay triangulations;
P.-J. Wan and C.-W. Yi [24] address the asymptotic k-coverage
of a randomly deployed sensor network. Still, proposed solu-
tions under the 2D plane model have found a wide range of
applications and some of them can be easily adapted to the 3D
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full space case. However, all of these results derived from the
2D plane and then applied to 3D complex surface, suffer from
the coverage hole problem [22][23]. Thus, M.-C. Zhao et al.
[22] propose using the concept of surface coverage and provide
analytical results for the coverage ratio.

For mobile sensor networks, some work focuses on redeploy-
ing sensors to achieve a static configuration with better cov-
erage. Based on potential fields, A. Howard et al. [12] mod-
el sensor nodes as virtual particles under the control of virtual
forces. The virtual forces repel sensors away from each other
and make sensors spread out, leading to a maximized cover-
age area. Y. Zou et al. [13] propose another virtual-force-based
algorithm to improve the coverage of an initial randomly de-
ployed sensor network and this virtual force is defined accord-
ing to the distance between the sensor and the other sensors or
obstacles. G. Wang et al. [14] propose several algorithms to
identify coverage holes and compute the desired locations that
can increase the coverage ratio the most. Those proposed al-
gorithms strive to maximize the covered area in a redeployment
phase which ends with sensors moving to form a new static con-
figuration. The main difference is how exactly this new config-
uration is computed in an efficient manner.

Besides the work in [22][23], several recent papers also study
the surface coverage problem. A distributed algorithm [15] is
proposed to produce triangulations for arbitrary 3D surfaces.
Further, [16] studies the optimal solution for 3D surface sensor
deployment with minimized overall unreliability. It also design-
s a series of excellent algorithms for practical implementation.
This study focused on sensor networks under the deterministic
deployment. Liu et al. [17] derive the expected coverage ratio
for irregular terrains using the cone/cos model and for irregular
terrains using the digital elevation model. It focuses on sensor
networks under the stochastic deployment. All of them target
at stationary sensor networks.

B. Liu et al. [18] consider the coverage over an time interval
resulting from the continuous movements of sensors, only on
2D planes. For 3D surfaces, the dynamic characteristics of the
surface coverage of mobile sensor networks are left untouched.
Our work fills the gap. We share a similar proof technique with
[18], but the 3D surfaces are mathematically much more differ-
ent and difficult compared with the 2D plane. Fortunately, the
results in this paper are consistent with those on the static 2D
plane case [24], the mobile 2D plane case [18] and the station-
ary 3D surface case [22]. This paper is the first to verify that the
intuition introduced by [18] on the 2D plane also holds on the
convex 3D surface: mobility increases the coverage of sensor
networks.

3. Main Results

This section presents the main results and the corresponding
implications. The notations are listed in TABLE 1, and read-
ers can refer to it easily. Throughout the paper, ∥·∥ denotes the
area of a region, or the arc length of a curve; d(x1, x2) denotes
the Euclidean distance between points x1 and x2; A′ denotes the
complement of set A. We define a function Gi(kn, r, s) to char-
acterize the properties of the FoI and the mobility of a sensor,

Table 1: Notations
Symbol Definition

S The FoI, being a convex 3D surface or 2D plane.
C The whole network or the locations of sensors.
si The ith sensor.
r Sensing range.
λ Network density.
v Sensors’ speed, being a constant.
K Gaussian curvature of a surface.
t A time instant in [0, τ).

[0, τ) The time interval of interest.
[0, vτ) The trace of a sensor over [0, τ).
k(s) Curvature of a curve.
kg(s) Geodesic curvature at s.
kn(s) Normal curvature at s.
kn(s) Conjugated normal curvature at s.

Gc,si ,G
t
c,si

The region covered by si at t.
Gc,Gt

c The covered region and uncovered region at t.
Gτc,si

The region covered by si over [0, τ).
Gτc The covered region over [0, τ).

f (t), F(τ) Coverage ratio at t, over [0, τ).
K ,U Surface convex sets.

with the following form:

Gi(kn, r, s)

=
kn(s)
kn(s)

�
r
È

4 − (kn(s)r)2 + 4
kn(s) − kn(s)

kn(s)kn(s)
arcsin

�kn(s)r
2

��
.

(1)

Intuitively, Gi(kn, r, s) indicates the local smoothness of the sur-
face at the nearby region of point s. It quantitatively measures
the bending degree of the surface area within the sensing range
of a sensor node. Gi(kn, r, s) has small value in sharp regions,
and big value in smooth regions.

Our main theoretical results are:

• We generalize the results in the 2D plane case [18] by con-
sidering sensors moving along general curves. The ex-
pected area of the region covered by a mobile sensor si

over the time period [0, τ) is ∥Gτc,si
∥ = πr2 + 2rvτ as long

as r ≤ min
s∈[0,vτ)

1/k(s) when sensors move along straight

lines (the SL Walk), circular arcs (the CA Walk) or gen-
eral curves (the GC Walk). The coverage ratio, F(τ), is
1 − e−λ(πr

2+2rvτ).

• The coverage ratio of mobile sensor networks on a sphere
is studied as a special case, i.e., a sphere is a convex 3D
surface with constant Gaussian curvature K. The expected
area of the region covered by a sensor si over the time
period [0, vτ) is ∥Gτc,si

∥ = πr2 + rvτ
√

4 − Kr2 as long as
r ≤ p2(k − kg)/(Kk) under the CA Walk and the GC Walk,
and F(τ) = 1 − e−λ[πr

2+rvτ
√

4−Kr2], which gives us intuitions
for the general surface case.

• We derive, in closed form, the coverage ratio on
general convex 3D surfaces. We first identify that
∥Gτc,si

∥ = πr2 +
R vτ

0 G(kn, r, s)ds + c(r) as long as r ≤
3



min
s∈[0,vτ)

È
2(k(s) − kg(s))/(k

2
n(s)k(s)) under the GC Walk; we

then obtain a formula on the transformation from the area
measure of Gτc,si

to the coverage ratio; finally, let hr(vτ) =

lim
n→∞

1
n

nP
i=1

R vτ
0 Gi(kn, r, s)ds, if it exists, and then F(τ) =

1−e−λ[πr
2+hr(vτ)+c(r)]. Gi(kn, r, s), defined in Equ(1), charac-

terizes the properties of the FoI and the mobility of sensor,
and the function c(r) satisfies lim

r→0

c(r)
r3 = c, (|c| < ∞).

These results are consistent with previous results on the sta-
tionary 2D plane, mobile 2D plane and stationary surface sce-
narios [24][18][22]. We present the main implications of the
above results below. From an abstract point of view, the first
two reflect the inner consistency of our analysis methodology
and thus verify the correctness of our results.

Remark 3.1. For a sphere of radius R, kn(s) = kn(s) = 1
R , so

we have

Gi(kn, r, s) = r

Ê
4 −

�
r
R

�2

= r
√

4 − Kr2,

hr(vτ) = rvτ
√

4 − Kr2,

and c(r) = 0 for the sphere case. Therefore, the coverage ratio
of a sphere can be reduced from that in the general surface
case:

F(τ) = 1 − e−λ[πr
2+hr(vτ)+c(r)] = 1 − e−λ[πr

2+rvτ
√

4−Kr2].

Remark 3.2. When the sphere expands to a 2D plane, i.e. R→
∞ (K → 0), then hr(vτ) = πr2 + 2rvπ. Therefore, the coverage
ratio of the 2D plane can be reduced from these in both the
sphere case and the general surface case.

Remark 3.3. The coverage ratio has the general form F(τ) =
1 − e−λ[πr

2+hr(vτ)+c(r)] for the mobility case, and F(0) = 1 −
e−λπr

2+c(r) for the stationary case. Since hr(vτ) is always pos-
itive, and |c(r)| is smaller than hr(vτ), so

F(τ) = 1 − e−λ[πr
2+hr(vτ)+c(r)] ≥ 1 − e−λπr

2
= F(0).

Then we always have that mobility increases the surface cov-
erage of sensor networks. Furthermore, since hr(vτ) increases
with vτ, there are two ways for increasing F(τ): increasing the
sensors’ moving speed or prolonging the time interval.

Remark 3.4. From function hr(vτ) andG(kn, r, s), we know that
sensors moving at positions with bigger Gaussian curvature
will cover a region with less area. It is not difficult to check that
the inequality G(kn, r, s) ≤ 2r always holds, with equality hold-
ing for the 2D plane case. Therefore, given the speed, the area
covered by sensors moving on a 2D plane over an equivalent
time interval is larger than that on general 3D surfaces. This
lead us to the conclusion that the nonzero Gaussian curvature
leads to the invalidity of the 2D plane model for 3D surfaces,
i.e., the coverage hole problem.

4. Network Models and Metrics

This section describes models for FoI, sensing, deploymen-
t and mobility pattern, respectively, and presents several mea-
sures to assess the surface coverage performance of mobile sen-
sor networks.

To understand our work, the reader must be familiar with
preliminaries of the integral and differential geometry theories.
For convenience, Appendix A lists the related definitions and
theorems.

4.1. The Unit Ball Sensing Model

We assume that the target FoI is a convex surface S of class
C2 in 3D space1. S can be expressed as a single valued function
z = h(x, y) in a Cartesian coordinate system. In particular, S is
a plane if and only if the function is z = c where c is a constant,
for an appropriate selection of the coordinate system. A sensor
si is said to be placed on S if the coordinates of si satisfy the
equation of S , which is denoted as si ∈ S .

We use a unit ball sensing model, i.e., assume that each sen-
sor has the same sensing radius r in 3D Euclidean space and that
a sensor can sense and detect events within its sensing range2,
thus the sensing region forms a ball of radius r centered at si in
3D space (or a disk on a 2D plane).

Let Gc,si denote the region covered by sensor si on S , we have
Gc,si ⊆ S with

Gc,si = {x | d(si, x) ≤ r, x ∈ S } . (2)

A point p ∈ S is said to be covered by sensor si if p ∈ Gc,si .
After n sensors are deployed, the FoI is thus partitioned into
two kinds of regions: the covered region Gc and the uncovered
region G′c:

Gc =

n[
i=1

Gc,si . (3)

Every point in Gc is covered by at least one sensor; G′c is the
complement of Gc. An event happening in Gc or an intruder
appearing in this region will be detected immediately.

4.2. Sensor Deployment

Definition 4.1. Surface Poisson Point Process (SP3). Assume
that sensors are distributed uniformly, both n, ∥S ∥ → ∞ in such
a way that n

∥S ∥ → λ (which is a positive constant), the probabil-
ity that there are m sensors lie in a set G is

lim
n→∞
∥S ∥→∞

(λ∥G∥)m

m!
e−λ∥G∥. (4)

The right-hand side of Equ.(4) is the probability function of
the Poisson distribution; it depends only on the product λ∥G∥,

1Convex surface, Gaussian curvature, surface of class Ck are considered as
a prior knowledge. Refer to Appendix A or [31] for detailed definitions.

2This assumption is a bit strong but quite satisfying as S is quite large and r
is small in real world scenarios; it simplifies the analysis a lot. Refer to Section
9 for further discussions.
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which is called the parameter of the distribution. This proba-
bility model for points on the surface is said to be a Surface
Poisson Point Process (SP3) of intensity λ. Note that λ is the
network density.

We concentrate on large-scale mobile sensor networks de-
ployed over vast 3D surfaces3. For the initial configuration, we
assume that the locations of these sensors are uniformly and
independently distributed according to the S P3 model at time
t = 0, as in [22][23].

We adopt the Surface Poisson Point Process (S P3) due to the
following two reasons: (1) S P3 provides a uniform distribution
for the initial locations of sensors; (2) If sensors move by choos-
ing its forwarding directions independently and randomly, S P3
holds in the whole process. This uniform property simplifies
our analysis greatly and we believe that it might serve as a basis
for analyzing other kinds of distribution patterns, since many
more complicated distributions can be reduced to uniform dis-
tributions as Gaussian distribution and exponential distribution
giving proper parameters.

4.3. Mobility Model
In this work, we consider the following three simple sensor

mobility models: SL Walk, CA Walk and GC Walk. The move-
ment of a sensor is characterized by its speed and direction. We
assume that sensors move independently of each other, as in
[18]. All sensors move with constant velocity v. Ignoring the
edge effect as S is vast or infinite, then the S P3 distribution
always holds during time interval [0, τ).

• Straight line walk (SL Walk): On 2D planes, each sensor
randomly chooses a direction from [0, 2π) uniformly at t =
0 and never change over [0, τ). It is quite similar to the
Random Waypoint Model.

• Circular arc walk (CA Walk): On 2D planes/spherical
surfaces, each sensor randomly chooses a direction α ∈
[0, 2π) uniformly at t = 0 and then performs uniform cir-
cular motion with radius of 1/k.

• General curve walk (GC Walk): Divide time into appro-
priate slots. On 2D planes/sphere/general surfaces, each
sensor randomly chooses a direction form all possible di-
rections uniformly at the beginning of each slot and then
move forward with constant velocity v.

The SL and CA Walk are special cases of the GC Walk, and
the results of the SL and CA Walk are intermediate results for
the proof of the GC Walk case. More specifically, in the 2D
plane case, sensors can perform straight line walk, circular arc
walk and general curve walk; in the sphere case, sensors can
perform circular arc walk and general curve walk; while in the

3We concentrate on large-scale homogeneous mobile sensor networks:
Large-scale is reflected in both the number of sensors and the area of the FoI
are infinite (as n, ∥S ∥ → ∞); homogeneous means that the capability of the
sensors are the same, and that the sensors are distributed uniformly, e.g. de-
ploying sensors by vehicles running on the surface or even by aircraft, humans
and robots.

general convex 3D surface case, sensors can perform only gen-
eral curve walk. Furthermore, the results obtained on 2D planes
and 3D spheres are then extended to the general convex 3D sur-
faces; the results of straight line walk are extended to derive
results for the circular arc walk, then for the general curve walk.

These above random mobility models enable us to prove the
final argument that “Mobility increased the surface coverage
of distributed sensor networks”, because even this simply and
naive motion ability increases the network performance great-
ly, then elaborate, intelligent and collective mobility is bound to
promote network performance more. This methodology is al-
so adopted by [20][9][21][18], which assume random mobility
model to prove that mobility increases communication capacity,
network connectivity, security and 2D coverage, respectively.

4.4. Coverage Metrics

In [22][23], the authors consider the full surface coverage
in stationary scenario, which can be formally defined as: find
a deployment strategy using the minimum number of sensors
while providing full coverage of the FoI. Here, we take a dif-
ferent approach and establish a theoretical analysis framework
for partial surface coverage by characterizing the coverage ra-
tio, i.e., studying how initial network configuration, properties
of the surface and mobility pattern together affect the coverage
ratio.

To study the surface coverage, we use the following three
coverage measures: area coverage ratio at time instant t, f (t),
the area covered by one sensor si over a time interval [0, τ),
∥Gτc,si

∥, and area coverage ratio over [0, τ), F(τ). Let Gt
c denote

the covered region of the FoI at t and Gτc denote the region
covered over [0, τ), which is defined by



Gτc,si



 = 

 [
t∈[0,τ)

Gt
c,si



, 

Gτc


 = 

 n[

i=1

Gτc,si



. (5)

Area coverage ratio at t is defined by the probabili-
ty that a randomly selected point from S lies in Gt

c, i.e.
P
�

p ∈ Gt
c | p ∈ S

�
, as both n, ∥S ∥ → ∞ in such a way that

n
∥S ∥ → λ, if the following limit

f (t) = lim
n→∞
∥S ∥→∞

P
�

p ∈ Gt
c | p ∈ S

�
(6)

exists, then f (t) is the corresponding coverage ratio. Similarly,
we define F(τ) as

F(τ) = lim
n→∞
∥S ∥→∞

P
�

p ∈ Gτc | p ∈ S
�
. (7)

All three coverage measures depend not only on the network
configuration, but also on the sensor mobility pattern. f (t) is the
fraction of the geographical area covered by at least one sensor
at time instant t; it measures the coverage ratio achieved by a
sensor network at a snapshot view. Specifically, for a stationary
scenario, f (t) remains unchanged, i.e., f (t) = f (0),∀t ∈ [0, τ),
and mainly depends on the network’s initial configuration (e.g.,
the sensor distribution, network density and sensing range) and
the properties of the FoI. Since our networks are homogeneous
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and sensors move under an identical random and independent
way on surface, the expectation of the area covered during any
given time period by each sensor is the same. Thus without
loss of generality, we denote it by a common symbol, as Gt

c,s1

for Gt
c,si

, Gτc,s1
for Gτc,si

, ∀i ∈ [2, n]. F(τ) measures the area cov-
erage ratio of a mobile sensor network during the time interval
[0, τ), which is the fraction of the geographical area covered
by at least one sensor at least once at some time instant t. As
pointed out by B. Liu et al [18], the characterization of area
coverage ratio at specific time instant is useful for application-
s that require simultaneous coverage, while the area coverage
ratio over a time interval is appropriate for applications that do
not require simultaneous coverage of all positions at specific
time instant, but rather prefer partial-time coverage.

5. Mobility on a 2D Plane

The 2D plane is a special case of complex surface with Gaus-
sian curvature of zero. The results seem to be straightforward,
but can provide a brief overview of the proving process in the
following sections. B. Liu et al. [18] discussed the situation
where sensors move under the SL Walk. In this section, we
further study the area coverage achieved under the CA and GC
Walk. As the SL and CA Walk are special cases of the GC
Walk, we thus generalize the results of [18].

Lemma 5.1. The SP3 distribution model can be reduced to the
Poisson Point Process (PP3) on a 2D plane.

Proof. For a 2D plane, the Gaussian curvature of S is zero.
Combining Definition 4.1 and Lemma Appendix A.4, it can be
immediately obtained. �

Theorem 5.2. Consider the mobile sensor network, C, de-
ployed under the SP3 model on plane S at time instant t0 = 0.
Sensors move under the SL, SA and GC Walk over [0, τ). If
r ≤ min

s∈[o,vτ)
1/k(s), then we have:

f (t) = 1 − e−λπr
2
,∀t ∈ [0, τ),

∥Gτc∥ = πr2 + 2rvτ,

F(τ) = 1 − e−λ(πr
2+2rvτ).

Proof. For the SL walk, shown in Fig 2(a), the results were
presented in [18]. They hold because under the SL Walk, at
each time instant t ∈ [0, τ), the locations of the sensors still
follow the Poisson Point Process (PP3) of the same density [32].
Next we study the CA and GC Walk during [0, τ).

1) The CA Walk is shown in Fig 2(b). The covered region
forms a circular race track with radius R. Gτc,si

, which is the
initial covered region plus the region covered by the diameter
of the sensor, has the area:



Gτc,si



 = πr2 +
Rθ

2πR
· π[(R + r)2 − (R − r)2]

= πr2 +
vτ

2πR
· 4πRr = πr2 + 2rvτ.

(8)

vt

(a)

R

(b) (c)

Figure 2: Sensor moves on a 2D plane. (a). The SL Walk case; (b). The CA
Walk case; (c). The GC Walk case.

ds

S

Figure 3: The infinitesimal dividing method in the GC Walk case.

2) The GC Walk is shown in Fig 2(c). The covered region
has a curly ring shape. Denote the curve as L(s), (0 ≤ s < vτ)
and the radius at s as ρ(s) = 1/k(s). Let r ≤ min

s∈[0,vτ)
1/k(s). The

infinitesimal arc element [s, s + ds] (see Fig 3) can be approx-
imated by an elementary circular arc with radius of ρ(s). The
expected area covered by the diameter of a sensor moving along
[s, s + ds] is dS = 2rds. By integration, we get:



Gτc,si



 = πr2 +

Z
L(s)

dS = πr2 +

Z vτ

0
2rds

= πr2 + 2rvτ.
(9)

3) It was pointed out in [33] that area coverage ratio depends
on the distribution of the random shapes only through its ex-
pected area measure, thus we have:

F(τ) = 1 − e−λ∥G
τ
c,si
∥ = 1 − e−λ(πr

2+2rvτ). (10)

�

6. Mobility on a Sphere

A sphere is another special case of 3D surfaces. A sphere
with radius R has constant Gaussian curvature K = 1/R2. In
this section, we study the scenario when sensors move under
the CA and GC Walk.

Lemma 6.1. On a sphere of radius R, the geodesic curvature
kg of a circular arc curve with radius ρ satisfies:

kg = ±
p

R2 − ρ2

Rρ
. (11)

Proof. From Lemma Appendix A.1, and kn = 1/R, we have:

kg = ±
È

k2 − k2
n = ±

Ê
1
ρ2 −

1
R2 = ±

p
R2 − ρ2

Rρ
.
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The sign is determined by the projection direction of the curve
on it tangent plane: if the projection directs to the inner of the
region, it is positive; otherwise, it is negative. �

Theorem 6.2. Consider the mobile sensor network, C, de-
ployed under the S P3 model on sphere S at time instant t0 = 0.
Sensors move under the CA Walk over [0, τ); si moves along a
circular arc of curvature k. We have:



Gτc,si



 = πr2 + rvτ
√

4 − Kr2,

if r ≤
È

2(k−kg)
Kk .

Refer to the appendix for the corresponding proof.

Remark 6.1. For the CA Walk, the proving process assumes
that the sensing range is relatively small, such that

r ≤ ∥DC∥ =
Ê
ρ2 +

�
R −

È
R2 − ρ2

�2

=

r
2(k − kg)

Kk
.

Remark 6.2. For the CA Walk, letting τ→ 0, we get the result
for stationary network scenarios:



G0
c,si



 = lim
τ→0

Gτc,si
= lim
τ→0

�
πr2 + rvτ

√
4 − Kr2

�
= πr2.

Remark 6.3. For the CA Walk, over [0, τ), let Ωc,si denote the
additional region covered by the diameter of sensor si due to its
movement, then

Ωc,si



 = 

Gτc,si



 − 

G0
c,si



 = rvτ
√

4 − Kr2.

This indicates that on spherical surface, at each snapshot,
the area covered by a sensor is constant as long as r ≤p

2(k − kg)/(Kk). Furthermore, as long as this condition holds
along the moving trace, the expected area covered by the mobile
sensor over [0, τ) is independent of the trajectory.

Theorem 6.3. Consider the mobile sensor network C deployed
under the S P3 model on sphere S at time instant t0 = 0. Sen-
sors move under GC Walk; si moves along a general curve of
curvature k(s), 0 ≤ s < vτ. We have

Gτc,si



 = πr2 + rvτ
√

4 − Kr2,

if r ≤ min
0≤s<vτ

�q
2(k(s)−kg(s))

Kk(s)

�
.

Proof. By utilizing a similar methodology as in the 2D plane
case, for the GC Walk, we approximate the infinitesimal arc
element dS as an elementary circular arc; by integration we
obtain the final result.

Denote the curve as L(s), 0 ≤ s < vτ, and the radius at
s is ρ(s) = 1/k(s). For a infinitesimal element [s, s + ds],
which can be approximated as an elementary circular arc with
radius of ρ(s), from Remark 6.3, we know that the area cov-
ered by the diameter of a sensor moving along [s, s + ds] is
dS = r

√
4 − Kr2ds. By integration, we get

Ωτc,si



 = Z
L(s)

dS =
Z vτ

0
r
√

4 − Kr2ds = rvτ
√

4 − Kr2, (12)



Gτc,si



 = 

Ωτc,si



 + 

G0
c,si



 = πr2 + rvτ
√

4 − Kr2. (13)

�

Theorem 6.4. Consider the mobile sensor network, C, de-
ployed under the SP3 model on S at time instant t0 = 0. Sen-
sors move under the GC Walk and along general curves L(s),
0 ≤ s < vτ over [0, τ). We have

P
�

p ∈
n[

i=1

Gτc,si
| p ∈ S

�
= 1 −

�
1 − πr

2 + rvτ
√

4 − Kr2

4π/K

�n

,

F(τ) = 1 − e−λ(πr
2+rvτ

√
4−Kr2),

if r ≤ min
0≤s<vτ

�q
2(k(s)−kg(s))

Kk(s)

�
.

Proof. From Theorem 6.3, we know that


Gτc,si



 = πr2 +

rvτ
√

4 − Kr2. Since the FoI is the entire spherical surface S
with ∥S ∥ = 4πR2 = 4π

K and Gτc,si
⊆ S , the probability that a

random chosen point p ∈ S lies in Gτc,si
is

P
�

p ∈ Gτc,si

�
=



Gτc,si




∥S ∥ =

πr2 + rvτ
√

4 − Kr2

4π/K
. (14)

Because each sensor moves independently, thus we get

P
�

p ∈
n[

i=1

Gτc,si

�
= 1 − P

�
p ∈

� n[
i=1

Gτc,si

�′�

= 1 − P
�

p ∈
n\

i=1

�
Gτc,si

�′�
= 1 −

nY
i=1

P
�

p ∈
�

Gτc,si

�′�

= 1 −
nY

i=1

�
1 − P

�
p ∈ Gτc,si

��

= 1 −
�

1 − πr
2 + rvτ

√
4 − Kr2

4π/K

�n

.

(15)

Note that
�

1 − 1
x

�x x→∞−−−−→ e−1, n
∥S ∥ = λ, thus

F(τ) = lim
n→∞
∥S ∥→∞

P
�

p ∈
n[

i=1

Gτc,si
| p ∈ S

�

= lim
n→∞
∥S ∥→∞

�
1 −

�
1 − λ · πr

2 + rvτ
√

4 − Kr2

n

�n
�

= 1 − e−λ(πr
2+rvτ

√
4−Kr2).

(16)

�

7. Mobility on a General Convex 3D Surface

This section is devoted to analyzing the surface coverage ra-
tio on general surfaces when sensors move under the GC Walk.
We follow a similar methodology as in the 2D plane case and
the sphere cases, but is much more complicated. First we study
the diameter and area of the region covered by a moving sensor;
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Figure 4: Diameter of the region covered by a moving sensor si.

then characterize the probability of the following event: a ran-
dom chosen point from a surface convex set lies in a subset of
that set; finally we are able to obtain the formula of F(τ) with
full consideration of the initial sensor distribution, properties of
the target surface field and mobility pattern of sensors.

Lemma 7.1. On a general surface, let Gτc,si
be the region cov-

ered by a moving sensor over [0, τ), and |Gτc,si
|D be the diameter

of Gτc,si
. We have

|Gτc,si
|D ≤ 2r + vτ.

Proof. Randomly pick two points x,y from Gτc,si
, as shown in

Fig 4. LetöAB denote the trace of sensor si. According to the
definition of Gτc,si

, we know that ∃ points C,D ∈ öAB, s.t. x ∈
B(C, r)∩S , y ∈ B(D, r)∩S , where B(C, r) denote a ball with ra-
dius r and center point C. Then the following inequality holds:

d(x, y) ≤ d(x,C) + d(C,D) + d(D, y)

≤ r + ∥öCD∥ + r ≤ 2r + ∥öAB∥ ≤ 2r + vτ.
(17)

Therefore,
��Gτc,si

��
D = sup

∀x,y∈Gτc,si

§
d(x, y)

ª
≤ 2r + vτ. �

Theorem 7.2. Consider the mobile sensor network, C, de-
ployed under S P3 model on S at time instant t0 = 0. If sensors
move under the GC Walk; sensor i is assumed to move along
general curve of curvature k(s), 0 ≤ s < vτ. We have



Gτc,si



 = πr2 +

Z vτ

0
Gi(kn, r, s)ds + c(r)

if r ≤ min
0≤s<vτ

�q
2(k(s)−kg(s))

k
2
n(s)k(s)

�
,

where the function c(r) satisfies lim
r→0

c(r)
r3 = c, (|c| < ∞), and

Gi(kn, r, s) characterizes the properties of the surface and mo-
bility pattern of sensor i, with the following form:

Gi(kn, r, s)

=
kn(s)
kn(s)

�
r
È

4 − (kn(s)r)2 + 4
kn(s) − kn(s)

kn(s)kn(s)
arcsin

� kn(s)r
2

��
.

Refer to the appendix for the corresponding proof.
Given sensing range r and the target FoI, G(kn, r, s) depend-

s only on the trace of each sensor. So we call G(kn, r, s) the
mobility function, which characterizes sensor’s mobility.

Remark 7.1. There are two special cases we would like to point
out. If kn(s) = 0, the mobility function can be obtained by taking
the limit, i.e., Gi(kn, r, s) = 2r; If kn(s) , 0 and kn(s) = 0,
it can also be obtained by taking the limit, i.e., Gi(kn, r, s) =

4
kn(s)

arcsin
�

kn(s)r
2

�
.

Next, we characterize the coverage ratio over a time interval
[0, τ). First, we need establish the random process on general
surface, which is mathematically hard due to the lack of exist-
ing theoretical results. We utilize the rules of clipping and ap-
proaching, which can produce satisfactory results for our anal-
ysis.

Theorem 7.3. Consider a general convex surface S : z =
h(x, y), which satisfies max

S
∥ ▽ h∥ < ∞, and a surface convex

set U. Randomly pick a surface convex set K ⊆ S such that
U ∩ K , ∅, the probability that a randomly selected point in
U is also located in K is given by

P(p ∈ U ∩K|U ∩ K , ∅) = K
U + ξ(U,K)

with the function ξ(U,K) satisfies

0 ≤ ξ(U,K) ≤ M(∥∂U′∥δ + πδ2),

where M = max
S

p
1 + ∥ ▽ h∥2, and δ = sup

K⊆S
|K|D, Uz denotes

the z-projection ofU on the plane xOy.

Refer to the appendix for the corresponding proof.

Theorem 7.4. Consider a general infinite convex surface S :
z = h(x, y) satisfying4 max

S
∥ ▽ h∥ < ∞, and assume that

sensors move under the GC Walk over [0, τ). Let hr(vτ) =

lim
n→∞

1
n

nP
i=1

R vτ
0 Gi(kn, r, s)ds, we have

lim
n→∞
P
�

p ∈
[

1≤i≤n

Gτc,si

�
→ 1 − e−λ[πr

2+hr(vτ)+c(r)]

if r ≤ min
s∈[0,vτ)

É
2(k(s)−kg(s))

k
2
n(s)k(s)

, or equivalently,

F(τ) = 1 − e−λ[πr
2+hr(vτ)+c(r)],

where Gi(kn, r, s) characterizes the properties of the FoI and
the mobility of sensor i, and the function c(r) satisfies lim

r→0

c(r)
r3 =

c, (|c| < ∞).

Proof. As pointed out in Theorem 7.2 and Theorem 7.3, the
area measure of the region covered by sensor si over [0, τ) is

Gτc,si



 and the probability that a random chosen point on S
lies in this region is P(p ∈ Gτc,si

), as:



Gτc,si



 = πr2 +

Z vτ

0
Gi(kn, r, s)ds + c(r), (18)

4Intuitively, this condition assures that the surface S has no sudden change.
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P(p ∈ Gτc,si
) =



Gτc,si




∥S ∥ + ξ(S ,Gτc,si

)
, (19)

with ξ(S,Gτc,si
) satisfies

0 ≤ ξ(S ,Gτc,si
) ≤ M(∥∂S z∥δsi + πδ

2
si

), (20)

0 ≤
ξ(S ,Gτc,si

)
∥S ∥ ≤ M(∥∂S z∥d + πd2)

∥S ∥
∥S z∥→∞−−−−−−→ 0. (21)

Then, we have

P(p ∈
[

1≤i≤n

Gτc,si
) = 1 −

Y
1≤i≤n

�
1 − P(p ∈ Gτc,si

)
�

= 1 −
Y

1≤i≤n

�
1 −



Gτc,si




∥S ∥ + ξ(S ,Gτc,si

)

�
= 1 −

Y
1≤i≤n

�
1 − βi

n

�
,

(22)

where

βi =
n


Gτc,si




∥S ∥ + ξ(S ,Gτc,si

)
n→∞−−−−→ λ



Gτc,si



 . (23)

Note that the following relations hold:

lim
n→∞,∥S ∥→∞

n
∥S ∥ = λ, lim

n→∞,∥S ∥→∞

ξ(S ,Gτc,si
)

∥S ∥ = 0. (24)

Since hr(vτ) = lim
n→∞

1
n

nP
i=1

R vτ
0 G(kn, r, s)ds, we get

lim
n→∞

1
n

nX
i=1

βi = λ lim
n→∞

1
n

nX
i=1

∥Gτc,si
∥ = λ

�
πr2 + hr(vτ) + c(r)

�
,

(25)

lim
n→∞

1
∥S ∥ − ∥Gτc,si

∥

nX
i=1

∥Gτc,si
∥ = lim

n→∞

∥S ∥
∥S ∥ − ∥Gτc,si

∥
n
∥S ∥

1
n

nX
i=1

∥Gτc,si
∥

= λ
�
πr2 + hr(vτ) + c(r)

�
.

(26)

Therefore, for ∀ϵ > 0, we obtain the following relations as
n→ ∞:

Y
1≤i≤n

�
1 − βi

n

�
≤
"

1 − 1
n

�
1
n

nX
i=1

βi

�#n

≤
�
1 − 1

n

�
λ
�
πr2 + hr(vτ) + c(r)

�
− ϵ
��n

n→∞−−−−→ e−λ[πr
2+hr(vτ)+c(r)]+ϵ ,

(27)

Y
1≤i≤n

�
1 −



Gτc,si




∥S ∥ + ξ(S ,Gτc,si

)

�
≥
Y
1≤i≤n

�
1 −



Gτc,si




∥S ∥

�

=

"Y
1≤i≤n

�
1 +



Gτc,si




∥S ∥ −



Gτc,si




�#−1

≥
�

1
n

nX
i=1

�
1 +



Gτc,si




∥S ∥ −



Gτc,si




��−n

=

�
1 +

1
n

∥S ∥
∥S ∥ − ∥GT

c,si
∥

1
∥S ∥

nX
i=1

∥Gτc,si
∥
�−n

≥
�

1 +
λ
�
πr2 + hr(vτ) + c(r)

�
+ ϵ

n

�−n

n→∞−−−→ e−λ[πr
2+hr (vτ)+c(r)]−ϵ .

(28)

Hence, we get

F(τ) = lim
n→∞
P
�

p ∈
[

1≤i≤n

Gτc,si

�
= 1 − e−λ[πr

2+hr(vτ)+c(r)], (29)

where c(r) satisfies lim
r→0

c(r)
r3 = c, (|c| < ∞). �

8. Simulation and Evaluation

8.1. Surface Generation

In order to compare the coverage property of surfaces with
different curvatures, we consider the following surfaces which
can be expressed as a single valued function z = h(x, y):

z = 100 + 50 sin
�

Cπx
1000

�
sin
�

Cπy
1000

�
, (30)

where x, y ∈ [0, 3000] m, and the parameter C is taken as C =
1, 3, 9 to generate three surfaces with 9, 81 and 729 peaks and
valleys in the region [0, 3000] m× [0, 3000] m, respectively. Fig
5 gives the contours of these surfaces. Here, the unit of length
is the meter.

8.2. Numerical Results

The first simulation is implemented in the FoI with three d-
ifferent surfaces S given by Equ.(30). n = 1000 sensors with
the same sensing range r = 20m are randomly deployed on the
surface according to S P3 distribution, and they could indepen-
dently and randomly move at speed of v = 1m/s on the surface.

Figure 5: The contours of the surfaces with 9, 81, and 729 peaks and
valleys in a region spanning over a [0, 3000] m × [0, 3000] m square,
respectively.
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Figure 6: The comparison of coverage ratio over the time interval [0, τ)
(τ = 20 minutes) obtained by the simulation results and theory results.
The theoretical and numerical results for the C = 9 case overlap, while
the rest five lines overlap.

The S P3 distribution on the surface could be generated by the
Acceptance-Rejection method [37]. To compute the coverage
ratio, the region is divided into 3000×3000 cells and the move-
ment is approximated with time step ∆t = 0.06s.

Besides, the theory results presented in Theorem 7.4 for gen-
eral surface are also applied to evaluate the coverage ratio. Note

that the function hr(vτ) = lim
n→∞

1
n

nP
i=1

R vτ
0 Gi(kn, r, s)ds is difficult

to obtain directly and sensors are deployed uniformly and move
randomly. Hence, if n is very large, we can take the following
approximation

hr(vτ) ≈
vτ
∥S ∥

Z Z
p∈S

�
1

2π

Z 2π

0
G(kθn, r, p)dθ

�
dp, (31)

where kθn denotes the normal curvature at θ–direction, which is
given by

kθn(p) =

��hxx(p) cos2 θ + 2hxy(p) cos θ sin θ + hyy(p) sin2 θ
���

1 + (hx(p) cos θ + hy(p) sin θ)2
� 3

2
.

The integral in Equ.(31) need be further approximated by nu-
merical quadrature formulas, such as the trapezoid formula
[38].

Fig 6 gives the comparison of coverage ratio over the time in-
terval [0, τ) (τ = 20 minutes) obtained by the simulation results
and theory results. Coverage ratio on 2D region [0, 3000] m ×
[0, 3000] m is also shown in Fig 6.

As shown in Fig 6, for the cases of C = 1, 3, 9, there is
only one theoretical curve when applying the 2D plane model,
since the 2D plane model takes into account only the rectan-
gular boundaries of the FoI and ignores the terrain fluctuations
within these boundaries. In all there cases, we have the gener-
al trend that the coverage ratio increases with the time period.
This is consistent with the intuition that “mobility increases the
surface coverage”, because we have assumed constant speed for

(a) Real-world surface
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theoretical
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(b) Evaluation results

Figure 7: (a) The real-world surface S taken from the Tianmu Moun-
tain. (b) The comparison of coverage ratio over the time interval [0, τ)
(τ = 10 minutes) obtained by the simulation results and theory results.

convenience and longer time period with constant speed equals
to greater speed with constant time period, as given in Remark
3.3. Our theoretical results approximate quite well with the nu-
merical coverage ratio, while for the C = 9 case, the numerical
results differ from the curve of 2D plane model. This lead us
to the conclusion that when the terrain is flat, our results for
surface coverage ratios behave comparably with results derived
using the 2D plane assumption; however, when the terrain fluc-
tuates, then our results are more accurate.

8.3. Real-world Evaluation

We further perform evaluation on a real world surface, the
Tianmu Mountain, which is a mountain in Lin’an County in
Northwestern Zhejiang province in eastern China. It has coor-
dinates 30◦18′N ∼ 30◦24′N and 119◦23′E ∼ 119◦28′E. We
choose this area because the GreenOrbs sensor network [4],
which at present is the largest outdoor real sensor networks with
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more than one thousand sensor nodes, is deployed there. The
corresponding terrain data can be downloaded from the public
web site of the Consortium for Spatial Information (CGIAR-
CSI) [39].

Fig. 7 presents the surface S , a [0, 500] m × [0, 2000] m re-
gion. n = 300 sensors with the same sensing range r = 20m are
randomly deployed on the surface with uniform distribution,
and they could independently and randomly move at speed of
v = 1m/s on the surface.

The data of surface are discrete function values but function
expression, thus the partial derivatives of function h(x, y) in e-
valuating kθn need be approximated with difference quotients
[38]. Taking hxx(xi, y j) as example, i.e.,

hxx(xi, y j) ≈
hi+1, j − 2hi, j + hi−1, j

∆x2 ,

where hi, j = h(xi, y j) denotes the value of function h(x, y) at the
uniform mesh point (xi, y j).

Fig 7(b) presents the comparison of coverage ratio over the
time interval [0, τ) (τ = 10 minutes) obtained by the simulation
results and theory results. The coverage ratio based on a 2D
plane model is also shown in Fig.7(b).

As can be seen clearly from Fig.7(b), the intuition that “mo-
bility increased the surface coverage ratio” holds well. The 2D
plane model will give quite optimistic prediction of the surface
coverage ratio. This is because the 2D plane model totally ig-
nores the terrain fluctuation. As expected, our theoretical result
approximate well with the numerical results. Furthermore, this
evaluation taken on real-world surface show that our theoretical
results can guide the deployment of mobile sensor network in
applications concerning complex sensing fields, e.g., networks
designers first download public available terrain data and then
follow the numerical process to decide the number of sensors
to be deployed.

9. Conclusion and Future Work

In this section, we discuss some practical issues of our mod-
els, identify future extensions, and conclude our work.

• Surface is non-convex. Our analytical result is derived by
modeling the target FoI as a convex surface. However, a
real world surface can be more complicated, i.e., it may
consist of multiple separate regions due to obstacles (e.g.,
rocks, trees, lakes, etc.). Combine existing integral and
differential geometry results, we will extend the derived
results to take these scenarios.

• The Unit Ball Sensing Model. The Unit Ball Sensing Mod-
el is a simplified model assuming a binary cut-off in a sen-
sor’s sensing performance, which is not true in real sce-
narios. For 2D plane coverage and 3D space coverage, the
Quasi Unit Disk model is thus sometimes adopted. There
are two critical sensing ranges rl and rh, such that the suc-
cess ratio of sensing an event is 1 for distance smaller than
rl, 0 for distances bigger than rh and p (0 < p < 1) for
distances between rl and rh. On the one hand, our analysis

framework can be easily extended to a quasi unit ball mod-
el. On the other hand, the derived results can be revised to
get the lower bound of coverage ratio when using the lower
sensing ranges rl, the upper bound of coverage ratio when
using the upper sensing range rh, and the expected cover-
age ratio when using the estimated expectation of sensing
range.

• The impact of heterogeneity on the surface coverage. Note
that we have assumed the sensors network to be homoge-
neous. The sensing coverage of a sensor node is usually
assumed to be uniform in all directions and is represented
by a unit ball model in our work. However, heterogeneity
is an inherent property of many applied sensor networks
[35]. On 3D surfaces, the corresponding results are un-
known when sensing areas of sensors do not follow the
unit ball model but can have arbitrary shape and sensors
do not have an identical sensing capability.

• Mobility patterns. In a mobile sensor network, depend-
ing on the mobile platform and application scenario, sen-
sors can choose from a wide variety of mobility strategies,
from passive movement to highly coordinated and compli-
cated motion [18]. Sensors deployed in the air or ocean
move passively according to external forces, such as air
and ocean currents [11], or wild animals [1]; simple robot-
s may have a limited set of mobility patterns, and advanced
robots can navigate in a more complicated fashion. Still,
sensors can move under arbitrary mobility patterns. In our
model, sensors move under the GC Walk which can serve
as a bound for mobility in reality [1][2][11]. Furthermore,
sensors may move collaboratively instead, the correspond-
ing coverage improvement is unknown.

To summarize, we have studied the surface coverage of mo-
bile sensor networks, with comprehensive consideration of the
network configuration, target field’s features and sensor’s mo-
bility. Specifically, we have investigated the expected area of
the region covered by a sensor moves on 2D plane, sphere and
general surface. In addition, we have obtained mathematical
formulas for the corresponding coverage ratio at one time in-
stant and over a time interval. Our coverage ratio for the 2D
plane case and the sphere case are just two special cases of that
of the general convex 3D surface case, thus we provide a uni-
fied analysis framework. The analysis in this paper shed light
on understanding of the invalidity of previous results and the re-
sults here are the first trial to characterize the surface coverage
with mobile nodes. Finally, simulation and real-world evalua-
tion verify our theoretical results. In the future, we will study
more general scenarios of sensor networks with heterogeneous
nodes, other sensor distribution and other random mobility pat-
terns. A more interesting issue for future study is the coverage
improvement brought about by sensors moving in a collabora-
tive manner.
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Appendix A. Preliminaries of Integral and Differential
Geometry

Supporting mathematical knowledge are: curvatures of curves and sur-
faces; convex sets. Related definitions are listed here, and the readers can
refer to [31] for more detailed explanations.

Definition Appendix A.1. Surface S is k-fold continuously differen-
tiable, i.e., S is in the class Ck, if in some neighborhood of each point on
S , it is k-fold continuously differentiable.

Definition Appendix A.2. Surface S is convex if the Gaussian curvature
K at each point of S is nonnegative, i.e., K(p) ≥ 0,∀p ∈ S .

Definition Appendix A.3. Curvature of a curve. LetL be a smooth curve
in R3, take on it a point p and another point p1. Let ∆s denote the arc
length of pp1 on L, ∆θ denote the angle between tangent vectors −→τ and
−→τ1 to L at p and p1. Let k = lim

p→p1

∆θ
∆s = lim

∆s→0

∆θ
∆s , if it exists. k is called

the curvature of curve L at point p.

Definition Appendix A.4. Normal curvature kn. At any point on a sur-
face we can find a normal vector which is at right angles to the surface.
The intersection of a plane containing the normal with the surface will
form a curve called a normal section and the curvature of this curve is
the normal curvature.

Definition Appendix A.5. Geodesic curvature kg. For a point on a curve
lying on a surface, the curvature of the orthogonal projection of the curve
onto the tangent plane to the surface at the point; it measures the depar-
ture of the curve from a geodesic.

Definition Appendix A.6. Gaussian curvature. For points on differen-
t sections of a surface, their will have different normal curvatures; the
maximum and minimum values of these are called the principle curva-
tures, i.e., k1 and k2. The Gaussian curvature is the product of the two
principle curvatures, i.e., K = k1k2.

Basic information: (a) letL be a straight line. Then ∆θ = 0, and thus k = 0
holds at every point of L; (b) let L be a circle of radius R, as ∆s = R∆θ,
and thus lim

∆s→0

∆θ
∆s =

1
R , i.e. the curvature of a circle is a constant; (c) the

Gaussian curvature is 0 for a plane and 1/R2 for a sphee of radius R.

Lemma Appendix A.1. The curveL on surface S with curvature of k(s),
geodesic curvature of kg(s) and normal curvature of kn(s) at s ∈ L has
the following relation:

k2(s) = k2
g(s) + k2

n(s).

Theorem Appendix A.2. Gauss-Bonnet Theorem. Suppose G ⊆ S is a
compact two-dimensional Riemannian manifold with boundary ∂G. If ∂G
is piecewise smooth and has n turns, let θi be the ith “turning” angle,
then we have: "

G
KdS +

Z
∂G

kgds +

nX
i=1

(π − θi) = 2π.

Lemma Appendix A.3. If ∂G is a closed smooth curve on S , thus"
G

KdS +

Z
∂G

kgds = 2π.

Definition Appendix A.7. Surface convex set.5 We call K (with K ⊆ S )
a surface convex set if and only if the geodesic curve between any two
points in K is a subset of K .

Definition Appendix A.8. Surface parallel convex set.6 The surface par-
allel set Kδ of K is defined by

Kδ =
[
x∈K

{y | y ∈ S , d(x, y) ≤ δ} .

Set Kδ is difined in this paper to takle the boundary effect of set K as the
latter one is not infinite.

5On 2D planes, change ”geodesic curve” to ”line segment”.
6For 2D planes, substitute S with R2.
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Figure B.8: Sensor si moves on a sphere under CA Walk over [0, τ); (a) An
overview; (b). The region covered by si during [0, τ).
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Figure B.9: CA Walk Case: Geometric relations

Definition Appendix A.9. Diameter of a surface convex set. Given a sur-
face convex setK on S , let |K|D denote the upper bound of the Euclidean
distance between any two points in K , which is called the diameter of K
and defined as

|K|D = sup
∀x,y∈K

¦
d(x, y)

©
.

Lemma Appendix A.4. The Z–projection of a point (x, y, z) is the point
(x, y) on the corresponding xOy plane. The Z–projection of a surface con-
vex set is a planar convex set.

Appendix B. Proof of Theorem 6.2

Proof. As shown in Fig B8(a) and Fig B8(b), the curve segments
ϕ1, ϕ2, ϕ3, ϕ4 on S concatenate each other together and form a closed s-
mooth curve ∂Gτc,si

. Note that K = 1/R2 and on each curve segment, kg,
ϕi) (1 ≤ i ≤ 4, is constant, and kg(ϕ3) = kg(ϕ4). Let si denote the arc
length. From Lemma Appendix A.3, we obtain

Gτc,si



 ="
Gτc,si

dS = R2
"

Gτc,si

KdS

= R2
�

2π −
Z
∂Gτc,si

kgds
�

= R2
�

2π −
2X

i=1

kg(ϕi)si − kg(ϕ3)(s3 + s4)
�
.

(B.1)

We further consider the geometric relations on the cross section xOy (see
Fig B9). From Lemma 6.1, we get

��kg(ϕi)
�� si =

p
R2 − ρ2

i

Rρi
ρiθ =

|xi |
R
θ,

i = 1, 2, kg(ϕ2) > 0, kg(ϕ1) sgn(x1) < 0.

(B.2)

where function sgn(x) returns the symbol of input x. Since sin∠DAE =
∥DE∥ /r = r/(2R), we have ∥OE∥ = R − ∥DE∥ = R − r2/(2R). Let ρ0 =
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ρ3 = ρ4 = ∥AE∥, then

kg(ϕ3)(s3 + s4) =

p
R2 − ρ2

0

Rρ0
2πρ0

=
2π
p

R2 − ρ2
0

R
=

2π ∥OE∥
R

= 2π − πr
2

R2 .

(B.3)

Combining Eq.(B.1), Eq.(B.2) and Eq.(B.3), we get

Gτc,si



 = πr2 + Rθ(x1 − x2) = πr2 +
Rvτ
ρ

(x1 − x2). (B.4)

Also we have ¨
x2 + y2 = R2,�

x −
p

R2 − ρ2
�2
+ (y − ρ)2 = r2.

(B.5)

Through removing y, we obtain

x2 − 2x
�

R − r2

2R

�É
1 −
� ρ

R

�2
+

�
R − r2

2R

�2
− ρ2 = 0. (B.6)

Applying Viete’s theorem, we get the equation of x1, x2:

|x1 − x2 |2 = (x1 + x2)2 − 4x1 x2

= 4
�

R − r2

2R

�2�
1 −
� ρ

R

�2�
− 4
��

R − r2

2R

�2
− ρ2

�
=

�ρr
R

�2�
4 −
� r

R

�2�
.

(B.7)

Then we have:



Gτc,si



 = πr2 +
Rvτ
ρ

(x1 − x2) = πr2 +
Rvτ
ρ
· ρr

R2

√
4R − r2

= πr2 +
rvτ
R

√
4R2 − r2 = πr2 + rvτ

√
4 − Kr2.

(B.8)

�

Appendix C. Proof of Theorem 7.2

Proof. (1) First we consider the stationary scenario on general surface S .
The covered region G0

c,si
is clipped by sphere S 1 and sphere S 2, where

S 1 has Gaussian curvature Kmin = min
p∈S

K(p), S 2 has Gaussian curvature

Kmax = max
p∈S

K(p). From Remark 4.2, we have



G0
c,si



 = πr2 + o(r2). (C.1)

(2) Then we consider the extra region Ωτc,si
covered by sensor si when

moves along a trace. We use the differential and integration method to
characterize



Ωτc,si



. Let L(s) (0 ≤ s < vτ) denote the trace of si, and
let’s consider a differential curve element [s, s + ds] on L(s). It can be
approximated as an arc element with radius ρ = 1/kn(s), denoted as γ0,
on an imaginary spherical surface, denoted as S ρ. The imaginary S ρ is a
spherical surface which is produced by γ0 rotating around the trace of si
with radius ρ, as shown in Fig C10(a).
For the surface diameter of the region Ωc,si with the curvature at point
L(s) being kn(s). It can be approximately regarded as an arc curve with
radius ρ = 1

kn(s)
, in terms of o(r2) approximation. Then, Ωc,si along dS

is a fraction of S ρ that lies on the general surface S . The corresponding
fraction is ds

2πρ , and Ωc,si along the curve element [s, s + ds] has area of

dS = S ρ ds
2πρ .

According to the geometric relationship in Fig.B10(b), the arc γ0 has the
mathematical equation

y = ρ − ρ +
p
ρ2 − x2, (x ∈ [−δ, δ]). (C.2)

where δ = r
2

p
4 − (kn(s)r)2.

0
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Figure C.10: (a) The imaginary spherical surface by rotating the elementary arc
around a sensor’s the trace. (b) The geometric relations for the elementary arc
on the imaginary spherical surface.

With Equ.(C.2), the area of the revolution surface can be obtained

S ρ = 2π

Z δ

−δ
|y|
p

1 + (y′)2dx

= 2π

Z δ

−δ

�
ρ − ρ +

p
ρ2 − x2

� ρp
ρ2 − x2

dx

= 4πρ

�
δ + (ρ − ρ)

Z δ

0

dxp
ρ2 − x2

�

= 4πρ
h
δ + (ρ − ρ)arcsin

δ

ρ

i
= 4πρ

�
δ + (ρ − ρ)α

�
= 4πρ

h
δ + 2(ρ − ρ)arcsin

r
2ρ

i

(C.3)

By integration of dS , we get

Ωτc,si



 = Z vτ

0
S ρ

ds
2πρ
= 2

Z vτ

0

ρ

ρ

�
δ + 2(ρ − ρ)arcsin

r
2ρ

�
ds

=

Z vτ

0
Gi(kn, r, s)ds.

(C.4)

where Gi(kn, r, s) is given by

Gi(kn, r, s)

=
kn(s)
kn(s)

�
r
È

4 − (kn(s)r)2 + 4
kn(s) − kn(s)

kn(s)kn(s)
arcsin

� kn(s)r
2

��
.

(C.5)

Thus over time interval [0, τ), the total area covered by a sensor moving
along a general curve on general surfaces is

Gτc,si



 = 

G0
c,si



 + 

Ωτc,si



 = πr2 +

Z vτ

0
Gi(kn, r, s)ds + o(r2).

(C.6)
�

Appendix D. Proof of Theorem 7.3

Proof. Let δ = supK⊆S ∥K∥D. Utilizing rules of clipping and approach-
ing, we obtain the lower bound and then the upper bound.
(1) The lower bound. SinceU ∩K , ∅, then K ⊆ Uδ, and thus

P(p ∈ U ∩K|p ∈ U,U ∩K , ∅)
≥ P(U ∩K , ∅|K ⊆ Uδ) · P(p ∈ U ∩K|p ∈ U,U ∩K , ∅)
≥ P(p ∈ U ∩ K|p ∈ U,K ⊆ Uδ)

≥ ∥K∥∥Uδ∥
.

(D.1)
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Figure D.11: The surface parallel sets U,Uδ and the corresponding z-
projectionsUz,Uδz.

In order to get the upper bound of ∥U∥δ, we use Uz and Uδz to denote
the z-projection ofU andUδ, respectively, on the plane xOy, andUzδ to
denote the surface parallel set ofUz, as shown in Fig DC11. Then

∥U∥δ =
"
Uδz

p
1 + ∥ ▽ h∥2dxdy

=

"
Uδz\Uz

p
1 + ∥ ▽ h∥2dxdy + ∥U∥

=
p

1 + ∥∇h∥2
���

(x,y)=(ζ,η)

"
Uδz\Uz

dxdy + ∥U∥

≤ M∥Uδz \ Uz∥ + ∥U∥ ≤ M∥Uzδ \ Uz∥ + ∥U∥
= ∥U∥ + M(∥Uzδ∥ − ∥Uz∥)
= ∥U∥ + M

�
(∥Uz∥ + ∥∂Uz∥δ + πδ2) − ∥Uz∥

�
= ∥U∥ + M(∥∂Uz∥δ + πδ2).

(D.2)

where A \ B means that set A subtracts set B. Therefore, we have:

P(p ∈ U ∩K|p ∈ U,U ∩K , ∅) ≥ ∥K∥
∥U∥ + M(∥∂Uz∥δ + πδ2)

.

(D.3)

(2) The upper bound. In fact,

P(p ∈ U ∩K|p ∈ U,U ∩K , ∅)
≤ P(p ∈ U ∩K|p ∈ U,K ⊆ U)

= P(p ∈ K|p ∈ U,K ⊆ U) =
∥K∥
∥U∥ .

(D.4)

Hence, the theorem is proved. �
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