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Environment reconstruction is to rebuild the physical environment in the cyberspace using the sensory
data collected by sensor networks, which is a fundamental method for human to understand the
physical world in depth. A lot of basic scientific work such as nature discovery and organic evolution
heavily relies on the environment reconstruction. However, gathering large amount of environmental
data costs huge energy and storage space. The shortage of energy and storage resources has become
a major problem in sensor networks for environment reconstruction applications. Motivated by
exploiting the inherent feature of environmental data, in this paper, we design a novel data gathering
protocol based on compressive sensing theory and time series analysis to further improve the resource
efficiency. This protocol adapts the duty cycle and sensing probability of every sensor node according
to the dynamic environment, which cannot only guarantee the reconstruction accuracy, but also
save energy and storage resources. We implement the proposed protocol on a 51-node testbed and
conduct the simulations based on three real datasets from Intel Indoor, GreenOrbs and Ocean
Sense projects. Both the experiment and simulation performances demonstrate that our method
significantly outperforms the conventional methods in terms of resource efficiency and reconstruction

accuracy.
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1. INTRODUCTION

Environment reconstruction [1] is to rebuild the physical
environment in the cyberspace using the sensory data collected
by wireless sensor networks (WSNs) [2], which is a fundamental
method for human to understand the physical world in depth.
A lot of basic scientific work such as nature discovery
and organic evolution heavily relies on the environment
reconstruction. Several real WSN platforms are deployed under
the water [3], in the forest [4] and on the volcano [5, 6] for
environment reconstruction applications.

Motivation: It is desired that a WSN can sense and gather the
environmental data [7] (such as temperature, light or humidity)

with a long-term for accurate environment reconstruction.
Nevertheless, this goal is difficult to achieve due to the shortage
of resources in WSNs. On one hand, a WSN is constrained
by its energy resource. The tiny size of a sensor node and
its limited batteries cannot support a long-term data gathering
because of the high-energy consumption incurred by wireless
communication. For example, a typical TelosB sensor node
with CC2420 wireless module consumes ∼20 mA for 1-s
transmission [8]. But the total power of a TelosB node is no
more than 4000 mA capacity [9], which is usually supplied by
two AA batteries. On the other hand, a WSN is also constrained
by its storage resource. High reconstruction accuracy demands
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fine-grained sensing, which results in large amount of sensory
data and consequently costs huge storage space. To confirm this
empirical result, we did an indoor experiment that 51 TelosB
nodes gathered over 1 GB data within just 7 days when the
sensing interval is set to be 5 s. Furthermore, Baraniuk [10]
advocates in SCIENCE that the bottleneck of WSN now is data
deluge: the amount of data generated worldwide (1250 billion
GB in 2010), which is dominated by sensory data, is growing
by 58% per year. For these reasons, energy constraint and data
deluge become the key challenges in WSNs, especially for the
environment reconstruction application that requires long-term
and large-amount data gathering.

Existing approaches and limitation: Existing approaches
study either the energy efficiency or the data aggregation
problems. (1) Energy constraint is a fundamental problem in
WSNs. Hundreds of works have contributed on optimizing
the energy consumption from the physical layer up to the
application layer [2, 11–14]. In particular, a widely employed
approach is to schedule each sensor node’s duty cycle (also
called wake/sleep cycle) [15–17], which dramatically reduces
the energy cost via turning off the radio. Nevertheless, most
existing approaches pre-determine the schedule of the duty
cycle, which cannot guarantee the reconstruction accuracy for
dynamic environment. (2) Data deluge is currently another
critical problem in WSNs. Diverse data aggregation approaches
have been well investigated for energy balance [18], connected
dominating set [19] and energy-latency tradeoff [20]. However,
there is no existing work addressing the storage-efficient method
with the guarantee of accurate environment reconstruction.

Since both energy and storage efficiency could benefit from
reducing the amount of data gathering, they are not incom-
patible, but correlated mutually in environment reconstruction
application. To tackle the joint problem of energy constraint
and the data deluge, in this paper, we investigate the resource-
efficient data gathering (REDG) problem taking energy effi-
ciency and storage efficiency into account together, which is
equal to maximize the sleep duration and to minimize the
amount of sensory data gathering, respectively.

Our approach: First, we analyze the inherent features of
environmental data. After analyzing the real datasets from Intel
Indoor experiment [21], GreenOrbs project [4] and Ocean Sense
project [22], we observe that the environmental data exhibit
obvious low-rank feature. This observation implies that the data
exist high redundancy, so that sensing only a few data are able to
rebuild the near-optimal environment according to the advanced
compressive sensing (CS) theory [23–28]. Furthermore, we
verify that the rank of the environmental data is predictable.

Inspired by the observed features, we propose the novel
REDG protocol. REDG periodically computes the optimal
parameters, including the duty cycle and the amount of sensory
data based on the dynamic environment and then adaptively
tunes the data gathering behavior. To compute the optimal
parameters, one straightforward approach is to gather all the
environmental data and derive them in a posteriori manner.

However, a posteriori manner might not be feasible because
the optimal parameters need to be pre-determined to schedule
the data gathering. To tackle this challenge, our design takes
advantage of the rank prediction. More specifically, given a
requirement of the reconstruction accuracy, by exploiting the
predicted rank, we derive the maximum sleep duration using
time series analysis [29] based on the predictable rank feature.
Meanwhile, we derive the least amount of sensory data using
CS theory [30] based on the low-rank feature. Therefore, REDG
can effectively adapt to the dynamic environment and achieve
REDG.

Finally, REDG is implemented on a testbed and simulated
on three real datasets. We evaluate the proposed REDG,
the standard collection tree protocol (CTP) [31] and the
classic low-duty-cycle protocol [15] on a 51-node real testbed
for performance comparison. A 30-day experiment shows
that REDG significantly outperforms the other protocols on
energy and storage efficiencies. To understand the performance
of REDG in large-scale sensor networks, we then conduct
extensive simulations based on real datasets from Intel Indoor,
GreenOrbs and Ocean Sense projects. The evaluation results
also demonstrate that our REDG achieves low resource
consumption with the guarantee of reconstruction accuracy.

Contributions: In summary, the major contributions of this
paper are as follows:

(i) To the best of our knowledge, this is the first work to
study both the energy and storage efficiency problems in
data gathering of WSN for environment reconstruction.

(ii) We mine three real datasets to explore the low-rank and
predictable rank features of dynamic environments.

(iii) A novel REDG protocol is designed based on CS theory
and time series analysis. This protocol can adapt duty
cycle and the amount of data gathering according to the
dynamic environment. And the near-optimal accuracy
of environment reconstruction is guaranteed.

(iv) The proposed protocol is implemented on a real
testbed and simulated based on three real datasets. The
results verify its feasibility and show its significant
improvement compared with the existing methods.

Paper organization: The remainder of this paper is organized
as follows. In Section 2, the background is presented. In
Section 3, the problem is formulated. Environment features are
mined in Section 4. In Section 5, the novel REDG protocol
is proposed. In Section 6, implementation and simulation are
performed for evaluating REDG. In Section 7, we conclude this
work.

2. BACKGROUND

In this section, we present the concept of environment
reconstruction, existing resource-efficient methods and the
background of CS theory.

Section B: Computer and Communications Networks and Systems
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2.1. Environment reconstruction

The objective of environment reconstruction [1] is to rebuild
the accurate environment in cyberspace based on the gathered
sensory data, which is commonly realized by WSNs. Several
real applications can be found in [3, 4, 6]. However, such
applications are restricted by the energy and storage resources.

The energy constraint is a classic problem in WSNs.
According to [2], battery capacity only doubled in the past 35
years. Moreover, the hazardous sensing environment precludes
manual battery replacement. Energy constraint is unlikely to be
solved in the near future on account of the size limitation of
sensor nodes.

In recent years, the data deluge issue becomes a serious
bottleneck of WSNs. A recent report [10] found that the total
amount of world data storage is growing 31% slower than
the amount of data generated worldwide (dominated by sensor
networks). This expanding gap indicates that storage efficiency
will be a critical issue in WSNs.

2.2. Existing resource-efficient methods

This work is related to energy-efficient and storage-efficient
methods. However, we find that existing approaches cannot
satisfy the joint problem of energy constraint and data deluge
for environment reconstruction.

In WSNs, the energy-efficient methods are investigated from
physical layer [12], link layer [11, 14], network layer [13] to
application layer [2]. Particularly, scheduling the duty cycle of
every sensor node is the widely employed approach for energy-
saving data gathering [15–17, 32]. Although these solutions
are highly diverse, none of them considers an adaptive energy-
efficient mechanism according to the change of environment.

There are also plenty of data compression and data aggre-
gation approaches, which are studied to reduce the storage
consumption in WSNs, e.g. [18–20]. However, we observe that
these approaches operate at the sink or relay nodes. In another
word, the environmental data actually have been sensed and then
be processed. In this case, some storage and energy resources
have been used. Hence, in this paper, we study the storage-
efficient problem by reducing the amount of data gathering at
the source nodes.

2.3. Compressive sensing

CS [23–25] is a generic method to recover the whole condition
with only a few sampled data [33–36]. Several effective
CS-based applications have been developed in data recovery
field. For instance, network traffic estimation [28], road traffic
interpolation [26] and localization in mobile networks [27].

CS-based methods have the potential to reconstruct the
environment in WSN applications. It has been proved that the
environment can be near-optimally recovered even there are
more than 70% sensory data are missing [30], which motivates

us to exploit CS to reduce the amount of data gathering. Until
now, there is no CS-based method having been studied to
optimize the data gathering for environment reconstruction.

3. PRELIMINARIES

3.1. System model and notation

In environment reconstruction system, sensor nodes are
distributed in the given area to sense and gather data to the
sink during a given period of time. Suppose there are totally n

sensor nodes. The period of monitoring time is evenly divided
into t time slots, any sensor node can periodically (once per
time slot) sense the environmental data.

Definition 1. Environment condition (EC): EC is the real
environmental data sensed by sensor node i at the time slot
j denoted by x(i, j), where i = 1, 2 . . . , n and j = 1, 2 . . . , t .

Definition 2. Environment matrix (EM): EM is the matrix of
all real environmental data, which is a mathematical way to
describe the dynamic environment. All ECs x(i, j) form a EM:

X = (x(i, j))n×t . (1)

Thereby, this is a matrix constituting of n rows and t columns.
A complete EM presents that all ECs are gathered, which
indicates the 100% accurate environment reconstruction.

Definition 3. Binary index matrix (BIM): BIM is a n × t

matrix, which indicates whether the sensor node i at time slot
j senses the EC or not. BIM is defined by

B = (b(i, j))n×t =
{

1 if x(i, j) is gathered,

0 otherwise.
(2)

Definition 4. Gathered matrix (GM): GM is the matrix of only
gathered data by a WSN. Since some ECs may not be gathered,
elements of GM are either EC (x(i, j)) gathered by sensor node
or zero (b(i, j) = 0). Thereby, GM is an incomplete EM. GM
is denoted by G and can be presented by

G = X · B. (3)

Definition 5. Estimated environment matrix (E2M): E2M is
the result of environment reconstruction, which is generated by
interpolating the missing values in GM to approximate EM.
E2M is denoted by

X̂ = (x̂(i, j))n×t . (4)

3.2. Problem statement

In this paper, we focus on the data gathering problem for saving
the resource consumption and acquiring accurate environment
reconstruction.

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at M
cG

ill U
niversity L

ibraries on A
pril 14, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


4 L. Kong et al.

Problem 1. Resource-efficient environment reconstruction
(REER): Given n sensor nodes, which are scattered in a given
area for environment reconstruction during the period of t time
slots, the REER problem is formulated by⎧⎪⎨⎪⎩

Objective: min(E),

Sub-Objective: min(S),

Subject to: ‖X − X̂‖F ≤ ξ,

(5)

where E is the energy consumption, S is the storage
consumption, ξ is the accuracy requirement and ‖ · ‖F is the
Frobenius norm used to measure the error between matrix X

and X̂. For describing the calculation of Frobenius norm, we

take X as an example that ‖X‖F =
√∑

i,j (x(i, j))2.

The REER problem describes that our objectives are to
minimize the energy and storage consumptions during the
data gathering in a WSN when the accuracy requirement of
environment reconstruction is guaranteed.

We decompose and analyze the Problem 1 as follows.
First, this problem subjects to ‖X − X̂‖F ≤ ξ . To measure

the errors of diverse environments by a unified metric, we define
the normalized error.

Metric 1. Normalized environment reconstruction error
(ER-Error):

ε =
√∑

i,j :b(i,j)=0(x(i, j) − x̂(i, j))2√∑
i,j (x(i, j))2

, (6)

where the condition b(i, j) = 0 in Equation (6) presents that
only errors at the missing data positions are computed.

The threshold value εth is the normalized accuracy
requirement, which can be derived from ξ . If the ER-Error
ε ≤ εth, the environment reconstruction is considered to match
the accuracy requirement. The ER-Accuracy can be noted as
(1 − ε).

Secondly, the objective is to min(E). From [16], we know
that the wireless communication costs much more energy than
computing and sensing in WSNs. For example, a TelosB node
needs only 1.8 mA on computing and sensing, but 19.5 mA
on wireless communication [8]. One common energy-saving
method is to turn off the radio when the sensor node has
no transmission task. Consequently, min(E) is evolved to
maximize the duration of radio off period max(tθ ) when the
duration of radio on period to is given, which is equivalent to
minimize the duty cycle.

Thirdly, the secondary optimization objective is to min(S).
The storage consumption S in WSNs is for storing the gathered
data. (The maximum value of S is n× t , which presents that all
data have been gathered.) Minimizing the storage consumption
is a very challenging problem at the source node side. For

a sink node, it has all gathered environmental data, so that
the least amount key data can be obtained by the analysis
method in [1]. However, a source node does not know the global
environment, so it cannot make the decision whether to gather
the environmental data or not. To address this problem, a novel
solution will be introduced in Section 5.

4. ENVIRONMENTAL DATASETS ANALYSIS

In this section, the features of environments are mined before
solving the REER problem.

Our analysis is based on three datasets gathered by real WSN
projects. The basic information of these datasets are listed in
Table 1.

The data of Intel Indoor experiment [21] are gathered by
Intel Berkeley Research lab. There are totally 54 Mica2 nodes
placed in a 40 m × 30 m room. Every node reports data every
30 s. From all the gathered data, we select 50 nodes × 4000 slots
data to form a complete dataset (data loss exists universally in
real applications, but we need complete EMs for data mining).

GreenOrbs project [4] is a real WSN application for forest
surveillance. More than 450 TelosB nodes are scattered on the
Tianmu Mountain, China and gather temperature, light and
humidity once every 5 min. We select 249×500 environmental
data from GreenOrbs.

Ocean Sense project [22] contributes for our third dataset.
This dataset contains 20 TelosB nodes deployed in the sea of
Taipingjiao, China, which monitors an area of 300 m × 100 m.
Each sensing node reports temperature and light data every
2 min. We select 15 × 1000 data from Ocean Sense.

From the selected datasets, we generate six EMs: Indoor-
Temp (temperature matrix of the Intel Indoor), Indoor-Light,
Forest-Temp, Forest-Light, Ocean-Temp and Ocean-Light for
environmental features discovery.

4.1. Low-rank structure discovery

Environmental data at different locations over different times are
usually not independent, which may exist low-rank structure,
i.e. the data are compressible. To mine the low-rank feature,
we analyze the selected EMs from real WSN datasets using
principal component analysis (PCA), which is an effective non-
parametric technique for revealing low-rank structure [37].

TABLE 1. Real datasets for environmental features analysis

Data name Matrix size Slot duration

Intel Indoor 50 nodes × 4000 slots 30 s
GreenOrbs 249 nodes × 500 slots 5 min
Ocean Sense 15 nodes × 1000 slots 2 min

Section B: Computer and Communications Networks and Systems
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Any n × t matrix X can be decomposed into three matrices
according to singular value decomposition (SVD):

X = U�V T =
min(n,t)∑

i=1

σiuiv
T
i , (7)

where V T is the transpose of V , U is a n × n unitary matrix
(i.e. UUT = UTU = In×n), V is a t × t unitary matrix and
� is a n × t diagonal matrix constraining the singular values
σi of X. Typically, the singular values in � are sorted. Let
σi ≥ σi+1, i = 1, 2, . . . , min(n, t), where min(n, t) is the
number of σi . The rank of a matrix, denoted by r , is equal to
the number of its non-zero singular values. If r � min(n, t),
the matrix is low-rank. According to PCA, a near low-rank
matrix [28] exhibits that its top r singular values occupy the
total or near-total sum singular values

∑r
i=1 σi ≈ ∑min(n,t)

i=1 σi .
In Fig. 1, we illustrate the CDF of top-% singular values in

the six selected EMs from real datasets. The X-axis presents
the number of singular values. Since the sizes of six EMs are
different, we normalize the X-axis, where min(n, t) of each
EM is normalized to 100%. The Y -axis presents the cumulative
values of top-% singular values. Owing to the same reason, the
ordinate is also normalized, where

∑min(n,t)
i=1 σi of each EM is

normalized to 100% in Y -axis. This figure implies that the sum
of all singular values is always contributed by only a few top
singular values in real environments. For example, the top 5%
singular values contribute 92% of sum singular values in Indoor-
Temp. The universal existence of

∑r
i=1 σi ≈ ∑min(n,t)

i=1 σi and
r � min(n, t) reveals that EMs exhibit obvious low-rank
structures. Low-rank features [26] indicate that EMs can be
near-optimally rebuilt by CS even if massive environmental data
are missing.

4.2. Predictability of rank

Naturally, the value of rank r relies on the dynamic environment.
Many works [1, 28] have proved that the change of environment

FIGURE 1. CDF of singular values to explore the low-rank feature.

has the feature of adjacent-time stability. This feature motivates
us to discover whether the dynamic r is predictable with time
series.

The well-known Box–Jenkins model [38] can check whether
a time series is predictable while considering its stationarity,
intercept term, seasonal factors and exogenous variables.
Therefore, we adopt the Box–Jenkins model to identify the
predictability of r in the six selected EMs. The identification
steps are as follows:

(i) Rank sequence generation: Constructing the original rank
sequence R = (rτ )1×t , i.e. the time series of rank. Since EM
X is a (n × t) matrix, there are totally t time slots. Then,
τ = 1, 2, . . . , t , and R = (r1, r2, . . . , rt ).

We define Xn×τ is a (n × τ) matrix constructed by the first
τ column vectors of X. The rank of Xτ is rτ , which is equal to
the number of non-zero singular values after SVD Xn×τ (refer
to Equation (7)). Hence, R = (r1, r2, . . . , rt ) is obtained.

(ii) Stationarity requirement: Stationarity is the basic
condition of a predictable time series. Therefore, we detect the
original rank sequence whether it has stationarity. If it is non-
stationary, the difference process is needed to be operated to
achieve stationarity.

A sequence (yτ ) is stationary if it satisfies{
exp(yτ ) = β,

cov(yτ , yτ+ω) = γω,
(8)

where exp() is the expectation function, β is a constant, cov()

is the autocovariance function, ω is the lag coefficient and γω is
independent of τ .

If the original rank sequence R = (rτ ) is not stationary, we
take the first-order difference process 	R = rτ − rτ−1. If 	R

is still not stationary, the second-order difference is calculated
	2R = 	(	R) = rτ − rkτ−1 + rτ−2. The d-order differences
	dR will be computed until the stationary is achieved.

The computation results show that the 	R of Ocean-Temp
and Ocean-Light are stationary; and 	2R of Indoor-Temp,
Indoor-Light, Forest-Temp, Forest-Light suffice the stationarity
requirement.

(iii) Predictability identification: Once a sequence is station-
ary, its predictability can be identified by its autocorrelation
coefficient figure (ACF) and partial autocorrelation coefficient
figure (PACF).

Assume (yτ ) is a stationary sequence, its autocorrelation
coefficient ρω = γω/γ0, where γω is obtained based on
Equation (8), and γ0 = cov(yτ , yτ ) is the variance of (yτ ).
The partial autocorrelation coefficient ϕω is obtained by the
following recursion formula:

ϕ1 = ρ1, (9)

ϕω = ρω − ∑ω−1
l=1 ϕ(ω−1,l)ρω−l

1 − ∑ω−1
l=1 ϕ(ω−1,l)ρl

, (10)

where ϕ(ω,l) = ϕ(ω−1,l) − ϕωϕ(ω−1,ω−l). Then, we can plot ACF
by ρω and PACF by ϕω.

Section B: Computer and Communications Networks and Systems
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Generally, the trend of ρω in ACF and ϕω in PACF can be
divided into two types: either decay to zero exponentially, noted
by DECAY; or drop to essentially zero after some spikes, noted
by DROP.According to the Box–Jenkins model, the predictabil-
ity of a sequence can be referred to Table 2, which summarizes
the predictability identification by the trend of ρω and ϕω.

We apply the above three steps on the six EMs. Then,
we obtain six ACFs and six PACFs for each selected EM as
shown in Fig. 2. Figure 2b exhibits the trend of DECAY and
Fig. 2a displays the trend of DROP. We find that for every
environmental dataset, there is at least one figure (ACF, or
PACF) having the trend of DECAY. For example, the ACFs of
Ocean-Temp, Ocean-Light are DECAY; the PACFs of Indoor-
Temp, Indoor-Light, Forest-Temp, Forest-Light are DECAY.
Thus, the rank sequence R in these EMs has the predictability.
The universal results also verify that the dynamic rank, in
general, environment is predictable.

5. REDG PROTOCOL

Inspired by the observed features, we design a novel REDG
protocol in this section.

5.1. S3 process

Before the overview of REDG design, we first introduce the
data gathering process adopted in this work.

TABLE 2. Predictability identification by ρω in ACF and ϕω in
PACF.

ρω in ACF DECAY DROP DECAY DROP
ϕω in PACF DROP DECAY DECAY DROP
Predictable YES YES YES NO

For a sensor node, there are two kinds of general data
gathering processes: sense-store-send (S3) and sense-send (S2)
[8]. Under S3, a node firstly senses the environmental data, then
stores the data in the local memory for a period, and finally sends
the data to the sink node; while a node with S2 senses the data
and sends them to the sink directly.

Different processes lead to different number of operation
states for sensor nodes.A node with S2 has two states: active and
sleep. In the active state, a node carries out sensing and sending
operations when the radio on. In the sleep state, a node turns its
radio off and does no operation. On the contrary, there are three
states in S3: active, sleep and half-active. During the half-active
state, a node carries out the sensing and storing operations while
the radio is switched off. The stored data would be kept until
the radio is turned on next time.

Our design adopts the S3 process because the half-active state
potentially saves lots of energy consumption. Guo et al. [16]
have investigated that in WSNs, the wireless transmission (no
matter sending, receiving or listening) costs much more energies
than computation and sensing operations. Hence, the half-active
state in S3 can help nodes to save energy through turning the
radio off, which meets our energy-saving objective.

The half-active state is easy to be implemented on the off-the-
shelf sensor node and the standard sensor OS. Current sensor
nodes have the flash memories (e.g. 1 M in TelosB), which can
store the sensory data (usually <200 Bytes per record). The
radio is an independent module (e.g. CC2420 in TelosB), which
can be disabled separately. The current OS (e.g. TinyOS) also
offers the function to turn off the radio module.

The S3 process is appropriate to the environment reconstruc-
tion applications. Since environment reconstruction always
serve for scientific discovery or statistics after all data gathered,
such applications do not require the real-time data gathering.
Therefore, the data are allowed to be stored in the sensor nodes
for a while.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 2. ACFs and PACFs of diverse datasets to identify the predictability of rank sequence.
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5.2. Design overview

We have mined two features and have adopted one process:
(1) The predictable rank feature lays the foundation for the
duty-cycle adaption. (2) The low-rank feature indicates that
only a small amount of gathered data can recover the whole
E2M with high accuracy by CS. This amount of data saves a
lot of storage space. (3) The S3 process saves the energy due
to half-active state.

Combining the above three advantages, we design the REDG
protocol. REDG runs cycle-by-cycle. The procedure of every
cycle, including a period of radio on and a period of radio off,
is described in detail as follows:

Period of radio on: Nodes in this period are at the active state.
The duration of this period is to time slots, which is set by the
user or by default. First, The sink node gathers all stored data
in the last period of radio off from sensor nodes. Secondly, the
sensory data in current period from n sensor nodes are sent to
the sink as the sample. Thirdly, the sample data are analyzed
immediately, so the sensing probability p and the duration of
radio off period tθ are calculated (the calculation method will
be introduced in the next two subsections). Fourthly, the sink
feedbacks the values of p and tθ to n sensor nodes. Parameters
p and tθ are valid only in current cycle.

Period of radio off : Nodes in this period includes the sleep
and the half-active states. The duration of this period is tθ time
slots obtained by the latest Step V.B.1. At every time slot in
this period, each node senses environmental data with the latest
sensing probability p, and stores them in local memory until
this period is over. Then, the execution goes to ‘Period of Radio
On’ and repeats.

We use an example to compare REDG with the traditional
data gathering protocols: CTP and fixed low-duty-cycle (FLDC)
as shown in Fig. 3. Assume the number of nodes n = 3, and
the number of total time slots t = 30 for this environment
reconstruction application. The black box in Fig. 3 presents
the active state; the white box presents the sleep state; and the
cross box presents the half-active state. The average duty cycle
is equal to the ratio of the number of black boxes to the total

number of boxes. The storage consumption is the number of
non-white boxes.

We can find that the CTP needs the largest amount of storage
space (90 units) and it costs the most energy because the duty
cycle is 1. The resource consumption of FLDC, where the
duty cycle is 0.4 and the storage space needs only 36 units, is
better than CTP. However, FLDC cannot ensure the accuracy by
any interpolation method due to no environment adaption. The
proposed REDG needs only 30 units storage space. The duty
cycle of REDG is only 0.2. In addition, since the parameters
of p and tθ are adapted by the dynamic environment, the
reconstruction accuracy can be ensured by these 30 units data
using CS method.

We re-analyze the REER problem according to the proposed
REDG design.

It is proved that the majority energy consumption is due to
radio on, so min(E) in Equation (5) is equivalent to minimize
the average duty cycle of the nodes. Because REDG runs cycle-
by-cycle, to minimize the average duty cycle can be realized
by minimizing the duty cycle of each cycle. Since to is fixed
by default in REDG and the computation of duty cycle is
= to/(to + tθ ), we obtain min(E) ⇒ max(tθ ).

The secondary objective min(S) is equivalent to minimize the
storage consumption in each cycle because REDG runs cycle-
by-cycle. The storage space in each cycle is n × (to + tθ × p).
Since n and to are known; tθ is maximized before; and p ≥ 0,
we obtain min(S) ⇒ min(p).

In summary, we rewrite Equation (5) to obtain the goal of
REDG: ⎧⎪⎨⎪⎩

Objective: max(tθ ),

Sub-Objective: min(p),

Subject to: ε ≤ εth.

(11)

5.3. Duty-cycle adaption

We introduce the duty-cycle adaption method in this subsection.
According to Equation (11), the objective is max(tθ ) for
efficient energy consumption. However, tθ is self-adaptive to

FIGURE 3. Procedure comparison among three data gathering protocols.
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8 L. Kong et al.

the dynamic environment, which is mainly restricted by the
accuracy requirement. Consequently, we utilize time series
analysis [29] to estimate tθ on the basis of the sample data during
the latest to. We decide tθ by three steps.

(i) Rank estimation: We have proved the predictability of
ranks in EMs. Here, we introduce the method to estimate the
rank sequence. An n × to EM can be obtained from the sample
data. Following the Step VI.B.1, a rank sequence R = (rτ ) is
generated, where i = 1, 2, . . . , to. ARIMA model [39] in time
series analysis can well predict the sequence with the long trend,
periodicity and random noise, so we adopt ARIMA to estimate
r̂τ , where τ > to.

ARIMA model is a mature prediction tool, which has been
widely used in economy prediction and integrated into many
statistics softwares such as SAS and SPSS. Therefore, only
a brief description of ARIMA process is introduced for r̂τ

estimation as follows:

(a) Stationarity Difference. Compute min(d), where d =
0, 1, 2, . . . and this d satisfies that 	dR is stationary.

(b) Term Decision.ARIMA model has three terms (a, b, c).
The first term is decided by a = min(ω), where this ω

matches |ρω| < 2/
√

ω; The second term is b = min(d);
The third term is c = min(ω), where this ω matches
|ϕω| < 2/

√
ω. Then, the terms (a, b, c) are determined.

(c) Forecast. Use ARIMA(a, b, c) to forecast the value of
rank. Then, we get an estimated rank sequence R̂ =
(r̂τ ), τ = to + 1, to + 2, . . . ,∞.

For detailed process the reader can refer to [29].
(ii) Rank error estimation: This step is used to predict the

error between the real rank and the estimated rank.
In the above step, ARIMA model is employed to predict the

value of r̂τ , where τ > to. In this step, we also estimate r̂τ but
by the sequence R′ = (r1, r2, . . . , rτ−1), where 1 < τ ≤ to.

Then, we generate the rank error sequence. Since we have the
real rτ computed directly from the sample data, the rank error
E can be compared between rτ and r̂τ when 1 < τ ≤ to. Hence,
we can create a rank error sequence E = (eτ ) = (rτ − r̂τ ), τ =
1, 2, . . . , to.

Finally, the estimated rank error sequence Ê = (êτ ) can be
predicted by the same ARIMA method as mentioned in the step
of ‘Rank Estimation’, where τ = to + 1, to + 2, . . . ,∞.

(iii) Duration decision:The radio off duration tθ is determined
by the accuracy requirement.

The errors do exist in the estimated rank sequence R̂ = (r̂τ ).
And the longer the estimated sequence, the larger errors are
accumulated. Therefore, the upper bound of the error μj of r̂j

is the cumulative value of estimated errors from to to present tj ,
i.e. μj = ∑j

τ=to
êτ .

The confidence interval ς is set to ensure the accuracy. Hence,
only the error of the estimated r̂τ is within the confidence
interval, then ς is adoptable, i.e. μτ ≤ r̂τ × ς is the adoptable
estimated rank.

FIGURE 4. Setting the duration of radio off period.

The objective of max(tθ ) is subject to the accuracy condition.
Hence, the value of tθ is limited to satisfy that r̂tθ is in the
scope of all adoptable estimated ranks. Thus, we obtain tθ =
max(j) − to, where j satisfies μj ≤ r̂j × ς . Hence, the rank is
also determined as r̂ = r̂j .

Figure 4 shows the setting of tθ and r̂ visually by the
rank estimation sequence r̂τ , the cumulative error μτ , and the
confidence interval ς .

5.4. Storage optimization

We optimize the storage consumption in this subsection.
According to CS theory [23–25], if an n × t matrix has the
low-rank feature with rank r , the total n × t data could be near-
optimally recovered by the amount of

K ≥ C · r · log2

(
n · t

r

)
(12)

data, where C is a constant. And the selection of these K data
should follow the random distribution in n × t matrix.

In our design, the period of a cycle includes to + tθ time slots,
where to is given and tθ is obtained by the step of ‘Duration
Decision’. The rank of the n × (to + tθ ) matrix is estimated
as r̂ shown in Fig. 4. To ensure the accuracy, the confidence
interval ς is considered to make up the error of estimation.
Substitute these variables into Equation (12), we obtain that
K ≥ C · r̂ · (1 + ς) · log2(n · (to + tθ )/r̂ · (1 + ς)) data should
be randomly gathered for accurate environment reconstruction.

Since the nodes are in active state during to period, the
amount of gathered data are n × to, which is much more
than K × (to/(to + tθ )). However, during tθ period, M =
K × (tθ /(to + tθ )) data are required to be gathered. These
M data need to be gathered by n nodes in tθ time slots.
Hence, the sensing probability of every node per time slot is
p = M/(n × tθ ). Substitute M and K into p, we obtain

p ≥ 1

n · (to + tθ )
· C · r̂ · (1 + ς) · log2

(
n · (to + tθ )

r̂ · (1 + ς)

)
. (13)

In Equation (13), the only unknown parameter is the constant
coefficient C. Since the environment usually does not change

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at M
cG

ill U
niversity L

ibraries on A
pril 14, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


REDG in Sensor Networks for Environment Reconstruction 9

quickly, we consider that C does not change within one cycle.
Then, we can calculate C on the basis of the sample data. We
represent Equation (12) by C = K/r · log2(n · t/r). Similarly,
Co in the n × to matrix of sample data can be presented by

Co = Ko

ro · log2(n · to/ro)
, (14)

where ro is the rank of n × to matrix. In Equation (14), n and to
are known, ro can be computed by SVD as Equation (7). Thus,
Co could be obtained after Ko is known.

Then, we introduce the method to search the value of Ko

based on the accuracy requirement εth. Assume Xo is denoted
the EM of the sample data. Bo is a (n × to) BIM. The number
of 0 in Bo is denoted by N0 and the number of 1 is denoted by
N1 = n × to − N0. Initializing N0 = 0, i.e. Bo is a matrix with
all 1’s at the beginning. (1) Set N0 = N0 +1, the position of the
additional 0 is randomly selected in Bo. (2) Go = Xo · Bo by
Definition4. (3) Interpolate Go by CS algorithm to get X̂o. (4)
Compute the ER-Error εo between Xo and X̂o by Equation (6).
The procedure of (1)–(4) is repeated until Ko = min(N0) is
found, in which this N0 matches the condition that εo ≤ εth.
Substitute this Ko into Equation (14), we obtain the constant
coefficient Co.

Substitute C = Co into Equation (13), we obtain

p ≥ 1

n · (to + tθ )
·Co · r̂ · (1 + ς) · log2

(
n · (to + tθ )

r̂ · (1 + ς)

)
. (15)

Hence, the value of min(p) is obtained and this p can
guarantee the reconstruction accuracy.

5.5. Algorithm

Three parts of algorithms are needed for carrying out REDG.
They are CS algorithm, REDG algorithm at sink side and the
REDG algorithm at node side.

First, CS is a mature technology for matrix recovery. Many
excellent works have investigated the CS-based algorithms. The
CS algorithm adopted in this paper is the same algorithm in
[26, 28]. For pseudo-code the reader can refer to Algorithm 1
in [26]. The main function of CS algorithm is to interpolate
all missing data in GM and rebuild a estimated matrix E2M to
achieve the environment reconstruction in cyberspace.

Secondly, Algorithm 1 presents one cycle of the pseudo-code
of REDG algorithm at the sink side. The sink keeps running this
Algorithm 1 cycle-by-cycle.

There are three parameters required to set in Algorithm 1:
to, ς and εth. (1) Since each node senses the environmental
data once per time slot, to is the amount of sampled data per
node during active state. to is at least ≥ 3, otherwise, ARIMA
methods cannot predict r̂τ or μτ due to a too short original
sequence. We suggest to configure to ≥ 24, which is a usual
standard for good performance of ARIMA prediction. (2) We
propose to set ς = 5%, as the default setting of confidence

Algorithm 1 REDG algorithm @ sink.
Input:

to: the duration of radio on in a duty-cycle
ς : the confidence interval of rank estimation
εth: the threshold of ER-Error

Notation:
tθ : the duration of radio off in a duty-cycle
p: the sensing probability of a node per time slot

Main procedure:
1: gather stored data from n nodes;
2: Xo ← gather EC data from n nodes during to time slots;
3: generate (rτ ) sequence by Xo using SVD, 1 ≥ τ ≥ to;
4: estimate (r̂τ ) sequence by rτ using ARIMA, τ > to;
5: estimate (μτ ) sequence by (rτ ) and (r̂τ ) using ARIMA, τ > to;
6: tθ ← max(j) − to, r̂ ← r̂max(j), subject to μj ≤ r̂j × ς ;
7: search Ko by Xo and εth using CS;
8: Co ← Ko/[ro · log2(n · to/ro)];
9: p ← 1

n·(to+tθ )
· Co · r̂ · (1 + ς) · log2

( n·(to+tθ )
r̂·(1+ς)

)
;

10: send tθ and p to n nodes;
11: wait tθ time slots;

Algorithm 2 REDG algorithm @ node.
Main procedure:

1: radio on;
2: if tθ and p are received then
3: radio off in following tθ time slots;
4: sense data with probability p and store them until radio on;
5: else
6: send stored data to sink;
7: sense and send EC data to sink per time slot;
8: end if

interval for prediction in SPSS and SAS. (3) The setting of εth

relies on the accuracy requirement of an application. We set
ER-Error εth = 5% in our experiment.

The goal of Algorithm 1 is to compute and send the values
of tθ and p to all sensor nodes. The main procedure is to gather
the stored data from n nodes when their radios are just on; then
to gather to sample data from each of n nodes when their radios
are still on; to compute tθ and p on the basis of n × to sample
data using SVD, ARIMA and CS; to send tθ and p to all nodes;
finally, to wait tθ time slots for the next cycle.

Thirdly, Algorithm 2 presents the pseudo-code of REDG
algorithm at the node side. The goal of Algorithm 2 is to control
the nodes among the states of active, half-active or sleep. The
main procedure is to turn on the radio by default, sense and send
(i.e. active state) environmental data every time slot. When the
values of tθ and p are received, the node switches and keeps the
radio off in the next tθ time slots. In each of these tθ time slots,
the node senses and stores (i.e. half-active state) environmental
data with the probability p. After the tθ time slots, the node
turns on the radio again, sends the stored data to the sink and
works as active state again.
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10 L. Kong et al.

The computational complexity of SVD is O(nto) [26]; that
of CS is O(λnto) [28], where λ is a given value of the total
number of iterations; and that ofARIMA is O(n2t2

o ) [29]. Thus,
the computational complexity of Algorithm 1 is O(n2t2

o ). Since
Algorithm 1 runs at sink side, the computation capability of
current sink device is adequate to compute a O(n2t2

o ) algorithm
quickly. The computational complexity of Algorithm 2 is O(1).
In REDG, Algorithms 1 and 2 form a distributed sampling and
centralized computing data gathering protocol.

Discussion: If a WSN is required to gather multiple
environments (e.g. temperature, light, humidity together) during
the same period, REDG algorithm is also adoptable. After
gathering the sample data in every cycle, the sink computes tθ
and p of each environment. To ensure the accuracy requirement,
the minimum tθ and the maximum p of these environments are
decided to be the parameters for data gathering.

6. PERFORMANCE EVALUATION

We implement a real WSN testbed and conduct trace-driven
simulations to evaluate the performance of the proposed REDG
protocol.

6.1. Experimental implementation

Experimental testbed: Our testbed includes totally 51 TelosB
sensor nodes. They are divided into three groups: Group A,
B and C, carrying out different data gathering protocols for
comparison. Each group has 16 nodes to sense environmental
data and 1 sink node to gather these data. In a 7.2 m×6 m open-
air area, 4 × 4 = 16 positions are selected to deploy sensor
nodes as a grid. The transversal distance between two neighbor
positions is 2.4 m and the longitudinal distance between two
neighbor positions is 2 m. As shown in Fig. 5, at each position,
there are three sensor nodes, which belong to three groups,
respectively.Totally 48 nodes are deployed in the area.The other
three sink nodes connect to three laptops as shown in Fig. 5.

Each group of 17 sensor nodes organizes its own network.
These nodes transmit data using IEEE 802.15.4 Zigbee
standard. There are 16 ZigBee channels in the 2.4 GHz ISM
band, with each channel requiring 5 MHz of bandwidth. The
transmission rate is up to 250 kbps. The three groups of WSNs

work during the same period with three non-overlap channels,
so there are no interference among them.

Implementation setting: There are some common configura-
tions for three groups. The duration of every time slot is set as
1 min. The node senses data once per minute when at the active
time slot. The gathered data are stored in database in the laptop
according to our custom format, including sensing time stamp,
node ID, temperature, humidity, light, voltage and RSSI. Each
record costs 160 Bytes storage space.

Then, we set the three groups of WSNs, respectively. Group
A: CTP. TinyOS library provides the code of CTP. The radio is
always on for sending, receiving or forwarding data. Group B:
Fixed low-duty-cycle (FLDC12.5), one cycle is set 4 h with 30-
min active state and 3.5-h sleep state. So the duty cycle is 12.5%.
(We also tested the cases that the duty cycles of FLDC are set to
50, 25 and 6.25%. Compared with FLDCs of other duty cycles,
the performance of FLDC12.5 has the least duty-cycle subject
to ER-Error ≤ 5%.) Group C: REDG. The parameters are set
as to = 30, ς = 5% and εth = 5%.

Experiment results:To measure the performance, we compare
the reconstruction accuracy, energy consumption and storage
consumption among three protocols. These three protocols run
10 days for temperature reconstruction, 10 days for humidity
reconstruction and 10 days for light reconstruction.

The metric of accuracy is the ER-Error, which is defined in
Metric 1 and can be computed by Equation (6). Figure 6a plots
the histogram of ε in different group in different environments.
Group A: Since CTP gathers all environmental data, there
is no ER-Error ε = 0. Group B: FLDC12.5 loses 87.5%
environmental data. Although the part of missing data are
estimated by CS algorithm to rebuild the dynamic environment,
ER-Errors are 3.1% in temperature, 3.6% in humidity and 5.4%
in light. Group C: REDG offers the satisfied results on ER-
Errors. Since the prediction of tθ is controlled by ς = 5%, and
the amount of gathered data is controlled by εth = 5%, REDG
displays ε = 1.8% in temperature, 2.1% in humidity and 4.7%
in light after CS. In summary, the comparison result indicates
that the REDG algorithm can ensure the accuracy requirement.

The energy consumption is measured by the average duty
cycle α of sensor nodes, i.e. the ratio of the total duration of
radio on period in 10 days. The results of average duty cycle
are displayed in Fig. 6b. Group A: The radio keeps turning on
in CTP, so α = 100%. Group B: Since the duty cycle is fixed in

FIGURE 5. Experimental testbed.
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(a) (b) (c)

FIGURE 6. Performance evaluation.

FLDC, α = 12.5%. Group C: the duty cycle in REDG changes
according to the dynamic environment. From Fig. 6b, we find
that α = 5.3% in temperature, α = 5.5% in humidity and
α = 8.2% in light. The results imply REDG is better than
FLDC12.5 and much better than CTP on energy saving in our
experiment.

The amount of gathered data in database in the laptops is
used to measure the storage consumption. Figure 6c illustrates
the storage costs among different protocols. Group A: We can
easily derive the theoretical storage consumption for CTP: the
period of data gathering is 10 days; there are 16 nodes reporting
the environmental data to the sink; the data are sent 1 per minute
per node; each record costs 160B storage space; there are totally
10 × 24 × 60 × 16 × 1 = 230 400 records, ∼36.86 MB. In
the real experiment, the storage consumption of CTP is near
37.22 MB, which is close to the theoretical result. Group B:
FLDC12.5 senses data only in the active state, so the amount of
gathered data is also nearly 12.5%. The theoretical space costs
are 4.61 MB. From Fig. 6c, the space costs are ∼4.83 MB in
our experiment. Group C: In REDG, the parameter p is adapted
with the dynamic environment. Hence, we cannot derive a
theoretical result of storage consumption for REDG. And the
experimental results are displayed in Fig. 6c, which are 2.69 MB
for temperature, 2.81 MB for humidity, 3.76 MB for light. In
conclusion, REDG saves much more storage space than CTP
and FLDC12.5.

REDG outperforms the current data gathering methods in
this experiment. Compared with CTP, REDG is much better on
resource efficiency within the accuracy requirement. Compared
with FLDC12.5, both of them can achieve the accuracy
requirement, but REDG performs much better on energy and
storage consumption.

6.2. Trace-driven simulation

Simulation overview: Although the experiment verifies the
practice and efficiency of REDG, it only carries out in an
experimental scenario with some limitations such as the small-
scaleWSN (17 nodes for every group), small area (7.2 m×6 m),
one scenario (open-air space) and one certain sensing frequency
(once per minute). To test the extensive applicability of REDG,

we conduct the simulations based on the diverse datasets from
real applications. Table 1 lists the three datasets. These three
datasets are in diverse scales (50, 249 and 15 nodes), diverse
areas (40 m×30 m, 200 m×100 m and 300 m×100 m), diverse
scenarios (indoor, forest and ocean) and diverse sensing interval
(0.5, 5 and 2 min).

These datasets are also divided into 6 EMs: Indoor-temp,
indoor-light, forest-temp and etc. Every EM is simulated by
CTP, FLDC50, FLDC25, FLDC12.5, FLDC6.25 and REDG.
The metric of accuracy is still measured by ER-Error ε, and the
energy consumption is still measured by average duty cycle α.
However, the storage formats for diverse datasets are different.
To use a unified metric, we adopt the number of records to
measure the storage consumption in our simulation.

Simulation setting: Since the radios are assumed to keep
turning on in CTP, all data are gathered. Hence, GMG is actually
the same as EM X. There is no ER-Error. The average duty cycle
is 100%. The number of records is equal to n × t .

For FLDC, one cycle is set 240 slots. We use FLDC12.5 as
an example to explain the procedure of FLDC simulation. The
active state of a node is set to 30 slots and the subsequent 210
slots are at the sleep state for this node. Consequently, BIM is
a n × t matrix with every 240 columns as cycle. In one cycle,
the values in first 30 columns are all 1, and the values in the rest
210 columns are all 0:

B =
⎡⎢⎣1 · · · 1 0 · · · 0 1 · · ·

...
...

...
...

...
...

...
...

1 · · · 1 0 · · · 0 1 · · ·

⎤⎥⎦
n×t

. (16)

← 30 → ← 210 →
Then, all the gathered data can be presented by GM G = X ·B.
And E2M X̂ can be estimated by CS algorithm based on GM
G. Compared X̂ and X, the ER-Error can be computed by
Equation (6). The average duty cycle is 30

240 = 12.5%. The
number of records is equal to (n × t × 12.5%).

For REDG, the simulations are conducted according to the
Algorithms 1 and 2 with the setting of to = 30, ς = 5% and
εth = 5%. So that a GM G can be obtained from the datasets.
Then, we can estimate X̂ by CS and compute ε by Equation (6).
The average duty cycle can be computed by the statistics of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7. Performance simulation.

total number of slots for active slots. The number of records is
equal to the number of non-zero elements in G.

Simulation results: Figure 7 shows the ER-Errors, the average
duty cycle, and the number of records of different data gathering
protocols among indoor, forest and ocean datasets in our
simulations.

We can find in Fig. 7a, d, g, every ε is 0 for in CTP; the smaller
of the duty cycles, the larger ER-Errors in FLDC are; and the
ER-Errors of REDG are all <5% no matter which scenario or
environment.

The average duty cycles of CTP, FLDC50, FLDC25,
FLDC12.5, FLDC6.25 are 100, 50, 25, 12.5, and 6.25 in Fig. 7b,
e, h. These values are fixed, which are independent of scenarios
or environments. Nevertheless, the average duty cycles of
REDG are dynamic corresponding to the diverse scenarios or
environments. Most average duty cycles α of REDG are smaller
than 10%. For example, α in Ocean-Temp and Ocean-Light are
only 6.0% and in Indoor-Temp is 7.5%. The worst case in the
simulations is the Forest-Light that α = 15%.

In Fig. 7c, f, i, the numbers of records gathered by CTP and
FLDC are also fixed, which is equal to n × t × α. The numbers
of records gathered by REDG in Indoor-Temp, Indoor-Light,
Forest-Temp, Forest-Light, Ocean-Temp, Ocean-Light are
19 044, 21 397, 13 179, 22 861, 1161, 995, respectively, which
are usually smaller than 12% of the total number of data
records.

In summary, the results in the simulation are similar to the
performance in the experiment. The proposed REDG protocol
guarantees the reconstruction accuracy with low energy and
storage consumption. Compared with CTP, REDG saves much
more energy and storage resources with only a little accuracy
loss. Compared with FLDC, if considering with the accuracy
requirement, REDG performs better on energy and storage
efficiency; if considering with the nearly same resource cost,
REDG can rebuild more accurate environment than FLDC. The
most important property of REDG is that its parameters (i.e. the
duty cycle and the amount of gathered data) are self-adaptive to
the dynamic environment.

7. CONCLUSION

We proposed a novel data gathering protocol in WSNs
for environment reconstruction, which jointly considers the
resource efficiency and the reconstruction accuracy issues. This
protocol can adapt the duty cycle and the sensing probability of
sensor nodes according to the dynamic environment based on
the CS theory and time series prediction. We implemented this
protocol in a real WSN testbed and conducted extensive trace-
driven simulations. The evaluation results demonstrate that the
proposed protocol dramatically reduces energy and storage
consumption compared with conventional data gathering
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protocols while the accuracy of environment reconstruction is
guaranteed.
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