Telecommun Syst (2017) 65:155-168
DOI 10.1007/s11235-016-0223-x

@ CrossMark

Content-based deep communication control for networked control

system

Ming Wan!-2 . Wenli Shang'? . Linghe Kong!-3 . Peng Zeng! 2

Published online: 30 August 2016
© Springer Science+Business Media New York 2016

Abstract In smart cities, the networked control system
plays a significant role in transportation systems, power
stations or other critical infrastructures, and it is facing
many security issues. From this point, this paper proposes
a content-based deep communication control approach to
guarantee its security. Based on the layer architecture, this
approach analyzes the interactive content in depth according
to different industrial communication protocols, and imple-
ments the access control between two distinct enclaves. For
OPC Classic, we acquire the dynamic port provided by OPC
server, and open a new connection belonging to this port;
for Modbus/TCP, we not only analyze the ordinary function
codes and addresses, but also check the register or coil values
by using the multi-bit Trie-tree matching algorithm. Besides,
the white-listing strategy is introduced to satisfy the special
requirements of industrial communication. Our experiment
results show that, on the one hand the proposed approach pro-

B Ming Wan
wanming @sia.cn

Wenli Shang
shangwl@sia.cn

Linghe Kong
linghe.kong @sjtu.edu.cn

Peng Zeng
zZp@sia.cn

Shenyang Institute of Automation Chinese Academy of
Sciences, No.114, Nanta Street, Shenhe District, Shenyang
110016, People’s Republic of China

Key Laboratory of Networked Control System Chinese
Academy of Sciences, No.114, Nanta Street, Shenhe District,
Shenyang 110016, People’s Republic of China

Shanghai Jiao Tong University, No. 800, Dongchuan Road,
Minhang District, Shanghai 200240,
People’s Republic of China

vides OPC and Modbus/TCP defenses in depth; on the other
hand it has less than 1 ms forwarding latency and O packet
loss rate when the rule number reaches 200, and all these
meet the availability requirements in the networked control
system. In particular, this approach has been successfully
applied in several real-world petrochemical control systems.

Keywords Content-based deep communication control -
OPC Classic - Modbus/TCP - White-listing

1 Introduction

As an iconic symbol, the networked control system [1] has
become an important basis in critical infrastructures, such as
power stations, petrochemical plants and transportation sys-
tems, and obtains the public attention gradually. Especially,
the Industry 4.0 revolution, defined by Germany, further
emphasizes the essential role of networking technology in
the networked control system [2]. However, the application
of networking technology has broken the original closure of
industrial control systems, such as SCADA (supervisory con-
trol and data acquisition), DCS (distributed control system)
and PLC (programmable logic controller), and the accom-
panying security issues are increasing exposed [3—5]. The
research reports of the USA ICS-CERT (industrial control
systems cyber emergency response team) point out in recent
years the number of security incidents in industrial control
systems show a sensible rise, and only in 2014 the attack
number against critical infrastructures reaches 245 [6]. Espe-
cially, the Stuxnet virus attacking Irans nuclear facilities
sounds an alarm all over the world [7]. As described by
Hadziosmanovic [8], one critical reason is due to the fact that
these systems are not built with security in mind. Although
there are various kinds of security methods in the regular

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-016-0223-x&domain=pdf

156

M. Wan et al.

IT system, the information security in the networked control
system is essentially different from that in the IT system, and
the traditional security methods cannot be applied directly.

The vulnerability of the networked control system has
been widely studied and discussed by both academia and
industry, mainly including: information management vul-
nerability [9], operating system and database vulnerability
[10,11], embedded control device vulnerability [11-13], and
industrial communication protocol vulnerability [14-16].
As the major communication carrier for different industrial
control devices, the industrial communication protocols are
always utilized by malicious hackers as a breakout to perform
various attacks. The primary causes can be summarized as
follows: on the one hand, many industrial communication
protocols, such as Modbus/TCP and OPC Classic, belong
to the application layer protocol specification, and rely on
the underlying TCP/IP protocol to support logical connec-
tion. So, this design may inherit some security issues caused
by the TCP/IP protocol. On the other hand, in the original
design of industrial communication protocols, the engineers
do not consider the information security problems, and the
protocols lack the appropriate security mechanisms [17]. To
sum up, in order to effectively defend network attacks, a
feasible strategy is to parse the industrial communication pro-
tocol in depth when we design the defense approach. At the
current stage, a famous approach to improve the security in
the networked control system is the communication control
approach, and its typical application is industrial firewalls or
industrial NetGaps. By using DPI (deep packet inspection)
technology, industrial firewalls run an extended analysis of
industrial communication packets according to the specific
protocol format, and filter the malicious attack flows [18, 19].
Although the existing approaches can protect the networked
control system from cyber attacks in some degree, some
shortages are summarized as follows: First, the rule gran-
ularity is not fine, and the defense capability is limited. For
example, for Modbus/TCP, most existing industrial firewalls
only check the function codes, and miss detecting the regis-
ter or coil values. Second, the efficiency of these approaches
need more considerations, because the availability of the net-
worked control system comes first. Therefore, it is worth
considering the above problems when we design an more
effective and feasible communication control approach.

Itis generally appreciated that NIST (National Institute of
Standards and Technology) emphasizes the defense in depth
strategy, which divides the industrial control system into
different security enclaves [11]. On this basis, this paper pro-
poses a content-based deep communication control approach
to secure the networked control system. Differently, this
approach can carry out the deep analysis of industrial com-
munication protocols which are included in the highest layer
of the OSI model. By this way, this approach can block the
improper control commands which only exist in the appli-

@ Springer

cation layer. Furthermore, the content-based communication
control can be explained as follows: by capturing the packets
from one enclave to another enclave, this approach analyzes
the interactive information in depth and restores the critical
contents according to the protocol format. After matching the
critical contents with the white-listing rules, this approach
can filter the malicious or undesired communication flows.
Based on the basic architecture of the networked control sys-
tem, this approach supports two industrial communication
protocols: OPC Classic and Modbus/TCP. For OPC Classic,
this approach acquires the dynamic port of the OPC server,
and opens a new connection belonging to this port. It can
prevent the access request which uses the illegal port, and
filter the packets which cannot conform to the DCE/RPC
message type. For Modbus/TCP, this approach can provide
three key parts, including packet integrity detection, deep
parsing based on function code and multi-bit Trie-tree match-
ing algorithm. It not only analyzes the ordinary function
codes and addresses, but also checks the register or coil val-
ues by using the multi-bit Trie-tree matching algorithm. By
the experimental evaluation and analysis, it is particularly
worth mentioning that our approach can meet the availabil-
ity requirements in the networked control system when it
provides the security protection for OPC and Modbus/TCP
communications. Besides, our approach has been success-
fully applied in several real-world petrochemical control
systems.

The rest of this paper is organized as follows: Sect. 2
describes the basic layer architecture of the networked con-
trol system. Sect. 3 provides the proposed content-based
communication control approach in detail. Our simulation
and experimental results are presented in Sect. 4. Besides, we
also depict our laboratorial demo and practical application in
Sect. 5 and Sect. 6, respectively. Finally, Sect. 7 provides
some concluding remarks regarding this research.

2 Basic layer architecture

According to the common characteristics, we sum up the
basic architecture of the networked control system into three
layers (see Fig. 1) [8,20]. More generally, Layer 1 is the basic
control layer, and it consists of physical field devices (drivers,
sensors, actuators, et al.) and programmable embedded elec-
tronic devices (PLCs, RTUs, DCS controllers, et al.). The
programmable embedded electronic devices accomplish the
industrial control process, and they not only provide the oper-
ational controls for the field devices through field bus, but also
send the real-time signals to upper layer. Layer 2 is supervi-
sory control layer, and it is composed of some critical servers
and workstations, such as HMI (human machine interface),
OPC server, engineer workstation, and so on. Furthermore,
this layer performs several important tasks, for example, OPC

Content-based deep communication control...

157

7 N
Process Management Layer Web E-mail I
Server Server |
|

o
Business HMI OoPC |
‘Workstation Client Client 5 |
_ = >
E lﬂ‘ S

= —
\J == ;.T - |
|
| |

£ 0

1
Supervisory Control Layer !
Redundant |
Engineer ~ Human-machine OPC Operator Application I
Historian Workstation Interface(HMI) Server Workstation Server — :

[

A8
Basic Control Layer

RTU DCS Controller

PLC

Pz
| —
L]
E 5
B
FieldB_us__ o o - —

JU IR I B

l
|
| Drivers | I Sensors | |Actuators| I Robots I :
/

[
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
\

Fig. 1 Basic layer architecture of networked control system

server gathers the status information of PLCs and provides a
method for OPC client to access its data. Engineer worksta-
tion can carry out the system configuration, install or update
program elements, recover from failures, and provide system
administrations. Layer 3, called process management layer,
includes various clients and corporate network. In particular,
OPC clientisin this layer, and it associates with OPC server to
display the information about field managements and process
managements. In this basic layer architecture, the interaction
between layers uses different industrial communication pro-
tocols. For example, the communication between Layer 1
and Layer 2 is typically performed over Modbus/TCP, and
the communication between Layer 2 and Layer 3 is typically
operated by OPC Classic.

3 Content-based deep communication control
approach

3.1 Basic model

Figure 2 describes the basic model of our approach. By
setting the white-listing rules, this model can control and fil-
ter the communication flows from one enclave to another.
According to the packet processing, this model mainly
includes two parts: packet capture and initial parsing module
and content-based deep inspection module. In the packet cap-
ture and initial parsing module, the packets sent from some
industrial devices (such as OPC clients or PLCs), can be cap-
tured by this module. After that, this module preliminarily
analyzes the TCP/IP headers of the packets and extracts the

Packet Capture and Initial |

Packet Parsing Module

Rule Database

Packet Capture

Y
Initial Parsing
and Matching

White-listing
Strategy

Industrial

Four Tuple
S Protocol Part:

Part

)
o]
2dO

9]

JISSE|

OPC Deep Parsing
and Tracking

dO.L/snapdN

Packet

Modbus/TCP Deep terd
Parsing and Matching Filtering IT
Content-based Deep Inspection Module
- - J

Fig. 2 Basic model of content-based deep communication control
approach

four tuples. When the four tuples match with the rules in the
white list, this module judges the protocol type of the packets
according to the source or destination ports. If the protocol
type is OPC Classic or Modbus/TCP, the application data
of the packets can be delivered to the content-based deep
inspection module. If the protocol type is OPC Classic, the
application data can be parsed in depth to track the dynamic
port. Otherwise, if the protocol type is Modbus/TCP, the
application data can be analyzed hierarchically to check the
key information. After matching with the white-listing rules,
the illegal access can be filtered by this module. Besides, all
rules are stored in the rule database, and we can create the
white-listing strategy from this database.

3.2 OPC deep parsing and tracking

As is well known, OPC Classic is based on Microsoft’s
DCOM protocol, which brings a great challenge to the secu-
rity and reliability of the networked control system [21,22].
Normally, most application protocols based on TCP or UDP
use the unique port number to establish a new connection.
Unfortunately, establishing an OPC connection requires the
following two steps: firstly, OPC client queries OPC server
by the port 135 to obtain another port number for next data
connection; secondly, OPC client establishes a new connec-
tion to access data by the obtained port number. In fact, the
used port number in the second step is a random port num-
ber which is assigned dynamically by OPC server, so it is
not possible to know this port number in advance. To sum
up, when protecting OPC server, the traditional IT firewall
cannot meet the characteristic to open the dynamic port.

@ Springer

158

M. Wan et al.

(a) Illegal request
OPC connection OPC Dec
= g request . P |:(>
E ' l—q:b Parsing and
e SR 8 Tracking OPC connection §
OPC Client response OPC Server
(b) Dynamic port
= 5 request OPC Deep —
_Jz — Parsing and]]
= ~ Dynamic port
OPC Client Tracking y:;zgg;;;or OPC Server
(c) Tllegal port
Data connection >
= request OPC Deep = N
= C:l Parsmg_ and <:| s
OPC Client Tracking Data connection OQPC Server
response
(d) Tllegal port Illegal message type
Illegal client % ﬁ Illegal server
oPC dam W
request OPC Deep
: ':M: Parsing and — 8
Tracking OPC data OPC Server

response

Fig. 3 Defense function of OPC deep parsing and tracking sub-
module. a The first OPC connection request and response using the
port 135, b the dynamic port request and response, ¢ the new data con-
nection request and response using the dynamic port, d the OPC data
request and response

According to the OPC security specification [23], the
communication control should be deployed between OPC
server and OPC client, and the minimized authority con-
straint can be realized by controlling the access procedure.
Figure 3 depicts the corresponding defense function of this
sub-module. From this figure we can see that, in the whole
OPC access procedures [from a to d], this sub-module can
filter the illegal access requests. Especially, this sub-module
can not only prevent the access request which uses the illegal
port, but also filter the packets which cannot conform to the
DCE/RPC message type. Based on the dynamic tracking, the
main parsing process of this sub-module can be summarized
as follows:

Step 1 When receiving the application data and the four
tuples from the packet capture and initial parsing module,
this sub-module firstly judges whether this packet belongs to
the OPC connection message according to the port 135. If
the packet comes from OPC server, it will be regarded as the
OPC connection response. After that, based on OPC proto-
col format, this sub-module analyzes the application data in
depth and gets the random port number which is allocated
dynamically by OPC server.

@ Springer

Step 2 After obtaining the above four tuples and the port
number, this sub-module matches the information with the
doubly-linked lists which store the used four tuples and port
number. If unmatched, this sub-module will establish a new
doubly-linked list, and store the above four tuples and port
number; if matched, this sub-module will close the cor-
responding port, and inform the client to resend the OPC
connection request.

Step 3 In accordance with the doubly-linked lists, this sub-
module generates the implicit white-listing rules which can
open new connections. Besides, this sub-module also tracks
the work status of each new connection. When the status is not
active in a specified time, this sub-module will close this port
and delete the corresponding doubly-linked list and white-
listing rule. Specifically, the default setting of this specified
time is 2min, and it is mainly because that most of the
time intervals between two continuous OPC data requests
range from 30 to 60s according to the practical experience.
Therefore, in order to avoid missing the regular requests,
this specified time is set to twice the maximum. Moreover,
we can manually adjust this time based on the actual OPC
application requirements.

3.3 Modbus/TCP deep parsing and matching

According to our earlier work [24], we further describe the
Modbus/TCP deep parsing and matching sub-module, and
this sub-module mainly includes three parts: packet integrity
detection, deep parsing based on function code and multi-bit
Trie-tree matching algorithm.

3.3.1 Packet integrity detection

When a malicious attacker wants to damage some Modbus
slave, a very simple way is to construct a malformed packet
which does not conform to Modbus/TCP protocol format.
Therefore, when receiving the application data and the four
tuples, this sub-module need to detect the packet’s integrity
according to Modbus/TCP protocol, including:

Firstly, according to Modbus/TCP packet format shown
in Fig. 4, we check whether the application data consists of
three parts: MBAP (Modbus application protocol) header,
function code and data.

Secondly, we analyze whether the protocol identifier in
MBAP header is set to 0x0000, because Modbus/TCP spec-
ifies that Modbus master and Modbus slave can identify
Modbus/TCP by the protocol identifier.

Thirdly, we verify the application data length in Mod-
bus/TCP packets. By comparing TCP load length with the
length field value in MBAP header, we confirm that this
packet does not carry excessively long application data. The
judging formula is as follows:

Content-based deep communication control...

159

Protocol Length Unit ID Function Data

Identifier Field Code

Transaction
Identifier

4
/
4

=

’ MBAP Header Protocol Data Unit ‘
\\ K
N /
N /
N\ /
AN /
IP Header | TCP Header TCP Data ‘
Fig. 4 Modbus/TCP packet format
3
Lien-mBAP = LTCp — E LM; (D

i=1

here, Lien—mpap is the length field value in MBAP header,
Lrcp is the TCP load length, and LM; (i=1,2,3) are the
byte numbers of transaction identifier, protocol identifier and
length field, respectively.

3.3.2 Deep parsing based on function code

By using DPI technology, this part analyzes the applica-
tion data in depth according to different function codes, and
extracts the key contents from each Modbus/TCP packet.
Remarkably, this part not only analyzes the common func-
tion codes and addresses, but also acquires the register or coil
values.

Based on different roles of all function codes, the forms
of the data portion in the packet’s format are distinct. For
example, for the function code 01 whose function is to read
coils, the data portion mainly includes start address (2 bytes)
and coil number (2 bytes). Dissimilarly, for the function code
05 whose function is to write a single coil, the data portion
primarily contains output address (2 bytes) and coil value (2
bytes). Thus, we should classify different function codes, and
extract the key contents from the data portion according to the
classification result. In our approach, we divide the function
codes into three classes: read operation class, write operation
class and other operation class. By the function code classi-
fication, we can obtain the more fine-grained composition
information in Modbus/TCP packets, and the more detailed
contents make the communication control more accurate.
Also, the deep parsing based on function code facilitates the
rule setting, and the rules can become more targeted.

Figure 5 depicts the pseudo-code of rule implementation
algorithm based on different function code classes. For the
rules from Rule I to Rule n, we perform the following match-
ing procedures: if the function code in the packet belongs to
write operation class, we will continue to check the address
and the register or coil value, and if matching, the Pass oper-
ation will be performed for this packet; if the function code
in the packet belongs to read operation class, we will con-

for Rule 1 to Rule n

......

do check FunctionCode
if FunctionCode e [Writing Operation Set]
then do check DataAddress
if matched
ithen do check DataValue
i if matched
i then do pass the packet

i else do jump to next rule
else do jump to next rule
else if FunctionCode e [Reading Operation Set]
then do check DataAddress
if matched
i then do pass the packet
else do jump to next rule
else if FunctionCode < [Other Operation Set|
if FuncitonCode = 22
then do check And Mask and Or _Mask
if matched
i then do pass the packet
else do jump to next rule
else if FuncitonCode =23
then do check ReadingDataAddress
if matched
i then do check WritingDataAddress

if matched
i then do check DataValue

if matched
ithen do pass the packet

else do jump to next rule
i else do jump to next rule
else do jump to next rule
else do jump to next rule
else do jump to next rule
if n rules are unmatched
then do drop the packet

Fig. 5 Pseudo-code of rule implementation algorithm

tinue to check only the address, and if matching, the Pass
operation will be performed for this packet; if the function
code in the packet belongs to other operation class, we will
continue to complete the following steps: if the function code
is 22, we need to check the And_Mask and Or_Mask fields,
and if matching, the Pass operation will be performed for
this packet; else if the function code is 23, we need to check
the read address, the write address and the register or coil
value, and if matching, the Pass operation will be performed
for this packet. Nevertheless, if all rules are not matched, the
Drop operation will be performed to discard this packet.

3.3.3 Multi-bit Trie-tree matching algorithm

In order to improve the rule matching efficiency, we build the
multi-bit Trie-tree [25,26] to check the address and the reg-
ister value. As is known to all, there may be many addresses
and register values in one Modbus/TCP packet, for exam-

@ Springer

160

M. Wan et al.

// by

<& S

Address Trie-tree /< / @qu/ < >\ \\

./ \. 4
Index Table | Index a | Index b | Index ¢ | Index d | Index e |

~1/ ~ v v W

CA et QA ¢\\g QA/ - -
Value Trie-tree QX v \/ { \,‘T’g f/ \, f AN Q/ j,

SN AFELY:

Fig. 6 Structure of multi-bit Trie-tree matching algorithm

ple, for the function code 04 whose function is to read the
input register, one response packet from Modbus slave can
contain up to 125 register values. So if we make the one-by-
one comparison, it can yield poor performance. However, the
multi-bit Trie-tree matching algorithm, which is widely used
in the routing lookup approach, is a very powerful measure to
solve this problem. In our multi-bit Trie-tree matching algo-
rithm, we build two classes of multi-bit Trie-trees: the address
Trie-tree and the value Trie-tree. More exactly, the address
Trie-tree is composed of all addresses existing in some rule,
and each branch on this tree represents an address. Also, the
value Trie-tree is composed of all register values existing in
the same rule, and each value Trie-tree represents the pre-
setting register value range. Besides, the terminal node of
each branch on the address Trie-tree stores an index which
points to a value Trie-tree, and the index declares that the
value of the corresponding register whose address is one
branch of the address Trie-tree is limited by the pointed value
Trie-tree. Figure 6 shows the structure of our multi-bit Trie-
tree matching algorithm.

The matching procedures of this algorithm can be sum-
marized as follows: when we extract one address from the
Modbus/TCP packet, we firstly match with the address Trie-
tree by using the linear search. If we find the corresponding
branch on the address Trie-tree, we can get the value Trie-tree
according to its index. After that, we can match the register
value extracted from the packet with the value Trie-tree by
using the linear search once again. If we can find the cor-
responding branch on the value Trie-tree, it means that the
matching result is successful.

4 Evaluation and analysis

In this section, we evaluate our approach in detail by some
simulation experiments and performance tests, and our main

@ Springer

purpose is not only to discuss its obvious advantages but
also to illustrate that it is suitable for security defense in the
networked control system. In addition, we use Linux OS to
implement our approach, which is based on the transparent
bridge mode. The basic configuration is as follows: Linux
kernel version is 2.6.24, system memory is 2GB, CPU is
Atom D525 (1.8 GHz), and the network interface card is
10/100/1000 Mbps adaptive Ethernet card. Especially, in the
following parts of this paper we denominate the device apply-
ing our approach as industrial defense device (IDD).

4.1 Function demonstration
4.1.1 OPC defense

In this experiment, we deploy IDD between one OPC client
and one OPC server to verify the OPC defense function.
Furthermore, we use the software OPC Quick Client and
the software KEPServerEx V4.0 as OPC client and OPC
server respectively, and the corresponding IP addresses are
192.168.1.101 and 192.168.1.102. The rules of this experi-
ment can be depicted as follows:

White-listing rule

[Operation: Pass] [Source IP: 192.168.1.101] [Destination
IP: 192.168.1.102] [Protocol: tcp] [Source Port: any] [Des-
tination Port: /35] [State: opc_tracking]

Default rule

[Operation: Drop] [Source IP: any] [Destination IP: any]
[Protocol: any] [Source Port: any] [Destination Port: any]

We carry out two experiments: in the first one, OPC client
uses the legal IP address to access OPC sever; and in the sec-
ond one, OPC client uses an illegal IP address to access OPC
server. The difference of two experimental results reflects
that our approach can open a dynamic port for the eligible
OPC client and deny the anomalous access for the illegal
OPC client.

Figure 7 shows the successful access result of the legal
OPC client. From Fig. 7a we can see that, OPC Quick Client
can adequately display the successful access process and
receive the OPC data from KEPServerEx V4.0. Besides,
Fig. 7b gives the interactive communication packets between
OPC Quick Client and KEPServerEx V4.0. In this figure,
packets 1-3 describe the first TCP connection establishment
by the port 135. After that, a new dynamic port is negotiated
by DCE/RPC protocol from packet 4 to packet 9. Finally,
the last three packets explain that a new data connection is
established by using the new dynamic port.

In the second experiment, we change OPC client’s IP
address to 192.168.1.100, which does not conform to the
white-listing rules. Figure 8 depicts the failed access result
of the illegal OPC client. As shown in Fig. 8a, OPC Quick
Client is failed to communicate with KEPServerEx V4.0, and
receives no OPC data. Similarly, in Fig. 8b, OPC Quick Client

Content-based deep communication control...

161

(a)

_OPC Quick Client

D dsce® & Bex

= 1@ 192.168. 1. 102\KEFware. KEFServerEx. V4 Ttem 1D [Data Type
{4 Groupd € Channell Devicel. tank Long

[Value [Tinestamp
22

[Quality [Update Count
09:51:49:031 Good 49

~

OPC server information

Received OPC data

| Time _Event
09:46:33 Connected to server ~KEPware KEPServerEx. V4

Added group ' to 'KEPware KEPServerEx. V4’ / Successful access process
Added 2 items to group "Groupd’ .

@2016-1-28 09:47:30
@ 2016-1-28 09:50:58
2016-1-28 03:51.07 Removed 1 itens from group Groupd .
No. Time Source Destination Protocol Length Info
32192.168.1.101 54 avocent-proxy > epmap [ACK] Seq=1 Ack=1 Win=65535 Len=0

192.168.1.102 TCP

pr

=295 Ack=1203 Win=64333 Len=0

wWin=65535 Len=0 MSS=1460 SACERM=1

12 2016-01-28 09:46:32192.168.1.101 192.168.1.102 TCcP

54 asprovatalk > sb1l [ACK] Seq=1 Ack=1 Win=65535 Len=0

Fig. 7 Successful access result of the legal OPC client. a Result of OPC quick client, b communication packets between OPC quick client and

KEPServerEx V4.0

(a)

_/OPC Quick Client

Edit View s Help

DFH e o @ &0 FX

192 168 1. 102\KEPware KEPServerEx V4 | Ttem ID | Data Type

| Value | Timestamp

| Quality | Update Count I

No OPC server information

No OPC data

[Date Time Event I
@ z016-1-28 10:02:08 Failed to obtain a valid CLSID for server 'KEPware KEPServer.. | —_ Filed
2016-1-28 10.02.51 Failed to obtain a valid CLSID for server KEFware. KEFServer. .. ailed access process

(b)
No. Source Destination

Time Protocol Length Info

12 2016-01-28 10:02:38192.168.1.100 192.168.1.102

62 Imsocialserver > epmap [SYN] Seq=0 Win=65535 Len=0 MS55=1460 SACK_PERM=1

Fig. 8 Failed access result of the illegal OPC client. a Result of OPC quick client, b communication packets between OPC quick client and

KEPServerEx V4.0

keeps sending the TCP connection request packet whose des-
tination port is 135, and receives no corresponding response.
That is to say, our approach can resoundingly intercept the
unauthorized access request to OPC server.

4.1.2 Modbus/TCP defense

According to the function code classification, our approach
compares the key contents in Modbus/TCP packets with the
white-listing rules, and determines whether these packets are
legitimate. It is worth mentioning that the rule setting for
Modbus/TCP packets can support to match with the parsed

contents, including the function codes, the addresses and the
register or coil values. Compared with other existing com-
munication control approaches for the networked control
system [18,27,28], our rule granularity is finer. For exam-
ple, Fig. 9 shows the granularity comparison between our
rule setting and the general rule setting. Furthermore, our
partial rule setting for Modbus/TCP is described below: the
function code is 16 whose function is to write multiple reg-
isters, the address is limited between 50 and 100, and the
register value is restricted between 100 and 200. If some
Modbus/TCP packet conforms to the above rule, this packet
will be forwarded, namely Pass operation.

@ Springer

162 M. Wan et al.
Options: | Operation ++-+s= | Function Code | Address Range | Value Range (a)
C:\Users\idninistrator>D: \nodpoll\win32\nodpoll.exe -n tcp —t 4 —r 10 192.168.1.
4190
Case: Pass 16 50-100 100-200 modpoll 3.4 - FieldTalk(tm> Modbus<R)> Master Simulator
Copyright (c> 2802-2013 procon¥ Pty Ltd
Uisit http://www.nodbusdriver.con for Modbus libraries and tools.

Modbus/TCP Contents

«—— — — — — General Rule Setting— — — — —»
[= — i — Our Rule Setting—-— == == === —-»

Fig. 9 Granularity comparison between our rule setting and the general
rule setting

In order to prove the Modbus/TCP defense effect, we per-
form the corresponding experiments like the ones in [24], and
also deploy IDD between one Modbus master and one Mod-
bus slave. Furthermore, Modbus master uses the software
modpoll to control Modbus salve. By setting the white-listing
rules, IDD restricts the communication behaviors of Modbus
master. In this experiment, we use the function code 16 to
write multiple registers of Modbus slave, and the IP address
of Modbus master and Modbus slave is 192.168.1.101 and
192.168.1.4, respectively. Besides, the service port of Mod-
bus slave is 502. The rules of this experiment can be described
as follows:

White-listing rule

[Operation: Pass] [Source IP: 192.168.1.101] [Destination
1P: 192.168.1.4] [Protocol: tcp] [Source Port: any] [Destina-
tion Port: 502] [Function Code: /6] [Address Range: 9-13]
[Value Range: 80-120]

Default rule

[Operation: Drop] [Source IP: any] [Destination IP: any]
[Protocol: any] [Source Port: any] [Destination Port: any]

Under normal circumstances, we first use modpoll to exe-
cute a write operation which aims to change one register of
Modbus slave. Here, the function code of this operation is 16,
and the address and the value of the register is 10 and 100,
respectively. As we known, this operation is fully consis-
tent with the above-mentioned white-listing rule. Figure 10a
shows the modpoll’s execution result. From this figure we
can see that, modpoll presents “Writing 1 reference.”, and the
written value of the 10th register is 100. That is, the commu-
nication packets of this operation are favorably forwarded by
IDD to Modbus slave, and the operation is executed smoothly.

In order to verify the ability to drop the illegal value, we
execute an abnormal write operation which changes the value
of the 10th register to 200. Figure 10b shows the modpoll’s
execution result. In this figure, modpoll presents “Reply time-
out!”, that is, there is an error in the communication between
Modbus master and Modbus slave and the response from
Modbus slave may time out. In this case, it clearly indicates
that the communication packets of this abnormal operation
have been successfully dropped by IDD and modpoll cannot

@ Springer

Protocol configuration: MODBUS/TCP

Slave configuration...: address = 1, start reference = 18, count_ = 1
Communication H
Data type....ccceceeaaat

WUritten 1 reference.

(b)

modpoll 3.4 - FieldTalk{(tm> Modbus<(R)> Master Simulator
Copyright (c) 20082-2013 proconX Pty Ltd
Uisit http://uwww.modbusdriver.com for Modbus libraries and tools.

= MODBUS/TCP
: address_= 1. start reference = 18, count = 1
92.168.1.-4..n0rt. 502, t/0 1.80 s, poll rate 1008 ns

Protocol configurati
Slave configuration
Communication...
Data type

Reply time-out?

()

modpoll 3.4 - FieldTalk{(tm> Modbus<(R)> Master Simulator
Copyright (c)> 20082-2013 proconX Pty Ltd
Visit http://wwu.modbusdriver.com for Modbus libraries and tools.

Protocol configuration: MODBUS/TCP

Slave configuration...:
Communication......... e bort 502, t/o 1.80 s, poll rate 108080 ns

Data type.............3 1 ster, output Cholding) register table

Reply time-out?

(@)

C:\WUsers\Adninistrator>D:\modpoll\win32\modpoll.exe -m tcp -t @ —» 10 192.168.1.
41

Rodpoll 3.4 - FieldTalk(tm> Modbus<R> Master Simulator

Copyright (c) 2082-2013 procon¥ Pty Ltd

Visit http://www.modbusdriver.com for Modbus libraries and tools.

Protocol configuration: MODBUS/ICP

Slave configuration. address_ = 1, start reference = 10, count = 1
Comnunication..... 92.168.1.4, port 502, t/o 1.98 s, poll rate 1008 ms
Data type........... tput (coild

Fig. 10 Modpoll’s execution results under different conditions. a
Modpoll’s execution result under normal circumstances, b modpoll’s
execution result when the value is 200, ¢ modpoll’s execution result
when the register address is 14, d modpoll’s execution result when
when the function code is 05

receive the response packets from Modbus slave. So, this
abnormal operation is executed unsuccessfully.

Similarly, in order to verify the ability to drop the illegal
address, we also execute an abnormal write operation which
writes the value 100 to the 14th register. Figure 10c shows
the modpoll’s execution result. As it shown, modpoll also
presents “Reply time-out!”, and the result of this abnormal
operation is the same as the above. Besides, in order to verify
the ability to drop the illegal function code, we execute a write
single coil operation whose function code is 05, and the 10th
coil is written to 1. Figure 10d shows the modpoll’s execution
result. The “Reply time-out!” appears in this figure, and this
operation is also executed unsuccessfully.

As can be seen from the above ordinary experiments, the
communication control approach in this paper can restrict
the access behaviors of Modbus master by matching the
communication packets in depth and insulating the illegal
communication data flows. Therefore, our approach can pre-

Content-based deep communication control...

163

vent the malicious operations to Modbus slave, and ensure
Modbus slave operating regularly.

In order to illustrate the rule granularity comparison
between our approach and the one in [27], we load its Mod-
bus/TCP filtering module into the Linux Iptables/Netfilter
system according to the mentioned procedures. Without loss
of generality, we implement this approach in one device
whose hardware resources are the same with IDD, and we
also deploy it between one Modbus master and one Modbus
slave. The main rules of this experiment can be described as
follows:

White-listing rule

iptables -A FORWARD -p tcp -s 192.168.1.101 -d 192.
168.1.4 -m modbus --funcode 16 --refnum 10 --allowtcp
1-jACCEPT

Default rule

iptables -P FORWARD DROP

Here, the parameter “funcode” represents the allowed func-
tion code, and the parameter “refnum” represents the allowed
register address. Besides, we also suppose that the normal
values which can be written to the 10th register range from
80 to 120.

We use modpoll to execute a normal write operation to
change the register of Modbus slave, and this operation con-
forms to the above white-listing rule. As shown in Fig. 11a,
the value 95 is successfully written to the 10th register, and
modpoll presents “Writing 1 reference.”. That is, the commu-
nication packets of this operation are forwarded to Modbus
slave without any difficulty, and the operation is executed
smoothly. However, when we use modpoll to execute an
abnormal write operation which changes the register value to
1000 by using the same function code and register address.
Figure 11b shows that this operation is also executed suc-
cessfully, and modpoll presents the same result “Writing 1

(a)

C:\Users\Adninistrator>D:\modpoll\win32\modpoll.exe —m tcp —t 4 —r 10 192.168.1.

modpoll 3.4 - FieldTalk(tm> Modbus(R) Master Simulator
Copyright <(c) 2002-2013 proconX Pty Ltd
Visit http://wwu.nodbusdriver.com for Modbus libraries and tools.

Protocol configuration: MODBUS/ICP
S$lave configuration...:
Communication.........:

Data tYPe..eeeeeeeannat 16

Uritten 1 reference.

(b)

modpoll 3.4 - FieldTalk(tm)> Modbus(R)> Master Simulator
Copyright (c) 2802-2013 proconX Pty Ltd
Visit http://wwu.nodbusdriver.com for Modbus libraries and tools.

Protocol configuration: MODBUS/TCP
Slave configuration...:
Communication
Data type

Uritten 1 reference.

Fig. 11 Modpoll’s execution result under different values. a Modpoll’s
execution result when the value is 95, b modpoll’s execution result when
the value is 1000

reference.”. In other words, it obviously proves that the mali-
cious communication packets are still forwarded to Modbus
slave and this abnormal operation cannot be filtered effec-
tively. In addition, we also repeat the experiments of Fig. 10c
and d, and the responding results are the same with these two
figures. As seen from the above experiments, although the
approach in [27] can protect Modbus slave from the illegal
access to some extent, there are still some disadvantages: On
the one hand, this approach cannot restrict the register value,
and lacks the ability to drop the illegal access with the anom-
alous value. So, the control system may be damaged because
Modbus slave receives too large or too small values. On the
other hand, the white-listing rule in this approach cannot offer
the address range setting, and in each rule there is only one
address. So, if we set too many rules, the execution efficiency
may be affected seriously. To sum up, our approach has the
finer rule granularity, and is superior to the one in [27].

4.2 Simulation experiment and analysis

We evaluate our approach in detail by establishing a real
attack and defense simulation experiment, and our main pur-
pose is to discuss the availability and effectiveness of its
defense in depth. In the experiment, we build a small con-
trol system based on Modbus/TCP. As shown in Fig. 12,
the experiment environment is composed of three layers:
the supervisory control layer includes two Modbus masters
(one operator workstation and one attacker), and the opera-
tor workstation can not only monitor the actual process states
but also change technological operation; the control unit layer

Supervisory Control Layer

Operator Attacker
workstation
(0
Control Unit Layer |
=
IDD ﬂ
Industrial
‘ | Switch
L i| LC
_______ H e ———————.
JE T
- —
Virtual Field Layer | I | o
"oy, T
1 1 Level upper
1 : : ‘7 1 - point
L

| | Material C

_ Level lower
M

Fig. 12 Experimental environment topology

Material B

@ Springer

164

M. Wan et al.

State g
on
Valve switch A
off off off off
on
ValveswitchB | ¢ off off off
on on
Valve switch C
off off off
1 1 1 1 1 =
1 2 3 4 5 Time(m)

Fig. 13 On-off states of three valve switches in one technological
process

includes one PLC, one IDD and an industrial switch. Besides,
IDD is deployed between the PLC and the switch, and the
PLC accepts the control commands from the operator work-
station to control the field actuators; the virtual field layer
includes three switches and some liquid level sensors, and
these three switches represent two inlet valve switches and
one outlet valve switch.

The whole technological process can be simply depicted
as follows: when the valve switches A and B are respectively
turned on, materials A and B successively flow into the con-
tainer through the valve switches A and B to produce material
C. When material C in the container reaches the level upper
point, the valve switches A and B are turned off, and then the
valve switch C is turned on. When material C in the container
exhausts and reaches the level lower point, the valve switch
C is turned off. Besides, the above-described technological
process is repeatedly performed every 5min, and the on-off
states of three valve switches in one technological process
are depicted in Fig. 13.

In this experiment, we control the valve switches by writ-
ing the corresponding coil, and each valve switch is mapped
to a coil address. In addition, we suppose that the attacker
cannot know the specific control parameters of this techno-
logical process, and just blindly sends the attack packets to
execute a write single coil operation whose function code is
05. Briefly, the ultimate aim of the attacker is to destroy the
workflow of the virtual field devices. Furthermore, we also
assume that the attack rate ranges from 100 to 120 packets
per minute. Here, each attack packet only contains one ran-
dom coil address, and the corresponding value is written to 1.
We start the attack at 11th minute, and the white-listing rules
are set to pass the packets which just have 01 and 05 func-
tion codes. Figure 14 shows the traffic comparison before
and after IDD’s filtering when the attack happening. As seen
in this figure, almost all attack packets are dropped by IDD,
and the filtered traffic present periodic variations, namely the
technological process is repeatedly performed every 5 min.

@ Springer

320

280

260 - Traffic before filtering

240

One technological process(5 minutes)

Abnormal point
200

Number of packets per 1 minute

180

Traffic after filtering
160 ; ; ;
0

10 20 30 40 50 60
Simulation time (minute)

Fig. 14 Traffic comparison before and after IDD’s filtering

9 &
NE Al
IS IDD Q.
B <1

Il 2 =L
| 8 @ ||
- —
an a

I 2 2|y
-O —
5 2
% 2
IXIA Tester

Fig. 15 Performance test topology

However, it is worth noting that an abnormal point appears
in the filtered traffic. That is because an attack packet which
conforms to the white-listing rules is generated accidentally
by using random coil addresses, causing the devices to go
screwy. Nevertheless, this is an extreme case, and it will not
happen in the actual control system, because IDD can timely
generate an alert when the attack is just beginning. Besides,
the probability of this case is extremely small, and is only
(1/2'%) x (4/5 4 4/5 + 3/5). With the increasing complex-
ity of the technological process, the probability will become
smaller.

4.3 Performance evaluation

In order to analyze IDD’s performance indicators, this paper
uses IXIA Optixia XM2 IP Performance Tester to perform
the basic performance test under different numbers of rules.
Figure 15 shows the performance test topology.

Content-based deep communication control...

165

1+ ¢ -0 E
o -~
0.8 i
)
=]
=
g
g 06f .
5
2
=
o0
=
£ 04
=
0.2 i
—— GB/T 20281-2006
— © — IDD
0 L L L
64B 512B 1518B
Packet size (byte)

Fig. 16 Throughput percentage comparison between IDD and GB/T
20281-2006

The performance test includes the following performance
indicators: throughput, latency, packet loss rate, maximum
number of concurrent connections and maximum connection
rate. For a start, we perform the throughput tests under differ-
ent packet sizes. The test time is 60 s, and the actual test traffic
speed is 200 Mbps (bidirectional, 100 Mbps in each direc-
tion). Furthermore, we perform three tests for every packet
size, and the test results can be concluded as follows: for
512- and 1518-byte packets, both of the throughputs reach
100 %; for 64-byte packet, the corresponding throughput
reaches 94.3 %. Figure 16 shows the throughput percent-
age comparison between IDD’s test results and the first-level
technique requirements of the throughput in [29]. From this
figure we can see that, IDD’s throughputs always beyond
the corresponding technique requirements under different
packet sizes. On this basis, we also perform the tests about
the latency and the packet loss rate, and the actual test traffic
speed is exactly the same as the above one. However, the dif-
ference is that these tests are completed under one rule and
200 rules, respectively. As illustrated in Table 1, we find that
the packet loss rate is always O whether under one rule or
200 rules, and the forwarding latency is as low as hundreds
of microseconds. In practice, in order to meet the availability
requirements in the networked control system, the through-
put only needs to reach several tens of megabits per second,

12000 T

[T BT 20281-2006
ICD

10000

8000+

6000

Value

4000 -

2000 -

S)
C1 C2
Connection number and rate

Fig. 17 Maximum number of concurrent connections and maximum
connection rate comparison between IDD and GB/T 20281-2006

and the latency has to be less than a few milliseconds or tens
of milliseconds. In particular, the maximum number of con-
current connections reaches 10946, and this means that IDD
can simultaneously support more than ten thousand connec-
tions from different Modbus masters or OPC clients. Besides,
the maximum connection rate exceeds 1650 per second, that
is, IDD can forward more than 1650 connection requests
per second from different Modbus masters or OPC clients.
Figure 17 describes the maximum number of concurrent con-
nections and maximum connection rate comparison between
IDD’s test results and the relevant technique requirements of
100M firewall in [29]. Here, C1 and C2 represent the max-
imum number of concurrent connections and the maximum
connection rate, respectively. As shown in this figure, IDD’s
test results are slightly better. From the above results, IDD
not only can provide security defense for the networked con-
trol system, but also can satisfy its network communication
requirements.

5 Demo platform and prototype system

Aiming at illustrating the positive effect of our approach to
defend the key industrial devices (such as PLCs) with vari-
ous industrial viruses, we build a demo platform by using the

Table 1 Basic performance test

. Test condition 1 rule 200 rules
under different rule numbers
Packet size (B) Test traffic Packet loss Latency (ps) Packet loss Latency (s)
speed (Mbps) rate rate
64 200 0 342.60 0 192.76
512 200 0 699.22 0 901.28
1518 200 0 891.82 0 884.03

@ Springer

M. Wan et al.

Industrial

virus | Upper

computer

‘ Industrial

switch

‘ IDD

.

-
—
Ry
~ .-

Fig. 18 Attack and defense demo platform for petrochemical level
control

light box to simulate attack and defense in the petrochemi-
cal level control system. As shown in Fig. 18, this platform
demonstrates the level control process of liquid purification.
By virtue of the buffer overflow vulnerability in the con-
figurable software (the main reason for this vulnerability is
that the configurable software uses non-validated user input
to write the buffer, and the input exceeds the length of the
buffer to cause the buffer overflow), the industrial virus first
damages the configurable software’s stack, and then makes
the execution pointer point to and run a malicious piece
of code. Furthermore, the behaviors of the malicious code
mainly include two parts: the first one is to keep the moni-
tor screen displaying the normal process, so that the attack
cannot be perceived by the engineer or operator; the second
one is to send a malicious Modbus/TCP packet to execute an
abnormal write operation, which makes the liquid in three
sub pots flow into the main pot simultaneously and causes an
explosion. The whole attack operation can be summarized
below: to begin with, when we insert the USB disk with an
industrial virus into upper computer, the industrial virus can
actively save the malicious code in the specified memory
segment because of the AutoRun function in Windows XP.
Next, with the help of the buffer overflow vulnerability in the
configurable software, industrial virus can execute the mali-
cious code and carry out sabotage. Finally, industrial virus
not only sends the malicious Modbus/TCP control command
to the PLC, but also shows the normal states in the upper com-
puter. In conclusion, because of the excessive liquid in the
main pot, the undetectable and significant accident is going
to occur. However, when we deploy IDD between the upper

@ Springer

Fig. 19 Attack and defense prototype system for petrochemical level
control

computer and the PLC, if we insert the same USB disk into
the upper computer again, we can find that the level control
system can run normally and stably, and after a period of time
there is no unusual behavior in the PLC.

Moreover, based on the demo platform, we also build a
prototype petrochemical level control system to show IDD’s
defense capability, as shown in Fig. 19. In this system, we
successfully fight against not only the fore-mentioned indus-
trial virus but also various DoS (denial of service) attacks. In
summary, both the demo platform and the prototype system
can prove the effectiveness and feasibility of our approach.

6 Practical application

At present, IDD has been successfully applied in several
real-world petrochemical control systems. As depicted in
Fig. 20, the software Aspen serves as OPC client, and com-
municates with OPC server to acquire the information of
the field instruments, such as temperature and pressure. Our
IDD is deployed between Aspen and OPC server, and we
only set one white-listing rule which allows Aspen to access
OPC server. By the field test, the throughput reaches 40Mbps,
and the delay is much less than 1ms. In particular, IDD can
correctly identify Aspen’s OPC access request, and provide
security protection for OPC server. To be more precise, on the
one hand, IDD can effectively stop the malicious access of the
unauthorized client and protect data from destructing or steal-
ing. On the other hand, IDD can avoid exposing the unused
and open ports, and prevent the spread of industrial viruses to
some extent. Through applications in the real-world system,

Content-based deep communication control...

167

OPC client (Aspen)

A Management network OPC server

Data transmission direction

Fig. 20 IDD’s application in real-world control systems

it shows that IDD can commendably reduce the number of
the unauthorized or erroneous alerts.

7 Conclusions

This paper aims to propose a content-based deep communica-
tion control approach for the networked control system, and
the basic idea behind the proposed approach is very simple.
That is, implementing the access control by parsing indus-
trial communication protocols in depth. Briefly, our approach
mainly support two industrial communication protocols: for
OPC Classic, this approach can open a dynamic port for the
authorized OPC client; for Modbus/TCP, this approach can
check the key control information between Modbus master
and Modbus slave. In this paper, we first put forward basic
layer architecture of the networked control system. And then,
we present the detailed design of the proposed approach,
including basic model design, OPC deep parsing and track-
ing and Modbus/TCP deep parsing and matching. At last, we
evaluate our approach in detail by some simulation experi-
ments and performance tests. We show that, our approach is
comparatively advantageous and suitable for security defense
in the networked control system. In addition, based on IDD,
we also build a demo platform and a prototype system to
simulate attack and defense, and successfully apply IDD in
several real-world petrochemical control systems.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (Grant Nos. 61501447, 61502474) and
Independent project of Key Laboratory of Networked Control System
Chinese Academy of Sciences: Research on abnormal behavior mod-
eling, online intrusion detection and self-learning method in industrial
control network. The authors are grateful to the anonymous referees for
their insightful comments and suggestions.

References

1. Gupta, R. A., & Chow, M. Y. (2010). Networked control system:
Overview and research trends. IEEE Transactions on Industrial
Electronics, 57(7), 2527-2535.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Kagermann, H., Wahlster, W., & Helbig, J. (2014). Recommen-

dations for implementing the strategic initiative INDUSTRIE 4.0.
Final Report. http://wwwplattform-i40.de/finalreport2013.

. Genge, B., Siaterlis, C., Fovino, I. N., & Masera, M. (2012).

A cyber-physical experimentation environment for the security
analysis of networked industrial control systems. Computer and
Electrical Engineering, 38(5), 1146-1161.

. Zhang, H., Cheng, P, Shi, L., & Chen, J. (2016). Optimal DoS

attack scheduling in wireless networked control system. /EEE
Transactions on Control Systems Technology, 24(3), 843-852.

. Lin, S., & Wu, H. (2015). Bloom filter-based secure data forwarding

in large ccale cyber-physical systems. Mathematical Problems in
Engineering, 2015(1), 1-10.

. ICS-CERT. (2015). ICS-CERT year in review 2014. https://

ics-cert.us-cert.gov/sites/default/files/ Annual_Reports/Year_in_
Review_FY2014 Final.

. Nourian, A., & Madnick, S. (2015). A systems theoretic approach

to the security threats in cyber physical systems applied to stuxnet.
IEEE Transactions on Dependable and Secure Computing, 99, 1—
20.

. Hadziosmanovic, D., Bolzoni, D., Etalle, S., & Hartel, P. (2012).

Challenges and opportunities in securing industrial control sys-
tems. Proceedings of 2012 Complexity in Engineering (COM-
PENGI2) (pp. 1-6).

. Davis, K. R., Davis, C. M., Zonouz, S. A., Bobba, R. B., Berthier,

R., Garcia, L., et al. (2015). A cyber-physical modeling and assess-
ment framework for power grid infrastructures. /[EEE Transactions
on Smart Grid, 6(5), 2464-2475.

Yeole, A. S., & Meshram, B. B. (2011). Analysis of different
technique for detection of SQL injection. Proceedings of 2011
International Conference & Workshop on Emerging Trends in Tech-
nology (ICWETI11) (pp. 963-966).

Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to indus-
trial control systems (ics) security. National Institute of Standards
and Technology (NIST), US Department of Commerce, Techni-
cal Report NIST Special Publication (pp. 800-82). http://csrc.nist.
gov/publications/nistpubs/800-82/SP800-82-final.

Papp, D., Ma, Z., & Buttyan, L. (2015). Embedded systems secu-
rity: threats, vulnerabilities, and attack taxonomy. Proceedings
of 2015 13th Annual Conference on Privacy, Security and Trust
(PST15) (pp. 145-152).

Beresford, D. (2011). Exploiting siemens simatic S7 PLCs.
https://media.blackhat.com/bh-us- 1 1/Beresford/ BHUS11Beresfo
rdS7PLCsWP.

Darias, Z., Serhrouchni, A., & Vogel, O. (2015). Taxonomy of
attacks on industrial controls protocols. Proceedings of 2015 Inter-
national Conference on Protocol Engineering (ICPE15) and New
Technologies of Distributed Systems (NTDS15) (pp. 1-6).

Zhao, W., Xie, F, Peng, Y., & Gao, Y. (2013). Security testing
methods and techniques of industrial control devices. Proceedings
of 2013 9th International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP13) (pp. 433—
436).

Voyiatzis, A. G., Katsigiannis, K., & Koubias, S. (2015). A Mod-
bus/TCP fuzzer for testing internetworked industrial systems.
Proceedings of 2015 IEEE 20th Conference on Emerging Tech-
nologies & Factory Automation (ETFA1S5) (pp. 1-6).

Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security
issues in SCADA networks. Computers and Security, 25(7), 498—
506.

Cereia, M., Bertolotti, I. C., Durante, L., & Valenzano, A. (2014).
Latency evaluation of a firewall for industrial networks based on
the Tofino industrial security solution. Proceedings of 2014 IEEE
Emerging Technology and Factory Automation (ETFA14) (pp. 1-
8).

@ Springer

http://wwwplattform-i40.de/finalreport2013
https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2014_Final
https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2014_Final
https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2014_Final
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final
https://media.blackhat.com/bh-us-11/Beresford/BH US11 BeresfordS7 PLCs WP
https://media.blackhat.com/bh-us-11/Beresford/BH US11 BeresfordS7 PLCs WP

168

M. Wan et al.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Zhang, S. S., Shang, W. L., Wan, M., Zhang, H., & Zeng, P. (2014).
Security defense module of Modbus TCP communication based on
region/enclave rules. Computer Engineering and Design, 35(11),
3701-3707.

Krotofil, M., & Gollmann, D. (2013). Industrial control systems
security: what is happening? Proceedings of 2013 11th IEEE Inter-
national Conference on Industrial Informatics (INDIN13) (pp.
670-675).

Tan, V. V., Yoo, D. S., & Yi, M. J. (2007). Security in automation
and control systems based on OPC techniques. Proceedings of 2007
International Forum on Strategic Technology (IFOST07) (pp. 136—
140).

Schwarz, M. H., & Borcsok J. (2013). A survey on OPC and
OPC-UA: about the standard, developments and investigations.
Proceedings of 2013 XXIV International Symposium on Informa-
tion, Communication and Automation Technologies (ICAT13) (pp.
1-6).

OPC Foundation. (2000). The OPC security custom interface spec-
ification. http://opcfoundation.org/.

Wan, M., Shang, W. L., Zeng, P., & Zhao, J. M. (2016). Mod-
bus/TCP communication control method based on deep function
code inspection. Information and Control, 45(2), 248-256.
Shang, F. J., Pan, Y. J., Pan, X. Z., & Bin, B. (2008). Research on a
stochastic distribution multibit Trie tree IP classification algorithm.
Journal on Communications, 29(7), 109-117.

Jiang, W., & Prasanna, V. K. (2013). Data structure optimization
for power-efficient IP lookup architectures. IEEE Transactions on
Computers, 62(11), 2169-2182.

Pothamsetty, V., & Franz, M. (2004). Transparent Modbus/TCP
filtering with Linux. http://modbusfw.sourceforge.net/.

Igor, N. E,, Alessio, C., Andrea, C., & Masera, M. (2012). Crit-
ical state-based filtering system for securing SCADA network
protocols. IEEE Transactions on Industrial Eletronics, 59(10),
3943-3950.

GB/T 20281-2006. (2006). Information security technology-
technique requirements and testing and evaluation approaches for
firewall products. National Standard of the People’s Republic of
China. http://www.spc.org.cn/gb168/.

Ming Wan is currently an
associate professor in Key Lab-
oratory of Networked Control
System of Shenyang Institute
of Automation Chinese Acad-
emy of Sciences. Before that,
he received the B.S. degree
from Beijing Jiaotong Univer-
sity in Jul. 2007, and received
the Ph.D. degree in Commu-
nication and Information Sys-
tem from National Engineering
Laboratory for Next Generation
Internet Interconnection Devices
of Beijing Jiaotong University in

Jan. 2013. His research interests include the areas of architecture of
future Internet, network and information security and industrial control
network security.

@ Springer

47

Wenli Shang is currently an
associate professor and mas-
ter tutor in Key Laboratory of
Networked Control System of
Shenyang Institute of Automa-
tion Chinese Academy of Sci-
ences. Before that, he received
the Ph.D. degree from the
Shenyang Institute of Automa-
tion Chinese Academy of Sci-
ences in 2005. His research
interests include the areas of
industrial control system net-
work security, machine learning.

Linghe Kong is currently an
associate professor in Depart-
ment of Computer Science and
Engineering at Shanghai Jiao
Tong University. Before that, he
was a postdoctoral researcher
at McGill University from 2014
to 2015 and a postdoctoral
researcher at Singapore Univer-
sity of Technology and Design
in 2013. He received his Ph.D.
degree in computer science from
Shanghai Jiao Tong University,
China, 2012, his Master degree in
Telecommunication from TELE-

COM SudParis (ex. INT), France, 2007, and his B.E. degree in
Automation from Xidian University, China, 2005. He was also a joint
Ph.D. student at University of California, San Diego, 2011, and a visit-
ing researcher in Microsoft Research Asia, 2010. His research interests
include wireless communication, sensor networks, mobile computing,
Internet of things, and smart energy systems.

Peng Zeng is now a pro-
fessor and the director of the
Laboratory of Industrial Control
Network and System, Shenyang
Institute of Automation, Chinese
Academy of Sciences. He also
holds the positions of Mem-
ber, Expert Group of IEC TC65
WG16. Before that, he received
his Ph.D. degree in mecha-
tronic from Shenyang Institute
of Automation Chinese Acad-
emy of Sciences in 2005. His
research interests include indus-
trial automation and the wireless
networks for such automation.

http://opcfoundation.org/
http://modbusfw.sourceforge.net/
http://www.spc.org.cn/gb168/

	Content-based deep communication control for networked control system
	Abstract
	1 Introduction
	2 Basic layer architecture
	3 Content-based deep communication control approach
	3.1 Basic model
	3.2 OPC deep parsing and tracking
	3.3 Modbus/TCP deep parsing and matching
	3.3.1 Packet integrity detection
	3.3.2 Deep parsing based on function code
	3.3.3 Multi-bit Trie-tree matching algorithm

	4 Evaluation and analysis
	4.1 Function demonstration
	4.1.1 OPC defense
	4.1.2 Modbus/TCP defense

	4.2 Simulation experiment and analysis
	4.3 Performance evaluation

	5 Demo platform and prototype system
	6 Practical application
	7 Conclusions
	Acknowledgements
	References

