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Abstract—Exploring and utilizing indoor white spaces (vacant
VHF and UHF TV channels) have been recognized as an effective
way to satisfy the rapid growth of the radio frequency (RF)
demand. Although a few methods of exploring indoor white
spaces have been proposed in recent years, they only focus on
the exploration of the current indoor white spaces. However, due
to the dynamic nature of the spectrum and the time delay in
the process of exploration, users often cannot get accurate white
space information in time, resulting in issues, such as spectrum
utilization conflicts or inadequate white space utilization. To
solve the problem, in this paper, we first perform an indoor
TV spectrum measurement to study how the spectrum state
changes over time and the spatio-temporal-spectral correlation of
spectrum. Then, we propose a real-time aCcurate indoOR whiTe
spacE predictioN mechanism, called CORTEN. CORTEN can
predict the white space distribution for various time spans with
high accuracy. Furthermore, we build a prototype of CORTEN
and evaluate its performance based on the real-world measured
data. The evaluation results show that CORTEN can predict
accurately 38.7% more indoor white spaces with 51.3% less false
alarms compared with the baseline approach when predicting
the white spaces one hour ahead.

I. INTRODUCTION

In 2008, Federal Communications Commission (FCC) is-

sued a historic ruling that allowed unlicensed devices to use the

TV spectrum that is not locally occupied by licensed devices

(The unoccupied TV spectrum is often referred to as TV white

space or simply white space). After that, the TV white spaces

receive more and more attentions from Dynamic Spectrum

Access (DSA) developers. Although white spaces are open

for unlicensed users now, FCC also required that unlicensed

white space devices should not interfere with the licensed

devices (TV broadcasts). Therefore, it is essential for all user

devices (especially the unlicensed ones) to find out whether a

spectrum band is available before using it in communications.

FCC proposed a geo-location database approach [1], [2] to

protect the licensed TV transmissions, which required the

unlicensed users to query a geo-location database in order

to obtain the white space availability at different outdoor
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locations. However, studies have shown that in the most of

time people stay indoors, which leads to the 70% demand

for wireless spectrum being from indoor scenarios [3], [4].

However, due to the indoor complex environment such as walls

and other obstacles, directly applying the outdoor method to

the indoor environment would lead to a too conservative result.

In 2013, Ying et al. [5] studied the characteristics of

indoor white spaces, and proposed the first indoor white space

exploration system, named WISER. Then, different methods

were proposed to boost the performance of indoor white

space exploration [6], [7]. The existing indoor white space

exploration systems aim at constructing an indoor white space

availability map, which indicates the availability of the TV

spectrums at different indoor locations. Users could submit

their indoor locations, and then receive the corresponding list

of white spaces according to the current indoor white space

availability map. However, due to the dynamic nature of the

spectrum and the time delay in the process of exploration,

these methods can only return the current or even previous

spectrum exploration results to the users. Availability of the

spectrum may change, for example, some channels are vacant a

little time before, but now occupied or vice versa. The above

problem will make some white spaces undiscovered or the

unlicensed users interfere with the licensed users, which all is

not what we would like to see.

To solve the above problem, we propose a real-time

aCcurate indoOR whiTe spacE predictioN mechanism, called

CORTEN. CORTEN can predict the white space distribution in

the future period of time accurately. In CORTEN, we can use

only a limited number of RF sensors to get not only the current

white space availability map but also the accurate spectrum

distribution in the future period of time. To achieve accurate

prediction of the white space, the main contributions of this

paper are as follows:

• We perform indoor white space measurements in a build-

ing for a week. The statistical results further describe the

correlation between the different locations and channels.

In addition, we find that the correlation between the

signal strength of different time is more significant and

there is significant periodicity. This provides the basis for

the application of the autoregressive integrated moving

averages (ARIMA) [8] model to accurately predict the

white spaces in the future period of time.
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• We propose CORTEN, a real-time accurate indoor white

space prediction mechanism. To the best of our knowl-

edge, it is the first system to predict the indoor white

space distribution. By taking spatio-temporal-spectral cor-

relation and the periodicity into consideration, we propose

a novel white space prediction algorithm based on the

ARIMA model, k-medoids algorithm [9] and compressive

sensing technique.

• We buid a prototype of CORTEN, and evaluate its per-

formance with real data. When we define a time slot

being an hour, and use CORTEN to predict the white

space distribution of an hour ahead, in average, CORTEN

can get the 0.58% of the FA Rate and 22.47% of the

WS Loss Rate (The FA Rate and WS Loss Rate will

be defined in Section V) by choosing different number

of prediction points. In average, CORTEN can predict

accurately 38.7% more indoor white spaces with 51.3%
less false alarms compared with the baseline approach.

The remainder of the paper is organized as follows. We

introduce our indoor white space measurements in Section

II. Section III presents the system model of CORTEN. In

Section IV, we describe the detailed algorithms of CORTEN,

including ARIMA model and k-medoids. In Section V, we

present evaluation results. Related work and conclusions are

shown in Section VI and Section VII, respectively.

II. INDOOR WHITE SPACE AVAILABILITY

MEASUREMENT

In this part, we perform our indoor white space mea-

surements in the third floor of a building. The purpose of

the indoor white space measurements is to study how the

spectrum state changes over time and to verify the location-

channel dependence, meantime to explore the time dependence

of indoor white spaces. These features will be utilized in

designing the indoor white space prediction mechanism later.

In addition, the data obtained in this part will be used as the

data for the evaluation of CORTEN in Section V.

A. Measurement Setup

The measurement devices we used consist of 22 sets of

USRP N210 [10], omni-directional log periodic PCB antenna

(400-1000 MHz), laptops, which is shown in Figure 1. The

daughterboard of our USRP is SBX with 5-10 dBm noise

figure. We calibrate the device using a RF signal generator to

get the accurate signal strength. As suggested by FCC [11],

the gain of the antenna is also taken into consideration during

the calibration process.

A number of different methods were proposed for iden-

tifying the presence of signal transmissions, such as energy

detection, waveform-based sensing, and matched-filtering [12].

Here, we choose energy detection, since it is the most common

way with low computation and implementation complexities.

In our measurements, we judge whether a channel is vacant or

occupied by comparing the signal strength of the channel with

a threshold, which depends on the noise floor [13]. If the signal

strength of a TV channel is greater than the threshold, we

Figure 1. The measurement devices.

Figure 2. The experimental points.

label this channel as locally occupied, otherwise the channel

is labeled as vacant. We measure the digital TV channels

between 470 MHz - 566 MHZ and 606 MHz - 870 MHz

with 8 MHz channel bandwidth, and use the same threshold

-84.5 dBm/8 MHz as [5], [6] for digital TV signals. Due to

the hardware limitations, the vacant channels determined by

the above mentioned threshold may be not safe to use, but the

observations drawn from the measurement are general, and

our mechanism is not limited to any specific threshold. We

believe that if the sensitivity of the measurement hardware can

support a threshold of -114 dBm as suggested by FCC [11],

our mechanism can be safely used in practice.

Just like the prior works [5], [6], we implement the energy

detector to detect the existence of signal transmissions. The

energy detector is based on the fast Fourier transform (FFT)

with bin size 1024 and sample rate 4 MHz. The signal strength

of a channel is calculated by averaging the value in the

corresponding bins.

We choose two largest consecutive labs (10m×45m) in our

laboratory building as our experimental site. We measure the

spectral signal strength of 22 measurement points, which is

shown in Figure 2. In the course of the experiment, every

measurement points in our laboratory are deployed with a

USRP coupled with a laptop and an omni-directional log

periodic PCB antenna to continuously measure the signal

strength of the selected 45 digital TV channels for a week

(Dec. 29, 2015-Jan. 4, 2016). The measurement devices are

calibrated using a RF signal generator and synchronized using

“crontab” of Ubuntu. We synchronously measure the signal

strength of 45 TV channels every 5 minutes for a week. The

observations are as follows.
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Figure 3. The CDF of the number of changed channels.

B. The Changes of The White Spaces

Five minutes as a time slot, there is a two-dimensional

matrix data of 22 locations and 45 channels in each time

slot, and we have a total of 2016 set of data in a week.

We compare the signal strength of the data set in every two

adjacent time slots and find that the signal strength of many

channels fluctuates around the threshold, which means the

availability of many channels will change over time. If the

signal strength of a certain channel in a certain location is

smaller than the threshold in the previous time slot, and it is

greater than the threshold in the next time slot, we say that it

changes from the vacant channel to the occupied channel. And

if on the contrary, we say that it changes from the occupied

channel to the vacant channel. We count these two kinds of

changes in the 2015 groups adjacent data set and depict the

CDF (Cumulative Distribution Function) curves of the sum of

these two kinds of changes in Figure 3

As shown in the Figure 3, the sum of these two changes are

floating between 20 and 100 channels, and the average number

of changed channels is 52.6, which means more than 5% of the

total channels (22×45) changes in each pair of adjacent time

slots. If we do not predict the white spaces in the next time

slot, but only use the white spaces according to the current

exploration results, it will not only reduce the utilization rate of

the white spaces and even cause the use conflict with licensed

users. Therefore, in order to know which channel’s availability

will change, so as to make more reasonable use of white

spaces, it is essential to accurately predict the white spaces

of the next time slot.

C. The Spatio-Temporal-Spectral Correlation of Spectrum

In this part, we mainly study the spectrum correlation

between locations, frequency and time slots. The previous

work [5], [6] have already described the correlation between

the spectrum in different locations and frequency. We will

verify their conclusions in a more intuitive way, and present

the time correlation of the spectrum.

In order to obtain the spectrum correlation between different

locations based on the experimental data, we get a vector

for each measured location that contains the signal strengths

of all TV channels over a week interval. Then we calculate

the Pearson product-moment correlation coefficients [14] of

all pairs of locations, and draw Figure 4(a) based on the

results. Through Figure 4(a), we can see that the correlation

coefficient between each pair of locations is relatively large,

which shows that the spectrum between the 22 sites exists a

high degree correlation. In addition, we observe the spectrum

correlation in different frequency channels. We use the same

method with the location correlation, and get Figure 4(b).

Through Figure 4(b), we can see that some channels have

strong correlation, and there are no significant correlations

between some other channels.

Then we focus on the time correlation of the spectrum. The

previous work does not concern it very much, but it is the basis

of our accurate prediction. At first, we use the same method to

calculate the spectral correlation between every pair of time

slots, resulting in Figure 4(c). Here, for the sake of clarity,

we use one hour as a time slot. It shows the signal strength

correlation in time is stronger than the location correlation and

the channel correlation. Then we randomly select a channel at

one location and then display the changes of its signal strength

at a week interval, which is shown in Figure 4(d). Through

Figure 4(d), it is particularly important that we observe the

change in signal strength has a certain periodicity. It is easy

to see that the change in signal strength occurs seven cycles

roughly at 168 hours, about 24 hours per cycle. That means

very similar change occurs in signal strength at the same time

every day. The special characteristics of the white space in

time provides the basis of accurate prediction.

D. Experimental Summary

Through the one-week continuous indoor white space mea-

surements, we get the following information:

• According to the results of the measurements, the avail-

ability of many channels will change over time, which is

the necessity of our prediction.

• The spatio-temporal-spectral correlation between the

spectrum is very strong, and especially the periodicity

in time is particularly significant, which is the basis of

accurate white space prediction.

III. SYSTEM MODEL

CORTEN aims to accurately predict white spaces in the

future period of time, and the time period can be determined

in advance based on the time granularity of our exploration

data. As shown in Figure 5, CORTEN is mainly composed

of three parts: real time sensing module, real time prediction

module and central server. In this section, we will introduce

these three parts using our white space measurements of 22

locations as an example.

A. Real Time Sensing Module

The job of the real time sensing module is selecting parts

of these candidate locations, placing a sensor at each selected

location, performing a “partial sensing” (since not all locations

have sensors deployed), and sending the sensing data to the

central server.

For ease of presentation, we define Xt to denote the

location-channel matrix in time slot t, which is a 22×45
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(a) Spatial correlation (b) Spectral correlation (c) Temporal correlation (d) Time series of signal strength

Figure 4. Results of indoor white space measurements

matrix recording the signal strength, where Xt(i, j) is the signal

strength of channel j at location i in time slot t. If we deploy

a sensor at location i, we can get Xt(i, j)(1≤ j ≤45) at time t.

Then the real time sensing module will send the sensing data

to the central server in real time.

B. Real Time Prediction Module

The real time prediction module can get data matrices of the

signal strength in some continuous time slots from the central

server as training data and predict the white spaces in the next

time slot, then send back the prediction results to the central

server. The work of real time prediction module consists of

three steps:

• Slection of the prediction points: Because we can’t deploy

spectrum sensors in every point in practical application.

In order to accurately predict white spaces, we should

select parts of the points where are deployed spectrum

sensors as the prediction points.

• Prediction of the selected points: After selecting the

prediction points, we will predict every channel of the

selected points and get the corresponding data of the next

time slot based on the training data.

• Recovery of the prediction matrix: The prediction matrix

is not complete after the prediction of the selected points,

so we should use matrix recovery algorithm to recover the

matrix based on the dependence of the matrix data. Then

we will get the whole prediction matrix.

C. Central Server

First of all, the central server will process the data uploaded

from the real time sensing module and use the matrix recovery

algorithm to obtain the complete matrix data of the current

time slot, and then send the training data to the real time pre-

diction module. At last, the central server gets the prediction

matrix of white spaces in the next time slot from the real time

prediction module. If a user requests a white space, then the

central server returns a white space list to the user based on

the current and future data.

In FIWEX [6], the central server returns the white space list

to users after questioned, but the process only consider the

results of the current white space exploration. In CORTEN,

we get the white space data in next time slot, so we can use

a more efficient white space allocation algorithm to improve

the utilization of white spaces and reduce the rate of collision.

Figure 5. System architecture of CORTEN.

IV. PREDICTION MODEL AND ALGORITHM

In this section, we present our ARIMA model based indoor

white space prediction algorithm. The ARIMA model is a

prediction model mentioned by Box and Jenkins in the 1970s

and it is mainly used in the field of economics, such as stock

forecasting. Through continuous improvement, the ARIMA

model has been widely applied to different realms [15], [16].

Because the time series of the spectral signal strength has a

strong temporal correlation and a significant periodicity, we

use ARIMA model to predict white spaces. In order to predict

more accurately, we use the sliding window method to improve

the ARIMA model. And then based on the location correlation

of the spectrum, we propose a k-medoids method to select

prediction points.

A. ARIMA Model

We begin with the ARMA(p, q) model, which can be

expressed as:

xt =

p∑
i=1

αixt−i +

q∑
i=1

βiεt−i + εt (1)

where xt is the value of a time series at time t, parameter εt
represents the random noise at time t that satisfies N(0, σ2),

then αi and βi are the coefficients of the linear combination,

besides p and q represent the order.

ARMA(p, q) model can only deal with stationary time

series. The so-called stationary is the mean of the time series

of any section maintaining within a certain range. If the time

series is not stationary, a very efficient way to deal with it is
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to do the time series difference until it is stationary, which can

be represented as follows:

∇xt = xt − xt−1 (2)

Similarly, the d order difference is as follows:

∇dxt = ∇d−1xt −∇d−1xt−1 (3)

If the new time series ∇dxt generated after the difference

satisfies ARMA(p, q), then we say that the original time series

xt satisfies the ARIMA(p, d, q):

∇dxt =

p∑
i=1

αi∇
dxt−i +

q∑
i=1

βiεt−i + εt (4)

where d is the order of difference.

Before we use the ARIMA(p, d, q) model to predict, we

first need to know p, d, q and the weight vector α ∈ Rp and

β ∈ Rq . Parameter d is the difference order, and we can get its

value by determining how many times the original time series

do difference. After d-order differences, we get a stationary

time series.

For a set of stationary time series x1, x2, . . . , xt, the k-order

autocorrelation coefficient is

ρk =
E[(xi − x)(xi+k − x)]

σ2
(5)

where x and σ2 are the mean and the variance of the time

series. Then, we can calculate the autocorrelation coefficient

of each order, and get q in ARIMA(p, d, q) according to the

truncation of autocorrelation coefficient, which means when

the q+1 order autocorrelation coefficient tends to 0, we can

get the value of q [8].

We can solve the Yule-Walker equation [8] to get the k-

order partial autocorrelation coefficients of the time series,

and get p in ARIMA(p, d, q) according to the truncation

of partial autocorrelation coefficient, which is similar to the

method mentioned above. The Yule-Walker equation is⎡
⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρk−1

ρ1 1 ρ1 · · · ρk−2

...
...

...
. . .

...

ρk−1 ρk−2 ρk−3 · · · 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Φk1

Φk2

...

Φkk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ρ1
ρ2
...

ρk

⎤
⎥⎥⎥⎦ (6)

which can also be denoted by

PkΦk = ρk (7)

where Φkj represents the j-th coefficient of the k-th order

regression expression, and we can judge the value of p by

the truncation of Φkk.

In (4), vector α is the set of autoregressive coefficients, we

can also get its value through the Yule-Walker equation⎡
⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

...
...

...
. . .

...

ρp−1 ρp−2 ρp−3 · · · 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
α1

α2

...

αp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ρ1
ρ2
...

ρp

⎤
⎥⎥⎥⎦ (8)

Figure 6. The sliding window.

Vector α can be solved by the following formula

αp = P
−1

p ρp (9)

which means when p equals to k, then we have

αp = Φk (10)

Since the relationship between vector β and autocorrelation

coefficients is non-linear, vector β can not be solved by

the Yule-Walker equation, but iteration method can be used

to converge to maximum likelihood estimation, and get the

approximate optimal value of vector β. Due to the space

limitation, we omit the calculation process. Please refer to [8]

for more details.

Then we can use ARIMA(p, d, q) model to predict white

spaces. In the article, we directly use the integrated ARIMA

method in the R forecast package [17], we can improve the

accuracy of which by using the sliding window.

B. The Sliding Window in ARIMA Model

The ARIMA model is only suitable for short-term predic-

tion. For the ARIMA model, if the prediction step size is

shorter, the accuracy of prediction is much higher, and when

the prediction step size L = 1, the prediction result is the most

accurate and effective. For the white space prediction problem,

we just want to get the prediction results of the next time slot,

so we set the prediction step size L = 1. In order to improve the

accuracy of the prediction, we use a sliding window method

to do real time updating of the training data.

The so-called sliding window, that is with the time going,

the training data with fixed length in a window would continue

to be updated. The sliding window is shown in Figure 6. In

order to accurately and quickly model, we set a fixed length

to the sliding window. And the length of the sliding window

should be able to ensure the accuracy of prediction at the same

time as short as possible, so that it can guarantee both rapid

modeling and accurate prediction. And the sliding means we

need to update the training data in the window in real time.

In CORTEN, our sliding window will update the training data

with the real time sensing data. The training data at the end of

the sliding window is taken out of the window, and the latest

sensing data of the current time slot is filled in the forefront of

the sliding window. And then we need to do re-modeling and

predict the white space distribution in next time slot based on

new training data set, followed by the cycle to run CORTEN.

C. Selection of The Prediction Points

We need to select parts of all the measurement points as

prediction points. In Section II, we have introduced the strong
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correlation between the spectrum at different locations. So

when we select M locations in N locations to predict, the

remaining N-M locations can be recovered by the matrix

recovery algorithm. In order to make the recovery matrix data

to be most accurate, we should try to select those locations

where the dependency is as weak as possible so that we

can guarantee the prediction data containing as much useful

information as possible. In order to select the M locations to

predict, our work mainly consists of two parts:

• According to the correlation between different locations,

N locations are clustered into M groups.

• Select one of the most suitable location in each group as

a prediction point.

According to the features of the prediction points, we use k-

medoids algorithm to cluster and select the clustering centers

as the prediction points. As shown in Algorithm 1, in the

process of selecting prediction points, we select the data of

ts continuous time slots as the training data to calculate the

correlation of every pair of locations, and the ts here is equal

to the length of the sliding window we mentioned before. The

group number r can be determined in advance according to the

accuracy requirement, which is shown in Section V. In line 2-

5, we get the correlation coefficient between all pair locations

through the training data, and the PCorre in line 5 is the

method of calculating the Pearson product-moment correlation

coefficient. We calculate the sum of the absolute values of

the correlation coefficients of the training data set, which can

get rid of accidental factors. Calculating the absolute value is

because we only focus on their correlation, but do not care

it is positive or negative correlation. In line 6, we take the

negative of the correlation coefficient matrix, because it makes

the larger the value is, the weaker the correlation is, which

satisfies the k-medoids clustering criteria. In line 7-10, 100

iterations are performed to get the most optimal clustering

results. Finally, the selected prediction points are stored in

SLopt.

D. Prediction Matrix Recovery

After selecting prediction points and predicting the selected

points, the prediction matrix only contains the data of the

selected points and we need to use the matrix recovery

algorithm to get a complete prediction matrix. Compressive

sensing is a generic data reconstruction technique based on the

structure and redundancy of real world signals or datasets [18],

[19], and compressive sensing has been widely applied to

different realms [20], [21]. Here, we combine compressive

sensing with white space matrix recovery problem to perform

matrix recovery just like [22].

For the recovery of the white space matrix, due to the exis-

tence of some properties such as location-channel dependence

in signal strength, we use compressive sensing technique to

transform the white space matrix recovery problem into a

Algorithm 1: SelectPoint(X(1), X(2). . . X(ts), ts, r,vopt)

Input : 1) X(1), X(2) . . . X(ts): the signal strength

data of ts continuous time slots; 2) ts: the

length of training data; 3) r: the number of

prediction points; 4) vopt: initially a sufficient

large number.

Output: SLopt: the set of selected prediction points.

1 m ← size(X(1), 1), COR ← 0
(m×m);

2 for i = 1 to m do

3 for j = 1 to m do

4 for k = 1 to ts do

5 COR(i, j) ←COR(i, j)+|PCorre(X
(k)
i ,X

(k)
j )|;

6 COR ← -COR;

7 for i = 1 to 100 do

8 [SL, v] ← kmedoids(COR, r);

9 if v<vopt then

10 SLopt ← SL, vopt ← v;

11 return SLopt;

optimization problem:

Minimize||Bs ◦ (LR
T )−Ds||

2
F + λ1(||L||

2
F + ||R||2F )

+λ2||P (LRT )− P0||
2
F + λ3||(LR

T )C − C0||
2
F

(11)

where ◦ refer to the Hadamard product (X = Y ◦ Z means

X(i, j) = Y (i, j) × Z(i, j)), and Bs is the prediction points

and strong channel matrix, if it is a prediction point or a strong

channel in matrix Bs, the value is 1, otherwise the value is 0.

Matrix Ds contains the corresponding prediction value or the

signal strength of strong channel. P and P0 are the location

dependence constraint matrices, C and C0 represent the chan-

nel dependence constraint matrices. Lagrange multipliers λ1

λ2 and λ3 are used to balance the weight of each part. L

and R are the Singular Value Decomposition (SVD) of final

prediction matrix X̃

X̃ = LRT (12)

To solve (11) and get the optimal solution of L and R,

we use the alternating steepest descent algorithm [23], which

is commonly utilized to do the minimization in the low rank

matrix completion. Then we can get the final prediction matrix

X̃ . Due to the space limitation, we omit the derivation process.

Please refer to [22] for more details.

E. The Overall Algorithm of The Real Time Prediction Module

In this part, we will introduce the overall algorithm of the

real time prediction module in CORTEN. When the central

server sends the real time training data to the real time

prediction module, the new round of prediction will begin, as

shown in Algorithm 2. When the real time prediction module

gets training data, the work of selecting prediction points is

done at first in line 3. After selecting points, it is necessary to

model all the channels in all the selected points by ARIMA
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and to predict X̃(ts+1), which is shown in line 4-7. In line

6, we directly use the integrated ARIMA method in the R

forecast package [17]. As shown in algorithm line 8, we will

call the Alternating Steepest Descent (ASD) [22] method in

FIWEX to recover the prediction matrix.

When the algorithm is finished, we get complete prediction

matrix X̃(ts+1) at next time slot. The real time prediction

module uploads the prediction results to the central server,

so that the prediction module completes once work. When

next time begins, the training data will be updated and the

algorithm will be carried out again and do the cyclic process.

Algorithm 2: Predict(X(1), X(2) . . . X(ts), ts, r, vopt)

Input : 1) X(1), X(2) . . . X(ts): the signal strength

data of ts continuous time slots; 2) ts: the

length of training data; 3) r: the number of

prediction points; 4) vopt: initially a

sufficiently large number.

Output: X̃(ts+1): the prediction signal strength matrix.

1 [m, n] ← size(X(1));

2 X̃(ts+1)← 0
(m×n);

3 SLopt←SelectPoint(X(1), X(2) . . . X(ts), ts, r, vopt);

4 foreach P ∈ SLopt do

5 foreach C ∈ P do

6 x̃ts+1 ← ARIMA(x1, x2 . . . xts);

7 Put x̃ts+1 into the corresponding location of

X̃(ts+1);
8 X̃(ts+1) ← ASD(X̃(ts+1));

9 return X̃(ts+1);

V. PERFORMANCE EVALUATION

In this section, we perform experiments to evaluate the

performance of CORTEN. First, we evaluate the performance

of CORTEN at different lengths of time slots and differ-

ent number of prediction points. Then in order to evaluate

CORTEN’s performance, we define a baseline approach, and

compare the prediction results with CORTEN.

A. Methodology

The system performance evaluation is based on the real

data we measured in Section II. Although we only use the

data in one building to evaluate the performance of CORTEN,

but CORTEN is not for any particular indoor environment, so

that using the data measured in other buildings will get the

similar results. We choose FA Rate and WS Loss Rate as the

performance metrics. Their definitions are as follows:

• False Alarm Rate (FA Rate): the ratio between the

number of channels that a system mis-identifies as vacant

and the total number of vacant channels identified by the

system.

• White Space Loss Rate (WS Loss Rate): the ratio

between the number of channels that a system mis-

identifies as occupied and the total number of actually

vacant channels.

(a) Results of FA Rate (b) Results of WS Loss Rate

Figure 7. Prediction results at different lengths of time slot and different
number of prediction points

We have a group of experimental data every five minutes in

7 consecutive days, which is a total of 2016 groups experimen-

tal data. We evaluate the prediction performance of CORTEN

in different lengths of time slot, containing 5 minutes, 10

minutes, 30 minutes and an hour to illustrate CORTEN can

achieve accurate and efficient prediction results in different

lengths of time slot. Due to the exploration time and the delay

of the sensors, we can only set the finest granular time slot

to be 5 minutes. In practical applications, we can choose the

appropriate time slot according to the specific situation. After

experimenting with different length of the sliding window, we

choose the optimal length 50, which can not only guarantee

the prediction accuracy but also can quickly model. In the

process of selecting prediction points, we directly use the data

in the sliding window as training data to select the appropriate

prediction points according to the location correlation. In the

prediction matrix recovery, the method and parameter settings

follow the method in FIWEX. In addition, in order to reduce

the FA rate and avoid interference with licensed users, we set

the protection range PR = -0.7 dBm for the threshold value.

That means when we determine whether a channel is a white

space or not after obtaining the prediction matrix, we should

compare the prediction data with the sum of threshold and PR.

B. Performance at Different Lengths of Time Slot and Different

Number of Prediction Points

In this part, we will illustrate the performance of CORTEN

at different lengths of time slot and discuss how to choose the

number of prediction points. Our experimental data includes

22 measurement points, and we run CORTEN using from

1 to 22 prediction points at four different lengths of time

slot, containing 5 minutes, 10 minutes, 30 minutes and an

hour. When the time slot is an hour, we totally have 168

groups data in a week, so we also selected continuous 168

groups data at other three lengths of time slot. Then we use

the first 50 groups data as training data to run CORTEN ten

times respectively at different lengths of time slot and different

number of prediction points, and obtain the prediction results

of the remaining 118 groups data. Then we calculate the

average of the 118 sets of prediction results at every number

of of prediction points and every length of time slot, which

are plotted in Figure 7.

Through Figure 7, we can see that as for both the FA Rate

and the WS Loss Rate, when the time slot is shorter, the
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prediction results are more accurate. The reason is when the

time slot is shorter, the change of signal strength between

adjacent time slots is smaller and the prediction is more

accurate. The average FA Rate and WS Loss Rate at different

length of time slot are shown in Table I. The results of Table I

indicate CORTEN can obtain accurate prediction at different

lengths of time slot. In addition, when the number of prediction

points changes from 1 to 22, the results are to show a gradually

reduced trend. And it is clear from the figure that the more

prediction points are, the better the prediction results are. In

practical applications, we can choose the appropriate length

of time slot and the number of prediction points based on our

requirements for the accuracy and how many spectrum sensors

we have.

C. Performance Comparison with the Baseline Approach

To the best of our knowledge, CORTEN is the first mecha-

nism to do indoor white space prediction, so we do not have

a suitable contrast. In order to illustrate the prediction per-

formance of CORTEN, we need to define a suitable baseline

approach. We know FIWEX is the most accurate mechanism

to explore the current indoor white space, and the authors used

strong channels as the fixed channels to improve the accuracy

of exploration. The strong channel means the signal strength

of a channel is always much greater than the white space

threshold for a continuous period of time. So in FIWEX, the

only information we know about next time slot is the fixed

signal strength of the strong channels, thus we can only use

the strong channels to recover the prediction matrix. We then

use compressive sensing technique to recover the prediction

matrix based on the strong channels in our measurements as

our baseline approach. In this part, due to the space limitation,

we only illustrate the prediction results comparison between

CORTEN and the baseline approach when the time slot is

an hour and there are 5 and 10 prediction points. Similar

results will be obtained when other time slots and prediction

points are selected. In the 22 experimental points, we select

5 and 10 prediction points respectively and run CORTEN in

the same way with the previous part. Similarly, we use the

baseline approach to predict the same data groups to get the

prediction results at the same time. Then we compare the

prediction results of CORTEN with the baseline approach. In

our data set, the location and the number of strong channels

are fixed. Therefore, the prediction accuracy of the baseline

approach is fixed, and it has nothing to do with the number

of prediction points, so the values of FA Rate and WS Loss

Rate are the same at 5 and 10 prediction points. The prediction

results comparison is shown in Figure 8.

As shown in Figure 8(a) and Figure 8(b), when there are

5 prediction points, the average FA Rate and WS Loss Rate

of CORTEN are 0.82% and 25.33% respectively, while the

baseline approach performs an average FA Rate 1.19% and an

average WS Loss Rate 36.68%. And the average FA Rate and

WS Loss rate of CORTEN are 0.60% and 21.62% respectively

at 10 prediction points. The results show that CORTEN has

lower or better FA Rate and WS Loss Rate compared with

(a) FA Rate comparison (b) WS Loss Rate comparison

(c) CDF comparison of FA Rate (d) CDF comparison of WS Loss
Rate

Figure 8. Results of comparison with the baseline approach

the baseline approach when 5 and 10 prediction points are

selected. We also depict the CDF (Cumulative Distribution

Function) curves of the FA Rate and the WS Loss Rate after

calculating the FA Rate and the WS Loss Rate of each time

slot. Figure 8(c) shows the CDF curves of the FA Rate of

the baseline approach and CORTEN at 5 and 10 prediction

points. In the baseline approach, 61.86% time slots suffer a

FA Rate that is higher than 1%, while the number is only

23.73% and 10.17% respectively at 5 and 10 prediction points

in CORTEN. And Figure 8(d) shows the CDF curves of WS

Loss Rate of the baseline approach and CORTRN, from which

we can know that most time slots suffer a WS Loss Rate that

is high than 30% in the baseline approach, while there are few

time slots is up to 30% in CORTEN.

From Table I, we know the average 0.58% FA Rate and

22.47% WS Loss Rate at all different number of prediction

points from 1 to 22 when the time slot is an hour. Compared

with the FA Rate of 1.19% and the WS Loss Rate of 36.68%
in the baseline approach, CORTEN has an average absolute

FA Rate improvement of 0.61% and an average relative FA

Rate improvement of 51.3%, an average absolute WS Loss

Rate improvement of 14.21% and an average relative WS Loss

Rate improvement of 38.7%.

VI. RELATED WORK

Most of the existing works on indoor TV white spaces

focused on how to accurately explore the current indoor TV

white spaces. For example, in [5], the authors proposed the

first indoor white space identification system, called WISER.

WISER utilized the channel-location clustering based algo-

rithm to explore indoor white spaces, and obtained great

improvement compared to the baseline approaches. Then

in [6], the authors designed a cost-efficient indoor white space

exploration based on compressive sensing, named FIWEX,

to improve the accuracy of exploration. In [7], the authors
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Table I
The average FA Rate and WS Loss Rate at different length of time slots

5 minutes 10 minutes 30 minutes 60 minutes

average FA Rate (%) 0.32 0.41 0.54 0.58

average WS Loss Rate (%) 19.32 20.59 21.36 22.47

presented the first exploration system that was not based on

training data.

As the signal strength of spectrum changes over time, in

order to more accurately and effectively use the TV white

spaces, we need to accurately predict the spectrum. There

were some works on outdoor white space prediction before,

for example, in [24]–[26], 1st-order Markov Chain model was

used to predict the spectrum, but the prediction accuracy was

not satisfactory. In [27], the authors used the improvement

frequent pattern mining in data mining [28] method to predict

the outdoor white space and got a better prediction result. In

this paper, we designed a real-time accurate indoor white space

prediction mechanism named CORTEN based on the ARIMA

model in time series analysis, and proved that CORTEN had

a good prediction effect. To the best of our knowledge, this is

the first system to predict the indoor white spaces.

VII. CONCLUSION

In this paper, we performed indoor white space measure-

ments in a real building to study the characteristics of indoor

white spaces. The measurement results confirm that the white

space changes over time and has a significant periodicity,

which is the basis of our prediction. Motivated by these

observations, we proposed a real-time accurate indoor white

space prediction mechanism, called CORTEN. At first, we

selected the prediction points based on the correlation between

the spectral signal strength at different locations. And then

the spectral signal strength was predicted according to the

correlation and periodicity of the spectrum in time. Finally,

the prediction matrix was recovered based on the correlation of

the spectral signal strength at different locations and different

frequency. Through validation by the real experimental data,

CORTEN achieved good prediction effects.
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