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Abstract. We propose the first reuasble fuzzy extractor (rFE) scheme
from isogeny. Our rFE scheme supports linear fraction of errors. The
reusability is based on the weak pseudorandomness of CSI-FiSh (Beul-
lens et al., Asiacrypt 2019) in the standard model, and allows multiple
extractions from the fuzzy source, which admits many applications of
rFE with the same source.
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1 Introduction

In physical world, there are fuzzy sources which have high entropy and samplings
from a fuzzy source result in close samples. Common fuzzy sources include bio-
metric features like faces, fingerprints, palmprint, voice etc. [21,17,23]), physical
unclonable functions (PUFs) [18,28], and quantum bits [9,4]. Extracting uni-
formly random strings from fuzzy sources is known as fuzzy extractor (FE), a
primitive first proposed by Dodis et al. [15].

A traditional FE is captured by two algorithms: the generation algorithm
Gen and the reproduction algorithm Rep. One can sample a reading x ← X
from the fuzzy source X, and then use Gen(x) to extract a string R and output
public helper string P. Later, one can sample another reading x′ ← X, then
use the reproduction algorithm Rep(x′,P) to output an extracted string R′. As
long as x and x′ are close enough, then the reproduce algorithm will successfully
recover R′ = R. The security of FE requires that R is uniformly distributed even
when P is disclosed.
Reusable Fuzzy Extractor. FE is inherently limited to a single extraction, and
this prevents FE from wide applications. In [8], Boyen introduced the concept
of reusable fuzzy extractor (rFE). rFE relaxes the uniformity of the extracted
string to a pseudo-random one but allows multiple extractions from the same
fuzzy source, which is captured by reusability of rFE. Boyen [8] also proposed
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a reusable FE scheme in the random oracle (RO) model. Later, Canetti et al.
[10] and Alamélou et al. [2] proposed reusable FE schemes for the low-entropy
source, which also relied on the RO model. In [32], Wen et al. proposed the first
reusable FE scheme in the standard model from the DDH assumption.

To pursue post-quamtum security, Apon et al. [3] introduced the first reusable
FE scheme from the learning with errors (LWE) assumption. However, their
scheme only tolerates logarithmic fraction of errors. In 2018, Wen et al. [31]
overcame this limitation by presenting the first reusable FE scheme which is
capable of tolerating linear fraction of errors under the LWE assumption. Both
works of [3] and [31] assume that the manipulation between two readings of the
same source is adaptively controlled by a PPT adversary.
Isogeny-Based Cryptography. Another promising candidate for post-quantum
security is isogeny-based cryptography, which can be traced back to 1997 by Cou-
veignes. In 2006, Couveignes proposed authentication and key exchange schemes
from isogeny [14]. In the mean time, Rostovtsev and Stolbunov [26] indepen-
dently discovered these results. The Couveignes-Rostovtsev-Stolbunov scheme
relies on the action of ideal class groups on ordinary elliptic curves as its foun-
dation. However, its efficiency is far from practical, and it is vulnerable to a
subexponential-time attack [13]. To seek efficiency, Jao and De Feo [19] turned
to supersingular elliptic curves and proposed a Diffie-Hellman like key agreement
protocol, known as the Supersingular Isogeny Diffie Hellman (SIDH). However,
recent works [11,24] has shown that SIDH is no longer secure.

The well-accepted secure key-exchange protocol is the Commutative Super-
singular Isogeny Diffie-Hellman (CSIDH) protocol, due to Castryck et al. [12]. By
leveraging isogeny over supersingular elliptic curves instead of ordinary elliptic
curves, CSIDH becomes a practical protocol. Up to now, CSIDH is believed to
have post-quantum security since it avoids the leakage of some sensitive points.
Later, Beullens et al. [7] constructed CSI-FiSh by computing the structure of
the ideal class group for CSIDH-512.

In 2020, Alamati et al. [1] introduced the concept called cryptographic group
action, which enabled the generalization of the work of CSIDH and CSI-FiSh,
resulting in ranges of isogeny-based schemes [22,16,6]. However, up to now, there
does not exist isogeny-based rFE scheme. It naturally arises a question:

How to construct an efficient reusable fuzzy extractor from isogeny-based
assumptions?

1.1 Our Contributions

In this paper, we answer this question in the affirmative.

• We construct the first isogeny-based reusable fuzzy extractor in the standard
model. Our rFE supports linear fraction of errors.
• The reusability of our construction is tightly reduced to the weak pseudo-

randomness of CSI-FiSh [7].
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• Our construction is simple and efficient. Only one group action operation is
involved in both generation and reproduction algorithm.

In Sect. 4, we present our isogeny-based rFE scheme rFEIsogeny. We provide a
comparison between our rFEIsogeny and some known rFE schemes in Table 1.

rFE Schemes Linear Error Rate Assumptions Reusability Source Requirement
Boy04 [8] − weak H̃∞(Wi|∆Wi,j) = H∞(Wi)

ABCG16 [2] DDH strong H̃∞(Wi[j]|(Wi/Wi[j])) is high enough
CFPRS16 [10] strong DDH strong H̃∞(Wi[j1], . . . ,Wi[jk]|j1, . . . , jk) is high enough
ACEK17 [3] LWE strong W follows the error distribution of LWE
WLH18 [32] DDH strong (m, ρ)-correlated
WL18 [31] LWE strong ∆Wi,j is chosen by PPT adversary A

Our rFEIsogeny Isogeny strong ∆Wi,j is chosen by PPT adversary A

Table 1. Comparison with some known reusable fuzzy extractor schemes. Each source
reading is denoted by Wi for i ∈ [Q]. Let ∆Wi,j denote Wj −Wi. Let Wi[j] denotes
the j-th element of Wi. “Linear Error Rate” denotes whether the scheme tolerates
linear fraction of errors. “Source Requirement” denotes the requirements for the fuzzy
source. “−” means the scheme is an information theoretical one. “weak” means that it
is difficult for any PPT adversary to distinguish Ri from a uniform one solely based
on observing public helper strings {Pj}j∈[Q]. “strong” means that it is difficult for any
PPT adversary to distinguish Ri from a uniform one when given both {Pj}j∈[Q] and
{Rj}j ̸=i,j∈[Q].

2 Preliminaries

Notation. Let λ denote the security parameter throughout this paper, and
all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. We use normal and bold letters like x, x to denote elements and column
vectors respectively. For a set X , x ←$ X denotes the process of sampling x
uniformly from X . For a distribution X, x←X denotes the process of sampling
x according to X. PPT abbreviates probabilistic polynomial time. Denote by
negl some negligible function. For n ∈ N, define [n] := {1, 2, ..., n}.

For two distributions X and Y , the min-entropy of X is defined by H∞(X):=−
log (maxx Pr[X = x]), and the average min-entropy of X given Y is defined by
H̃∞(X|Y ):= − log (Ey←Y [maxx Pr[X = x|Y = y]]). The statistical distance be-
tween X and Y is defined by SD(X,Y ):= 1

2

∑
u |Pr[X = u]−Pr[Y = u]|. We de-

note X
s
≈ε Y if SD(X,Y ) ≤ ε. We denote X

c
≈ε Y if |Pr[D(X) = 1]−Pr[D(Y ) =

1]| ≤ ε for all PPT distinguishers D. When ε = negl(λ), we simply denote X
s
≈ Y

or X
c
≈ Y .

For a primitive XX and a security notion YY, by ExpYY
XX,A(λ)⇒ 1, we mean

that the security experiment outputs 1 after interacting with an adversary A,
and by AdvYY

XX,A(λ), we denote the advantage of A in the security experiment.
Finally, we define AdvYY

XX(λ) := maxPPTAAdvYY
XX,A(λ).
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2.1 Fuzzy Source and Secure Sketch

A metric space is a set M equipped with a distance function dis :M×M →
[0,∞). Especially, let dis(w) := dis(w,0). Now we present the definitions of fuzzy
source and secure sketch.

Definition 1 ((M,m)-Fuzzy Source). Let W be a random variable over M.
If H∞(W ) ≥ m, then W is called an (M,m)-fuzzy source.

Definition 2 (Secure Sketch [15]). An (M,S,m, m̃, t)-secure sketch for a
metric space M consists a pair of PPT algorithms SS = (SS.Gen,SS.Rec):

• s← SS.Gen(w) : Taking w ∈M as input, it outputs a sketch s ∈ S.
• ŵ← SS.Rec(w′, s) : Taking as input w′ ∈M and s ∈ S, it outputs ŵ.

Moreover, it satisfies the following two properties.

• Correctness. For any w,w′ ∈ M, if dis(w,w′) ≤ t, then we have w =
SS.Rec(w′,SS.Gen(w)).

• Privacy. For any distribution W over M, if H∞(W ) ≥ m, then we have
H̃∞(W |SS.Gen(W )) ≥ m̃.

Moreover, a secure sketch is homomorphic if for any w,w′ ∈ M, it holds that
SS.Gen(w +w′) = SS.Gen(w) + SS.Gen(w′).

2.2 Extractor

In this subsection, we recall the definition of average-case strong extractor, along
with its homomorphic property.

Definition 3 (Average-Case Strong Extractor [15]). An efficiently com-
putable function Ext : K × X → Y is an average-case (m̃, ε)-strong extractor,
if for any variable X over X and any variable Z such that H̃∞(X|Z) ≥ m̃, it
holds that SD((Ext(K,X),K, Z), (U,K,Z)) ≤ ε, where K and U are uniformly
distributed over K and Y, respectively.

Definition 4 (Homomorphic Average-Case Strong Extractor). An average-
case (m̃, ε)-strong extractor Ext : K × X → Y is homomorphic, if for any
x1,x2 ∈ X and all k ∈ K, we have Ext(k,x1 + x2) = Ext(k,x1) ⊕ Ext(k,x2),
where (X ,+) and (Y,⊕) are both groups.

2.3 Isogenies, Ideal Class Group Actions and CSI-FiSh

In this subsection, we provide a brief overview of the concepts and syntax of ideal
class group action. Meanwhile, we present some essential results from CSI-FiSh
[7]. Instead of recalling the background on elliptic curves over finite fields and
isogenies, we refer the readers to [29,27] for more details.
Set of isomorphism classes of elliptic curves E(O). Let Fp be a prime field
and E an elliptic curve defined over Fp. Let O = EndFp

(E) denote the set of
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the endomorphisms defined over Fp, which is only an order in the imaginary
quadratic field K = Q(

√
−p). Define E(O) as the set of Fp-isomorphism classes

of elliptic curves with Fp-rational endomorphism ring O.
Ideal class group Cl(O) and group action ⋆. The ideal class group of O,
denoted by Cl(O), is the quotient of the group of fractional invertable ideals in
O by the principal fractional invertable ideals.

For any [a] ∈ Cl(O) and E ∈ E(O), a group action ⋆ can be defined by
[a] ⋆ E = E/a such that there exists an isogeny ϕ : E → E′ with ker(ϕ) =
∩α∈[a]{P ∈ E(F̄p)|α(P ) = 0}. The image curve of [a]⋆E is well-defined up to Fp-
isomorphism. Moreover, the ideal class group Cl(O) acts freely and transitively
on E(O), which gives us a regular abelian group operation according to [30].
CSI-FiSh. Given p = 4× ℓ1×· · ·× ℓn−1 where ℓi are small odd primes. In this
case, p = 3 mod 8, then for any supersingular elliptic curve E defined over Fp,
the ring O = Z[

√
−p] if and only if E is Fp-isomorphic to EA : y2 = x3+Ax2+x

for some unique A ∈ Fp. Then we can use the coefficient A to identify the
isomorphism class of a curve EA : y2 = x3 +Ax2 + x. Now we simply denote

E(O) = E(Z[
√
−p]) = {EA |A ∈ Fp and EA : y2 = x3 +Ax2 + x is supersingular}.

(1)
In 2019, Beullens et al. [7] introduced CSI-FiSh, in which they proposed a

method for precomputing the structure of the group Cl(O) = Cl(Z[
√
−p]) for

CSIDH-512 [12]. This is achieved by representing it as a relation lattice of low
norm generators. In this way, CSI-FiSh admits unique representation of group
element and enables efficient uniform sampling from the group. Furthermore,
they computed the group order N = O(

√
p) and obtained the generator [g] of

Cl(Z[
√
−p]). In this way, any ideal [a] ∈ Cl(Z[

√
−p]) can be represented by [g]a

with a ∈ ZN , and the group action is given by

⋆ : Cl(Z[
√
−p])× E(Z[

√
−p])→ E(Z[

√
−p])

([g]a, E) 7→ [g]a ⋆ E.
(2)

Based on CSIDH, Beullens et al. exploited a practical algorithm to compute the
group action [g]a ⋆ E from [g], a, E.

According to [1] and [25], the group action ⋆ from CSI-FiSh is believed to
have weak pseudorandomness. That is, for Q = poly(λ),

{Ei, [g]
a ⋆ Ei}i∈[Q]

c
≈ {Ei, Fi}i∈[Q], (3)

where a←$ ZN , Ei, Fi ←$ E(Z[
√
−p]), and [g] is the generator of Cl(Z[

√
−p]).

3 Reusable Fuzzy Extractor

In this section, we recall the definition of reusable fuzzy extractor (rFE).

Definition 5 (Reusable Fuzzy Extractor (rFE)). An (M,m,R, t)-reusable
Fuzzy Extractor (rFE) for a metric space M consists of three PPT algorithms
rFE = (rFE.Setup, rFE.Gen, rFE.Rep):



6 Y. Zhou et al.

• crs← rFE.Setup : The setup algorithm outputs a common reference string crs.
• (P,R)← rFE.Gen(crs,w) : Taking as input crs and an element w ∈ M, it

outputs a public helper string P and an extracted string R ∈ R.
• R/ ⊥← rFE.Rep(crs,w′,P) : Taking as input crs, an element w′ ∈M and the

public helper string P, it outputs an extracted string R or a rejection symbol
⊥.

Moreover, it satisfies the following properties.

• Correctness. For any w,w′ ∈ M, if dis(w,w′) ≤ t, then for all crs ←
rFE.Setup, (P,R) ← rFE.Gen(crs, w) and R′ ← rFE.Rep(crs,w′,P), we have
R′ = R.

• Reusability. For any distribution W over M such that H∞(W ) ≥ m and
any PPT adversary A, it holds that

Advreu
rFE,W,A(λ) := |Pr[Exp

reu
rFE,W,A(λ)⇒ 1]− 1/2| ≤ negl(λ),

where ExpreurFE,W,A(λ) describes the reusability experiment played between A
and a challenger C is shown in Fig. 1.

ExpreurFE,W,A(λ):

b ←$ {0, 1}, crs← rFE.Setup.
w←W .
b′ ← AOb

Gen(δi)(crs).
Return 1 iff b′ = b.

Ob
Gen(δi ∈M):

If dis(δi) > t, return ⊥.
(Pi,R

(1)
i )← rFE.Gen(crs,w + δi).

R
(0)
i ←$ R.

Return (Pi,R
(b)
i ).

Fig. 1. The reusability experiment ExpreurFE,W,A(λ).

In the above formalization of reusability, we assume that the adversary con-
trols the differences δ between any two different readings of the source W , fol-
lowing Wen et al. [31].

4 Construction of Reusable Fuzzy Extractor from
CSI-FiSh

In this section, we present our construction of isogeny-based reusable fuzzy ex-
tractor rFEIsogeny, which uses the following building blocks.

– Let SS = (SS.Gen,SS.Rec) be a homomorphic (M,S,m, m̃, t)-secure sketch.
– Let Ext : {0, 1}ℓ×M→ ZN be a homomorphic average-case (m̃, ε = negl(λ))-

strong extractor.
– The group action ⋆ defined in CSI-FiSh (cf. Eq. (2) in Subsect. 2.3), that is

⋆ : Cl(Z[
√
−p])× E(Z[

√
−p])→ E(Z[

√
−p])

([g]a, E) 7→ [g]a ⋆ E,
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where the group Cl(Z[
√
−p]) is cyclic of order N with generator [g], and the

set E(Z[
√
−p]) is defined in Eq. (1).

The resulting isogeny-based rFE scheme rFEIsogeny is shown in Fig. 2.

rFE.Setup:

kext ←$ {0, 1}ℓ.
Return crs := (p, [g], N, kext).

rFE.Gen(crs,w):

Parse crs = (p, [g], N, kext).
s← SS.Gen(w).
k ← Ext(kext,w).
E ←$ E(Z[

√
−p]).

R := [g]k ⋆ E.
Return (P := (s, E),R).

rFE.Rep(crs,w′,P):

Parse crs = (p, [g], N, kext).
Parse P = (s, E).
ŵ′ ← SS.Rec(w′, s).
If dis(ŵ′,w′) > t: return ⊥.
k ← Ext(kext, ŵ

′).
R← [g]k ⋆ E.
Return R.

Fig. 2. The isogeny-based reusable fuzzy extractor rFEIsogeny.

Theorem 1. Let W be an (M,m)-fuzzy source. Then the scheme rFEIsogeny pro-
posed in Fig. 2 is an (M,m,R, t)-reusable fuzzy extractor, where R := E(Z[

√
−p]).

Proof. We prove the reusability of rFEIsogeny by a sequence of games. Denoted
by Pr[Gj ⇒ 1] the probability that A wins (i.e., b = b′) in Gj .
Game G0 : This is exactly the reusability experiment ExpreurFE,W,A(λ) (cf. Defini-
tion 5). Then we have Advreu

rFE,W,A(λ) = |Pr[G0 ⇒ 1]− 1/2|.
Game G1 : G1 is the same as G0, except that when answering A’s oracle
query Ob

Gen(δi), Ob
Gen(δi) will generate si := SS.Gen(w) + SS.Gen(δi) and ki :=

Ext(kext,w) + Ext(kext, δi) instead of generating si ← SS.Gen(w + δi) and ki ←
Ext(kext,w + δi) directly.

According to the homomorphic properties of SS and Ext, these changes are
only conceptional. Thus, Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].
Game G2 : G2 is the same as G1, except that k ← Ext(kext,w) in G1 is changed
to k ←$ ZN during step 2.

Note that when computing si := s + SS.Gen(δi) and ki := k + ∆ki, only
s ← SS.Gen(w) and k ← Ext(kext,w) may leak information of w. Due to the
fact that H∞(W ) ≥ m and the privacy of SS, we have H̃∞(W | s) ≥ m̃. More-
over, Ext is an average-case (m̃, ε = negl(λ))-strong extractor, it holds that
SD((k, kext, s), (u, kext, s)) ≤ ε, where k ← Ext(kext,w) and u←$ ZN . Thus,
|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ ε = negl(λ).
Game G3 : G3 is the same as G2, except that when answering A’s oracle query,
R
(1)
i ← [g]ki ⋆ Ei is replaced with R

(1)
i ← [g]∆ki ⋆ ([g]k ⋆ Ei).

Since Cl(Z[
√
−p]) is a cyclic group, in G2, R

(1)
i can be rewritten as [g]ki ⋆Ei =

[g]k+∆ki ⋆ Ei = [g]∆ki ⋆ ([g]k ⋆ Ei). These changes are just conceptional. Thus,
Pr[G2 ⇒ 1] = Pr[G3 ⇒ 1].
Game G4 : G4 is the same as G3, except that when generating R

(1)
i , C samples

R
(1)
i ←$ E(Z[

√
−p]), instead of invoking R

(1)
i ← [g]∆ki ⋆ ([g]k ⋆ Ei).

According to the weak pseudorandomness of CSI-FiSh (cf. Eq. (3)), given ele-
ments {Ei ←$ E(Z[

√
−p])}i∈[Q], the distribution of {R(1)

i ←$ E(Z[
√
−p])}i∈[Q] is
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computationally indistinguishable to the distribution of {R(1)
i ← [g]∆ki ⋆ ([g]k ⋆

Ei), where k ←$ ZN . If A can distinguish G3 and G4 with a non-negligible prob-
ability, then we can construct a PPT adversary B to break the weak pseudoran-
domness of CSI-FiSh. As a result, |Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ negl(λ).

Finally, both R
(0)
i and R

(1)
i are sampled uniformly at random from E(Z[

√
−p])

in G4. Thus, the challenge bit b is completely hidden to A, and Pr[G4 ⇒ 1] = 1
2 .

Taking all things together, we obtain the result that Advreu
rFE,W,A(λ) :=

|Pr[G0 ⇒ 1]− 1/2| ≤ negl(λ). Consequently, Theorem 1 follows. ⊓⊔

5 Efficiency Analysis

Firstly, we show how to instantiate our isgogeny-based rFE scheme rFEIsogeny.

– For the homomorphic secure sketch, we utilize a syndrome-based secure
sketch [15].

– For the average-case strong extractor, we employ the Toeplitz matrix, which
is a simple and straightforward tool for extracting uniform strings. Previous
works [32,20] also make use of Toplitz matrix as their extractors.

– We implement the CSI-FiSh group action with the code package on GitHub
[5].

Time of SS.Gen (ms) Time of SS.Rec (ms) Time of Ext (ms) Time of Sampling E (ms) Time of Group Action ⋆ (ms) Total Time (ms)
rFE.Gen-256 0.001 − 0.003 147.054 92.587 239.679
rFE.Rep-256 − 0.002 0.003 − 90.243 90.256
rFE.Gen-1024 0.001 − 0.019 153.868 335.611 489.527
rFE.Rep-1024 − 0.003 0.024 − 351.111 351.160

Table 2. Efficiency of our rFE scheme. “rFE.Gen-256 (resp., rFE.Rep-256)” denotes the
rFE’s generation (resp., reproduction) algorithm processing 256-bit readings of fuzzy
source. “rFE.Gen-1024 (resp., rFE.Rep-1024)” denotes the generation (resp., reproduc-
tion) algorithm processing 1024-bit readings of fuzzy source. “Time of Algorithms” de-
notes the average running time of Algorithms, where Algorithms ∈ {SS.Gen, SS.Rec, Ext,
sampling E, group action ⋆}. “Total time” denotes the average running time of a whole
rFE’s generation or reproduction processing.

Next, we present the efficiency of our scheme with simulated experiments.
We consider the fuzzy sources with two cases: one case is 256 bit readings from
fuzzy sources, and the other is 1024 bit readings. In our experiments, we test the
average running time of each building block and the total processing on platform
of Apple M3 Pro. The results are shown in Table 2.

Notice that both our SS and Ext are implemented using information-theoretical
cryptographic primitives, resulting in high efficiency. Therefore, the main factors
affecting the performance of our scheme lie in the computations involving ellip-
tic curves and group actions. Nevertheless, the total time for a single generation
or reproduction process is still low, thanks to the work of [7], which saves us
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significant overhead in computing the relation lattice and the reduced basis. Ad-
ditionally, the random sampling of elliptic curve E in the generation algorithm
also consumes considerable time, reflected in more running time of rFE.Gen than
rFE.Rep.

6 Conclusion

In this work, we propose the first isogeny-based reusable fuzzy extractor from
CSI-FiSh in the standard model. The proposed rFE scheme is simple, since only
one group action is involved in either the rFE’s generation algorithm or the
reproduction algorithm. Besides, it tolerates linear fraction of errors. Our simu-
lation experiments show that our rFE from CSI-FiSh is practical with running
time hundreds of milliseconds. Our work provides the first practical solution to
rFE from isogeny.
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