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Application Driven Graph Partitioning

Wenfei Fan · Ruiqi Xu · Qiang Yin · Wenyuan Yu · Jingren Zhou

Abstract Graph partitioning is crucial to parallel com-

putations on large graphs. The choice of partitioning

strategies has strong impact on the performance of graph

algorithms. For an algorithm of our interest, what parti-

tioning strategy fits it the best and improves its parallel

execution? Is it possible to provide a uniform partition

to a batch of algorithms that run on the same graph

simultaneously, and speed up each and every of them?

This paper aims to answer these questions. We pro-

pose an application-driven hybrid partitioning strategy

that, given a graph algorithm A, learns a cost model

for A as polynomial regression. We develop partitioners

that, given the learned cost model, refine an edge-cut

or vertex-cut partition to a hybrid partition and reduce

the parallel cost of A. Moreover, we extend the cost-

driven strategy to support multiple algorithms at the

same time and reduce the parallel cost of each of them.

Using real-life and synthetic graphs, we experimentally

verify that our partitioning strategy improves the per-

formance of a variety of graph algorithms, up to 22.5×.

Keywords graph partition; machine learning

1 Introduction

To handle real-life graphs, graph partitioning is often a

must. It is to cut a large graph G into smaller fragments
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Fig. 1: CN and TC

and distribute the fragments to a cluster of processors

(a.k.a. workers) so that the workers have even compu-

tation workload and their communication is minimized.

A number of partitioning algorithms (a.k.a. parti-

tioners) are already developed. These algorithms are

often either edge-cut [12,32,29], which evenly partitions
vertices and cuts edges, or vertex-cut [24,33,53], which

evenly partitions edges by replicating vertices. There

has also been recent work on hybrid partitioners, which

cut both edges and vertices [16,19,54,35].

These partitioners typically follow two quality cri-

teria, balance and replication factors. To balance work-

load and reduce synchronization overhead, a partitioner

often seeks to cut a graph into fragments of “even”

sizes, and reduce replicated edges and vertices. In the

real world, however, such criteria do not always cap-

ture the bottleneck factors that affect the performance

of parallel graph algorithms, since the computation and

communication patterns of algorithms vary.

Example 1 Consider the following real-life examples.

(1) Common neighbor. Consider running algorithm CN
(Common Neighbor) [36] on a directed graph G1 shown

in Fig. 1(a). CN computes the number of common neigh-

bors for each pair of vertices. It is widely used in link
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prediction, product recommendation and fraud detec-

tion [36,18]. To simplify the discussion, we consider out-

going common neighbors, where a vertex u is a outgoing

common neighbor of v1 and v2 if there exist edges from

v1 and v2 to u. Suppose that G1 is partitioned into frag-

ments F1 and F2 as shown in Fig. 1(b). The partition is

well balanced w.r.t. both vertices and edges, since each

fragment has 5 inner vertices (solid discs) and 9 edges.

(a) However, the workload of CN on the partition of

Fig. 1(b) is skewed. Indeed, CN counts common neigh-

bors by aggregating the contribution of its incoming

neighbors to the common neighbor count. More specifi-

cally, for each vertex v, it collects its incoming neighbors

and increases the count of each pair of such neighbors.

Thus the computation cost on a fragment Fi is deter-

mined by
∑
v∈Fi

1
2d

+(v)(d+(v)−1), where d+(v) is node

v’s in-degree. As a result, the workload on F1 and F2

is 10 and 2, respectively. That is, the maximum load of

CN is 5X of the minimum one, even when the partition

of Fig. 1(b) is balanced w.r.t. both vertices and edges.

(b) Figure 1(c) depicts another partition of graph G1.

The vertices and edges are not as balanced as that of

Fig. 1(b) since F1 has 3 vertices and 6 edges, while F2

has 7 vertices and 11 edges. This said, the workloads of

CN on F1 and F2 are both 6, which are well balanced.

Taken together with Fig. 1 (b), this shows that static

metrics such as vertex and edge balance do not ensure

workload balance for applications such as CN.

(2) Triangle counting. Consider counting all triangles

(TC) in the undirected graph G2 of Fig. 1(d). TC has

been used in clustering [50], cycle detection [27] and

transitivity [40]. Graph G2 is vertex cut evenly into F1

and F2 by splitting v2 and v9, as depicted in Fig. 1(e).

(a) Observe that communication is required when not

all neighbors of a vertex are stored locally, i.e., split

vertices v2 and v9. Let N = {v1, v3, v5} be the set of

neighbors of v2; to count triangles involving v2, all pairs

of vertices in N ×N must be checked. It has to inspect

the remote edge (v2, v3); similarly for vertex v9.

(b) Replication helps us reduce the communication cost.

Consider the partition of G2 in Fig. 1(f). As opposed to

vertex-cut in Fig. 1(e), it replicates a vertex v3 and an

edge (v2, v3) at F1. When running TC on it, to count

triangles of v2, no communication is needed since all

verification can be done locally. To reduce communi-

cation when counting triangles involving v9, one can

further replicate edge (v8, v9) and vertex v8 at F2. ut

It is more intriguing when mixed workloads are con-

sidered. In practice, multiple applications (graph algo-

rithms) often need to run on the same graph at the same

time. For example, one needs to run algorithms PageR-

ank (PR) [13], CN and TC together to find the most

influential vertices in G, discover community structures

and predict missing links inG. However, a cost-balanced

partition for one algorithm might become skewed for

another, as illustrated by the example below.

Example 2 Consider running PageRank (PR) and CN
on the same graph partition at the same time.

(a) As remarked in Example 1, the computation cost on

Fi for CN is determined by
∑
v∈Fi

1
2d

+(v)(d+(v) − 1),

while the cost for PR is
∑
v∈Fi d

+(v). Thus the work-

load of the partition in Fig. 1(a) is skewed for CN but

is balanced for PR, while the one in Fig. 1(b) is exactly

the contrary, i.e., balanced for CN but skewed for PR.

(b) A brute-force solution is to store both partitions,

i.e., the partition in Fig. 1(a) to run PR and the one

in Fig. 1(b) to run CN. However, to support k differ-

ent algorithms on a graph G, we need to compute and

store k partitions of the same graph G. This not only

increases the time and space cost, but also introduces

the coherence problem when G is updated. 2

These examples give rise to several questions. For an

algorithm A of our interest, what parameters should

we consider to partition graphs for A? After all, the

primary goal is to reduce parallel cost of A no matter

whether the partition is edge-cut, vertex-cut or hybrid,

regardless of its balance ratio and replication factor.

Can we learn partition parameters for A? If so, how can

we partition graphs based on the learned parameters?
Moreover, is it possible to provide a uniform partition

that supports a batch of algorithms on the same graph

and reduces the cost of each algorithm in the batch?

Contributions & organization. This paper aims to

answer these questions. We propose an application-driven

graph partitioning strategy both for a single algorithm

and for a mixed workload of algorithms.

(1) Application-driven partitioning (Section 3). We pro-

pose a hybrid partitioning strategy to find partitions

tailored for a given graph algorithm A. We introduce

a cost model, consisting of two functions hA and gA
to characterize the computational and communication

patterns of algorithm A, respectively. We formalize the

application-driven partition problem (ADP), which aims

to find a partition that reduces the cost of A based on

its cost model. We show that ADP is NP-complete.

(2) Cost model learning (Section 4). We show how to

learn the cost model for a given algorithm A. We ap-
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proximate the cost model as polynomial regression fol-

lowing [51], which has proven effective in the real life [26].

We train the model with the stochastic gradient descent

algorithm. The learned cost model can be applied to

different graphs on which algorithm A runs.

(3) Application-driven partitioners (Section 5). We de-

velop parallel partitioners ParE2H and ParV2H which,

given algorithm A and a graph G, develop a hybrid

partition of G for A guided by the learned cost model

of A. We show that ParE2H (resp. ParV2H) refines an

edge-cut (resp. vertex-cut) to a hybrid partition that

accommodates the cost patterns of A.

(4) Composite cost-driven partitioners (Section 6). To

handle mixed workloads, we extend our parallel hybrid

partitioners to composite ones ParME2H and ParMV2H.

Given a batch of k algorithms A1, . . . ,Ak and a graph

G, they generate a composite partition of G that uni-

formly represents k hybrid partitions, such that each

partition is driven by the cost model of one of the k al-

gorithms and speeds up its parallel execution. It should

be remarked that ParE2H (resp. ParV2H) is a special

case of ParME2H (resp. ParMV2H) when k = 1.

(5) Experimental study (Section 7). Using real-life and

synthetic graphs, we empirically verify the effectiveness,

scalability and efficiency of our application-driven par-

titioners. We find the following. (a) The partitioners

are effective. Over real-life graphs, ParE2H and ParV2H
improve the performance of CN, TC, PR, WCC (con-

nected components [9]) and SSSP (single source short-

est path [21]) by 7.5, 4.7, 2.6, 2.2, and 1.3 times on aver-

age, respectively, up to 22.5 times. The improvement by

the composite ParME2H and ParMV2H is comparable,

incurring at most 8.2% more time of these algorithms

despite their compact representations. (b) They are ef-

ficient, taking 11.5% and 11.1% of the total partitioning

time on average to refine edge-cut and vertex-cut par-

titions, respectively. (c) They scale well with graphs,

taking 59.7s and 32.5s, respectively, on graphs of 500M

vertices and 6B edges, with 96 workers. (d) Composite

ParME2H (resp. ParMV2H) saves space up to 55% (resp.

67%) for CN, TC, WCC, PR and SSSP and speeds up

partitioning by at least 2.0 (resp. 1.2) times. (e) At a

small training cost, the learned cost models are accu-

rate, with MSRE (mean squared relative error) ≤ 0.11.

Related work. This work extends its conference ver-

sion [20] as follows. (1) We give a proof for the NP-

completeness of ADP problem (Theorem 1). (2) We

present algorithm V2H and its implementation details

(Section 5.2), which are not included in [20]. (3) We in-

troduce a systematic solution to partitioning a graph for

a batch of algorithms, by extending ParE2H and ParV2H
into composite ParME2H and ParMV2H, respectively

(Section 6). (4) We implement our parallel composite

partitioners ParME2H and ParMV2H, and conduct new

experiments to verify their effectiveness, efficiency and

scalability (Exp-2, Exp-4 and Exp-5, Section 7).

The other related work is categorized as follows.

Various algorithms have been developed for edge-

cut and vertex-cut partitions (see [14,10] for surveys).

Edge-cut (resp. vertex-cut) aims to partition vertices

(resp. edges) into disjoint subsets of even sizes and re-

duce replication. Exact edge-cut algorithms of [7,34]

compute balanced partitions and cut minimum edges.

METIS [30,31] and its parallel version ParMETIS [29]

adopt a multi-level heuristic scheme and are widely

used in practice. Other popular heuristics include par-

allel partitioners such as XtraPuLP [46] and stream

partitioners FENNEL [47]. Vertex-cut partitioners in-

clude spectral algorithm of [44] and heuristics Grid [28],

SHEEP [38], NE [53] and HDRF [43].

Edge-cut promotes locality: for each vertex v in a

graph G, it keeps all edges emanating from v in the

same fragment; however, it often leads to imbalanced

partitions, especially when G is skewed, i.e., when a

small portion of G connects to a large fraction of G.

In contrast, vertex-cut makes it easier to balance parti-

tions, but may have a lower level of locality and increase

communication cost for low-degree vertices.

To rectify these limitations, there has been work

on hybrid partitioners. PowerLyra [16] and IOGP [19]

combine edge-cut and vertex-cut by cutting only high-

degree vertices, controlled by a user-defined threshold.

TopoX [35] not only splits high-degree vertices, but also

merges neighboring low-degree vertices into super nodes

to prevent splitting such vertices. Gemini [54] and MD-

BGP [8] balance hybrid workload by combining vertex

and edge loads based on a balancing metric.

There have also been efforts to speed up distributed

graph computations by replicating various parts of a

graph across partitions [25,52,39], such that read oper-

ations can be done locally without communication.

This work differs from the prior methods as follows.

(1) We propose an application-driven partitioning strat-

egy that given an algorithm A, learns a cost model such

that we can tailor graph partitions to speed up parallel

execution of A (Sections 3, 4 and 5).

(2) As opposed to prior hybrid partitioners, our parti-

tioners are guided by a cost model of a given algorithm

A, and generate partitions tailored for the best perfor-

mance of A (Section 5). We show that such partitions
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can be readily computed by extending existing edge-

cut or vertex-cut partitioners, i.e., there exist no need

to develop another partitioner starting from scratch.

In addition, the partitioners strike a balance between

replication and computation speedup.

(3) We develop the first ML models that train cost mod-

els for given graph algorithms (Section 4), as opposed

to prior partitioners that adopt one-size-fits-all static

metrics [7,34,46], follow intuitions [35,54] or manually

pick partitioning parameters [16,19,8]. In contrast to

prior partitioners, the learned cost model is an required

input for our application-driven partitioners. With the

cost model of a given algorithm A, our partitioners aim

to produce partitions that fit the cost patterns of A.

(4) We propose a systematic solution to partitioning a

graph for mixed workloads on the same graph at the

same time (Section 6). We introduce a compact repre-

sentation of multiple partitions, and extend our cost-

driven partitioners to support a batch of algorithms.

The composition partitioners reduce not only the time

and space costs of the partitioning process, but also the

execution cost of each graph algorithm in the batch.

2 Preliminaries

We start with a review of basic notations. We consider

(un)directed graphs G = (V,E), where V is a finite set

of vertices, and E ⊆ V × V is its set of edges.

Partitions. Given a natural number n, a n-cut hybrid

partition HP(n) = (F1, . . . , Fn) of a graph G, or simply

a partition of G, divides G into n small fragments F1,

. . . , Fn such that (a) Fi = (Vi, Ei), (b) V =
⋃n
i=1 Vi,

and (c) E =
⋃n
i=1Ei. Denote by Ev (resp. Evi ) the set

of edges incident to vertex v in G (resp. Fi).

We also use the following notations.

(1) A vertex v is v-cut in HP(n) if the set of edges

incident to v is not “complete” at any fragment Fi,

i.e., Ev 6= Evi for all i ∈ [1, n]. We refer to each copy of

such v in the partition HP(n) as a v-cut node of v.

(2) A vertex v is e-cut if there exists a fragment Fi
such that all edges incident to v are included in Fi,

i.e., Evi = Ev. When there exist multiple copies of v in

HP(n), we refer to the copy in Fi as an e-cut node and

the others as dummy nodes of v.

(3) Denote by Fi.O = {v ∈ Vi | v ∈ Vj ∧ i 6= j} the

set of border nodes of Fi. Intuitively, a border node is

replicated among fragments. Let F .O =
⋃n
i=1 Fi.O.

We associate a master node mapping with HP(n)

for vertices in F .O. More specifically, for each vertex

v ∈ F .O, the mapping treats one copy of v as its master

and the other copies as its mirrors.

Example 3 Consider the hybrid partition (F1, F2) de-

picted in Fig. 1(f) of graph G2 of Fig. 1(d).

(1) Vertex v9 is v-cut since edge (v9, v6) and (v9, v10) are

missing from fragment F1, and edge (v9, v8) is missing

from F2. The copies of v9 in F1 and F2 are v-cut nodes.

(2) Vertex v2 is e-cut, since all the edges incident to v2
are included in fragment F1. The copy of v2 in F1 is

an e-cut node, while the copy in F2 is a dummy node.

Similarly v3 is also e-cut. Vertices v1, v4, v5, v6, v7, v8,

v10 are also e-cut since they are not replicated and the

edges incident to them are all kept locally.

(3) Observe that F1.O = F2.O = {v2, v3, v9}. Thus

F .O = {v2, v3, v9}. If a master node mapping desig-

nates v2 and v3 of F1 and v9 of F2 as masters, then the

copies v2 and v3 of F2 and v9 of F1 are mirrors. 2

Special cases. Edge-cut partitions [7,32] and vertex-

cut partitions [24] are special cases of hybrid partitions.

(1) A hybrid partition HP(n) is also edge-cut if (i) all

vertices are e-cut; and (ii) the e-cut node sets of the

fragments are pairwise disjoint.

(2) A hybrid partition HP(n) is also vertex-cut if the

edge sets are disjoint, i.e., Ei ∩ Ej = ∅ for i 6= j, while

v-cut nodes are replicated in multiple fragments.

Example 4 Consider the partitions depicted in Fig. 1.

(1) The partition (F1, F2) depicted in Fig. 1(b) is an

edge-cut partition of graph G1 given in Fig. 1(a), since

(i) all vertices of G1 are e-cut; and (ii) the e-cut node

sets of F1 and F2 are disjoint, i.e., {s1, s2, t1, t2, t3} ∩
{s3, s4, s5, t4, t5} = ∅. Note that the e-cut (resp. dummy)

nodes are depicted as black (resp. white). Another edge-

cut partition of G1 is shown in Fig. 1(c).

(2) The partition (F1, F2) of Fig. 1(e) is a vertex-cut

partition of G2 given in Fig. 1(d), since the edge sets of

F1 and F2 are disjoint. Vertices v2 and v9 are replicated.

(3) The partition (F1, F2) of Fig. 1(f) is neither edge-

cut (since v9 is v-cut) nor vertex-cut (since edge (v2, v3)

is replicated). It is a hybrid partition. 2

Quality. The partition quality of hybrid partitions is

usually characterized by two factors defined as follows.

Replication ratio. Denote by fv =
∑n
i=1 |Vi|/|V | the

vertex replication ratio, and by fe =
∑n
i=1 |Ei|/|E| the

edge replication ratio. Conventional vertex-cut parti-

tioning aims to minimize fv, and edge-cut partitioning
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Table 1: Notations

G, V , E a graph, its vertex set and edge set

Fi (resp. F ji ) the i-the fragment of G (for Aj)
Ci, F̂

j
i the core and residual part of F ji for Aj

Vi (resp. Ei) the vertex set (resp. edge set) of Fi
Ev (resp. Evi ) edges incident to v in G (resp. Fi)
Fi.O (resp. F.O) border nodes in Fi (resp. HP(n))

d+L , d−L , d+G, d−G, D various vertex degree metrics (Section 3.1)
hA, gA cost functions of A (Section 3.1)

ChA(Fi) computational cost of Fi
CgA(Fi) communication cost of Fi
CA(Fi) the cost of A on Fi
fv (resp. fe) vertex (resp. edge) replication ratio
λv (resp. λe) balance factor w.r.t. vertices (resp. edges)
λA balance factor w.r.t. the cost functions of A

aims to minimize fe, since the number of v-cut nodes

and cut-edges can be expressed as (fv − 1)|V | (vertex-

cut) and (fe − 1)|E| (edge-cut), respectively.

Balance factor. A hybrid partition HP(n) is said λv-

balanced w.r.t. vertices if |Vi| ≤ (1 + λv)
∑n
j=1 |Vj |/n

for all i ∈ [1, n], i.e., the number of vertices of each frag-

ment is not too deviated from the average. The vertex

balance factor λv of hybrid partition HP(n) is defined as

λv = min{λ | |Vi| ≤ (1 + λ)
∑n
j=1 |Vj |/n (∀j ∈ [1, n])}.

Similarly, HP(n) is λe-balanced w.r.t. edges if |Ei| ≤
(1 +λe)

∑n
j=1 |Ej |/n for all i ∈ [1, n]. The edge balance

factor λe of hybrid partition HP(n) is defined as λe =

min{λ | |Ei| ≤ (1 + λ)
∑n
j=1 |Ej |/n (∀j ∈ [1, n])}.

Example 5 For the partition shown in Fig. 1(b), we

have that fv = 1, fe = 17/13, λv = 1 and λe = 18/17.

For the one in Fig. 1(c), fv = 1, fe = 17/13, λv = 7/5

and λe = 22/17. The vertex replication factors are both

1, since both partitions are edge-cut. Similarly, for the

partition in Fig. 1(d), fv = 6/5, fe = 1, λv = 1 and

λe = 1. Here fe = 1, as the partition of Fig. 1(d) is

vertex-cut. For the hybrid partition in Fig. 1(e), fv =

6/5, fe = 15/14, λv = 1 and λe = 8/7. 2

We summarize the notations in Table 1.

3 Application Driven Graph Partitioning

The primary goal of graph partitioners is to speed up

parallel computations of applications of our interest. As

shown in Example 1, traditional metrics such as repli-

cation ratio and balance factor do not suffice to capture

the variety of computational and communication pat-

terns of graph algorithms. Hence, a partition that fits

one algorithm may not work well for another.

This motivates us to propose an application-driven

partitioning strategy. We target a single algorithm given

by users in this section, and will handle multiple algo-

rithms in Section 6. Below we first introduce a model

that captures the computational and communication

patterns of a given algorithm A (Section 3.1). We then

present a partitioning strategy that partitions graphs to

minimize the parallel computation and communication

costs of A based on the cost model of A (Section 3.2).

3.1 A Cost Model

Given a graph algorithm A, we estimate the cost of

A under a partition HP(n) of a graph G in terms of

a computation cost function hA and a communication

cost function gA, elaborated as follows.

Cost model. Let X = {x1, . . . , xk} be a set of metric

variables, where each variable xi ∈ X is associated with

a vertex metric in HP(n) to be given shortly. Functions

hA and gA are two multivariate functions over X . Given

a vertex v, hA and gA estimate the computational cost

hA(X (v)) and communication cost gA(X (v)) incurred

by v, respectively. Denote by ChA(Fi) and CgA(Fi) the

computational cost and communication cost of algo-

rithm A on fragment Fi, respectively. Then the cost of

algorithm A on fragment Fi is estimated as

CA(Fi) = ChA(Fi) + CgA(Fi). (1)

We next show how to estimate costs ChA(Fi) and

CgA(Fi) of A on Fi using cost functions hA and gA.

Computational cost ChA(Fi). On fragment Fi, we define

ChA(Fi) =
∑

v∈Fi∧v is a non-dummy node

hA(X (v)). (2)

Intuitively, the computational cost of A on Fi is amor-

tized among its e-cut and v-cut nodes (i.e., non-dummy

nodes, see Section 2), and ChA(Fi) is the aggregation of

the costs incurred by its vertices estimated by hA.

Communication cost CgA(Fi). Unlike ChA(Fi), C
g
A(Fi) is

incurred by vertices replicated in HP(n). We measure

the communication cost incurred by master nodes:

CgA(Fi) =
∑

v∈Fi.O∧v is a master node

gA(X (v)) (3)

Intuitively, for a vertex v∈Fi.O, its communication and

synchronization often take place at its master, which is

responsible for receiving updates from its mirrors and

sending the aggregation back to its mirrors [22,24].

Metric variables. We next identify a set X of vertex

metric variables that affect the computational and com-

munication cost of most graph algorithms. For a vertex

v in fragment Fi = (Vi, Ei), X includes the following:

◦ d+L(v) = |{u | (u, v)∈Ei}|, i.e., v’s in-degree in Fi;

◦ d−L (v) = |{u | (v, u)∈Ei}|, i.e., v’s out-degree in Fi;
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◦ d+G(v) = |{u | (u, v)∈E}|, i.e., v’s in-degree in G;

◦ d−G(v) = |{u | (v, u)∈E}|, i.e., v’s out-degree in G;

◦ r(v) = |{j | v ∈ Vj ∧ j 6= i}|, i.e., the number of

mirrors of v among all fragments;

◦ D=
∑
v∈V d

+
G(v)/|V |=

∑
v∈V d

−
G(v)/|V |, i.e., the av-

erage in/out degree of G, which is a constant metric.

For undirected graphs, d+L(v)=d−L (v) and d+G(v)=d−G(v).

Intuitively, the metric variables above have impact

on the computational and communication cost incurred

by a vertex. For instance, d+L(v) (resp. d−L (v)) deter-

mines the number of incoming (resp. outgoing) neigh-

bors that v may access during computation; r(v) de-

cides whether synchronization is necessary; and d+G(v),

d−G(v) and D may affect the size of messages synchro-

nized between the master of v and its mirrors. In par-

ticular, degree-based variables such as d+L and d−L can

be used to assess the impact of super nodes on the com-

putational cost of the applications on the fragments.

We will use the following metric variable set:

X = {d+L , d
−
L , d

+
G, d

−
G, r,D}. (4)

Remark. We highlight the ideas of (1) how we select

the variables in the metric variable set X as defined in

Eq. (4) and (2) how to extend the set X when necessary.

(1) In general, a metric variable is included in X if it

can be used to determine the input size for the compu-

tation or communication incurred by a vertex. Take an

algorithm A under a vertex-centric graph computation

model, e.g., Pregel [37], as an example. To estimate the

computational cost, we include those metric variables

in X that define the input size of the Compute func-

tion of A. Typical examples are d+L and d−L since each

vertex in A receives messages from its neighbors. For

the communication cost, we include r in X to deter-

mine the communication size of a master vertex, i.e.,

the number of mirrors that require to synchronize with

the master. The variables d+G, d−G and D are included

in X mostly for graph-centric algorithms. This is be-

cause, unlike vertex-centric algorithms, there are no ex-

plicit vertex functions like Compute in graph-centric al-

gorithms. Combining with d+L , d−L and r, the variables

d+G, d−G and D are are needed to estimate the amortized

input size of vertex computation and communication.

(2) For a specific algorithm A, the set X can serve as a

start point, since it includes the metric variables that af-

fect the cost of most graph algorithms. One can extend

X or pick a subset of X , depending on the computation

of A. Suppose that the vertex data size is not uniform

in algorithm A, e.g., each vertex carries a mutable ar-

ray Ary as its intermediate data, and the computation

of A is required to scan and update Ary in the process.

In this case, the vertex data size |Ary| plays a role in de-

termining the input size in the vertex computation and

communication, and hence should also be included in

X . We do not include such variable in Eq. (4) because

X suffices for the algorithms considered in this paper.

Example 6 The cost functions for CN and TC on a par-

tition HP(n) = (F1, . . . , Fn) can be defined as follows.

(1) hCN = αd+L(v)d+G(v)+βd+L(v)+γ and gCN = δDd−G(v)

for some positive α, β, γ and δ. Function hCN indi-

cates that in an edge-cut (i.e., when d+L(v) = d+G(v)),

the computation cost of a vertex v is dominated by

the “square” of its incoming degree (recall Example 1).

Function gCN estimates the communication cost incurred

by a master. That is, given a vertex v, the number of

triples (v, w, u) to be aggregated can be estimated by

Dd−G(v), where w is a common neighbor of v and u.

(2) hTC=αdL(v)+βdL(v)dG(v) and gTC=γI(v)dG(v)r(v)

for some positive α, β and γ. Here dL(v) and dG(v) are

the degrees of v in Fi and G, respectively; and I(v) is

an e-cut indicator such that I(v)=1 if v is not an e-

cut node in Fi, and I(v)=0 otherwise. To avoid count-

ing the same triangles repeatedly, we only check the

neighbors of v with smaller degrees. Then, (a) hTC esti-

mates the cost for checking the neighbors of v, αdL(v)

is for searching the small-degree neighbors of v, and

βdL(v)dG(v) is for counting triangles with these neigh-

bors; (b) gTC estimates communication incurred by v.

If v is an e-cut node, then its computation can be

done locally; if v is a v-cut or dummy node, then ex-

tra communication for verifying the neighbors of v is

proportional to dG(v)·r(v). Based on cost function gTC,

to reduce the communication cost of TC, we may make

more vertices e-cut as shown in Fig. 1(f). 2

Balance factor revised. Incorporating parallel com-

putation cost, we revise the conventional balance factor

as follows. For an algorithm A, we say that a partition

HP(n) of graph G is λ-balanced for A if

CA(Fi) ≤ (1 + λ)

n∑
j=1

CA(Fj)/n (∀i ∈ [1, n]).

That is, the cost of A on each fragment is not far from

the average. Here CA(Fi) is the cost of A on Fi using

cost functions hA and gA (see Equation (1)).

Example 7 Continuing with Example 6, under an edge-

cut partition, the computation cost function hCN tells

us that the computation workload of CN is proportional

to the sum of squares of the incoming degrees of the

vertices in a fragment. As shown in Fig. 1(c), this is
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the key factor for balancing the workload of CN, rather

than merely the number of edges and vertices. 2

3.2 Application-driven Graph Partitioning Strategy

We now present an application-driven partitioning strat-

egy. Given a graph algorithm A of our interest, the

strategy works in two steps as follows:

(1) it first learns the cost functions hA and gA of A;

(2) when A is applied to any graph G, given a natural

number n, it computes a partition HP(n) of G to

minimize the parallel cost maxi∈[1,n]CA(Fi) of A.

As opposed to prior partitioning strategies, this strat-

egy targets a given algorithm A and guides partitions

by the (computation and communication) cost model

of A, not by the traditional one-size-fits-all metrics.

The strategy is carried out by the following:

(1) Polynomial regression models: given an algorithm

A, learn the cost functions hA and gA of A (Section 4).

(2) Hybrid partitioners: given a graph G and a number

n, compute a partition HP(n) of G to minimize the

parallel cost of A estimated by hA and gA (Section 5).

Complexity. To settle the complexity of application-

driven partitioning, we study its decision problem, de-

noted by ADP and stated as follows.

◦ Input: A graph G, a number n > 0, a cost budget B,

and two cost functions hA and gA of algorithm A.

◦ Question: Does there exist a HP(n) of G such that

the parallel cost of A under HP(n) is bounded by
B, i.e., maxi∈[1,n]CA(Fi) ≤ B.

It is not surprising that problem ADP is intractable.

Theorem 1 ADP is NP-complete.

Proof An algorithm for ADP works as follows: (1) guess

a HP(n) ofG; and (2) check whether maxi∈[1,n]CA(Fi) ≤
B; if so, return true. The algorithm is in NP since step(2)

is can be done in polynomial time (PTIME); so is ADP.

We verify the lower bound by reduction from the set

partition problem, which is NP-complete (cf. [23]); that

problem is to decide, given a set S of positive integers,

whether S can be partitioned into two disjoint sets A1

and A2 of equal sum, i.e.,
∑
ai∈A1

ai=
∑
bj∈A2

bj .

Given a set of positive integers S = {s1, . . . , sm}, we

construct a graph G, a number n, a cost budget B and

two cost functions hA and gA to ensure the following

property: S can be partitioned into two disjoint sets of

equal sum if and only if maxi∈[1,n]CA(Fi) ≤ B. More

specifically, the construction is given as follows.

(1) Denote by K` the clique that consists of ` vertices.

The graphG is defined as the collection ofKs1 , . . . ,Ksm .

(2) n = 2 and B = (
∑m
i=1 si)/2. Note that we can as-

sume w.l.o.g. that
∑m
i=1 si is even; B is also an integer.

(3) The cost functions is defined as follows: (a) hA(v) =

1 and (b) gA(v) = r(v)−1, where r(v) is the replication

number of vertex v. Intuitively, these cost functions can

be used to characterize the cost of a simple parallel al-

gorithm A that counts the number of vertices of a given

graph. That is, A first counts the vertices in each frag-

ment, where each vertex incurs a unit computational

cost; for each vertex v that is replicated, it then com-

putes r(v)−1, which incurs communication cost r(v)−1

for synchronization and aggregation.

We next verify the correctness of our reduction.

(⇒) Suppose that S can be partitioned into two dis-

joint sets A1 and A2 with equal sum. Then we can par-

tition G by putting the cliques corresponding to A1

into one fragment and other cliques into the other. Ob-

serve that the communication cost in terms of gA is

0, since there is no replication in the partition. Thus

maxi∈[1,2]CA(Fi) = max{
∑
ai∈A1

ai,
∑
bj∈A2

bj} = B.

(⇐) Suppose that the graph G can be partitioned into

two fragments so that maxi∈[1,2]CA(Fi) ≤ B. Since a

vertex incurs a unit cost in terms of hA, we have that

maxi∈[1,2]CA(Fi) = B and there is no vertex replication

in the partition. By construction, no clique is divided.

From the partition of G we derive a disjoint partition

{A1, A2} of S so that A1 and A2 have an equal sum. ut

4 Learning Cost Functions

In this section, we show how to learn computational

and communication cost functions hA and gA for a

given graph algorithm A. We first give a multivariate

polynomial regression model for hA and gA with met-

ric variables X . We then show how we collect training

data and train the model. Below we focus on learning

hA, which differs from gA only in training data.

Cost function as polynomial regression. Given the

set of metric variables X (v) = {x1(v), . . . , xk(v)} of ver-

tex v (Section 3.1), we model hA as a polynomial func-

tion hA(X (v)) =
∑
γj∈Γ ωjγj(v), where Γ is the set of

all terms in the expansion of (1 +
∑
xi(v)∈X (v) xi(v))p,

ωj is the weight of γj(v) and p ∈ N controls the high-

est order of the polynomial expression. For instance,
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if X (v) = {d+L(v), d−L (v)} and p = 2, then hA(X (v)) =

ω1d
+
L(v)2+ω2d

+
L(v)d−L (v)+ω3d

−
L (v)2+ω4, where ω1, . . . ,

ω4 are determined by the learning algorithm.

The learning algorithm employs training samples,

each denoted as [X (vk), tk], which is extracted from the

running log of algorithm A and includes computational

cost tk of each node vk, to adjust each weight parame-

ter ωj so that every hA(X (vk)) approximates tk. Using

mean squared relative error (MSRE) [41] as loss func-

tion, the learning objective for hA is written as

min
Ω

1

|DhA |
∑

[X (vk),tk]∈DhA

(hA(
X (vk)− tk

tk
)2) +

∑
ωi∈Ω

|ωi|,

where DhA is the set of training samples for hA, |DhA |
is the number of training samples, Ω = {ω1, . . . , ω|Γ |},
and

∑
ωi∈Ω

|ωi| is a penalty function to avoid over-fitting [11].

The reason for implementing hA as a polynomial

function is twofold. First, in theory polynomials can

closely approximate a continuous function defined on a

closed interval [51]. Indeed, polynomial regression has

proven effective in predicting computational cost in the

real world [26]. Second, polynomial is explainable com-

pared with other black-box ML models.

Model training. Given an algorithm A, we first run

A on real-life and synthetic graphs to collect DhA , and

then train the regression model withDhA by the stochas-

tic gradient descent (SGD) algorithm [11]. When col-

lecting DhA , we only pick vertices that are used in com-

putation. For example, we only record the metric vari-

ables X and the computation time of vertices t1, t2, t3,

t4 and t5 in Fig. 1(b) to collect training data for hCN,

since only vertices with incoming edges are involved in

the computation. To get DgA for gA, we only collect

the communication cost of master nodes on fragment

borders.

We find that cost CA heavily depends on algorithm

A. To make cost functions hA and gA more generic,

we impost no restrictions on either graphs used in the

training or how the graphs are partitioned.

Example 8 We have seen hCN and gTC in Example 6.

We next illustrate how these cost functions are learned

for CN and TC; the learning of hTC and gCN is similar.

(1) CN. First, we run CN on 10 graphs randomly par-

titioned by either edge-cut or vertex-cut, and record

[X (vi), ti] of each vertex vi as training samples. With

80% (resp. 20%) of a total 100,000 samples for train-

ing (resp. testing) and the highest order p set as 2, the

SGD algorithm learned hCN = 9.23×10−5d+L(v)d+G(v)+

1.04×10−6d+L(v)+1.02×10−6, where the testing MSRE

is 0.023. The learned hCN shows that the computational

cost of a vertex is dominated by the “square” of its in-

degree, consistent with its complexity. Measured by this

hCN, the computational cost of F1 and F2 in Fig. 1(c) is

1.48 × 10−3ms and 1.95 × 10−3ms, respectively, as op-

posed to 2.69×10−3ms and 7.45×10−4ms in Fig. 1(b).

(2) TC. We learned gTC=8.42×10−5dG(v)r(v)I(v) with

80,000 training samples. As samples for gTC, we only

pick master nodes since other vertices incur little com-

munication. The learned gTC shows that the commu-

nication cost is determined by the degrees of vertices

and the number of mirrors. Based on gTC, the com-

munication cost of F1 and F2 in Fig. 1(f) is 0 and

2.5× 10−4ms, respectively, as opposed to 2.5× 10−4ms

and 2.5 × 10−4ms in Fig. 1(e). Here the master copies

of v2, v3 and v9 are in F1, F2 and F2, respectively. 2

Training cost reduction. Both the accuracy of the cost

functions learned and the training cost depend on the

choice of metric variables X . We select metric variables

that are influential on cost estimation, by employing

feature selection methods [15] and domain knowledge.

For example, since d+L(v) and d+G(v) of a vertex v are ad-

equate to estimate the computational cost of CN, other

metric variables in X are not included in hCN. More-

over, we may specify that hCN(v) = ω1d
+
L(v)d+G(v) +

ω2d
+
L(v) +ω3. This yields merely three weight parame-

ters ω to learn, and reduces the learning cost.

5 Application Driven Partitioners

We have seen how to learn cost functions hA and gA
for a graph algorithm A (Section 4). The second com-

ponent of our application-driven partitioning strategy

(Section 3.2) is a partitioner that, given a graph G,

finds a partition of G to reduce the parallel cost of A,

guided by the cost functions hA and gA.

In this section we develop such partitioners. Instead

of developing yet another partitioner, we show that

edge-cut and vertex-cut partitions can be revised to

consent to the cost functions. We present two such algo-

rithms, E2H and V2H. Given an edge-cut (resp. vertex-

cut) partition of G produced by any widely-used par-

titioner, E2H (resp. V2H) improves it and produces a

hybrid partition HP(n) to fit the cost patterns of A.

In a nutshell, both partitioners have two stages.

Guided by cost function hA, the first stage balances

computational cost and reduces parallel cost by redis-

tributing vertices and edges among fragments. The sec-

ond stage is guided by function gA. It reduces commu-

nication cost by adjusting the master node mapping; it

does not increase the computational cost of stage 1.



Application Driven Graph Partitioning 9

In the reset of this section, we first present the se-

quential version of algorithms E2H and V2H in Sec-

tions 5.1 and 5.2, respectively. We then show how to

parallelize partitioners E2H and V2H in Section 5.3.

5.1 From Edge Cut to Hybrid Cut

Edge-cut promotes locality, i.e., each vertex in an edge-

cut partition tends to keep all its incident edges locally.

However, this may lead to imbalanced workload. The

reasons are twofold. First, real-life graphs often follow

power-law, i.e., a small number of super nodes are ad-

jacent to a large fraction of edges. Observe that several

degree-based variables, e.g., d+L and d−L , are introduced

in the set X for cost function learning and cost estima-

tion (see Eq.(4)). In practice, the workload of a frag-

ment can be dominated by the costs of its super nodes

due to their large degrees. It is hard to balance workload

while retaining the locality. Second, as shown in Exam-

ple 1, computational cost patterns vary for algorithms.

A partition with balanced workload for one algorithm

may still exhibit skew workload for another.

Overview of hybrid partitioner E2H. Given an edge-

cut HPE(n) and two cost functions hA and gA of algo-

rithm A, E2H extends HPE(n) to a hybrid partition

HP(n) to reduce the parallel cost maxi∈[1,n]CA(Fi) of

A in two stages. Note that CA(Fi)= ChA(Fi) +CgA(Fi).

Guided by function hA, the first stage of partitioner

E2H balances computational workload to reduce the

cost maxi∈[1,n]C
h
A(Fi) ofA (and thus maxi∈[1,n]CA(Fi)).

Guided by gA, its second stage reduces maxi∈[1,n]C
g
A(Fi)

by redistributing communication cost.

Balancing computational cost. This stage consists

of two phases, namely, EMigrate and ESplit. To balance

the computational cost, both phases migrate vertices

and edges from overloaded fragment to underloaded

fragments. To this end, we estimate a budget B, e.g.,

average computational cost of the fragments. A frag-

ment Fi is overloaded if its computational cost exceeds

B, i.e., ChA(Fi)>B; and Fi is underloaded if ChA(Fi)≤B.

EMigrate. This phase reduces maxi∈[1,n]C
h
A(Fi) by mi-

grating e-cut nodes and their incident edges from over-

loaded fragments to underloaded ones. To retain the

locality of edge-cut partitions, for each overloaded frag-

ment, E2H identifies a coherent sub-fragment within

budget B and marks the rest of e-cut nodes and their

incident edges for migration. Denote by (v,E′) a mi-

gration candidate, where v is marked for migration and

E′ is the set of edges incident to v. In each iteration,

E2H invokes an EMigrate operation to move a migra-

tion candidate (v,E′) to an underloaded fragment Fj

(a) an edge-cut (b) a hybrid cut

F1

s3 s5s4

t1 t2 t3 t4 t5t1 t2 t3

s1 s2 s3 s4
F2

s1
F1

s3 s5s4

t1 t2 t3 t4 t5t1 t2 t3

s1 s2 s3 s4
F2

s1

Fig. 2: EMigrate and ESplit

if ChA(Fj ∪ {(v,E′)} ≤ B. This phase terminates when

no more EMigrate operations can be performed. The re-

maining candidates will be processed in the next phase.

Example 9 Consider the edge-cut partition depicted in

Fig. 1(b). We move an e-cut node t3 from fragment

F1 to F2 via EMigrate. This yields another edge-cut as

shown in Fig. 2(a). Note that the migration operation

also leaves a dummy copy (a white node) in F1 since t3
is linked to another e-cut node s1 of F1. 2

ESplit. This phase cuts e-cut nodes into v-cut nodes

and migrates them to underloaded fragments, in order

to further balance workload. For graphs with skewed

degree distribution, Emigrate may not suffice since the

computational cost incurred by an e-cut node v (e.g.,

super nodes that are incident to a large number of

edges) may already exceed the budget. In that case, ES-
plit cuts vertex v into multiple v-cut nodes and splits the

computation among fragments. Unlike EMigrate, ESplit
splits v and only migrates a subset of v’s incident edges.

The ESplit phase only processes the migration candi-

dates left from the EMigrate phase. It terminates when

all migration candidates have been processed.

Example 10 When applying ESplit to e-cut node t2 in

the partition of Fig. 2(a), a possible outcome is depicted

in Fig. 2(b). Now vertex t2 of F1 is cut and two edges

(s3, t2) and (s4, t2) are migrated from fragment F1 to

F2. The resulting partition is hybrid. It is not an edge-

cut since vertex t2 does not keep all incident edges lo-

cally; it is not a vertex-cut since there exists edge du-

plication, e.g., (s1, t3) is in both F1 and F2. 2

Redistributing communication cost. Communica-

tion cost is often incurred by master nodes (see Equa-

tion (3)). Recall that CA(Fi) = ChA(Fi) + CgA(Fi). To

further reduce the parallel cost maxi∈[1,n]CA(Fi) of al-

gorithm A, E2H utilizes an MAssign phase to update

master node assignments and redistribute communica-

tion cost. Note that MAssign does not increase the com-

putational cost of partitions obtained by EMigrate and

ESplit, since it only adjusts the master node mapping.

MAssign. Initially, MAssign marks all border nodes in

F .O as unassigned and set CgA(Fi) = 0 for i ∈ [1, n].

It processes the master node assignment in an one-

pass fashion. Consider v ∈ F .O and let Fi1 , . . . , Fik
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Input: Edge-cut HPE(n) = (F1, . . . , Fn),
cost functions hA and gA of A.

Output: Revised hybrid partition HP(n) = (F1, . . . , Fn).
1. B ←

∑n
i=1 C

h
A(Fi)/n; O ← ∅; U ← ∅;

2. for each i ∈ [1, n] do
3. if ChA(Fi) > B then
4. O ← O ∪ {Fi}; Si ← GetCandidates(Fi, B);
5. else U ← U ∪ {Fi}; Si ← ∅;
6. for each Fi ∈ O and (v,Evi ) ∈ Si do /* EMigrate */
7. for each Fj ∈ U do
8. if ChA(Fj ∪ {(v,Evi )} ≤ B then
9. migrate (v,Evi ) to Fj ; Si ← Si \ {(v,Evi )};
10. break ;
11. for each Fi ∈ O and each (v,Evi ) ∈ Si do /* ESplit */
12. for each e ∈ Evi do
13. t← argminj∈[1,n]C

h
A(Fj); migrate (v, {e}) to Ft;

14. Si ← Si \ {(v,Evi )}
15. adjust master node mapping; /* MAssign */
16. return HP(n) = (F1, . . . , Fn);

Procedure GetCandidates(Fi, B)
17. F ′i ← ∅; k ← |Vi|;
18. let v1, . . . , vk be a BFS traversal of e-cut nodes in Fi;
19. for each j ∈ [1, k] do
20. if ChA(F ′i ∪ {(vj , E

vj
i )}) ≤ B then

21. F ′i ← F ′i ∪ {(vj , E
vj
i )};

22. return Fi \ F ′i ;

Fig. 3: Algorithm E2H

be the fragments in which v resides. Denote by gi1A (v),

. . . gikA (v) the communication cost incurred by v if the

master of v is assigned to one of Fi1 , . . .Fik , respec-

tively. To minimize maxi∈[1,n]CA(Fi), the master of v is

assigned to the fragment with the minimum cost. More

specifically, the master of v is assigned to Fi∗ , where

i∗ = argminj∈{i1,...,ik}C
h
A(Fj) + CgA(Fj) + gjA(v). (5)

Once the master of v is assigned to fragment Fi∗ , MAs-
sign includes the communication cost gi

∗

A (v) in CgA(Fi∗).

Algorithm E2H. Putting these together, we present

algorithm E2H in Fig. 3. Given an edge-cut partition

HPE(n) and cost functions hA and gA of algorithm A,

E2H extends HPE(n) to a hybrid partition HP(n) by

reducing the parallel cost of A. Using function hA, E2H
first sets a computational cost budget B for each frag-

ment (line 1). Based on B, it divides the fragments into

two sets: overload fragments O and underloaded ones U

(lines 2-5). For each overloaded Fi ∈ O, E2H identifies

a set of e-cut nodes Si as candidates for migration by

procedure GetCandidates (line 4; see below).

To balance workload, E2H first carries out the EM-
igrate phase (lines 6-10). Each time, it selects an e-cut

node and its incident edges from migration candidates

and reallocates them to an underloaded fragment Fu
such that the move does not make the cost of Fu exceed

budget estimated in terms of hA. When no more Emi-

grate operation can be applied, E2H conducts the ESplit
phase (lines 11-14). Each time, it selects an edge asso-

ciated to the rest of candidate e-cut nodes and moves it

to the fragment with the minimum computational cost.

At last, E2H revises the master node mapping to fur-

ther reduce the parallel cost of A via MAssign (line 15).

Procedure GetCandidates. Given a fragment Fi and a

budget B, GetCandidates identifies a set of vertices and

edges as migration candidates. As an effort to retain

the locality of Fi, GetCandidates identifies a coherent

sub-fragment F ′i of Fi within the budget B. To do

that, GetCandidates first performs a BFS traversal on Fi
(line 18). Following the BFS order, it includes vertices

and its incident edges to F ′i within budget B in a greedy

manner (lines 19-21). The vertices and edges excluded

from F ′i are returned as migration candidates (line 22).

Example 11 We show how the algorithm E2H works on

the edge-cut partition of Fig. 1(b) based on computa-

tion cost function hCN and communication cost function

gCN=5.57× 10−5Dd−G learned in Example 8.

(1) Algorithm E2H estimates ChCN(F1) = 2.69× 10−3ms

and ChCN(F2) = 7.45× 10−4ms for F1 and F2. With

the cost budget B = 1.72 × 10−3ms, fragment F1 is

overloaded while F2 is underloaded.

(2) To balance the workload, E2H uses GetCandidates
to identify migration candidates in fragment F1. Let

t1, s1, s2, t3, t2 be a BFS order. Observe that the sub-

fragment induced by {t1, s1, s2} is a maximal one within

the budget. As a result, the algorithm marks the e-cut

nodes t3 and t2 as migration candidates.

(3) Suppose that E2H first migrates t3 by EMigrate from

F1 to F2. This yields the partition shown in Fig. 2(a).

This increases the cost ChCN(F2) of F2 from 7.45×10−4ms

to 1.12× 10−3ms. Algorithm E2H then tries to migrate

t2 from F1 to F2. However, this operation is aborted

as it would increase ChCN(F2) from 1.12 × 10−3ms to

1.95× 10−3ms, which exceeds F2’s budget.

(4) E2H then applies ESplit to cut t2 and migrates edges

incident to u2 in a greedy manner. It migrates two edges

(s3, t2) and (s4, t2) from F1 to F2 (see Example 10). It

ends up with the partition depicted in Fig. 2(b).

(5) To further reduce the parallel execution cost of CN,

E2H updates the master node mapping by MAssign.

By gCN, only vertices with d+G > 0 incur communica-

tion. Thus we only consider master mapping for s1,

s3 and s4. Their communication costs are gCN(s1) =

1.45×10−4ms, gCN(s3) = 2.17×10−4ms and gCN(s4) =

2.90 × 10−4ms. Since ChA(F1) = 1.76 × 10−3ms and
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ChA(F2)=1.67 × 10−3ms, the masters of s1 and s4 are

assigned to F2, while that of s3 is assigned to F1.

(6) The original edge-cut has parallel cost maxi∈[1,2]
CCN(Fi) = 2.98 × 10−3ms if the masters of s3 and

s4 are mapped to F2. In contrast, the hybrid-cut ob-

tained via E2H has parallel cost maxi∈[1,2]CCN(Fi) =

max{1.98, 2.11} × 10−3ms= 2.11 × 10−3ms. Thus E2H
indeed reduces the parallel cost of CN. 2

5.2 From Vertex Cut to Hybrid Cut

Compared with edge-cut, vertex-cut has better balance.

However, most vertex-cut partitioners aim to balance

edge size. This does not suffice for workload balance, as

shown in Example 1. Also note that vertex-cut often in-

curs larger communication cost due to bad locality [24].

Overview of partitioner V2H. Given a vertex-cut

HPV (n) and cost functions hA and gA of algorithm

A, hybrid partitioner V2H produces a hybrid partition

HP(n) by adjusting HPV (n), to reduce the parallel cost

maxi∈[1,n]CA(Fi) of A. It also has two stages. Guided

by function hA, it first not only balances computational

workload but also reduces communication cost. Guided

by function gA, its second stage redistributes commu-

nication cost. Below we focus on the first stage; the

second stage is similar to MAssign in E2H.

Balancing computational cost. This stage consists

of two phases itself, namely, VMigrate and VMerge. As

in E2H, it first estimates a cost budget B, e.g., the

average computational cost of all fragments. It classi-

fies the fragments as overloaded and underloaded. Then

VMigrate migrates v-cut nodes from overloaded frag-

ments to underloaded ones in order to balance work-

load. VMerge makes v-cut nodes to e-cut nodes to fur-

ther balance workload and reduce communication cost.

VMigrate. This phase migrates v-cut nodes and their in-

cident edges from overloaded fragments to underloaded

ones. Like EMigrate, VMigrate employs the same pro-

cedure GetCandidate to identify candidate vertices and

edges to migrate; it moves a vertex v together with all

its local incident edges Evi in the migration. To retain

the locality, it also requires that the destination frag-

ment contains a copy of v. More specifically, a v-cut

node v and its associated edges Evi are migrated from

an overloaded Fi to an underloaded Fj if

◦ there exists another v-cut node (v,E′′) in Fj ; and

◦ ChA(Fj ∪ {(v,Evi })} ≤ B.

This reduces the replication of vertex v by one. In light

of this, VMigrate reduces both maxi∈[1,n]C
h
A(Fi) and

Input: Vertex-cut HPV (n) = (F1, . . . , Fn),
cost functions hA and gA of A.

Output: Revised hybrid partition HP(n) = (F1, . . . , Fn).
1. B ←

∑n
i=1 C

h
A(Fi)/n; O ← ∅; U ← ∅;

2. for each i ∈ [1, n] do
3. if ChA(Fi) > B then
4. O ← O ∪ {Fi}; Si ← GetCandidates(Fi, B);
5. else U ← U ∪ {Fi}; Si ← ∅;
6. for each Fi ∈ O and each (v,Evi ) ∈ Si do /*VMigrate*/
7. for each Fj ∈ U such that v ∈ Fj do
8. if v resides in Fj and ChA(Fj ∪ {(v,Evi )} ≤ B then
9. migrate (v,Evi ) to Fj ; Si ← Si \ {(v,Evi )};
10. break ;
11. for each Fi ∈ U and each (v,Evi ) ∈ Fi do /* VMerge */
12. let Ēvi = Ev \ Evi ;
13. if ChA(Fi ∪ {(v, Ēvi )} ≤ B then
14. migrate or replicate (v, Ēvi ) to Fi;
15. adjust master node mapping; /* MAssign */
16. return HP(n) = (F1, . . . , Fn);

Fig. 4: Algorithm V2H

communication cost. The process stops when no more

VMigrate operation can be further applied.

VMerge. This phase iteratively merges v-cut nodes into

e-cut nodes. In each iteration, VMerge (a) first selects an

underloaded fragment Fi and a v-cut node v in Fi; and

(b) changes v to an e-cut node by moving or replicating

all v’s missing edges in Fi based on the respective costs.

This change is valid if the new ChA(Fi) does not exceed

the budget. To reduce the computational cost incurred

by v, it marks the copies of v in fragments other than Fi
as dummy nodes. That is, by converting a v-cut node

to an e-cut one, it balances workload by reallocating

computation to the fragment with the minimum cost

ChA(Fi). Phase VMerge continuously merges v-cut nodes

until no valid changes can be made.

In contrast to VMigrate, phase VMerge may also

move a v-cut node from an underloaded fragment. Nev-

ertheless, it reduces the parallel cost of algorithm A by

reducing its communication cost because the new e-cut

node no longer requires communication to aggregate in-

formation from different fragments.

Algorithm V2H. We are now ready to present algo-

rithm V2H, as shown in Fig. 4. Given a vertex-cut par-

tition HPV (n) and cost functions hA and gA of graph

algorithm A, V2H revises HPV (n) to a hybrid parti-

tion HP(n) to reduce the parallel cost of A. Using func-

tion hA, V2H first estimates a cost budget B as the av-

erage computational cost
∑n
i=1 C

h
A(Fi)/n. It classifies

the fragments as overloaded and underloaded; and for

each overloaded fragment Fi, it identifies a set of v-cuts

nodes Si as migration candidates via procedure Get-
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Candidates (lines 2-5). Then VMigrate of V2H migrates

v-cut nodes and their incident edges from overload frag-

ments to underloaded ones (lines 6-10). After that, V2H
carries out phase VMerge to merge v-cut nodes into e-

cut nodes, to further balance computational workload

and reduce communication cost (lines 11-14). In the

end, V2H adjusts master node mapping to redistribute

communication cost as in E2H (line 15).

Example 12 Applying VMerge to v-cut node v2 in frag-

ment F1 of Fig. 1(e), it replicates edge (v2, v3) at F1.

Now vertex v2 becomes an e-cut node, and v2 in F2 is

marked as a dummy copy. This yields a hybrid parti-

tion depicted in Fig. 1(f). As remarked in Example 1,

this reduces the communication of TC. 2

5.3 Parallelization

We next show how to parallelize E2H and V2H.

Parallel setting. We adopt a shared-nothing distributed

setting as commonly used nowadays.

(a) The fragments F1, . . . , Fn of the input edge-cut

(resp. vertex-cut) partition are initially distributed to

n shared-nothing workers P1, . . . , Pn, respectively. The

workers run under synchronous BSP model [48], which

separates the computation into supersteps.

(b) Based on the cost functions hA and gA, each worker

maintains a shared state, including costs ChA(Fi) and

CgA(Fi) of each fragment Fi and other cost-related met-

rics for the vertices and edges processed.

(c) In each superstep, each worker conducts a small

batch of computation to refine the partition and ex-

change updates to synchronize the shared state.

More specifically, below we show how to parallelize

phases EMigrate, ESplit and MAssign of E2H; the par-

allelization of V2H can be done in a similar way.

Parallel EMigrate. In each superstep, each overloaded

worker sends a small batch of migration candidates

to underloaded workers in a round-robin manner. A

worker is overloaded (resp. underloaded) if it hosts an

overloaded (resp. underloaded) fragment. Let Pi1 , . . . , Pik
be the underloaded workers. An overloaded worker se-

lects k migration candidates and sends them to Pi1 , . . . ,

Pik in parallel, respectively. Upon receiving migration

candidates, underloaded worker Pij (j ∈ [1, k]) pro-

cesses them one by one. Worker Pij accepts a candidate

if it does not exceed the budget; otherwise Pij rejects it.

The sender includes the rejected candidate in the next

batch and sends it to worker Pi` , where ` ≡ (j + 1)

mod k. The process proceeds until each candidate is ei-

ther accepted by some Pij or rejected by all Pi1 , . . .Pik .

Parallel ESplit. In a superstep, each overloaded worker

processes a small batch of edges incident to the candi-

dates rejected in the previous phase, in parallel. Based

on the shared state with ChA(Fi) of each Fi, it greedily

assigns and migrates edges as shown in Fig. 3 (lines 12-

13). At the end, the workers synchronize the edge as-

signments and update the shared state. The process

terminates after processing all such edges.

Parallel MAssign. In a superstep, each worker selects a

small batch of unassigned vertices in Fi.O, and adjusts

master nodes by Equation (5) given earlier, in parallel,

based on the shared ChA(Fi) and CgA(Fi) of each Fi. The

adjustments are synchronized among workers to resolve

conflicts and update the shared state. The process stops

after all vertices in F .O are processed.

Analysis. We now analyze the computational costs and

communication costs of the parallel phases. Let c1 and

c2 be the cost to evaluate the functions hA and gA on

a vertex, respectively; and let c3 be the communication

cost to synchronize the shared state in a superstep. As-

sume w.l.o.g. that each phase takes b as the batch size.

(1) The computational cost of parallel EMigrate can be

bounded by n · c1|V |. This is because each migration

candidate can be tried for at most n times and there

exist at most |V | migration candidates. The communi-

cation cost is bounded by c3|V |
b since parallel EMigrate

is executed for at most |V |b supersteps.

(2) The computational cost of parallel ESplit is bounded

by c2|E|. This is because in the worst case, a super node

can be adjacent to every other vertex. The communi-

cation cost can be bounded by c3|E|
b .

(3) The computation cost of parallel MAssign is bounded

by (c1+c2)|V |
n since at most |V | vertices are cut by par-

allel ESplit, and the master assignment operations can

be evenly distributed among n fragments. The commu-

nication cost of parallel MAssign is bounded by c3|V |
n·b .

6 Composite Application Driven Partitioners

We have seen how to partition a graph G for a tar-

get application A to improve the parallel execution of

A. In the real world, however, users are often required

to run multiple different analytical tasks on the same

graph G at the same time. As remarked in Section 1,

the cost patterns differ for different applications; a par-

tition that fits one application may become skewed for
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another, e.g., the partition depicted in Fig. 1(b) is bal-

anced for PR but skewed for CN, while the one shown

in Fig. 1(c) is balanced for CN but skewed for PR.

A brute-force approach is to generate multiple par-

titions of graph G separately, one for each of the appli-

cations in use, to reduce the cost of each application.

However, this incurs unnecessary partitioning time and

space costs, and worse yet, introduces the coherence

problem when graph G is updated as commonly found

in practice. One naturally wants a better solution to

support a batch of algorithms on G, such that (1) we

want to reduce the time and space costs of generating

multiple partitions separately, and (2) the parallel cost

of each algorithm A in the batch is comparable to its

counterpart when G is partitioned by E2H or V2H and

is tailored for reducing the cost of specific A.

Motivated by the practical need, in this section we

extend our application-driven partitioners to support

mixed workloads, i.e., to partition an input graph G

and reduce the overall parallel cost for a batch of graph

algorithmsA1, . . . ,Ak. We first introduce composite par-

titions as a compact representation for the combina-

tions of different partitions of the same graph (Sec-

tion 6.1); we then extend our hybrid partitioner E2H
(resp. V2H) to composite application-driven partitioner

ME2H (resp. MV2H) to deal with mixed workloads (Sec-

tions 6.2 and 6.3). Finally we briefly show how to par-

allelize ME2H and MV2H (Section 6.4).

6.1 Composite Partition

Given a graph G, the number n of fragments in a parti-

tion, and a batch consisting of k algorithms {A1, . . . ,Ak},
we want to compute a composite partition, which is

essentially equivalent to a collection of k separate n-

way partitions, i.e., HP(n, k) = {HP1(n), ....,HPk(n)},
where HPj(n)={F j1 , ..., F jn} and it is the partition for

reducing the parallel cost of algorithm Aj .

More specifically, a composite partition HP(n, k) of

G is {HP1(n), ....,HPk(n)} such that each fragment F ji ∈
HPj(n) is stored in two disjoint parts, i.e., F ji = Ci∪F̂ ji .

Here Ci =
⋂
j∈[1,k] F

j
i and F̂ ji = F ji \ Ci. That is, the

core Ci is the overlapped area in all partitions HPj(n)

for fragment Fi, and F̂ ji is the residual area in F ji .

Intuitively, the composite partition provides a com-

pact storage format for k individual partitions tailored

for specific algorithms. Since core Ci is the area shared

by all partitions in Fi, we only need to store it once.

Moreover, when accessing a vertex and its incident edges,

we only need to access two parts, namely, the core Ci
and the residual F̂ ji in F ji , i.e., it only incurs a small

(a) C1, F̂
1
1 and F̂ 2

1 at work P1 (b) C2, F̂
1
2 and F̂ 2

2 at worker P2

F̂ 1
2

s1 s2

t2 t3

F̂ 2
2

s3 s5s4

t1 t2 t3 t4 t5

C2F̂ 2
1

s3 s4

t2 t3

F̂ 1
1

C1

t1 t2 t3

s1 s2 s3 s4

Fig. 5: A composite partition

overhead. As will be verified in our experimental study

(Section 7), composite partitions effectively reduce the

time cost of partitioning and the space cost of stor-

ing the partition, while retaining the property of cost-

driven partitions for each algorithm in the batch.

Composite replication ratio. To measure the compact-

ness of a composite hybrid partition, we further ex-

tend the replication ratio to composite ones, denoted

as fc. Here fc = 1
|G|

∑
i∈[1,n] (|Ci|+

∑
j∈[1,n] |F̂

j
i |), i.e.,

it measures the ratio of space usage of a composite par-

tition to the size of the original graph.

Example 13 Now consider combining the partitions Fig-

ures 1 (b) and (c) of graph G1 shown in Fig 1 (a). Their

composite is shown in Fig 5. At each worker Pi, each of

the two partitions consists of a core Ci, and two residual

parts F̂ 1
i and F̂ 2

i . Here partition in Fig 1 (b) can be ob-

tained by combining Ci and F̂ 1
i for i ∈ [1, 2], where the

partition in Fig 1 (c) is the combination of Ci and F̂ 2
i .

Note that we use two separate vertices for s3, s4, t2, t3
in F 1

1 (resp. t2, t3 in F 2
2 ) only for the ease of represen-

tation. There is no need to replicate them in practice,

since they are co-located with C1 (resp. C2).

The composite replication ratio fc = 1
|G1| (|C1| +

|C2|+ |F̂ 1
1 |+ |F̂ 1

2 |+ |F̂ 2
1 |+ |F̂ 2

2 |) = 1.52. That is, storing

the composite partition of these two partitions only in-

curs 1.52|G1| space. In contrast, storing these two par-

titions separately incurs a space cost of 2.9|G1|. That

is, composite partitions reduces space usage by storing

the overlapped areas Ci only once. The larger |Ci| is,

the lower fc is and the more space is saved. ut

Coherence. Composite partition also makes it easier to

update the graph coherently across different partitions.

Here we only consider the updates of edge deletion and

edge insertion. The updates of vertex insertion and ver-

tex deletion can be handled in a similar way.

Edge deletion. To delete an edge e in G coherently, we

first need to locate all copies of e in the composite par-

tition HP(n, k). To this end, we build an index for each

composite fragment that consists of a core Ci and k

residual fragments F 1
i , . . . , F

k
i . The index maps an edge

e to a pair (ci, ri), where ci is a Boolean indicating

whether e is in Ci and ri = {j1, . . . , j`} corresponds

the set of residual fragments F j1i , . . . , F
j`
i that contain
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e. Observe that when ci = true, the set ri = ∅ and it

incurs only a constant space cost. Thus the index is rel-

atively small, when partitions heavily overlap with each

other, leaving very few edges outside of Ci. Instead, a

poorly aligned partition, i.e., a composition partition

with a small overlapping area, needs a large index.

In contrast, if k partitions of F 1
i , ..., F

k
i are stored

separately, such index maps each edge in
⋃
j∈[1,k] F

j
i to

a nonempty set of partitions F ji that contains it. The

index size could be as large as |
⋃
j∈[1,k] F

j
i |, which is

inefficient in both time and space.

Edge insertion. Different from edge deletion, when in-

serting an edge to G, it has to be mapped to fragments.

Hence the edge carries with it the target fragments for

insertion. This said, composite partitions still speed up

the insertion, when the inserted edge falls into some

core Ci. In this case, the insertion is performed only

once and the index is updated by mapping the inserted

edge to (true, ∅) at Ci. In contrast, for k individual par-

titions that are separately stored, we need to insert the

edge to each of them and update the corresponding in-

dex each time, without little chance to reduce its cost.

6.2 From Edge Cut to Composite Hybrid Cut

We first extend E2H to a composite hybrid partitioner

ME2H to handle mixed workloads. Algorithm ME2H
aims to produce a composite hybrid partition to reduce

the parallel cost of each algorithm in a workload.

Overview of algorithm ME2H. Given an edge-cut

partition HPE(n) and cost functions hA1
, ..., hAk and

gA1
, ..., gAk of k algorithms A1, ...,Ak, ME2H gener-

ates a composite hybrid partition HP(n, k). For each

j ∈ [1, k], it refines HPE(n) into a hybrid partition

HPj(n) in HP(n, k), guided by the cost functions of Aj .
In addition to balancing computational cost and retain-

ing the locality, ME2H also reduces replication fc of the

output composite partition. The reasons are twofold:

when fc is low, (1) less space is required to store the

composite partition, and (2) the composite partitioner

is more efficient, since a large part of the partitioning

results are shared among k individual partitions.

Like E2H, algorithm ME2H consists of two stages,

namely, workload balancing guided by hA1
,. . . , hAk ,

and communication cost re-distribution guided by gA1 ,

. . . , gAk . Below we focus on the first stage, since the

second stage is similar to the phase MAssign in E2H.

Balancing computational cost. ME2H outputs a load

balanced partition HPj(n) for each application Aj (j ∈
[1, k]), by extending the phases EMigrate and ESplit of

E2H to phases VAssign and EAssign, respectively. Dif-

ferent from E2H that mitigates unbalanced workload by

exchanging vertices and edges among fragments, VAs-
sign and EAssign of ME2H iteratively assign elements

from the input partition HPE(n) to n initially empty

fragments F j1 , ..., F
j
n of HPj(n), for each Aj (j ∈ [1, k]).

Both phases ensure that no fragment becomes over-

loaded during the process. To this end, we estimate

a budget Bj for each target hybrid partition HPj(n),

which is the average computational cost tailored by

hAj . The budget Bj serves to retain the balance of

HPj(n): a vertex or edge in G is first assigned to a

fragment F ji of partition HPj(n) only if ChAj (F
j
i )≤Bj .

VAssign. This phase iteratively assigns e-cut nodes and

their incident edges to HPj(n) for each Aj , while en-

suring the balancing constraints. Like E2H, it assigns

each e-cut node together with its incident edges as a

whole. Different from E2H, ME2H also tries to lower

the composite replication factor fc for the output par-

titions HP(n, k) = {HPj(n) | 1 ≤ j ≤ k}, i.e., to make

them overlap with each other as much as possible.

EAssign. This phase further assigns edges one by one

and turns e-cut nodes into v-cut ones by assigning its

incident edges to different fragments. Note that after

phase VAssign, there might be vertices and edges in

G that are not yet assigned to HPj(n) for some Aj .
This is because in VAssign a fragment F ji ensures that

its cost estimated by hAj does not exceed its bud-

get Bj throughout the process. This may leave some

parts of graph unassigned, e.g., vertices with high de-

gree that may incur large computational costs. The

residual graph is handled by EAssign. The process ter-

minates when all vertices and edges in HPE(n) have

been assigned to each partition HPj(n), for j ∈ [1, k].

We next present the algorithm ME2H in Fig. 6.

Algorithm ME2H. Given an edge-cut partition HPE(n)

and cost functions, hA1
, ..., hAk and gA1

, ..., gAk , of ap-

plications A1, . . .Ak, ME2H revises HPE(n) to hybrid

partitions HP1(n), ...,HPk(n) forA1, ...,Ak, respectively,

in a batch. For each algorithmAj(j ∈ [1, k]), ME2H first

sets a computational cost budget Bj by using cost func-

tion hAj (line 1). It then initializes fragments F 1
i , . . . ,

F ki in each fragment Fi by calling procedure Init (line 3).

Procedure Init (described blow) ensures that the initial-

ized fragment F ji (i ∈ [1, n], j ∈ [1, k]) does not exceed

budget Bj of Aj . ME2H next identifies the overlapped

subgraph of F 1
i ,. . .F ki as core Ci of Fi (i ∈ [1, n]), where

the allocations of edges and vertices are shared by all k

partitions HP1(n), . . . HPk(n), and do not require any

further changes (line 4). It marks the subgraph in Fi
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Input: Edge-cut HPE(n) = (F1, . . . , Fn), 2k cost functions
hA1

, ..., hAk , gA1
, ..., gAk of applications A1, . . . , Ak.

Output: A composite partition HP(n, k) for A1, . . . , Ak.
1. for each j ∈ [1, k] do Bj ←

∑n
i=1 C

h
Aj (Fi)/n;

2. for each i ∈ [1, n] do
3. (F 1

i , ..., F
k
i )← Init(Fi, B1, B2, ..., Bk);

4. Ci ←
⋂
j∈[1,k] F

j
i ;

5. for each j ∈ [1, k] do Sji ← Fi \ F ji ;
6. for each j ∈ [1, k] do

7. Uj ← {F ji |ChAj (F
j
i ) < Bj

∧
Sji = ∅};

8. for each i ∈ [1, n] and each (v,Evi ) ∈ Fi \ Ci do
9. Ov ← {Aj | (v,Evi ) ∈ Sji }; /*VAssign*/
10. dv()← GetDest(Ov,U1,U2, ...,Uk);

/* dv() is a mapping from Ov to [1, n] */
11. for each Aj ∈ Ov let x = dv(Aj) do

12. assign (v,Evi ) to F jx ; update Uj ;
13. Sji ← Sji \ {(v,Evi )};
14. for each i ∈ [1, n], j ∈ [1, k] and each (v,Evi ) ∈ Sji do
15. for each e ∈ Evi do /*EAssign*/

16. x← argminy∈[1,n]C
h
A(F jy );

17. assigns (v, {e}) to F jx ;

18. Sji ← Sji \ {(v,Evi )};
19. adjust master node mapping; /*MAssign*/
20. return (HP1(n), . . . ,HPk(n)) as HP(n, k).

Fig. 6: Algorithm ME2H

that is not yet assigned to HPj(n) as candidates Sji for

later processing (line 5). It also marks fragment F ji in

U j , if it is underloaded w.r.t. the budget Bj(lines 6-7).

ME2H next processes the candidates in Sji by VAs-
sign and EAssign, where i ∈ [1, n] and j ∈ [1, k].

(1) ME2H first executes phase VAssign (lines 8-13). Each

time it processes a candidate (v,Evi ) from Fi \Ci. Ob-

serve that Ov = {Aj | (v,Evi ) ∈ Sji } is the set of algo-

rithms, where Aj needs to migrate (v,Evi ) out of frag-

ment Fi, as the computational cost exceeds the bound.

VAssign computes the destination dv(Aj) of (v,Evi ) for

each such algorithm Aj ∈ Ov by procedure GetDest.
Here dv is a mapping that maps Aj to some x ∈ [1, n],

where F jx ∈ U j is a destination fragment for candi-

date (v,Evi ) (lines 10-11). GetDest also makes an effort

to minimize the total number of destination fragments

for Ov, to reduce replication factor fc (see below). The

phase ends when all candidates have been processed.

(2) After VAssign, ME2H allocates all edges that remain

in each residual Sji by EAssign (lines 14-18). It iterates

through edges of Evi ∈ S
j
i for a vertex v, and allocates

them individually to the fragment with the minimum

workload (computational cost) (lines 16-17).

ME2H next revises the master node mapping to fur-

ther reduce the parallel cost of each Aj on HPj(n) just

Procedure Init(Fi, B1, B2, ..., Bk)

1. for each j ∈ [1, N ] do F ji ← ∅;
2. N ← |Vi|, S ← {F ji | j ∈ [1, k]};
3. let v1, . . . , vN be a BFS traversal of e-cut nodes in Fi;
4. for each x ∈ [1, N ] do

5. for each F ji ∈ S do

6. if ChAj (F
j
i ∪ {(vx, E

vx
i )}) ≤ Bj then

7. F ji ← F ji ∪ {(vx, E
vx
i )};

8. return (F 1
i , F

2
i , ..., F

k
i );

Procedure GetDest(Ov,U1, ...,Uk)
1. while Ov is not empty do

2. i← argxmax |{j | Aj ∈ Ov ∧ F jx ∈ Uj}|;
3. O∆ ← {Aj |F ji ∈ Uj} ∩ Ov;
4. for each Aj ∈ O∆ do dv(Aj)← i;
5. Ov ← Ov \ O∆;
6. return dv();

Fig. 7: Procedure Init and GetDest

like E2H (line 19). In the end, it returns (HP1(n), . . . ,

HPk(n)) as the composite partition (line 20).

We next elaborate procedures Init and GetDest of

ME2H. Intuitively, both procedures assign e-cut nodes

and their incident edges to fragments of individual par-

titions HP1(n), . . . ,HPk(n). As discussed earlier, apart

from balancing workload and retaining locality, ME2H
also aims to reduce the composite replication factor fc
to save space. To this end, procedure Init enlarges the

overlapped areas C1, . . . , Ck as much as possible; and

procedure GetDest reduces the overall replication for

candidates (v,Evi ) that are not in Ci.

Procedure Init. As shown in Fig. 7, given a fragment

Fi and budgets B1, . . . , Bk for algorithms A1, . . . ,Ak,

respectively, Init initializes fragments F 1
i , . . . , F

k
i in Fi.

Similar to E2H, in order to retain the locality, it first

computes a BFS order of the vertices in Fi (lines 1-3).

Following the order, each time procedure Init assigns a

candidate (vx, E
v
x) to fragments F 1

i , . . . , F
k
i within their

budgets, whenever possible (lines 4-7). This helps us to

enlarge the overlapped area Ci in Fi.

Procedure GetDest. Given a set Ov of algorithms and

collections of underloaded fragments U1, ...,Uk for A1,

. . . , Ak, respectively, GetDest computes a mapping dv
from Ov to [1, n] such that the following conditions

hold: (i) F jdv(Aj) ∈ U
j , i.e., dv identifies an underloaded

fragment in U j as the destination for (v,Ev); and (ii)

the cardinality of a set Dv defined by Dv = {d(Aj) |
Aj ∈ Ov} is minimized, i.e., the number of destination

fragments is the minimum. When the Dv is minimized,

the number of replications of (v,Ev) is reduced and so

is the composition replication factor fc.
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Intuitively, GetDest is to find the minimal number

of underloaded fragments to cover the assignments of

(v,Ev) for each algorithm Aj ∈ Ov. This optimiza-

tion problem corresponds to the Minimum Set Cover

(MSC) problem, which is NP-complete [45]. Given a

collection C of subsets of a finite set S, a set cover

is a subset C′ ⊆ C such that every element in S be-

longs to at least one element in C′. The MSC over in-

put 〈S, C〉 is to compute a set cover C′ with the min-

imum cardinality |C′|. Suppose that S = {s1, . . . , sm}
and C = {SC1, . . . , SCk}. To see the correspondence

between GetDest and MSC, we construct an instance of

GetDest as follows: (1) Ov = {As1 , . . . ,Asm}; and (2)

for each subset SCi, we define U i = {F sji | sj ∈ SCi} as

the set of underloaded fragments in Fi that can server

as assignment destinations. One can verify that an op-

timal solution to GetDest(Ov,U1, . . . ,Uk) corresponds

to an optimal solution to MSC over the input 〈S, C〉.
Due to the inherent hardness, here we adopt the

following greedy heuristic [17] as GetDest, shown in

Fig. 7. Each time it selects i ∈ [1, n] such that the set

SCi = {Aj | F ji ∈ Uj ,Aj ∈ Ov} covers the most of

elements in Ov (line 11). Elements covered are then re-

moved from Ov (lines 12-13). The procedure terminates

when all elements in Ov have been covered.

Example 14 Let (v,Evi ) be the candidates to be consid-

ered and assume that Ov = {CN,TC,WCC,PR}, where

WCC is an algorithm for computing weak connected

components. Figure 8 shows the underloaded fragments

UA w.r.t. algorithms A ∈ Ov during the process of EM-
igrate. For instance, UCN = {F1, F2, F3} indicates that

fragment F1, F2 and F3 are currently underloaded and

can serve as assignment destinations for application CN.

The sets SCi is the reverse index of UA, which maps the

fragment Fi to the algorithms that include Fi in UA.

(a) Procedure GetDest maps each algorithm to one frag-

ment. The set of destination fragments is minimal, since

it corresponds to the number of replications for candi-

date (v,Evi ). One can see that this corresponds to com-

puting a minimal set cover in the MSC problem. This

is because (1) when all UA has been mapped to a des-

tination fragment, its inverse index SCi covers all four

algorithms in Ov; and (2) the number of destination

fragments, i.e., the number of sets, is the minimum.

(b) We next show how procedure GetDest computes des-

tination mapping dv. It first picks fragment F2, since

SC2 covers most applications in the batch. That is, we

make F2 the destination of the current vertex v for par-

titions of CN, TC and WCC. Then GetDest chooses frag-

ment F4 for PR, which is its only possible destination

fragment. As a result, the current vertex, along with its

TC

WCC

PR

CN

 

F1

F2

F3

F4

UCN {F1, F2, F3} SC1 {CN}
UTC {F2, F3} SC2 {CN,TC,WCC}
UWCC {F2, F4} SC3 {CN,TC}
UPR {F4} SC4 {WCC,PR}

Fig. 8: An example of GetDist and MSC

incident edges, are replicated in two copies, one in F2

in the partition shared by algorithms CN,TC and WCC,

and the other in the partition of PR. ut

6.3 From Vertex Cut to Composite Hybrid Cut

We next extend V2H to a composite hybrid partitioner

MV2H for mixed workloads. MV2H takes a vertex-cut

partition as input and outputs a composite partition to

reduce the parallel cost for a batch of algorithms.

Overview of algorithm MV2H. Given a vertex-cut

partition HPV (n) and cost functions of hA1
, ..., hAk and

gA1 , ..., gAk of applicationsA1, . . . ,Ak, MV2H computes

a composite partition HP(n, k) = {HP1(n), ...,HPk(n)}.
For each j ∈ [1, k], HPV (n) is refined into a hybrid par-

tition HPj(n) in HP(n, k), tailored for Aj to reduce its

parallel cost maxi∈[1,n]CAj (Fi). Different from V2H, in

addition to balancing computational cost and commu-

nication cost, MV2H also aims to reduce the replication

ratio fc of the output composite partition.

Like V2H, MV2H also has three stages, namely, VAs-
sign, VMerge and MAssign. Below we focus on VAssign;

the other two are similar to their counterparts in V2H.

Balancing computational cost. Like V2H, the first

stage VAssign of MV2H aims to balance the computa-

tional cost of ChAj (Fi) for all algorithms A1, . . . ,Ak.

VAssign. This phase iteratively assigns v-cut nodes to

each hybrid partitions in HP(n, k); it ensures that no

fragment F ji exceeds the balancing constraints imposed

by ChAj (Fi). Like the VAssign phase of ME2H, it first

identifies a subgraph in Fi as Ci, such that ChAj (Ci)

is underloaded for all j ∈ [1, k]. Recall the additional

objective of reducing the replication ratio fc. The over-

lapped area Ci (i ∈ [1, n]) is initialized to be as large as

possible. This is because the larger |Ci| is, the smaller

fc is, as long as Ci does not violate the balancing con-

straints and is shared by all k partitions. Then it iter-

atively processes candidates (v,Evi ) left in Fi \Ci. Ob-

serve that (v,Evi ) is in Fi \ Ci if it exceeds the budget
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of some algorithm Aj . VAssign decides which fragment

in HPj(n) to allocate (v,Evi ) with the same procedure

GetDest of ME2H. That is, it assigns these candidates in

such a way that the replication of (v,Evi ) is minimized.

This reduces the composite replication factor fc.

6.4 Parallelization

Algorithms ME2H and MV2H are parallelized along the

same lines as E2H and V2H (Section 5.3). Indeed, the

only additional procedures are Init and GetDest, which

are all local procedures; that is, they can be processed

within a fragment Fi located on a single machine with-

out communication with fragments on other machines.

We denote by ParME2H and ParMV2H the paral-

lelized algorithms ME2H and MV2H, respectively.

7 Experimental Study

Using real-life and synthetic graphs, we conducted six

sets of experiments to evaluate our application-driven

partitioners and their composite extensions for their (1)

effectiveness (Exp-1 & Exp-2), (2) efficiency (Exp-3 &

Exp-4), (3) parallel scalability (Exp-5) and (4) the ac-

curacy and efficiency of cost function learning (Exp-6).

Experimental setting. We start with the settings.

Datasets. We used three real-life graphs: (a) liveJournal
[2], a social network with 4.8 million entities and 68

million relationships (edges); (b) Twitter [4], a social

network with 42 million users and 1.5 billion links; and

(c) UKWeb [5], a large crawled Web graph with 106

million pages and 3.7 billion hyperlinks.

We also generated synthetic graphs with up to 500

million vertices and 6 billion edges, to test scalability.

Partitioners. We implemented our parallel hybrid par-

titioners ParE2H and ParV2H, as well as their compos-

ite extensions ParME2H and ParMV2H for mixed work-

loads, all in C++ and compared them with the fol-

lowing: (1) xtraPuLP [46], a state-of-the-art edge-cut

partitioner; (2) Fennel [47], a streaming partitioner for

edge-cut; (3) Grid [28], a hash partitioner for vertex-cut

with provable bound on vertex replication; (4) NE [53],

a state-of-the-art vertex-cut heuristic; (5) Ginger [16],

a hybrid partitioner that revises Fennel; we evaluated

Ginger to compare improvements over Fennel; and (6)

TopoX [35], a hybrid partitioner that not only splits

high-degree vertices, but also merges neighboring low-

degree vertices into super nodes to avoid splitting.

To get a fair comparison when evaluating the ef-

fectiveness and efficiency of the baselines, we equipped

Table 2: Hybrid partitioners notations

ParE2H, ParV2H parallel hybrid partitioners
ParME2H, ParMV2H composite parallel hybrid par.
ParHP ParE2H and ParV2H
ParMHP ParME2H and ParMV2H
HxtraPuLP, MxtrPuLP hybrid par. based on xtraPuLP
HFennel, MFennl hybrid par. based on Fennel
HGrid, MGrid hybrid par. based on Grid
HNE, MNE hybrid par. based on NE

each edge-cut (resp. vertex-cut) partitioner above with

ParE2H (resp. ParV2H) as a post-partitioning adjust-

ment process. Denote by HxtraPuLP, HFennel, HGrid
and HNE the hybrid partitioners derived in such ways,

e.g., HxtraPuLP first applies xtraPuLP to get an initial

edge-cut HPE(n), and then invokes ParE2H to extend

HPE(n) to a hybrid partition. We do not extend Ginger
and TopoX as they already produce hybrid partitions.

Similarly, for parallel composite hybrid partitioners

ParME2H (resp. ParMV2H), we denote by MxtraPuLP
and MFennel (resp. MGrid a MNE) the variants derived

from xtraPuLP and Fennel (resp. Grid and NE).

Notation. We summarize our hybrid partitioners in Ta-

ble 2. For simplicity, we denote by ParMHP the compos-

ite hybrid partitioners ParME2H and ParMV2H; and by

ParHP the partitioners ParE2H and ParV2H. Note that

in Table 2, a partitioner that starts with letter “H”

is a parallel hybrid partitioner derived from an exist-

ing baseline, while a partitioner that starts with “M”

is a composite variant. For example, HxtraPuLP and

MxtraPuLP are the parallel hybrid partitioner and its

composite variant derived from xtraPuLP, respectively.

Graph algorithms. We used five graph algorithms in our

experiments, including CN (Common Neighbor), TC
(Triangle Counting), WCC (Weak Connected Compo-

nents), PR (PageRank) and SSSP (Single Source Short-

est Path). For hybrid partitions, we used their “partition-

transparent” algorithms from [20,21], i.e., algorithms

that work correctly under different partitions, edge-

cut, vertex-cut and hybrid partitions. For edge-cut and

vertex-cut partitions, we implemented (non-transparent)

versions for these algorithms with our best effort. The

batch of algorithms is fixed for mixed workloads as

{CN,TC,WCC,PR,SSSP}, unless otherwise stated.

ML learning setting. To train the cost models, we ran

each algorithm on 10 graphs as described in Section 4.

The number of training (resp. testing) samples for CN,

TC, WCC, SSSP and PR is 80,000 (resp. 20,000), which

are sampled from the algorithms’ running log. Regres-

sion models are constructed by Pytorch [42] and trained

on a server with one NVIDIA Tesla V100 GPU (16GB).

The learned cost functions are reported in Table 5, and

are used as the inputs for our (composite) partitioners.
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Table 3: Partition metrics of Twitter (n = 96)

Partitioner fv fe λe λv λCN

xtraPuLP 11 1.7 11.1 0.1 7.2
HxtraPuLP 10.6 1.6 8.6 0.5 1.4
Fennel 13 1.8 17.2 0.1 13.7
HFennel 14.3 1.7 5.2 0.7 1.3
Grid 9.8 1 0.9 0.6 3.2
HGrid 11.1 1.3 1.2 0.5 1.3
NE 2.7 1 0.0004 8.0 3.6
HNE 3.6 1.2 0.3 10.9 1.4
Ginger 8.6 1 0.03 7.9 2.9
TopoX 6.0 1 1.37 7.0 2.2

The experiments were conducted on GRAPE [22], an

open source parallel system [6] based on graph-centric

programming, deployed on 32 machines in an HPC clus-

ter. Each machine is equipped with 12 cores powered

by Xeon E5-2692V2 2.2GHz, 128GB RAM, and 10Gbps

NIC. In the experiments, each fragment was processed

by one worker running on an exclusive core. We used

up to 128 workers for experiment. The workers are scat-

tered evenly across the 32 machines. All experiments

were repeated five times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Effectiveness of application-driven parti-

tioners. We first tested how application-driven hybrid

partitions speed up graph algorithms’ execution. Vary-

ing the partition number n from 16 to 128, we first

evaluated the execution time of graph algorithms CN,

TC, WCC, PR and SSSP under edge-cut, vertex-cut and

their hybrid refinements. This is to test the effectiveness

of hybrid partitioners tailored for a single graph algo-

rithm, including ParE2H and ParV2H. The results are

reported in Figures 9(a)-9(j). We find the followings.

(1) CN. Figures 9(a) and 9(b) report the execution time

of CN on liveJournal and Twitter, respectively. The re-

sults on UKWeb are consistent (hence not shown). Due

to memory limit, we filtered common neighbors with

incoming degree above a threshold θ, i.e., a common

neighbor w is excluded from the result if d+G(w) > θ.

This is a common practice in applications of CN, since

common neighbors with lower degrees usually provide

more useful information. We set θ = 300 for Twitter
and θ =∞ for liveJournal. On Twitter, with n = 16, CN
reports OOM (out of memory), since it requires a large

amount of memory to store large intermediate results

during the process. The results tell us the following.

(a) By extending edge-cut of xtraPuLP and Fennel to hy-

brid partition, ParE2H improves the execution of CN by

4.5 (resp. 18.3) times on average, up to 22.5 times. This

is because the edge-cut partitions do not fit the cost

pattern of CN due to workload imbalance, while ParE2H
balances computation load. For example, as shown in

Table 3, on Twitter with n = 96, the balance factor λCN
for CN of xtraPuLP and Fennel is 7.2 and 13.7, respec-

tively. Equipped with ParE2H, the balance factor λCN
of HxtraPuLP and HFennel drops to 1.4 and 1.3, respec-

tively. As a consequence of its large λCN, CN of Fennel
ran out-of-memory when running over Twitter.

(b) ParV2H improves CN on vertex-cut of Grid (resp.

NE) by 4.3 (resp. 2.9) times on average, up to 7.4 (resp.

5.9) times by balancing the computation workload of

CN, as ParE2H. Observe that the speedup ratio over

Grid is greater than over NE, because CN incurs com-

munication cost and the locality of Grid is not as good

as that of NE, i.e., Grid has a larger fv than NE (see

Table 3). By balancing workload and reducing commu-

nication, ParV2H improves Grid better than NE.

(c) Ginger is also a hybrid partitioner based on Fennel [16].

Compared with HFennel, it has smaller fv, fe, λe, but

a larger λCN (see Table 3). As a result, HFennel beats

Ginger on CN by 2.5 times on average, up to 3.3 times.

(d) TopoX is another hybrid partitioner that integrates

Ginger with topology refactorization. For CN, HFennel
beats TopoX by 1.9 times on average, up to 2.8 times.

This is in accord with their λCN, e.g., on Twitter when

n = 96, the λCN of HFennel is only 60% of that of TopoX.

These verify the benefit of application-driven par-

titioning, and the need for revising the conventional

notions of balance factor and replication ratio.

(2) TC. Figures 9(c) and 9(d) report the execution time

of TC over liveJournal and Twitter, respectively. The

results over UKWeb are consistent (not shown).

(a) ParE2H improves TC by balancing workload as for

CN. On Twitter with n = 96, it improves TC over Fennel
and xtraPuLP by 22 and 15 times, respectively. Further,

TC over HFennel is 3.2 and 2.5 times faster than over

Ginger and TopoX, respectively.

(b) ParV2H improves TC over the vertex-cut partition of

Grid and NE by 2.3 and 1.8 times on average, up to 2.6

and 2.2 times, respectively. Here the speedup ratio of

ParV2H is less than that of ParE2H, since (i) by cutting

vertices, Grid and NE get better workload balance for

TC than xtraPuLP and Fennel; and (ii) TC ships more

data over vertex-cut than over edge-cut.

(3) WCC. As shown in Figures 9(e) and 9(f), on average

ParE2H improves WCC by 3.9 and 2.0 times over Twitter
and UKWeb, respectively. By hWCC, the edge size domi-

nates the computational cost of WCC. ParE2H improves
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Fig. 9: Performance Evaluation of Application-driven Partitioners

Table 4: Running time of algorithm batch under ParMHP partitions (seconds, using Twitter, n = 96)

App. MxtraPuLP xtraPuLP X MFennel Fennel X MGrid Grid X MNE NE X Ginger TopoX
CN 130 642 4.9 132 > 4000 > 30 155 522 3.4 120 319 2.7 235 170
TC 118 1706 14 139 3027 22 47.9 74.6 1.6 79.0 182 2.3 431 329
WCC 4.92 15.7 3.2 7.15 43.7 6.1 10.9 17.4 1.6 2.64 2.87 1.1 5.72 4.61
PR 15.7 54.5 3.5 17.9 114 6.4 12.3 29.8 2.4 7.91 8.92 1.1 15.5 14.7

SSSP 86.9 113.6 1.3 113.5 154.4 1.4 39.4 41.2 1.1 30.7 32.9 1.2 40.0 34.4
B 325.5 3022 9.3 410 > 7339 > 18 265.5 685 2.6 240 546 2.3 727 553

B: algorithm batch {CN,TC,WCC,PR, SSSP}, X: speedup ratio

WCC by balancing the edge size based on hWCC, while

xtraPuLP and Fennel suffer from edge imbalance. Note

that NE and HNE perform comparably on WCC, since

NE also balances edge size; similarly for Ginger. Com-

pared with ParE2H, ParV2H has smaller improvement

on WCC since (a) vertex-cut partitions of Grid and NE
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Fig. 10: Performance Evaluation of Composite

Application-driven Partitioners (Twitter, n = 96)

have good edge balance (see Table 3); and (b) the com-

munication overhead of WCC is quite small. The results

on liveJournal are consistent (not shown).

(4) PR. As shown in Figures 9(g) and 9(h), on av-

erage, ParE2H improves PR by 4.6 and 2.3 times on

Twitter and UKWeb, respectively. In contrast to WCC,

ParV2H improves PR over vertex-cut of Grid by 2.7 and

2.1 times, respectively. This is because PR incurs larger

communication cost than WCC, and ParV2H helps re-

duce this cost by VMerge and MAssign (see Appendix).

The results on liveJournal are consistent (not shown).

(5) SSSP. Figures 9(i) and 9(j) show the performance of

SSSP over Twitter and UKWeb, respectively. As we can

see, (a) SSSP works the best under application-driven

partitions; (b) the performance gap is smaller compared

to the previous cases. On average, ParE2H and ParV2H
improve SSSP by 45% and 12%, respectively. This is

because (i) the workloads of SSSP under edge-cut by

xtraPuLP and vertex-cut by NE are already balanced;

thus not much can be improved via hybrid partitions;

and (ii) like WCC, the communication overhead is small.

The results remain consistent on high-diameter graphs.

For instance, over traffic [3], a US road network with

23 million vertices, with n = 96, ParE2H and ParV2H
speed up SSSP by 13.4% on average (not shown).

Exp-2: Effectiveness of composite partitioners.

Fixing the batch of algorithms as {CN,TC,WCC,PR,

SSSP} and n = 96, we next tested the effectiveness

of our ParMHP partitioners, including ParME2H and

ParMV2H. Table 4 and Figure 10(a) report the com-

bined running time of CN, TC, WCC, PR and SSSP over

different composite ParMHP partitions, against the re-

spective ParHP ones. The results tell us the following.

(a) The execution time of the algorithms over composite

hybrid partitions of ParME2H (resp. ParMV2H) is com-

parable to those of ParE2H (resp. ParV2H). Compared

with their application-driven counterparts, it takes only

0.6%, 3.4%, 4.4% and 8.2% more time to run all five al-

gorithms over MxtraPuLP, MFennel, MGrid and MNE,

respectively (see Figure 10(a)). That is, composite par-

titions of ParME2H and ParMV2H do not come at the

cost of degradation of the effectiveness of application-

driven partitions, while they take much less partitioning

time and storage (see more details in Exp-4).

(b) It takes much less time to run all five algorithms

on our refined composite hybrid partitions than any

other baseline. The total time over composite hybrid

partitions ranges from 240s of HNE to 410s of HFennel.
In contrast, the total time over NE and Fennel is more

than 546s, which is at least 1.3 times slower.

Exp-3: Efficiency of application-driven partition-

ers. We next evaluated the efficiency of partitioners

ParE2H and ParV2H. Varying the partition number n

from 16 to 128, we evaluated the time taken by ParE2H
(resp. ParV2H) in hybrid partitioners HxtraPuLP and

HFennel (resp. HGrid and HNE). We find the following.

(1) As shown in Figure 9(k), for TC on Twitter (n =

128), ParE2H takes 19.6s and 60.3s, i.e., 1.9% and 12.9%

of the total partitioning time of HxtraPuLP and HFennel,
respectively. On average, ParE2H takes 28.6% of the to-

tal partitioning time to extend edge-cut to a hybrid par-

tition that fits the cost pattern of algorithms. The price

is small compared to the speedup by ParE2H (by 11.4

times on average, up to 22.5 times; Exp-1). The results

are consistent for the other algorithms and graphs.

(2) With a smaller partition number, the hybrid parti-

tioner ParE2H (resp. ParV2H) takes more time to refine

an edge-cut (resp. vertex-cut) to a hybrid-cut. This is

because more adjustment operations are needed for a

partition when the partition number decreases.

(3) The results of ParV2H are similar. On Twitter with

n = 96, ParV2H takes 5.9s (resp. 6.6s) to extend a

vertex-cut of NE (resp. Grid) to a hybrid partition. On

all 3 datasets, ParV2H takes 0.2% and 19.5% of the to-

tal partitioning time in HNE and HGrid, respectively,

while improving the performance of the algorithms by

3.6 times on average, up to 7.4 times (see Exp-1).

Exp-4: Efficiency of composite partitioners. We

next evaluated the time and space efficiency of our com-

posite application-driven partitioners ParMHP, includ-

ing ParME2H and ParMV2H. We find the followings.

Time Efficiency of ParMHP. Fixing n = 96 and the

batch of algorithms as {CN,TC,WCC,SSSP,PR}, we

evaluated the time take by our composite hybrid par-
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Table 5: Accuracy and training time of cost models

Computational Cost Function Communication Cost Function
hA MSRE time(s) gA MSRE time(s)

CN
9.23× 10−5d+L(v)d+G(v) + 1.04×
10−6d+L(v) + 1.02× 10−6 0.023 46.2 5.57× 10−5Dd−G 0.028 48.6

TC
1.8 × 10−3dL(v) + 1.7 ×
10−7dL(v)dG(v)

0.11 48.3 8.42× 10−5dG(v)r(v)I(v) 0.034 47.4

WCC 6.53× 10−6dL(v) + 3.46× 10−5 0.021 49.8 7.51× 10−5(1.98r(v)− 0.97) 0.013 47.0

PR 4.88× 10−5d+L(v) + 4× 10−4 0.017 43.6 6.60× 10−4r(v) + 1.1× 10−4 0.011 46.9

SSSP 6.74× 10−4d−L (v) + 1.66× 10−4 0.054 44.6 1.30× 10−4r(v) + 4.6× 10−5 0.026 45.2

titioners ParMHP. We find that composite partitioner

ParMHP saves partitioning time, compared with parti-

tioning via application-driven hybrid partitioners ParHP
for each algorithm separately. As shown in Fig. 10(b),

the ParMHP partitioners are 109%, 104%, 19% and 111%

faster than the ParHP counterparts for HxtraPuLP,

HFennel, HGrid and HNE, respectively.

Space efficiency of ParMHP. Fixing n = 96 and graph

algorithms as {CN,TC,WCC,SSSP,PR}, we tested the

space cost of our composite partitions generated by

ParME2H and ParMV2H. We find the followings.

(1) Composite partitions save space cost. As opposed to

ParHP that stores five different hybrid partitions sepa-

rately, the composite partitions produced by ParMHP
take 55%, 51%, 61% and 67% less space than HxtraPuLP,

HFennel, HGrid, and HNE, respectively.

(2) The initial partitions of xtraPuLP, Fennel, Grid and

NE are space-efficient, since one partition fits all five

applications. The composite partitions of ParMHP take

15%, 17%, 57% and 58% extra space than the initial

static partitions for xtraPuLP, Fennel, Grid and NE, re-

spectively. In exchange for the small extra space cost,

ParME2H and ParMV2H improve the performance the

algorithm batch {CN,TC,WCC,SSSP,PR} by 7.5 times

on average, up to 18 times (see Exp-2).

Exp-5: Scalability. Fixing n = 96, we varied the size

of synthetic graphs |G| = (|V |, |E|) from (100M, 1.2B)

to (500M, 6B) to test the scalability of ParE2H, ParV2H,

and the composite variants ParME2H and ParMV2H.

(1) For ParE2H and ParV2H, as shown in Fig. 9(l) for

CN, we find that (a) they both scale well: when graph G

grows, ParE2H (resp. ParV2H) takes from 12.2s to 59.7s

(resp. from 5.7s to 32.5s); (b) the balance factor of an

input partition has impact on the runtime of ParE2H
and ParV2H, e.g., HFennel takes ParE2H the longest in

all cases since Fennel has the largest λCN, and more

edges are moved to balance workload; and (c) the re-

sults are consistent for TC, WCC and PR. Note that the

point of ParV2H in HNE is missing for 5|G| in Fig. 9(l),

since NE ran out-of-memory there.

(2) Fixing the batch of algorithms as {CN,TC,WCC,
SSSP,PR}, the results of ParME2H and ParMV2H are

quite similar to those of ParE2H and ParV2H (not shown).

(a) ParME2H and ParMV2H scale well: they take at

most 92s and 35s, respectively, when |G| is up to 6.6 bil-

lion. (b) Partitioning for all five applications incurs only

22% and 17% extra time than partitioning for CN alone,

on average. (c) Skewed input partition leads to longer

partitioning time for both ParME2H and ParMV2H. That

is, the scalability of ParME2H and ParMV2H is consis-

tent with their non-composite variants.

Exp-6: Learning accuracy and efficiency. Table 5

reports the cost functions hA and gA, prediction accu-

racy and training time of each cost model. Note that

the coefficients of hA and gA in Table 5 can be related

to system characteristics of our experiment setting, e.g.,

inter-process message latency and bandwidths. Nonethe-

less, the metric variables involved in the cost models

and important factors are robust to different systems.

We adopt MSRE as the accuracy metric. The smaller

MSRE of a model is, the more accurate the model is.

As shown in Table 5, the MSRE of regression model

for CN, WCC, PR and SSSP is small, which shows that

the metrics in X are adequate for their cost estima-

tion. However, the accuracy of hTC is relatively poorer

since only neighbors with smaller degrees are checked.

This optimization deteriorates hTC since node degrees

are not informative enough for cost prediction.

Remark. It is worth mentioning that small datasets like

liveJournal can be processed directly without partition-

ing by GPU analytical runtime like Gunrock [49]. In

the same settings of Exp-6 and using the provided im-

plementations [1], Gunrock takes 221.4s, 38.9s, 148.4s

and 22.3s for applications TC, WCC, SSSP and PR1 to

converge over liveJournal. Datasets Twitter and UKWeb
are too large to fit into the 16GB GPU memory, and

hence cannot be processed by Gunrock. Observe that

1 We do not include the result of CN since there exists no
official implementation for CN with Gunrock.
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the learning cost in Exp-6 is higher than directly run-

ning WCC and PR with Gunrock (47.0s and 46.9s vs.

38.9s and 22.3s). This said, we remark the following.

(1) Cost model learning is conducted offline. Once the

cost model for a given application is obtained, it can

be readily applied over other graphs, small or large.

Compared with the performance gains it brings (see

Exp-1), the model learning cost is trivial.

(2) Graph partitioning is a must to process large-scale

graphs. Our application-driven approach learns a cost

model for a given application A and speeds up the par-

allel execution of A over large-scale graphs like Twitter
and UKWeb. Without partitioning, Gunrock is hindered

by the memory limitation of GPU, and hence fails to

handle datasets Twitter and UKWeb.

Summary. We find the following. (1) Hybrid parti-

tioner ParE2H (resp. ParV2H) speeds up CN, TC, WCC,

PR and SSSP by 11.4, 7.3, 3.0, 3.4 and 1.5 times (resp.

3.6, 2.0, 1.3, 1.8 and 1.2 times) on average, respec-

tively, up to 22.5, 21.2, 7.5, 6.9 and 1.8 times when

varying n form 16 to 128. These verify the effective-

ness of application-driven partitioners. (2) ParE2H and

ParV2H are efficient. In the same setting as (1), on av-

erage ParE2H (resp. ParV2H) takes 11.5% (resp. 11.1%)

of the total partitioning time of Twitter. (3) The par-

titioners scale well. On graphs with 500M vertices and

6B edges, algorithm ParE2H (resp. ParV2H) takes 59.7s

(resp. 32.5s) to extends edge-cut (resp. vertex-cut) to

a hybrid partition, with 96 workers. (4) The composite

extensions of ParE2H and ParV2H are effective. Fixing

the batch of algorithms as {CN,TC,WCC,SSSP,PR},
composite partitioners ParME2H and ParMV2H retain

comparable performance for each algorithm in the batch,

i.e., the gap is less than 3.4% and 8.2%, compared

with their performance over partitions of ParE2H and

ParV2Hn, respectively. ParME2H (resp. ParMV2H) also

speeds up the partitioning process by at least 104%

(resp. 19%), while saving up to 55% (resp. 67%) space.

(5) The learned functions accurately estimate computa-

tional and communication costs. The MSRE of hA and

gA is below 0.11 for all the algorithms tested. Moreover,

the training time is small, e.g., at most 47s for WCC.

8 Conclusion

We have proposed an application-driven partitioning

strategy that, as opposed to conventional partitioners,

aims to reduce the parallel computation and communi-

cation costs of graph algorithms. For a given graph al-

gorithm A, we have shown how to learn its cost model,

and developed partitioners that refine an edge-cut or

vertex-cut partition to fit the cost patterns of A and

speed up parallel execution of A. We have also extended

the strategy to support multiple graph algorithms on

the same partition at the same time, such that the par-

tition fits the cost patterns of each and every of the

algorithms. Our experimental study has verified that

application-driven partitioning is effective and efficient.

This work deals with static graph partitioning. One

topic for future work is to develop incremental algo-

rithm that maintains application-driven partitions in

response to updates to graphs. Another topic is to adapt

the application-driven partitioning strategy to multi-

core parallelism, a setting in which the communication

cost has different characteristics.

Appendix: More experimental study
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Fig. 11: Phase decomposition of ParE2H and ParV2H

Impact of different phases. We tested the phases of

ParE2H and ParV2H for their effectiveness. Denote by

ParE2Hk (resp. ParV2Hk) (1 ≤ k ≤ 3) the partitioner

with the first k phases of ParE2H (resp. ParV2H). We

assessed the speedup gain of the k-th phase of ParE2H
by comparing ParE2Hk−1 and ParE2Hk; similarly for

ParV2H. Figures 11(a) and 11(b) report the normalized

speedup ratio over Twitter with n = 96 for HxtraPuLP
and HGrid, respectively. The results over liveJournal and

UKWeb and other hybrid partitioners are consistent

(not shown). We find the following.

(1) ParE2H. (a) Phase EMigrate accounts for 67.5%,

26.3%, 83.5%, 74.4% and 89.2% of the total speedup

of CN, TC, WCC, PR and SSSP, respectively. (b) ESplit
alone improves CN and TC by 1.1 and 2.7 times, respec-

tively. For WCC, PR and SSSP, its impact is smaller,

since CN and TC are more sensitive to workload im-

balance. The impact of ESplit on CN over Twitter is

smaller, since we filtered large-degree vertices for CN.

Without filtering, ESplit improves CN over liveJournal
by 1.9 times. (c) MAssign accounts for another 22.3%,

30.1%, 13.8%, 21.9% and 6.3% of the speedup of CN,

TC, WCC, PR and SSSP, respectively.
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(2) ParV2H. (a) Phase VMigrate contributes the most to

the speedup of CN, TC, WCC, PR and SSSP, which ac-

count for about 71.2%, 81.2%, 87.1%, 78.2% and 96.7%

of the total speedup, respectively. (b) By merging v-

cut nodes into e-cut nodes, VMerge contributes 16.5%,

5.8%, 2.6%, 7.1% and 1.2% of the total speedup for the

five algorithms tested, respectively. (c) Phase MAssign
contributes 9.9% on average.
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