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Abstract
Branching bisimilarity of normed Basic Process Algebra (nBPA) was claimed to be EXPTIME-
hard in previous papers without any explicit proof. Recently it has been pointed out by Petr
Jančar that the claim lacked proper justification. In this paper, we develop a new complete proof
for the EXPTIME-hardness of branching bisimilarity of nBPA. We also prove that the associated
regularity problem of nBPA is PSPACE-hard. This improves previous P-hard result.
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1 Introduction

Equivalence checking is a core issue of verification. It asks whether two systems are related
by a specific equivalence. Baeten, Bergstra and Klop proved a remarkable result that strong
bisimilarity between context free grammars without empty production is decidable [1]. This
result was surprising because it seems to contradict the well-known fact that language
equivalence between these grammars is undecidable. Context free grammars without empty
production can be regarded as normed Basic Process Algebra (nBPA) processes. Moreover,
their work extended the decidability result of bisimulation equivalence from finite state
systems to infinite state systems. Extensive work has appeared since their inspiring paper,
dealing with decidability or complexity issues of checking bisimulation equivalences on various
infinite state systems (see a survey [11] and an updated overview [18] on this topic).

The decidability of weak bisimilarity over BPA is one of the central open problems.
Although this problem is generally believed to be decidable, so far there is no effective
method to handle the difficulties caused by arbitrary silent transitions. We do not know if the
weak bisimilarity is decidable or not even for normed BPA. Mayr showed the weak bisimilarity
and regularity problem of general BPA are EXPTIME-hard [13]. The regularity problem asks
if a BPA process is bisimilar to some (unspecific) finite state process. It is noteworthy that
Kiefer showed that the strong bisimilarity problem is already EXPTIME-hard by constructing
a reduction from the Hit-or-Run game [10].

The normed case seems easier than the general one. Fu proved that branching bisimilarity,
a standard refinement of weak bisimilarity, is decidable on nBPA [5]. He also extended the
decidability result to the associated regularity problem. Recently Czerwiński and Jančar
improved both decidability results to NEXPTIME [4]. He and Huang further showed the
branching bisimilarity of nBPA can actually be decided in EXPTIME [6]. However, for
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16:2 Two Lower Bounds for BPA

the weak bisimilarity of nBPA, there is no upper bound. Stříbrná first gave an NP-hard
result by reducing from the Knapsack Problem [20]; Srba then improved it to PSPACE-
hard by reducing from QSAT (Quantified SAT) [14]; and the best known lower bound is
EXPTIME-hard given by Mayr by a reduction from the acceptance problem of alternating
linear-bounded automaton (ALBA) [13]. A natural question is whether some of these lower
bounds proofs hold for the branching bisimilarity of nBPA.

The branching bisimilarity of nBPA was claimed to be EXPTIME-hard [5, 6]. Researchers
believed that some modifications on Mayr’s reduction [13] would transform the weak bisim-
ilarity version reduction into a branching bisimilarity version reduction. However recently
Jančar reminded that the claim lacked proper justification [7]. A typical modification of
adding silent transition loop to make state bisimilar dose not work. Unfortunately for the
EXPTIME-hardness, almost any small modification is not a proper reduction from ALBA
to the branching bisimilarity. According to the EXPTIME algorithm [6], we know that the
main exponential factor is to do with the fact there are exponentially many redundant sets.
The redundant set of a process consists of redundant variables that, when placed as a prefix
to the process, gives rise to an equivalent process. In Mayr’s construction [13], the number
of redundant sets is only polynomial. So that the algorithm might perform better under
the input of particular constructions. The above modification method does not even work
for the NP-hard [20] or PSPACE-hard [14] lower bound construction. The current lower
bound of the branching bisimilarity of nBPA is merely P-hard [2]. The same happens to the
regularity checking problem of nBPA. The only known lower bound for branching regularity
is P-hard [2, 17]. Comparatively, the weak regularity problem is PSPACE-hard [14, 17].

Weak Bisimilarity Branching Bisimilarity

Equivalence EXPTIME-hard [13] ∈ EXPTIME [6]
EXPTIME-hard

Regularity PSPACE-hard [14, 17] ∈ NEXPTIME [4]
PSPACE-hard

Figure 1 Equivalence checking and regularity checking of nBPA

Our Contribution. In this paper we study the lower bounds of the branching bisimilarity
and branching regularity problems of normed BPA. The EXPTIME algorithm [6] hints that
exponentially many redundant sets lead to exponential running time. We first introduce a
novel way to design a structure with exponentially many of redundant sets. Then we use
this structure to implement a binary counter and construct a reduction from the Hit-or-Run
game [10]. This confirms the EXPTIME-hard lower bound for the branching bisimilarity of
nBPA. We also present another reduction from QSAT to branching bisimilarity of nBPA by
this structure. Combining with the Srba’s reduction from equivalence checking to regularity
checking [17], we get a PSPACE-hard lower bound for the branching regularity of nBPA.
Fig. 1 summarizes the state of the art in equivalence checking and regularity checking with
respect to weak and branching bisimilarity of nBPA. The results proved in this paper are
marked in boldface.

Organization. Section 2 introduces some basic notions. Section 3 introduces the structure
with exponentially many redundant sets. Section 4 proves the EXPTIME-hardness of the
equivalence checking. Section 5 proves the PSPACE-hard lower bound for the regularity
checking. Section 6 concludes with some remarks.
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2 Preliminaries

A BPA system Γ is a tuple (V,A,∆), where V is a finite set of variables ranged over by
A,B,C, . . . ,X, Y, Z; A is a finite set of actions ranged over by λ; and ∆ is a finite set of
transition rules. We use a specific letter τ to denote internal action and use a, b, c, d, e, f, g
to range over visible actions from the set A\{τ}. A process defined in Γ is a word w ∈ V∗.
Processes is denoted by α, β, γ, δ, σ. The nil process is denoted by a special symbol ε. We
will use = for the syntactical equality, and εα = αε = α by convention. A rule in ∆ is in
the form X

λ−→ α, where α is a BPA process. The operational semantics of the processes is
defined by the following rules.

X
λ−→ α ∈ ∆
X

λ−→ α

α
λ−→ α′

αβ
λ−→ α′β

We will write α−→ β for α τ−→ β and −→∗ for the reflexive transitive closure of −→ . A
BPA process α is normed if ∃.λ1, . . . , λk.α

λ1−→ . . .
λk−→ ε. A BPA system is normed if every

variable is normed. We write nBPA for normed BPA. We denote by V0 the set of variables
in V that can reach ε via internal actions alone. For a process α, we use Var(α) to represent
the set of variables occurring in α; and we use |α| to denote the size of α, which is defined to
be the length of the word α. The size of each rule X λ−→ α is defined to be |α|+ 2. The size
of ∆ is the sum of the size of all rules. The size of a BPA system Γ = (V,A,∆) is defined by
|Γ| = |V|+ |A|+ |∆|.

Bisimulation Equivalence. A symmetric relation R on BPA processes is a branching bisim-
ulation if whenever αRβ and α λ−→ α′ then one of the statements is valid:

λ = τ and α′Rβ;
β−→∗ β′′ λ−→ β′ for some β′ and β′′ such that αRβ′′ and α′Rβ′.

If we replace the above second item by the following one
β−→∗ γ1

λ−→ γ2−→∗ β′ for some γ1, γ2 and β′ such that α′Rβ′
then we get the definition of weak bisimulation. The largest branching bisimulation, denoted
by ', is branching bisimilarity; and the largest weak bisimulation, denoted by ≈, is weak
bisimilarity. It is obvious that both ' and ≈ are equivalences and are congruences with
respect to the composition operator in BPA model. Branching bisimilarity is a refinement
of weak bisimilarity, i.e. '⊆≈. We say α and β are branching bisimilar (weak bisimilar)
if α ' β (α ≈ β). Both branching and weak bisimilarity satisfy a standard property of
observational equivalence stated as follows.

I Lemma (Computation Lemma).
If α−→ α1−→ . . . −→ αk and α ' αk, then for all 1 ≤ i ≤ k we have α ' αi.
If α−→ α1−→ . . . −→ αk and α ≈ αk, then for all 1 ≤ i ≤ k we have α ≈ αi.

Bisimulation Game. Bisimulation relation has a standard game characterization [21, 19]
which is very useful for studying the lower bounds. A branching (resp. weak) bisimulation
game is a 2-player game played by Attacker and Defender. A configuration of the game
is pair of processes (α0, α1). The game is played in rounds. Each round has 3 steps: (1)
Attacker chooses a move; (2) Defender responds to match Attacker’s move; (3) Attacker
sets the next round configuration according to Defender’s response. One round of branching
bisimulation game is defined as follows, assuming (β0, β1) is the configuration of the current
round.
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16:4 Two Lower Bounds for BPA

1. Attacker picks up i ∈ {0, 1}, λ, and β′i to play βi
λ−→ β′i.

2. Defender responds with β1−i−→∗ β′′1−i
λ−→ β′1−i for some β′′1−i and β′1−i. Defender can

also play an empty response when λ = τ and we stipulate that β′1−i = β1−i if Defender
plays an empty response.

3. Attacker sets (β′i, β′1−i) as the configuration of the next round if Defender plays an empty
response; otherwise Attacker sets either (β′i, β′1−i) or (βi, β′′1−i) as the configuration of the
next round.

A round of weak bisimulation game differs from the above one in the last 2 steps.
2. Defender responds with β1−i−→∗

λ−→ −→∗ β′1−i for some β′1−i; Defender can also play
an empty response when λ = τ and we stipulate that β′1−i = β1−i in that case.

3. Attacker sets the configuration of the next round to be (β′i, β′1−i).

If one player gets stuck, the other one wins. If the game goes on for infinitely many
rounds, then Defender wins. We say a player has a winning strategy, w.s. for short, if he
or she can win no matter how the other one plays. Defender has a w.s. in the branching
bisimulation game (α, β) iff α ' β; Defender has a w.s. in the weak bisimulation game (α, β)
iff α ≈ β.

Redundant Set. The concept of redundant set was first introduced by Fu [5] to show the
decidability of branching bisimilarity of nBPA. It also plays an important role in the branching
bisimilarity checking algorithms of nBPA [4, 6]. Given a nBPA system Γ = (V,A,∆), the
redundant set of α, notation Rd(α), is the set of variables defined by

Rd(α) = {X ∈ V | Xα ' α} (1)

It is necessary that Rd(α) ⊆ V0. Note that not every R ⊆ V0 can be a redundant set. The
problem whether there exists some γ such that R = Rd(γ) for a given R is as hard as the
branching bisimilarity checking problem [6].

Main Result. A process α is a finite-state process if the reachable set {β | α λ1−→ α1
λ2−→ . . .

λk−→ αk = β and k ∈ N} is finite. Given an equivalence relation �, we say that a BPA process
α is regular with respect to �, i.e. �-reg, if α � β for some finite-state process β. Note
that α and β can be defined in different systems.

In this paper we are interested in the equivalence checking and regularity checking
problems with respect to � on nBPA. They are defined as follows, assuming � is an
equivalence relation.

Equivalence Checking with respect to �
Instance: A nBPA system (V,A,∆) and two processes α and β.
Question: α � β ?

Regularity Checking with respect to �
Instance: A nBPA system (V,A,∆) and a process α.
Question: α �-reg?

The following theorem states the two lower bounds proved in this paper.

I Theorem 1. On nBPA, for every equivalence � such that '⊆�⊆≈
1. equivalence checking with respect to � is EXPTIME-hard; and
2. regularity checking with respect to � is PSPACE-hard.
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3 Redundant Sets Construction

According to the branching bisimilarity checking algorithms of nBPA [4, 6], we know that the
main exponential factor is exponentially many redundant sets. However there is no obvious
evidence for the existence of such large number of redundant sets. Most nBPA systems in
the literature have only polynomial ones. In this section, we design a scalable structure
with exponentially many redundant sets. More specifically, we will define a nBPA system
Γ(i) = (V(i),A(i),∆(i)) with parameter i such that (1) |Γ(i)| is a polynomial of i; (2) and
there are exactly 2i redundant sets in Γ(i). We begin with Γ(2) as an example and explain
its work mechanism in detail. Then we show how to scale Γ(2) to get Γ(i) for arbitrary i by
incorporating the idea behind Γ(2). As an application of our approach, we design an n-bit
binary counter that will be used in the sequel based on this structure.

3.1 A Small Example
The definition of Γ(2) = (V(2),A(2),∆(2)) is given as follows. V(2) = {X,Y } ] {A,B} ]
{AB , BA}, A(2) = {a, b, d, τ} and the transition rules of ∆(2) are shown in the following
graph.

A

a

d

ε

b AB

a, b

d

Y

B

b

d

ε

a BA

b, a

d

X

Y ε
b

Y ε

X ε
a

X ε

Every variable is normed and V0(2) = {X,Y }. To see why Γ(2) satisfies our requirement,
we show that for each R ∈ {∅, {X}, {Y }, {X,Y }}, there is some γ such that Rd(γ) = R.
Clearly Rd(ε) = ∅. It is obvious that A 6' AB and B 6' BA due to the d action. Now we
have XA ' A, Y A 6' A and XB 6' B, Y B ' B, i.e., Rd(A) = {X} and Rd(B) = {Y }. We
claim that Rd(AB) = Rd(BA) = {X,Y }. Moreover, we have the following.

I Claim. Rd(AnB) = Rd(BnA) = {X,Y } for all n ≥ 1.

We first show that Rd(AB) = {X,Y }. It is clear X ∈ Rd(AB). It is not so obvious that
Y ∈ Rd(AB). Let us consider the branching bisimulation game of (Y AB,AB).

If Attacker plays Y AB−→AB or AB λ−→ α, then Defender plays an empty response or
Y AB−→AB

λ−→ α respectively. The next round configuration is an identical process
pair. Defender wins afterward.
If Attacker plays Y AB b−→AB, then Defender responds with AB b−→ABB. The game
continues from (AB,ABB).
At the configuration (AB,ABB) if Attacker plays an actions a, then Defender responds
with the same action and the configuration of next round is still (AB,ABB). If Attacker
plays an action b, then after Defender’s response the game reaches the configuration
(ABB,ABB). Defender wins. Attacker’s optimal choice is to play an action d. Defender
simply follows the suit and the game reaches the configuration (Y B,B).

In a nutshell, from the configuration (Y AB,AB) Attacker and Defender’s optimal choices
will lead the game to the configuration (Y B,B), i.e., Y AB ' AB if and only if Y B ' B.
Note that Y B ' B. It follows that Y AB ' AB and Y ∈ Rd(AB).

Now let us consider the general case Rd(AnB) = {X,Y } for all n ≥ 1. Clearly X ∈
Rd(AnB). We now show Y ∈ Rd(AnB). A key observation of the above game argument is
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16:6 Two Lower Bounds for BPA

that for each γ we have

Y Aγ ' Aγ ⇐⇒ Y γ ' γ. (2)

Repeating (2) for n times we have Y B ' B =⇒ Y AB ' AB =⇒ · · · =⇒ Y AnB ' AnB.
As a result Y ∈ Rd(AnB).

By a similar argument, we can show Rd(BnA) = {X,Y } for all n ≥ 1.

I Corollary 2. For γ ∈ {A,B}∗ we have (1) X ∈ Rd(γ) iff A ∈ Var(γ); (2) Y ∈ Rd(γ) iff
B ∈ Var(γ).

3.2 Scalability
We now scale Γ(2) to get a nBPA system Γ(i) = (V(i),A(i),∆(i)) with parameter i satisfying
the following properties.
1. |Γ(i)| is a polynomial of i.
2. |V(i)0| = i and for each R ⊆ V(i)0 there is some γ ∈ (V(i)\V(i)0)∗ such that Rd(γ) = R.

Note that the satisfaction of the second property would give rise to exactly 2i redundant
sets in Γ(i). Before we give the definition of Γ(i), let us take a second look at Γ(2). We
treat a configuration of the form (Xγ, γ) or (Y γ, γ) as a redundancy test of X or Y on γ.
Intuitively, the variable A has two roles. The first one is to pass the redundancy test of X as
for each γ we have XAγ ' Aγ. The second one is to transfer the redundancy test of Y on
Aγ to the same test on γ as for each γ we have Y Aγ ' Aγ iff Y γ ' γ. Similarly, B can pass
redundancy test of Y and transfer the redundancy test of X. Thus, we propose the following
conditions to meet our requirement. For each Z ∈ V(i)0, there is some A ∈ V(i)\V(i)0 so
that for each γ it holds that:

(C1) ZAγ ' Aγ, i.e., A passes the redundancy test of Z; and
(C2) for each Z ′ ∈ V(i)0\{Z}, Z ′Aγ ' Aγ iff Z ′γ ' γ, i.e., A can transfer the redundancy

test of each variable Z ′ ∈ V(i)0\{Z}.

I Remark. In order to get a more flexible system to meet other requirements, the condition
(C2) can be relaxed as “A transfers the redundancy tests of a portion of V(i)0\{Z}”. More
specifically, “Z ′Aγ ' Aγ iff Z ′γ ' γ” holds for a subset of V (i)0\{Z}. We will see an
example in Section 3.3.
Comparing Γ(2) with the conditions (C1) and (C2), we define V(i), A(i) and ∆(i) as follows.
V(i)0 = {Z1, Z2, . . . , Zi};
V(i) = V(i)0 ] {A1, A2, . . . , Ai} ] {Aj,k | j 6= k, 1 ≤ j, k ≤ i};
A(i) = {a1, a2, . . . , ai, d, τ};
∆(i) contains the following rules, where 1 ≤ j, k, ` ≤ i, j 6= k, j 6= `.

Zj

aj−→ ε Zj −→ ε

Aj
d−→ ε Aj

aj−→Aj Aj
ak−→Aj,k

Aj,k
d−→ Zk Aj,k

aj−→Aj,k Aj,k
a`−→Aj,`

Clearly Γ(i) is of size O(i2). The following justifies the conditions (C1) and C(2) in Γ(i).

I Lemma 3. For each γ, 1 ≤ j, k ≤ i and j 6= k it holds that
1. ZjAjγ ' Ajγ;
2. ZkAjγ ' Ajγ iff Zkγ ' γ.
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With the help of Lemma 3, we can prove Proposition 4.

I Proposition 4. Rd(Aj1Aj2 . . . Ajn) =
⋃n
`=1{Zj`

}.

Proof. If k ∈
⋃n
`=1{j`}, we show Zk ∈ Rd(Aj1Aj2 . . . Ajn

). Let `′ be the least number
such that j`′ = k. By (1) of Lemma 3 we have ZkAj`′ . . . Ajn

' Aj`′ . . . Ajn
. Now

ZkAj1 . . . Ajn
' Aj1 . . . Ajn

can be derived by repeating (2) of Lemma 3 for n− `′ times.
If k 6∈

⋃n
`=1{j`}, we show Zk 6∈ Rd(Aj1Aj2 . . . Ajn). Note that Zk 6' ε. We are done

by repeating (2) of Lemma 3 for n times as Zk 6' ε =⇒ ZkAjn
6' Ajn

=⇒ · · · =⇒
ZkAj1Aj2 . . . Ajn 6' Aj1Aj2 . . . Ajn .

J

3.3 An n-bit Binary Counter
An important application of the redundant sets construction is to implement an n-bit binary
counter. The main idea is to use a redundant set of size n to represent the value of an n-bit
binary counter. The only challenging part is to define a proper structure of redundant sets
so that it is fit to be manipulated by branching bisimulation games. Based on Γ(2n), we
implement an n-bit binary counter in the nBPA system Γ0 = (V0,A0,∆0), where

V0 = V0
0 ] B ] B′,

V0
0 = {Z0

1 , Z
1
1 , Z

0
2 , Z

1
2 , . . . , Z

0
n, Z

1
n},

B = {B0
i , B

1
i | 1 ≤ i ≤ n},

B′ = {Bbi (j, b′) | (i 6= j) ∧ 1 ≤ i, j ≤ n ∧ b, b′ ∈ {0, 1}},
A0 = {a0

i , a
1
i | 1 ≤ i ≤ n} ] {d, τ}.

And ∆0 contains the following rules, where 1 ≤ i, j, j′ ≤ n, i 6= j, i 6= j′ and b, b′, b′′ ∈ {0, 1}.

Zb
i

ab
i−→ ε Zb

i −→ ε

Bb
i

d−→ ε Bb
i

ab
i−→Bb

i Bb
i

ab′
j−→Bb

i (j, b′),

Bb
i (j, b′) d−→ Zb′

j Bb
i (j, b′)

ab
i−→Bb

i (j, b′) Bb
i (j, b′)

ab′′
j′−→Bb

i (j′, b′′)

It is clear that Rd(Bbi ) = {Zbi } for 1 ≤ i ≤ n and b ∈ {0, 1}. Intuitively, Bbi encodes the
information that the i-th bit of the counter is b. To understand the structure of redundant
sets in Γ0, let us observe the three roles that Bbi plays in redundancy tests. Let γ ∈ B∗.

(P1) ZbiBbi γ ' Bbi γ. This means that Bbi will pass the redundancy test of Zbi .
(P2) Z1−b

i Bbi γ 6' Bbi γ. This means that Bbi will fail the redundancy test of Z1−b
i .

(P3) For j 6= i and b′ ∈ {0, 1}, Zb′j Bbi γ ' Bbi γ iff Zb′j γ ' γ. This means Bbi will transfer the
redundancy test of Zb′j to next if j 6= i.

Note that the main structure of Γ0 extends from Γ(2n). The difference between Γ0 and
Γ(2n) is that Γ0 satisfies a relaxed version of the condition (C2). The properties of (P1) and
(P2) together can be seen as a relaxed version of the condition (C2). The purpose of this
design will be clear later. Using the above idea we have the following technical lemma.

I Lemma 5. Suppose γ ∈ B∗, the following statements are valid.
1. Zbi γ ' γ iff there are γ1 and γ2 such that γ = γ1B

b
i γ2 and B1−b

i 6∈ Var(γ1).
2. Zbi γ ' γ implies Z1−b

i γ 6' γ.

CONCUR 2017



16:8 Two Lower Bounds for BPA

Proof. We only prove (1) here. (2) is a direct consequence of (1).
(“⇐”) Assume w.l.o.g. that Bbi 6∈ Var(γ1). Clearly ZbiBbi γ2 ' Bbi γ2. If γ1 = ε we are
done; otherwise let γ1 = Bb1

i1
. . . Bbk

ik
. Note that by assumption we have ij 6= i for all

1 ≤ j ≤ k. We are done by repeating (P3) for k times from the equation ZbiBbi γ2 ' Bbi γ2.
(“⇒”) We prove it by contradiction. Suppose there is no γ1 and γ2 such that γ = γ1B

b
i γ2

and B1−b
i 6∈ Var(γ1), we show Zbi γ 6' γ. There are two cases: (1) γ = γ1B

1−b
i γ2 and

B0
i , B

1
i 6∈ Var(γ1); and (2) B0

i , B
1
i 6∈ Var(γ). In the first case Zbi γ 6' γ can be derived

from ZbiB
1−b
i γ2 6' B1−b

i γ2 by repeating (P3) for |γ1| times; in the second case Zbi γ 6' γ
can be obtained from Zbi 6' ε by repeating (P3) for |γ| times.

J

I Definition 6. A process γ ∈ B∗ is a valid encoding of an n-bit binary counter bnbn−1 . . . b1,
notation γ ∈ Jbnbn−1 . . . b1K, if for each 1 ≤ i ≤ n there are γi and γ′i such that γ = γiB

bi
i γ
′
i

and B1−bi
i 6∈ Var(γi).

For a binary counter γ ∈ Jbnbn−1 . . . b1K, we will use ]γ to denote the value
∑n
i=1 bi · 2i−1 in

the sequel. One can see Definition 6 as the syntax of an n-bit binary counter in the system
Γ0. This syntax allows us to update a “binary number” in an overwritten way. Suppose
γ ∈ Jbnbn−1 . . . b1K and we want to flip the i-th “bit” of γ to get another “binary number”
σ. Then by Definition 6 we can simply let σ = B1−bi

i γ, as one can verify σ ∈ Jb′nb′n−1 . . . b
′
1K

where b′i = 1− bi and b′j = bj for j 6= i. By Lemma 5, we give the binary counter a semantic
characterization in terms of redundant sets.

I Proposition 7. Let γ be a process such that γ ∈ B∗, we have

γ ∈ Jbnbn−1 . . . b1K ⇐⇒ Rd(γ) = {Zbn
n , Z

bn−1
n−1 , . . . , Z

b1
1 }. (3)

Proposition 7 provides us a way to test a specific “bit” with branching bisimulation games.
Suppose γ ∈ Jbnbn−1 . . . b1K and we want to check whether bi = b. By Proposition 7, we
only need to check if Defender has a w.s. in the branching bisimulation game (Zbi γ, γ). The
following lemma shows that we can also do bit test by weak bisimulation games.

I Lemma 8. Suppose γ ∈ B∗, then Zbi γ ' γ iff Zbi γ ≈ γ.

The following Lemma tells us how to test multiple bits. It is a simple consequence when
applying Computation Lemma to Proposition 7 and Lemma 8.

I Lemma 9. Let γ ∈ Jbnbn−1 . . . b1K and α ∈ {Z0
1 , Z

1
1 , Z

0
2 , Z

1
2 , . . . , Z

0
n, Z

1
n}∗, then the follow-

ing statements are valid.
1. αγ ' γ iff α ∈ {Zb1

1 , Zb2
2 , . . . , Zbn

n }
∗.

2. αγ ≈ γ iff α ∈ {Zb1
1 , Zb2

2 , . . . , Zbn
n }
∗.

4 EXPTIME-hardness of Equivalence Checking

In this section, we show that branching bisimilarity on normed BPA is EXPTIME-hard by a
reduction from Hit-or-Run game [10]. A Hit-or-Run game is a counter game defined by a tuple
G = (S0, S1,→, s`, sa,ma), where S = S0]S1 is a finite set of states,→⊆ S×N× (S∪{sa})
is a finite set of transition rules, s` ∈ S is the initial state, sa 6∈ S is the final state, and
ma ∈ N is the final value. We use s `−→ t to denote (s, `, t) ∈→ and require that ` = 0 or
` = 2k for some k. For each s ∈ S there is at least one rule (s, `, t) ∈→. A configuration of
G is a pair (s,m) ∈ (S ∪ {sa}) × N. The game is played by two players, named Player 0
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and Player 1. Starting from the initial configuration (s`, 0), the game G proceeds in rounds
according to the following rule: if the current configuration is (s, k) ∈ Si × N, then Player i
chooses a rule of the form s

`−→ t and the resulting new configuration is (t, k+ `). If G reaches
(sa,m) and m 6= ma then Player 1 wins; if G reaches the configuration (sa,ma) then Player
0 wins; if G never reaches the final state sa, then Player 0 also wins. As a result, Player 0’s
goal is to hit (sa,ma) or run from the final state sa. The problem of deciding the winner of
Hit-or-Run game with all numbers represented in binary is EXPTIME-complete [9, 10]. The
presented version of Hit-or-Run game is due to Kiefer [10]. Kiefer used it to establish the
EXPTIME-hardness of strong bisimilarity on general BPA. The main technical result of the
section is as follows.

I Proposition 10. Given a Hit-or-Run game G = (S0, S1,→, s`, sa,ma), a nBPA system
Γ1 = (V1,A1,∆1) and two processes ξ, ξ′ ∈ V∗1 can be constructed in polynomial time such
that

Player 0 has a w.s. in G ⇐⇒ ξ ' ξ′ ⇐⇒ ξ ≈ ξ′.
Our first lower bound (first item of Theorem 1) is a direct consequence of Proposition 10.

Combining with the upper bound from [6], we confirm the complete result.

I Corollary 11. Branching bisimilarity checking on nBPA is EXPTIME-complete.

Now let us fix a Hit-or-Run game G = (S0, S1,→, s`, sa,ma) for this section. Let
Op(s) = {(`, t) | (s, `, t) ∈→} and Op =

⋃
s∈S0]S1

Op(s). We define the nBPA system
Γ1 = (V1,A1,∆1) for Proposition 10 as follows.

V1 = V0 ] C ] F ]M,

A1 = A0 ] {c, e, f, f ′, g} ] {a(`, t) | (`, t) ∈ Op},
∆1 = ∆0 ]∆′1.

Γ1 includes the n-bit counter system Γ0 as a subsystem and use it represents the counter in
the game G. We require that n and ma satisfy the constrain n = blog2 mac+ 1. This n-bit
counter representation is sufficient for our purpose due to the following observation. When
the counter value in G is greater than 2n − 1, Player 0 or Player 1’s object is to avoid or
respectively to reach the final state sa and the exact value of the counter no longer matters.

In the following we define the set C, F andM and add rules to ∆′1.

(C). The set C is used to encode the control states of G and is defined by

C = {X(s), X ′(s), Y (s), Y ′(s) | s ∈ S ∪ {sa}}. (4)

Basic Idea. Our reduction uses the branching (resp. weak) bisimulation game G′ starting
from (ξ, ξ′) to mimic the run of G from (s`, 0). We imagine that Defender simulates Player
0’s performance and Attacker simulates Player 1’s performance. For 0 ≤ m < 2n, let Bin(m)
be the unique n-bit binary representation of m. The reduction will keep the following
correspondence between G and G′. If G reaches a configuration (s,m) with m < 2n, then G′
can reach a configuration (X(s)γ,X ′(s)γ) for some γ ∈ JBin(m)K in a reasonable way; if G
reaches (s,m) with m ≥ 2n, then G′ can reach (Y (s)σ, Y ′(s)σ) for some σ ∈ Jbnbn−1 . . . b1K
in a reasonable way. Intuitively, Y (s) and Y ′(s) indicate that the counter of G overflows.
We do not track the exact value of the counter in that case. The two processes ξ and ξ′ for
Proposition 10 are defined by

ξ = X(s`)B0
nB

0
n−1 . . . B

0
1 , ξ′ = X ′(s`)B0

nB
0
n−1 . . . B

0
1 . (5)

Clearly (ξ, ξ′) corresponds to the initial configuration (s`, 0) in G.
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(F). The set F is used to implement the Defender’s Forcing gadgets.

F = {A(`, t), A′(`, t), Es, Fs, Es(`, t), Fs(`, t) | s ∈ S0 ∧ (`, t) ∈ Op(s)}. (6)

We add the following rules to ∆′1 for the variables in C ∪ F to simulate the control flow of G.
1. Let s ∈ S1. In G Player 1 would choose one pair (`, t) from Op(s), then correspondingly,

rules (a1) and (a2) enable Attacker to choose the next move in G′.

(a1). X(s) a(`,t)−−−→ A(`, t), X ′(s) a(`,t)−−−→ A′(`, t); (`, t) ∈ Op(s)
(a2). Y (s) a(`,t)−−−→ Y (t), Y ′(s) a(`,t)−−−→ Y ′(t). (`, t) ∈ Op(s)

2. Let s ∈ S0. In G Player 0 would choose one pair (`, t) from Op(s). Rules (b1) (b2) and
rules (b3) (b4) form two Defender’s Forcing gadgets [8], which allow Defender to choose
the next move in G′. Let (`, t), (`′, t′) ∈ Op(s).

(b1). X(s) c−→Es, X(s) c−→Es(`, t), X ′(s) c−→Es(`, t);

(b2). Es
a(`,t)−−−→ A(`, t), Es(`, t) a(`,t)−−−→ A′(`, t), Es(`, t) a(`′,t′)−−−−→ A(`′, t′); ((`′, t′) 6= (`, t))

(b3). Y (s) c−→ Fs, Y (s) c−→ Fs(`, t), Y ′(s) c−→ Fs(`, t);

(b4). Fs
a(`,t)−−−→ Y (t), Fs(`, t) a(`,t)−−−→ Y ′(t), Fs(`, t) a(`′,t′)−−−−→ Y (t′). ((`′, t′) 6= (`, t))

3. The following two rules for X(sa) and X ′(sa) are used to test the value of counter with
respect to ma. Let Bin(ma) = banb

a
n−1 . . . b

a
1 .

(c). X(sa) f−→ Z
ban
n Z

ban−1
n−1 . . . Z

ba1
1 , X ′(sa) f−→ ε.

By Lemma 9, for γ ∈ Jbnbn−1 . . . b1K we have X(sa)γ ' X ′(sa)γ iff X(sa)γ ≈ X ′(sa)γ
iff ]γ = ma.

4. The following two rules are for Y (sa) and Y ′(sa). Player 1 wins if G reaches a configuration
(sa,m) with m ≥ 2n. Correspondingly, G′ will reach a configuration (Y (sa)σ, Y ′(sa)σ)
for some σ ∈ Jbnbn−1 . . . b1K. The following rules enable Attacker to win in this case by
performing a special action that Defender can not match.

(d). Y (sa) f−→ ε, Y ′(sa) f ′−→ ε.

(M). The setM is used to initiate the counter update operation and manipulate the n-bit
binary counter.

M =
{

Add(k, t), Add′(k, t), D(k, t),
D(k, t, i), C(k, t, i), C ′(k, t, i)

∣∣∣∣ (2k, t) ∈ Op ∧ 0 ≤ k < n

}
. (7)

The process pair (A(`, t), A′(`, t)) is used to implement the operation “increasing the counter
by ` and goto state t”. We add the following rules for this pair based on the value of `.

A(`, t) g−→X(t) and A′(`, t) g−→X ′(t) if ` = 0;
A(`, t) g−→ Y (t) and A′(`, t) g−→ Y ′(t) if ` ≥ 2n;
A(`, t) g−→Add(log `, t) and A′(`, t) g−→Add′(log `, t) if 0 < ` < 2n.

If ` = 0 or ` ≥ 2n, the counter is either unchanged or overflow. In this case, we can directly
switch the control state in G′. If 0 < ` < 2n, G′ use the following mechanism to update the
counter.

Binary Counter Manipulation. Suppose we have γ ∈ B∗ representing a counter value, i.e.
γ ∈ Jbnbn−1 . . . b1K, and want to increase it by 2k, where 0 ≤ k < n. This operation has
two possible outcomes. The counter is either updated to some σ ∈ Jb′nb′n−1 . . . b

′
1K with

]σ = ]γ + 2k, or overflow if ]γ + 2k ≥ 2n. Recall that ]γ and ]σ represent the values of γ
and σ. A key observation is that we can update γ to σ locally. Although there are 2n many
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possible values for γ, we can write σ as δγ for exactly n−k possible δ. Indeed, let α(k, 0),
α(k, 1). . .α(k, n−k) and δ(k, 0), δ(k, 1). . . δ(k, n−k) be the processes defined by

α(k, 0) = Z0
k+1, δ(k, 0) = B1

k+1;
α(k, 1) = Z0

k+2Z
1
k+1, δ(k, 1) = B1

k+2B
0
k+1;

...
...

α(k, n−k−1) = Z0
nZ

1
n−1 . . . Z

1
k+1, δ(k, n−k−1) = B1

nB
0
n−1 . . . B

0
k+1;

α(k, n−k) = Z1
nZ

1
n−1 . . . Z

1
k+1, δ(k, n−k) = B0

nB
0
n−1 . . . B

0
k+1.

The set {γ | γ ∈ JBin(m)K, 0 ≤ m < 2n} can be divided into n− k + 1 classes according
to α(k, 0), α(k, 1). . .α(k, n−k). Intuitively, each α(k, i) encodes the bits which are flipped
when increasing γ by 2k. Each δ(k, i) encodes the corresponding effect of that operation.
Let i∗(k) be the maximal length of successive bits of 1 starting from bk+1 to bn. Note that
i∗(k) = Σn−k−1

i=0 (Πi
j=0bk+1+j). By Lemma 9, γ ' α(k, i)γ iff i = i∗(k). If i∗(k) < n−k,

then ]γ + 2k < 2n. By the definition of δ(k, i∗(k)) we can let σ = δ(k, i∗(k))γ and have
]σ = ]γ+2k. If i∗(k) = n−k, then ]γ+2k ≥ 2n and increasing γ by 2k will cause an overflow.

We now design a branching bisimulation game to simulate the addition operation based
on the above idea. The following rules are forM, where 0 ≤ i, j ≤ n− k.

(A1). Add(k, t) c−→D(k, t) Add(k, t) c−→D(k, t, i)
(A2). Add′(k, t) c−→D(k, t, i)
(A3). D(k, t) c−→ C(k, t, i)
(A4). D(k, t, i) c−→ C ′(k, t, i) D(k, t, i) c−→ C(k, t, j) (j 6= i)
(A5). C(k, t, i) c−→ α(k, i) C ′(k, t, i) c−→ ε

(A6). C(k, t, i) e−→X(t)δ(k, i) C ′(k, t, i) e−→X ′(t)δ(k, i) (0 ≤ i ≤ n−k−1)
(A7). C(k, t, n−k) e−→ Y (t) C ′(k, t, n−k) e−→ Y ′(t)

The correctness of the simulation is demonstrated by the following Lemma.

I Lemma 12. Suppose γ ∈ Jbnbn−1 . . . b1K and i∗(k) = Σn−k−1
i=0 (Πi

j=0bk+1+j). In the branch-
ing bisimulation game starting from (Add(k, t)γ,Add′(k, t)γ)

if ]γ + 2k < 2n, then the optimal choices of Attacker and Defender will lead to the
game reaching the configuration (X(t)δ(k, i∗(k))γ,X ′(t)δ(k, i∗(k))γ) with ](δ(k, i∗(k))γ) =
]γ + 2k, i.e., Add(k, t)γ ' Add′(k, t)γ iff X(t)δ(k, i∗(k))γ ' X ′(t)δ(k, i∗(k))γ;
if ]γ + 2k ≥ 2n, then the optimal choices of Attacker and Defender will lead to the
game reaching the configuration (Y (t)γ, Y ′(t)γ), i.e., Add(k, t)γ ' Add′(k, t)γ iff Y (t)γ '
Y ′(t)γ.

Proof. Rules (A1) (A2) (A3) (A4) form a classical Defender’s Forcing gadget. Defender can
use it to force the game from configuration (Add(k, t)γ,Add′(k, t)γ) to any configuration of
the form (C(k, t, i)γ,C ′(k, t, i)γ), where 0 ≤ i ≤ n− k. Defender has to play carefully, as at
the configuration (C(k, t, i)γ,C ′(k, t, i)γ) Attacker can use rule (A5) to start up bits test by
forcing the game to the configuration (α(k, i)γ, γ). By the definition of α(k, i) and Lemma 9,
if i = i∗(k) then Defender can survive the bits test as α(k, i∗(k))γ ' γ; otherwise Defender
will lose during the bits test as α(k, i)γ 6≈ γ for i 6= i∗(k). As a result Defender’s optimal
move is to force the configuration (C(k, t, i∗(k))γ,C ′(k, t, i∗(k))γ). In that case, Attacker’s
optimal choice is to use rule (A6) or (A7) to increase the binary number γ by 2k or flag an
overflow error. If i∗(k) < n − k, the game reaches (X(t)δ(k, i∗(k))γ,X ′(t)δ(k, i∗(k))γ) by
rule (A6). As δ(k, i∗(k)) encodes the effect of bits change caused by increasing γ by 2k, one
can verify that ](δ(k, i∗(k))γ) = ]γ + 2k. If i∗(k) = n− k, the game goes to (Y (t)γ, Y ′(t)γ)
by rule (A7). J
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I Remark. A process γ cannot perform an immediate internal action if there is no σ such that
γ−→ σ. By construction X(t), X ′(t), Y (t) and Y ′(t) cannot perform immediate internal ac-
tions. As a result we can replace the branching bisimulation game of (Add(k, t)γ,Add′(k, t)γ)
and “'” in Lemma 12 with weak bisimulation game (Add(k, t)γ,Add′(k, t)γ) and “≈”.

Lemma 12 promises that the addition operation of the counter is implemented correctly
in bisimulation games. We are ready to prove Proposition 10.

Proof of Proposition 10. Suppose G reaches (s,m) for some s ∈ S0 ] S1 and m < 2n. The
corresponding configuration of G′ is (X(s)γ,X ′(s)γ) for some γ ∈ JBin(m)K. If s ∈ S0, then
Player 0 chooses a rule s `−→ t and G proceeds to (t,m + `). We show how the branching
bisimulation (resp. weak) bisimulation G′ mimic this behavior while keep the correspondence
between G and G′. We only discuss the case s ∈ S0 here. The argument for s ∈ S1 is similar.

First by rules (b1) (b2), Defender forces to the configuration (A(`, t)γ,A′(`, t)γ). If ` = 0,
then G′ reaches (X(t)γ,X ′(t)γ). If ` ≥ 2n, then G′ reaches (Y (t)γ, Y ′(t)γ). If 0 < ` < 2n,
then G′ first reaches (Add(log `, t)γ,Add′(log `, t)γ)). Now the binary counter in G′ will be
updated according to `. By Lemma 12, if m + ` < 2n, then the optimal play of Attacker
and Defender will lead to (X(t)σ,X ′(t)σ) with ]σ = ]γ + `. If m+ ` ≥ 2n, then the optimal
configuration for both Attacker and Defender is (Y (t)γ, Y ′(t)γ).

Once G reaches a configuration (s′,m) withm ≥ 2n and s′ 6= sa, G′ reaches (Y (s′)σ, Y ′(s′)σ)
for some σ. By rules (a2) (b3) (b4), G′ will only keep track of the state shift of G afterward.

If Player 0 has a strategy to hit (sa,ma) or run from sa then Defender can mimic the
strategy to push G′ from (ξ, ξ′) to a configuration (X(sa)γ,X ′(sa)γ) for some γ ∈ JBin(ma)K
or force G′ to be played infinitely. By rule (c) and Lemma 9, X(sa)γ ' X ′(sa)γ. It follows
that ξ ' ξ′. If Player 1 has a strategy such that no matter how Player 0 chooses, the game
will hit some configuration of the form (sa,m) with m 6= ma. Then Attacker can mimic the
strategy to force G′ from (ξ, ξ′) to (X(sa)γ,X ′(sa)γ) for some γ ∈ JBin(m)K if m < 2n, or
to (Y (sa)σ, Y ′(sa)σ) for some σ if m ≥ 2n. By rule (c) and Lemma 9, X(sa)γ 6≈ X ′(sa)γ.
By rule (d), Y (sa)σ 6≈ Y ′(sa)σ. It follows that ξ 6≈ ξ′. J

5 PSPACE-hardness of Regularity Checking

Srba [17] proved that weak bisimilarity can be reduced to weak regularity under a certain
condition. We can verify that his original construction also works for branching regularity.

I Theorem 13 (Srba[17]). Given a BPA system Γ and two process α and β, one can construct
in polynomial time a new BPA system Γ′ and a process γ such that (1) γ is ≈-reg iff α ≈ β
and both α and β are ≈-reg; (2) γ is '-reg iff α ' β and both α and β are '-reg; and
(3) γ is normed iff α and β are normed.

By Theorem 13, to get a lower bound of branching regularity on normed BPA we only need
to prove a lower bound of branching bisimilarity. Note that we cannot adapt the previous
reduction to get an EXPTIME-hardness result for regularity as ξ and ξ′ for Proposition 10
are neither '-reg nor '-reg. Srba proved that weak bisimilarity is PSPACE-hard [14]
and the two processes for the construction are ≈-reg. This implies that weak regularity of
normed BPA is PSPACE-hard. However, the construction in [14] does not work for branching
bisimilarity. We can fix this problem by adapting the previous redundant sets construction.

I Proposition 14. Given a QSAT formula F, we can construct a normed BPA system
Γ2 = (V2,A2,∆2) and two normed processes X1 and X ′1 satisfying the following conditions.
(1) If F is true then X1 ' X ′1. (2) If F is false then X1 6≈ X2. (3) α and β are both '-reg.
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Combining Theorem 13 and Proposition 14 we get our second lower bound result (second
item of Theorem 1).

Now let us first fix a QSAT formula

F = ∀x1∃y1∀x2∃y2 . . . ∀xm∃ym.(C1 ∧ C2 ∧ · · · ∧ Cn) (8)

where C1 ∧ C2 ∧ · · · ∧ Cn is a conjunctive normal form with boolean variables x1, x2, . . . , xm
and y1, y2, . . . , ym. Consider the following game interpretation of the QSAT formula F.
There are two players, X and Y, who are trying to give an assignment in rounds to all the
variables x1, y1, x2, y2, . . . , xm, ym. At the i-th round, player X first assigns a boolean value
bi to xi and then Y assigns a boolean value b′i to yi. After m rounds we get an assignment
A =

⋃m
i=1{xi 7→ bi, yi 7→ b′i}. If A satisfies C1 ∧C2 ∧ · · · ∧Cn, then Y wins; otherwise X wins.

It is easy to see that F is true iff Y has a winning strategy. This basic idea of constructing Γ2
is to design a branching (resp. weak) bisimulation game to mimic the QSAT game on F. This
method resembles the ideas in the previous works [14, 15, 16]. The substantial new ingredient
in our construction is Γ(n), introduced in Section 3. Γ2 contains Γ(n) as a subsystem and
uses it to encode partial assignments in the QSAT game. For i ∈ {1, 2, . . . ,m} and b ∈ {0, 1},
let α(i, b) and β(i, b) be the processes defined as follows.

α(i, b) = Ai1Ai2 . . . Aik . If b = 1, then 1 ≤ i1 < i2 < · · · < ik ≤ n are all the indices of
clauses in F that xi occurs; if b = 0, then 1 ≤ i1 < i2 < · · · < ik ≤ n are all the indices of
clauses that x̄i occurs.
β(i, b) = Ai1Ai2 . . . Aik . If b = 1, then 1 ≤ i1 < i2 < · · · < ik ≤ n are all the indices of
clauses in F that yi occurs; if b = 0, then 1 ≤ i1 < i2 < · · · < ik ≤ n are all the indices of
clauses that ȳi occurs.

An assignment A =
⋃m
i=1{xi 7→ bi, yi 7→ b′i} is represented by the process γ(A) defined by

γ(A) = β(m, b′m)α(m, bm) . . . β(1, b′1)α(1, b1). (9)

Clearly A satisfies C1∧C2∧· · ·∧Cn iff Var(γ(A)) = {A1, A2, . . . , An}. The following lemma
tells us how to test the satisfiability of A by bisimulation games.

I Lemma 15. Suppose γ ∈ {A1, A2, . . . , An}∗. The following statements are equivalent. (1)
Z1Z2 . . . Znγ ' γ. (2) Z1Z2 . . . Znγ ≈ γ. (3) Var(γ) = {A1, A2, . . . , An}.

Now the normed BPA system Γ2 = (V2,A2,∆2) for Proposition 14 is defined by

V2 = V(n) ] {Xi, Yi, Yi(1), Yi(2), Yi(3) | 1 ≤ i ≤ m} ] {Xm+1, X
′
m+1},

A2 = A(n) ] {c0, c1, e},
∆2 = ∆(n) ]∆′2.

And ∆′2 contains the following rules, where 1 ≤ i ≤ m.

1. Xi
c0−→ Yiα(i, 0) Xi

c1−→ Yiα(i, 1)
2. X ′i

c0−→ Y ′i α(i, 0) X ′i
c1−→ Y ′i α(i, 1)

3. Yi
e−→ Yi(1) Yi

e−→ Yi(2) Yi
e−→ Yi(3)

4. Y ′i
e−→ Yi(2) Y ′i

e−→ Yi(3)
5. Yi(1) c0−→Xi+1β(i, 0) Yi(1) c1−→Xi+1β(i, 1)
6. Yi(2) c0−→X ′i+1β(i, 0) Yi(2) c1−→Xi+1β(i, 1)
7. Yi(3) c0−→Xi+1β(i, 0) Yi(3) c1−→X ′i+1β(i, 1)
8. Xm+1

e−→ Z1 . . . Zn X ′m+1
e−→ ε
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Proof Sketch of Proposition 14. It is clear that both X1 and X ′1 are '-reg. Now consider
the branching (resp. weak) bisimulation game starting from (X1, X

′
1). One round of QSAT

game on F will be simulated by three rounds of branching (resp. weak) bisimulation games.
Suppose player X assigns bi to xi and then player Y assigns b′i to yi in the i-th round of
QSAT game. Then in the branching (resp. weak) bisimulation game, Attacker uses rule
(1) and (2) to push α(i, bi) to the stack in one round; then in the following two rounds,
by Defender’s Forcing (rule (3) (4) (5) (6) (7)), Defender pushes β(i, b′i) to the stack. In
this way, the branching (resp. weak) bisimulation game reaches a configuration in the form
(Xm+1γ(A), X ′m+1γ(A)) after 3m rounds. Here A =

⋃m
i=1{xi 7→ bi, yi 7→ b′i} is an assignment

that X and Y generates. It follows from Lemma 15 and rule (8) that if Y has a w.s. then
Defender can ensure that Xm+1γ(A) ' X ′m+1γ(A) by the strategy; otherwise if X has a w.s.
then Attacker can use it to reach a pair that guarantee Xm+1γ(A) 6≈ X ′m+1γ(A). J

6 Conclusion

The initial motivation of this paper is to confirm the EXPTIME-hardness claim of branching
bisimilarity of nBPA [5, 6]. The main contribution of this work is a technique to design a
structure with a large number of redundant sets. One can use the binary counter constructed
in Section 3.3 to represent the content of the tape of an ALBA. The construction allows to
overwrite symbols in cells of the tape and to check their values. This would produce another
EXPTIME-hard reduction for the branching bisimilarity of nBPA from the acceptance
problem of ALBA . The PSPACE-hard lower bound of branching regularity is a byproduct
in the development of this work. There is a gap in the complexity of branching regularity
of nBPA. Czerwiński and Jančar proved that it can be decided in NEXPTIME [4]. An
EXPTIME algorithm is also feasible based on the exponentially large bisimulation base [6].
Whether there exists a PSPACE algorithm is a natural further question. Another interesting
research direction concerns the branching bisimilarity of nBPP (normed Basic Parallel
Process), the parallel counterpart of nBPA in the PRS hierarchy [12]. Czerwiński, Hofman
and Lasota proved the decidability of this problem [3]. However, the complexity is not clear.
The current lower bound is PSPACE-hard [17]. For the branching regularity of nBPP, the
lower bound is also PSPACE-hard [17], while the decidability is open. There are huge gaps
worth further study. We hope that the technique introduced in this paper could shed some
new light on these problems.
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A Proof of Theorem 1

Proof. 1. Given a Hit-or-Run game G = (S0, S1,→, s`, sa,ma), we construct a nBPA system
Γ and two processes, ξ and ξ′, as Proposition 10 does. Observe that for every equivalence
� such that '⊆�⊆≈ and ξ , ξ′ constructed in Proposition 10 we have

ξ ' ξ′ ⇐⇒ ξ � ξ′ ⇐⇒ ξ ≈ ξ′.

It follows that Player 0 has a w.s in G iff ξ � ξ′.
2. Given a QSAT formula F, we construct a nBPA system Γ and two processes α and β as

Proposition 14 does, then

F is true ⇐⇒ α ' β ⇐⇒ α ≈ β ⇐⇒ α � β

As α and β are both '-reg. We use the construction in the proof of Theorem 13 to get
another nBPA system Γ′ and a process γ, then
α � β =⇒ α ' β =⇒ γ is '-reg =⇒ γ is �-reg;
α 6� β =⇒ α 6≈ β =⇒ γ is not ≈-reg =⇒ γ is not �-reg.

It follows that F is true iff γ is �-reg.

J

B Proof of Lemma 3

I Lemma 3. For each γ, 1 ≤ j, k ≤ i and j 6= k it holds that
1. ZjAjγ ' Ajγ;
2. ZkAjγ ' Ajγ iff Zkγ ' γ.

Proof. 1. It is clear that ZjAj ' Aj . It follows that ZjAjγ ' Ajγ for all γ by congruence.
2. We prove this in two directions.

(“⇐”). It is routine to verify the relation R defined by

R = {(ZkAjγ,Ajγ), (Ajγ, ZkAjγ), (Ajγ,Aj,kγ), (Aj,kγ,Ajγ)}∪ '

is a branching bisimulation under the condition Zkγ ' γ and k 6= j.
(“⇒”). We show that if Zkγ 6' γ then Attacker has w.s. in the branching bisimulation
game (ZkAjγ,Ajγ). Attacker first plays ZkAjγ

ak−→Ajγ. Defender has to respond with
Ajγ

ak−→Aj,kγ and the game reaches (Ajγ,Aj,kγ). Now Attacker plays Aj,kγ
d−→ Zkγ

and Defender has to respond with Ajγ
d−→ γ. The game then reaches configuration

(Zkγ, γ) and Attacker has a w.s. afterward due to Zkγ 6' γ.
J

C Proof of Lemma 5

We first show the correctness of (P1) (P2) and (P3).

I Lemma 16. Bbi satisfies the following properties.
(P1) For each γ it holds that ZbiBbi γ ' Bbi γ.
(P2) For each γ it holds that Z1−b

i Bbi γ 6' Bbi γ.
(P3) For each γ, j 6= i and b′ ∈ {0, 1}, it holds that Zb′j Bbi γ ' Bbi γ iff Zb

′

j γ ' γ.

Proof. It is clear that (P1) and (P2) are correct. We only show the correctness of (P3).
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(“⇐”). It is easy to see that the relation R defined by

R = {(Zb
′

j B
b
i γ,B

b
i γ), (Bbi γ, Zb

′

j B
b
i γ), (Bbi γ,Bbi (j, b′)γ), (Bbi (j, b′)γ,Bbi γ)}∪ '

is a branching bisimulation under the condition Zb′j γ ' γ and j 6= i.
(“⇒”). Suppose Zb′j γ 6' γ, we show that Attacker has a w.s. in the branching bisim-

ulation game (Zb′j Bbi γ,Bbi γ). Attacker first plays Zb′j Bbi γ
ab′

j−→Bbi γ. Defender has to

respond with Bbi γ
ab′

j−→Bbi (j, b′)γ and game reaches (Bbi γ,Bbi (j, b′)γ). Now Attacker plays
Bbi (j, b′)γ

d−→ Zb
′

j γ. Defender has to respond with Bbi γ
d−→ γ and game reaches (Zb′j γ, γ).

Attacker has a w.s. afterward by the assumption.
J

I Lemma 5. Suppose γ ∈ B∗, the following statements are valid.
1. Zbi γ ' γ iff there are γ1 and γ2 such that γ = γ1B

b
i γ2 and B1−b

i 6∈ Var(γ1).
2. Zbi γ ' γ implies Z1−b

i γ 6' γ.

Proof. 1. We prove it in two steps.
(“⇐”) Assume w.l.o.g. that Bbi 6∈ Var(γ1). Clearly ZbiBbi γ2 ' Bbi γ2. If γ1 = ε we
are done; otherwise let γ1 = Bb1

i1
. . . Bbk

ik
. Note that by assumption we have ij 6= i

for all 1 ≤ j ≤ k. We are done by repeating (P3) for k times from the equation
ZbiB

b
i γ2 ' Bbi γ2.

(“⇒”) We prove it by contradiction. Suppose there is no γ1 and γ2 such that γ = γ1B
b
i γ2

and B1−b
i 6∈ Var(γ1), we show Zbi γ 6' γ. There are two cases: (1) γ = γ1B

1−b
i γ2 and

B0
i , B

1
i 6∈ Var(γ1); and (2) B0

i , B
1
i 6∈ Var(γ). In the first case Zbi γ 6' γ can be derived

from ZbiB
1−b
i γ2 6' B1−b

i γ2 by repeating (P3) for |γ1| times; in the second case Zbi γ 6' γ
can be obtained from Zbi 6' ε by repeating (P3) for |γ| times.

2. By (1) , there is γ1 and γ2 such that γ = γ1B
b
i γ2 and B1−b

i 6∈ Var(γ1). Now suppose
otherwise we also have Z1−b

i γ ' γ. By (1) again, there are γ′1 and γ′2 such that γ =
γ′1B

1−b
i γ′2 and Bbi 6∈ Var(γ′1). Contradiction.

J

D Proof of Proposition 7

I Proposition 7. Let γ be a process such that γ ∈ B∗, we have

γ ∈ Jbnbn−1 . . . b1K ⇐⇒ Rd(γ) = {Zbn
n , Z

bn−1
n−1 , . . . , Z

b1
1 }. (3)

Proof. By (1) of Lemma 5, γ ∈ Jbnbn1 . . . b1K iff {Zb1
1 , Zb2

2 , . . . Zbn
n } ⊆ Rd(γ). By (2) of

Lemma 5 we cannot have both Z0
i and Z1

i in Rd(γ), it follows that {Zb1
1 , Zb2

2 , . . . Zbn
n } ⊆ Rd(γ)

iff {Zb1
1 , Zb2

2 , . . . Zbn
n } = Rd(γ). J

E Proof of Lemma 8

I Lemma 8. Suppose γ ∈ B∗, then Zbi γ ' γ iff Zbi γ ≈ γ.

Proof. It is sufficient to show that Zbi γ 6' γ then Attacker has a w.s. in the weak bisimulation
game of (Zbi γ, γ). By Lemma 5 there is not γ1 and γ2 such that B1−b

i 6∈ Var(γ1) and
γ = γ1B

b
i γ2. Let γ = Bb

′

j γ
′, then by assumption we have j 6= i or b 6= b′. If j = i, then it

CONCUR 2017
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necessary hold that b′ = 1−b, we are done as ZbiB1−b
i γ′ 6≈ B1−b

i γ′. If j 6= i, Attacker then play

ZbiB
b′

j γ
ab

i−→Bb
′

j γ
′, Defender has to responds with Bb′j γ′

ab
i−→Bb

′

j (i, b)γ′ and the game reaches
(Bb′j γ′, Bb

′

j (i, b)γ′). Attacker then play Bb′j (i, b)γ′ d−→ Zbi γ
′, Defender has to responds with

Bb
′

j γ
′ d−→ γ′ and game goes to the configuration (γ′, Zbi γ′). If B1−b

i ∈ Var(γ), Attacker can
repeat this strategy till a configuration of the form (ZbiB1−b

i σ,B1−b
i σ) or (B1−b

i σ, ZbiB
1−b
i σ)

is reached; otherwise a configuration of the form (ε, Zbi ) or (Zbi , ε) will be reached. Attacker
then has a w.s. afterward. J

F Proof of Lemma 9

I Lemma 17. The following statements are valid for normed X1, X2, . . . , Xk and γ.
X1X2 . . . Xkγ ' γ iff Xiγ ' γ for all 1 ≤ i ≤ k.
X1X2 . . . Xkγ ' γ iff Xiγ ≈ γ for all 1 ≤ i ≤ k.

Proof. We only prove (1), the proof for weak bisimilarity is similar. If Xiγ ' γ for all
1 ≤ i ≤ n, then by congruence we have X1X2 . . . Xkγ ' γ. We now prove the other direction.
Let X1 . . . Xkγ−→∗X2 . . . Xkγ−→∗ . . . −→∗Xkγ−→∗ γ be a internal transition sequence
that lead X1 . . . Xkγ to γ. By Computation Lemma we have Xkγ ' γ. By congruence we
have γ ' Xk−1Xkγ ' Xk−1γ. Repeat the argument we have γ ' Xiγ for all 1 ≤ i ≤ k. J

I Lemma 9. Let γ ∈ Jbnbn−1 . . . b1K and α ∈ {Z0
1 , Z

1
1 , Z

0
2 , Z

1
2 , . . . , Z

0
n, Z

1
n}∗, then the follow-

ing statements are valid.
1. αγ ' γ iff α ∈ {Zb1

1 , Zb2
2 , . . . , Zbn

n }
∗.

2. αγ ≈ γ iff α ∈ {Zb1
1 , Zb2

2 , . . . , Zbn
n }
∗.

Proof. By Lemma 17 and Lemma 8 αγ ' γ iff αγ ≈ γ, as a result we only need to prove (1).
Suppose αγ ' γ. By Lemma 17, for each X ∈ Var(α), X ∈ Rd(γ). By Proposition 7, we
have Rd(γ) = {Zb1

1 , Zb2
2 , . . . , Zbn

n }. It follows that α ∈ {Zb1
1 , Zb2

2 , . . . , Zbn
n }∗. Now suppose

α ∈ {Zb1
1 , Zb2

2 , . . . , Zbn
n }∗, thus Var(α) ⊆ Rd(γ), by congruence we have αγ ' γ. J

G Proof of Lemma 15

I Lemma 15. Suppose γ ∈ {A1, A2, . . . , An}∗. The following statements are equivalent. (1)
Z1Z2 . . . Znγ ' γ. (2) Z1Z2 . . . Znγ ≈ γ. (3) Var(γ) = {A1, A2, . . . , An}.

Proof. By Lemma 17, Z1Z2 . . . Znγ ' γ iff Ziγ ' γ for 1 ≤ i ≤ n and Z1Z2 . . . Znγ ≈ γ iff
Ziγ ≈ γ for 1 ≤ i ≤ n. By a similar proof of Lemma 8, we can show that Ziγ ' γ iff Ziγ ≈ γ.
As a result (1) and (2) are equivalent. We only need to prove (1) and (3) are equivalent.

“(1) ⇒ (3)”. By Lemma 17 we have Ziγ ' γ for all 1 ≤ i ≤ n. By definition of
Γ(n) we have Rd(γ) = {Z1, Z2, . . . , Zn}. It follows from Proposition 4 that Var(γ) =
{A1, A2, . . . , An}.
“(3)⇒ (1)”. By Proposition 4, Rd(γ) = {Z1, Z2, . . . , Zn}. By the definition of redundant
set and congruence we know Z1Z2 . . . Znγ ' γ.

J
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