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Introduction
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• Q(G) has two matches

◦ u0 → a1, u1 → b1 and u2 → c0
◦ u0 → a1, u1 → b1 and u2 → c3

• |Q(G)| = 2.

• Subgraph matching: find all homomorphic matches of a query Q in graph G; a
fundamental building block in graph query languages (e.g., Cypher, GQL).

• Cardinality estimation: estimate |Q(G)| without explicit computation; crucial for
cost-based query optimization.

• Extensively studied in relational databases, but still underdeveloped for graph data.
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Existing Approaches

• Summary-based methods
◦ Build statistics from small queries and combine them to estimate |Q(G)|.
◦ Rely on graph data rather than specific queries.
◦ Examples: CEG, SumRDF, Color, GLogS.

• Sampling-based methods
◦ Estimate |Q(G)| by executing Q on random samples of G and scaling the results.
◦ Provide good accuracy under correlations and skewed data.
◦ May suffer from high failure rates on cyclic queries.

• ML-based methods
◦ Learn predictive models from data or queries.
◦ Support both data-driven and query-driven approaches.
◦ High training cost; often act as black boxes.

We focus on summary-based approaches in this work.
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Motivation

A summary-based estimator typically performs cardinality estimation iteratively.
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Figure: Query Q
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Figure: Iterative estimation using GLogS[1]

Each iteration estimates a subquery of Q; we refer to each step as an estimation iteration.

[1] GLogS: Interactive graph pattern matching query at large scale. ATC 2023.
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Motivation (cont’d)

Example. Let’s estimate |Q(G)| using existing summary-based estimators.
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Figure: Query Q
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Figure: Estimation accuracy of subqueries across iterations

Observation. More iterations → higher Q-error (error accumulation).

Question. How to reduce estimation iterations and improve accuracy?
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Accuracy vs. Efficiency
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• Utilizing statistics of generic queries, e.g., triangle counts, reduces estimation iterations
and improves accuracy[1].

• Constructing statistics like triangle counts on large graphs is prohibitive.
– Systems like GLogS use techniques such as graph sparsification to mitigate the problem.

• Path query statistics strike a balance between accuracy and efficiency.

[1] Accurate Summary-based Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. VLDB 2022.
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PathCE: A Path-Centric Framework

(1) PathCE precomputes short-path query statistics from the data graph and encodes them
as a novel Path-Centric Summary Graph (PSG).
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PSG stores both match counts and maximum-degree statistics for path queries.

(2) By using query decomposition and precomputed statistics encoded in PSG, PathCE
achieves higher estimation accuracy with fewer iterations.
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Path-Centric Summary Graph
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A path-centric summary graph (PSG) for a data graph G is itself a graph G ′, where

• each vertex in G ′ represents a subset of vertices in G that share the same label;
• each edge in G ′ represents a path query between the corresponding vertex subsets.
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Path-Centric Summary Graph (cont’d)
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SE-triple. Each PSG edge carries an SE-triple (c,d1,d2) that encodes path-query statistics.
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(c, d1, d2)

Path match count Maximal degree information

Example. For edge e4 = (C0,B0,P1), the SE-triple is (c,d1,d2) = (2, 2, 1).
• There are 2 matches of P1 in G, where u2 (resp. u1) matches a vertex in C0 (resp. B0).
• d1 = 2 since c0 ∈ C0 has the maximum number of occurrences in these matches, i.e., 2.
• d2 = 1 since every vertex in B0 is associated with at most one P1 match.
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Parallel PSG Construction
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We develop PSGBuilder, a PSG construction algorithm that

• PSGBuilder constructs a PSG for any given graph in linear time, and
• guarantees reduced running time when using more processors.

Key ideas behind PSGBuilder. (1) Vertex-level parallelism; (2) Efficient neighborhood access.
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Cardinality Estimation

(1) Decompose Q into a new query Q ′ with a simpler structure, such that each edge in Q ′

represents a path query in Q.
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(c) Query Q’(b) Short-path queries

To leverage the precomputed PSG statistics and improve accuracy, PathCE ensures that

• the statistics of each path query in Q ′, e.g., P1, are precomputed and stored in the PSG;
• the number of vertices in Q ′ is minimized to reduce the number of estimation iterations.
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Cardinality Estimation (cont’d)

(2) Estimate |Q(G)| using Q ′ and the precomputed PSG – fewer iterations, higher accuracy.

u1

u3

u1

u3 u9

u5 u7

P1 P2
P3

P4
u1

u3

P1

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

u1

u3 u9

u5 u7

P1 P2
P3

P4

Q1

Q2

(e) Subqueries processed in iterations; designated endpoints are marked in black.

[u5]

[u5]

Q 1
[u 5] Q 1

[u 5]

Q2
[u5]

Q 3
[u 1,

u 3] Q4[u1]

u5

u5

Q3[u1,u3] Q4[u1]

u1

u3

u5
u1

• Using maximum-degree statistics[1], PathCE ensures that the estimation for each
subquery of Q is pessimistic.

• Proposition. Let c be the estimate produced by PathCE. Then |Q(G)| ⩽ c.

[1] Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.
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Evaluation

Datasets and Queries

LSQB + GLogs

JOB

G-CARE Queries

Queries

548K254KAIDS

IMDB 119M52.6M

21.4MLDBC 3.73M

|E||V|

Baselines
• Summary-based: GLogS, CEG,

FactorJoin, SumRDF, Color
• Sampling-based: WanderJoin (WJ)
• ML-based: GNCE

• Metrics: estimation accuracy, estimation latency, and summary-construction efficiency.

• PSG construction efficiency also evaluated on LDBC with SF = 0.1, 0.3, 1, 3, 10.
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EXP-1: Estimation Accuracy

• For cyclic queries, PathCE yields the most accurate estimates on both real-world and
synthetic datasets.

• For acyclic queries, PathCE delivers accuracy comparable to CEG and WJ.
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(a). Accuracy (varying query, LDBC cyclic)
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(b). Accuracy (varying query, LDBC acyclic) (c). Accuracy (varying query size, IMDB)
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EXP-2: Estimation Latency

• PathCE delivers fast estimation with consistently low latency variance.

• Rationale: PathCE has a smaller search space with fewer iterations.
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EXP-3: Summary Construction Efficiency

• PathCE builds PSG efficiently, and is the fastest estimator among those that consider
path-query statistics.

• PSG construction scales with both thread count and data graph size.
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PathCE Recap

• PathCE is a path-centric framework for cardinality estimation in subgraph matching.

• It introduces PSG, a novel data structure that encodes short-path query statistics.

• With path-query statistics, PathCE delivers higher accuracy with fewer iterations.

• PathCE also includes a parallel, scalable PSG builder for large data graphs.
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Future Work

• Q1. How can we effectively handle predicates?

• Q2. How can we efficiently maintain a PSG under data-graph updates?

• Q3. Can a PathCE variant (or similar technique) be applied in relational DBMSs?
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Thanks!
Q & A.
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