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P Introduction

e Q(G) has two matches
. o Ug — ap, W — by and uy, — ¢
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* [Q(G)I=2.

(@) Graph G (b) Query Q

e Subgraph matching: find all homomorphic matches of a query Q in graph G; a
fundamental building block in graph query languages (e.g., Cypher, GQL).

e Cardinality estimation: estimate |Q(G)| without explicit computation; crucial for
cost-based query optimization.

e Extensively studied in relational databases, but still underdeveloped for graph data.



P Existing Approaches

e Summary-based methods

o Build statistics from small queries and combine them to estimate |Q(G)|.
o Rely on graph data rather than specific queries.
o Examples: CEG, SumRDF, Color, GLogS.

e Sampling-based methods

o Estimate |Q(G)| by executing Q on random samples of G and scaling the results.
o Provide good accuracy under correlations and skewed data.
o May suffer from high failure rates on cyclic queries.

e ML-based methods

o Learn predictive models from data or queries.
o Support both data-driven and query-driven approaches.
o High training cost; often act as black boxes.

We focus on summary-based approaches in this work.



P Motivation

A summary-based estimator typically performs cardinality estimation iteratively.
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Figure: Query Q Figure: Iterative estimation using GLogS™!

Each iteration estimates a subquery of Q; we refer to each step as an estimation iteration.

[1] GLogS: Interactive graph pattern matching query at large scale. ATC 2023.



Motivation (cont'd)

Example. Let's estimate |Q(G)| using existing summary-based estimators.

[ PathCE I CEG B GlogS I FactorJoin
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Figure: Query Q Figure: Estimation accuracy of subqueries across iterations

Observation. More iterations — higher Q-error (error accumulation).

Question. How to reduce estimation iterations and improve accuracy?



P Accuracy vs. Efficiency

Estimation Accuracy Construction Efficiency
Edge & Vertex ® (D]
Triangle query (D) ®
Path query (D) (@)

e Utilizing statistics of generic queries, e.g., triangle counts, reduces estimation iterations
and improves accuracy™!.

e Constructing statistics like triangle counts on large graphs is prohibitive.
— Systems like GLogS use techniques such as graph sparsification to mitigate the problem.

e Path query statistics strike a balance between accuracy and efficiency.

[1] Accurate Summary-based Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. VLDB 2022.



D PathCE: A Path-Centric Framework

(1) PathCE precomputes short-path query statistics from the data graph and encodes them

as a novel Path-Centric Summary Graph (PSG).
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(a) Graph G (b) A PSG graph G’ (c) Edges and SE-triples

PSG stores both match counts and maximum-degree statistics for

path queries.

(2) By using query decomposition and precomputed statistics encoded in PSG, PathCE

achieves higher estimation accuracy with fewer iterations.



Path-Centric Summary Graph

(@) Graph G

(b) A PSG graph G’

(c) Edges and SE-triples

A path-centric summary graph (PSG) for a data graph G is itself a graph G’, where

e cach vertex in G’ represents a subset of vertices in G that share the same label;

e each edge in G’ represents a path query between the corresponding vertex subsets.



Path-Centric Summary Graph (cont’d)
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(@) Graph G (b) A PSG graph G’ (c) Edges and SE-triples

SE-triple. Each PSG edge carries an SE-triple (c, dy, d») that encodes path-query statistics.

(c,dy,ds)
Path match count Maximal degree information

Example. For edge e4 = (Co, Bg, P1), the SE-triple is (¢, d;, d2) = (2,2, 1).

e There are 2 matches of Py in G, where u;, (resp. u;) matches a vertex in Cq (resp. Bp).
e d; = 2 since ¢g € Cg has the maximum number of occurrences in these matches, i.e., 2.
e d, = 1 since every vertex in By is associated with at most one P; match.



Parallel PSG Construction
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(@) Graph G (b) A PSG graph G’ (c) Edges and SE-triples

We develop PSGBuilder, a PSG construction algorithm that

e PSGBuilder constructs a PSG for any given graph in linear time, and
e guarantees reduced running time when using more processors.

Key ideas behind PSGBuilder. (1) Vertex-level parallelism; (2) Efficient neighborhood access.
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P Cardinality Estimation

(1) Decompose Q into a new query Q' with a simpler structure, such that each edge in Q’
represents a path query in Q.

(A2

(a) Query Q (b) Short-path queries (c) Query Q

To leverage the precomputed PSG statistics and improve accuracy, PathCE ensures that

e the statistics of each path query in Q’, e.g., Py, are precomputed and stored in the PSG;

e the number of vertices in Q' is minimized to reduce the number of estimation iterations.
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P Cardinality Estimation (cont’'d)

(2) Estimate |Q(G)| using Q' and the precomputed PSG — fewer iterations, higher accuracy.
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(e) Subqueries processed in iterations; designated endpoints are marked in black.

e Using maximum-degree statistics!!, PathCE ensures that the estimation for each
subquery of Q is pessimistic.

e Proposition. Let ¢ be the estimate produced by PathCE. Then |Q(G)| < c.

[1] Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.



P Evaluation

Datasets and Queries

V| |E| Queries
LDBC 3.73M 21.4M LSQB + GLogs
IMDB 52.6M 119M JOB
AIDS 254K 548K G-CARE Queries

e Metrics: estimation accuracy, estimation latency, and summary-construction efficiency.

Baselines

e Summary-based: GLogS, CEG,
FactorJoin, SumRDF, Color

e Sampling-based: WanderJoin (WJ)
e ML-based: GNCE

e PSG construction efficiency also evaluated on LDBC with SF = 0.1, 0.3, 1, 3, 10.
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P EXP-1: Estimation Accuracy

q-error

e For cyclic queries, PathCE yields the most accurate estimates on both real-world and
synthetic datasets.

e For acyclic queries, PathCE delivers accuracy comparable to CEG and WJ.
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P EXP-2: Estimation Latency

e PathCE delivers fast estimation with consistently low latency variance.

e Rationale: PathCE has a smaller search space with fewer iterations.
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P EXP-3: Summary Construction Efficiency

e PathCE builds PSG efficiently, and is the fastest estimator among those that consider
path-query statistics.

e PSG construction scales with both thread count and data graph size.

Latency (s)
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(a). Summary construction time (b). Scalability (varying thread count) (c). Scalability (varying scale factor)
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P PathCE Recap

PathCE is a path-centric framework for cardinality estimation in subgraph matching.

It introduces PSG, a novel data structure that encodes short-path query statistics.

With path-query statistics, PathCE delivers higher accuracy with fewer iterations.

PathCE also includes a parallel, scalable PSG builder for large data graphs.

17



D Future

e Q1
e Q2
e Q3

Work

. How can we effectively handle predicates?
. How can we efficiently maintain a PSG under data-graph updates?

. Can a PathCE variant (or similar technique) be applied in relational DBMSs?
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Thanks!
Q & A.
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