
Research Track – Database Engines for Graphs

Path-Centric Cardinality Estimation for
Subgraph Matching

Zhengdong Wang (SJTU), Qiang Yin (SJTU), Longbin Lai (Alibaba)

September 3, 2025

Introduction

(a) Graph G

A B C

a0
a1

c1

c3
b1

b0

c0c2

(b) Query Q

u0 u1

u2
• Q(G) has two matches

◦ u0 → a1, u1 → b1 and u2 → c0
◦ u0 → a1, u1 → b1 and u2 → c3

• |Q(G)| = 2.

• Subgraph matching: find all homomorphic matches of a query Q in graph G; a
fundamental building block in graph query languages (e.g., Cypher, GQL).

• Cardinality estimation: estimate |Q(G)| without explicit computation; crucial for
cost-based query optimization.

• Extensively studied in relational databases, but still underdeveloped for graph data.

2

Existing Approaches

• Summary-based methods
◦ Build statistics from small queries and combine them to estimate |Q(G)|.
◦ Rely on graph data rather than specific queries.
◦ Examples: CEG, SumRDF, Color, GLogS.

• Sampling-based methods
◦ Estimate |Q(G)| by executing Q on random samples of G and scaling the results.
◦ Provide good accuracy under correlations and skewed data.
◦ May suffer from high failure rates on cyclic queries.

• ML-based methods
◦ Learn predictive models from data or queries.
◦ Support both data-driven and query-driven approaches.
◦ High training cost; often act as black boxes.

We focus on summary-based approaches in this work.

3

Motivation

A summary-based estimator typically performs cardinality estimation iteratively.

knowsperson

Figure: Query Q

(1) (2) (3) (6)

…

Figure: Iterative estimation using GLogS[1]

Each iteration estimates a subquery of Q; we refer to each step as an estimation iteration.

[1] GLogS: Interactive graph pattern matching query at large scale. ATC 2023.
4

Motivation (cont’d)

Example. Let’s estimate |Q(G)| using existing summary-based estimators.

knowsperson

Figure: Query Q

1 2 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7
100

102

104

q
-e

rr
or

PathCE CEG GLogS FactorJoin

Figure: Estimation accuracy of subqueries across iterations

Observation. More iterations → higher Q-error (error accumulation).

Question. How to reduce estimation iterations and improve accuracy?

5

Accuracy vs. Efficiency

!!

Path query

Triangle query

☹# #

Edge & Vertex

☹

Construction EfficiencyEstimation Accuracy

• Utilizing statistics of generic queries, e.g., triangle counts, reduces estimation iterations
and improves accuracy[1].

• Constructing statistics like triangle counts on large graphs is prohibitive.
– Systems like GLogS use techniques such as graph sparsification to mitigate the problem.

• Path query statistics strike a balance between accuracy and efficiency.

[1] Accurate Summary-based Cardinality Estimation Through the Lens of Cardinality Estimation Graphs. VLDB 2022.
6

PathCE: A Path-Centric Framework

(1) PathCE precomputes short-path query statistics from the data graph and encodes them
as a novel Path-Centric Summary Graph (PSG).

e4

e0
ID

e5

e3

e1
e2

(C1, B0, P1) (1,1,1)
(C0, B0, P1) (2,2,1)

(3,2,2)

Edge
(A0, C0, P0)

(2,1,1)(A0, B0, P2)

SE-triple

(A0, B0, P3)

(A0, C1, P0)

(1,1,1)

(1,1,1)

(c) Edges and SE-triples

C0

(b) A PSG graph G’

a0 a1
b0 b1

c0 c1 c3c2

B0A0

C1

e0 e1
e2

e4

e5

e3

(a) Graph G

A B C

a0
a1

c0c1
c2

c3

b1
b0

PSG stores both match counts and maximum-degree statistics for path queries.

(2) By using query decomposition and precomputed statistics encoded in PSG, PathCE
achieves higher estimation accuracy with fewer iterations.

7

Path-Centric Summary Graph

P0 P1 P2 P3u1 u1 u1u2 u2 u2u0 u0 u0

e4

e0
ID

e5

e3

e1
e2

(C1, B0, P1) (1,1,1)
(C0, B0, P1) (2,2,1)

(3,2,2)

Edge
(A0, C0, P0)

(2,1,1)(A0, B0, P2)

SE-triple

(A0, B0, P3)

(A0, C1, P0)

(1,1,1)

(1,1,1)

(c) Edges and SE-triples

C0

(b) A PSG graph G’

a0 a1
b0 b1

c0 c1 c3c2

B0A0

C1

e0 e1
e2

e4

e5

e3

(a) Graph G

A B C

a0
a1

c0c1
c2

c3

b1
b0

A path-centric summary graph (PSG) for a data graph G is itself a graph G ′, where

• each vertex in G ′ represents a subset of vertices in G that share the same label;
• each edge in G ′ represents a path query between the corresponding vertex subsets.

8

Path-Centric Summary Graph (cont’d)
P0 P1 P2 P3u1 u1 u1u2 u2 u2u0 u0 u0

e4

e0
ID

e5

e3

e1
e2

(C1, B0, P1) (1,1,1)
(C0, B0, P1) (2,2,1)

(3,2,2)

Edge
(A0, C0, P0)

(2,1,1)(A0, B0, P2)

SE-triple

(A0, B0, P3)

(A0, C1, P0)

(1,1,1)

(1,1,1)

(c) Edges and SE-triples

C0

(b) A PSG graph G’

a0 a1
b0 b1

c0 c1 c3c2

B0A0

C1

e0 e1
e2

e4

e5

e3

(a) Graph G

A B C

a0
a1

c0c1
c2

c3

b1
b0

SE-triple. Each PSG edge carries an SE-triple (c,d1,d2) that encodes path-query statistics.
<latexit sha1_base64="wczFqb7h+SoiMtKBKgjTpaKeoQs=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBAiSNgNvo5BLx4jmAdsljA7O5sMmZ1ZZnqFEPIZXjwo4tWv8ebfOEn2oIkFDUVVN91dYSq4Adf9dlZW19Y3Ngtbxe2d3b390sFhy6hMU9akSijdCYlhgkvWBA6CdVLNSBIK1g6Hd1O//cS04Uo+wihlQUL6ksecErCSX6HnUc+zVTvrlcpu1Z0BLxMvJ2WUo9ErfXUjRbOESaCCGON7bgrBmGjgVLBJsZsZlhI6JH3mWypJwkwwnp08wadWiXCstC0JeKb+nhiTxJhREtrOhMDALHpT8T/PzyC+CcZcphkwSeeL4kxgUHj6P464ZhTEyBJCNbe3YjogmlCwKRVtCN7iy8ukVat6V9XLh4ty/TaPo4CO0QmqIA9dozq6Rw3URBQp9Ixe0ZsDzovz7nzMW1ecfOYI/YHz+QMvq4/n</latexit>

(c, d1, d2)

Path match count Maximal degree information

Example. For edge e4 = (C0,B0,P1), the SE-triple is (c,d1,d2) = (2, 2, 1).
• There are 2 matches of P1 in G, where u2 (resp. u1) matches a vertex in C0 (resp. B0).
• d1 = 2 since c0 ∈ C0 has the maximum number of occurrences in these matches, i.e., 2.
• d2 = 1 since every vertex in B0 is associated with at most one P1 match.

9

Parallel PSG Construction

P0 P1 P2 P3u1 u1 u1u2 u2 u2u0 u0 u0

e4

e0
ID

e5

e3

e1
e2

(C1, B0, P1) (1,1,1)
(C0, B0, P1) (2,2,1)

(3,2,2)

Edge
(A0, C0, P0)

(2,1,1)(A0, B0, P2)

SE-triple

(A0, B0, P3)

(A0, C1, P0)

(1,1,1)

(1,1,1)

(c) Edges and SE-triples

C0

(b) A PSG graph G’

a0 a1
b0 b1

c0 c1 c3c2

B0A0

C1

e0 e1
e2

e4

e5

e3

(a) Graph G

A B C

a0
a1

c0c1
c2

c3

b1
b0

We develop PSGBuilder, a PSG construction algorithm that

• PSGBuilder constructs a PSG for any given graph in linear time, and
• guarantees reduced running time when using more processors.

Key ideas behind PSGBuilder. (1) Vertex-level parallelism; (2) Efficient neighborhood access.

10

Cardinality Estimation

(1) Decompose Q into a new query Q ′ with a simpler structure, such that each edge in Q ′

represents a path query in Q.

(a) Query Q

u6

u1

u2

u3

u7

u5

u8

u4
u9

u1

u3

u9

u5 u7

P1 P2

P3
P5

P4

P6

u5

u8

u1

u2

u3

u9
u6

u1

u5

u7

u5

u3

u5

u4

u1

u5

(c) Query Q’(b) Short-path queries

To leverage the precomputed PSG statistics and improve accuracy, PathCE ensures that

• the statistics of each path query in Q ′, e.g., P1, are precomputed and stored in the PSG;
• the number of vertices in Q ′ is minimized to reduce the number of estimation iterations.

11

Cardinality Estimation (cont’d)

(2) Estimate |Q(G)| using Q ′ and the precomputed PSG – fewer iterations, higher accuracy.

u1

u3

u1

u3 u9

u5 u7

P1 P2
P3

P4
u1

u3

P1

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

u1

u3 u9

u5 u7

P1 P2
P3

P4

Q1

Q2

(e) Subqueries processed in iterations; designated endpoints are marked in black.

[u5]

[u5]

Q 1
[u 5] Q 1

[u 5]

Q2
[u5]

Q 3
[u 1,

u 3] Q4[u1]

u5

u5

Q3[u1,u3] Q4[u1]

u1

u3

u5
u1

• Using maximum-degree statistics[1], PathCE ensures that the estimation for each
subquery of Q is pessimistic.

• Proposition. Let c be the estimate produced by PathCE. Then |Q(G)| ⩽ c.

[1] Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.
12

Evaluation

Datasets and Queries

LSQB + GLogs

JOB

G-CARE Queries

Queries

548K254KAIDS

IMDB 119M52.6M

21.4MLDBC 3.73M

|E||V|

Baselines
• Summary-based: GLogS, CEG,

FactorJoin, SumRDF, Color
• Sampling-based: WanderJoin (WJ)
• ML-based: GNCE

• Metrics: estimation accuracy, estimation latency, and summary-construction efficiency.

• PSG construction efficiency also evaluated on LDBC with SF = 0.1, 0.3, 1, 3, 10.

13

EXP-1: Estimation Accuracy

• For cyclic queries, PathCE yields the most accurate estimates on both real-world and
synthetic datasets.

• For acyclic queries, PathCE delivers accuracy comparable to CEG and WJ.

Q2 Q3 Q8 Q9 Q10 Q11 Q14 Q15 Q16 Q17 Q19 Q20

101

103

105

107

109

1011
Cyclic

Q1 Q4 Q5 Q6 Q13

101

103

105

107 Acyclic

q-
er

ro
r

PathCE GLogS FactorJoin CEG SumRDF WJ GNCE Color

Q2 Q3 Q8 Q9 Q10 Q11 Q14 Q15 Q16 Q17 Q19 Q20

101

103

105

107

109

1011
Cyclic

Q1 Q4 Q5 Q6 Q13

101

103

105

107 Acyclic

q-
er

ro
r

PathCE GLogS FactorJoin CEG SumRDF WJ GNCE Color

(a). Accuracy (varying query, LDBC cyclic)

Q2 Q3 Q8 Q9 Q10 Q11 Q14 Q15 Q16 Q17 Q19 Q20

101

103

105

107

109

1011
Cyclic

Q1 Q4 Q5 Q6 Q13

101

103

105

107 Acyclic

q-
er

ro
r

PathCE GLogS FactorJoin CEG SumRDF WJ GNCE Color

≤ 4 > 4

1012

106

100

106

1012

u
n

d
er

es
t.
←

[q
-e

rr
or

]
→

ov
er

es
t.

(b). Accuracy (varying query, LDBC acyclic) (c). Accuracy (varying query size, IMDB)
14

EXP-2: Estimation Latency

• PathCE delivers fast estimation with consistently low latency variance.

• Rationale: PathCE has a smaller search space with fewer iterations.

Baseline

10−5

10−3

10−1

101

L
at

en
cy

(s
)

(a). Latency on all datasets
K3 K4 K5 K6 K7

10−5

10−3

10−1

101

L
at

en
cy

(s
)

(b). Latency using K3–K7 (LDBC)

15

EXP-3: Summary Construction Efficiency

• PathCE builds PSG efficiently, and is the fastest estimator among those that consider
path-query statistics.

• PSG construction scales with both thread count and data graph size.

LDBC IMDB
0

1000

2000

3000

4000

5400

L
at

en
cy

(s
)

(a). Summary construction time

1 8 16 24 32

103

104

L
at

en
cy

(s
)

1.00×

6.96×
10.75×

12.47×
14.94×

(b). Scalability (varying thread count)

0.1 0.3 1 3 10
102

103

104

L
at

en
cy

(s
)

1.00×

2.50×

6.55×

19.09×

62.75×

(c). Scalability (varying scale factor)

16

PathCE Recap

• PathCE is a path-centric framework for cardinality estimation in subgraph matching.

• It introduces PSG, a novel data structure that encodes short-path query statistics.

• With path-query statistics, PathCE delivers higher accuracy with fewer iterations.

• PathCE also includes a parallel, scalable PSG builder for large data graphs.

17

Future Work

• Q1. How can we effectively handle predicates?

• Q2. How can we efficiently maintain a PSG under data-graph updates?

• Q3. Can a PathCE variant (or similar technique) be applied in relational DBMSs?

18

Thanks!
Q & A.

19

