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to Bulk Synchronous Parallel (BSP) and Asynchronous Parallel (AP) models, AAP reduces both stragglers

and stale computations by dynamically adjusting relative progress of workers. We show that BSP, AP and

Stale Synchronous Parallel model (SSP) are special cases of AAP. Better yet, AAP optimizes parallel processing

by adaptively switching among these models at di�erent stages of a single execution. Moreover, employing

the programming model of GRAPE, AAP aims to parallelize existing sequential algorithms based on simul-

taneous �xpoint computation with partial and incremental evaluation. Under a monotone condition, AAP
guarantees to converge at correct answers if the sequential algorithms are correct. Furthermore, we show that

AAP can optimally simulate MapReduce, PRAM, BSP, AP and SSP. Using real-life and synthetic graphs, we

experimentally verify that AAP outperforms BSP, AP and SSP for a variety of graph computations.
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1 INTRODUCTION
Bulk Synchronous Parallel (BSP) model [75] has been adopted by graph systems, e.g., Pregel [58]

and GRAPE [38]. Under BSP, iterative computation is separated into supersteps, and messages from

one superstep can only be accessible in the next one. The synchronous nature of BSP simpli�es the

analysis of parallel algorithms. However, its global synchronization barriers lead to stragglers, i.e.,
some workers take substantially longer than the others. Since workers converge asymmetrically,

the speed of each superstep is limited to that of the slowest worker.
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Fig. 1. Runs under di�erent parallel models

To reduce stragglers, Asynchronous Parallel (AP) model has been employed by, e.g., GraphLab [43,

57] and Maiter [91]. Under AP, a worker has immediate access to incoming messages. Fast workers

can move ahead, without waiting for stragglers. However, AP may incur excessive stale computa-

tions, i.e., processes triggered by messages that soon become stale due to more up-to-date messages.

Stale computations are often redundant and increase unnecessary computation and communication

(data shipment) costs. Moreover, it is observed that AP makes it hard to write, debug and analyze

programs [80], and complicates the consistency analysis (see [85] for a recent survey).

A recent study shows that neither AP nor BSP consistently outperforms the other for di�erent

algorithms, input graphs and cluster scales [83]. For many graph algorithms, di�erent stages in a

single execution demand di�erent models for optimal performance.

To rectify the problems, revisions of BSP and AP have been studied, notably Stale Synchronous

Parallel (SSP) [47], a relaxed consistency protocol of ASPIRE [78] and a hybrid model Hsync [83].

SSP relaxes BSP by allowing fastest workers to outpace the slowest ones by a �xed number c of

steps (known as bounded staleness). It reduces stragglers, but incurs redundant stale computations.

Like SSP, ASPIRE adopts a uniform staleness threshold t ; unlike SSP, it employs a “best e�ort

refresh” policy to fetch the latest updates when “stale-hit” occurs. Hsync suggests to switch between

AP and BSP, but it requires us to predict switching points and incurs switching costs.

Is it possible to have a simple parallel model that inherits the bene�ts of BSP and AP, and reduces

both stragglers and stale computations, without explicitly switching between the two? Better still,

can the model retain the programming simplicity of BSP, ensure consistency, and guarantee correct

convergence of graph computations under a general condition?

AAP. To answer the questions, we propose a parallel model, referred to as Adaptive Asynchronous

Parallel (AAP) model. Without global synchronization barriers, AAP is essentially asynchronous. As

opposed to BSP and AP, each worker under AAP maintains parameters to measure (a) its progress

relative to other workers, and (b) changes accumulated by messages (staleness). Each worker has

immediate access to incoming messages, and decides whether to start the next round of computation

based on its own parameters. In contrast to SSP, each worker dynamically adjusts its parameters

based on its relative progress and message staleness, instead of using a �xed bound.

Example 1.1. Consider a computation task being conducted at three workers, where workers P1

and P2 take 3 time units to do one round of computation, and P3 takes 6 units; it takes 1 unit to

pass messages. This is carried out under di�erent models as follows, as shown in Fig. 1a (it depicts

runs for computing connected components shown in Fig. 1b, to be elaborated in Example 3.2).

(1) BSP. As depicted in Fig. 1a (1), worker P3 takes twice as long as P1 and P2, and is a straggler.

Due to its global synchronization, each superstep takes 6 time units, the speed of the slowest P3.

(2) AP. AP allows a worker to start the next round as soon as its message bu�er is not empty.

However, it comes with redundant stale computation. As shown in Fig. 1a (2), at clock time 7,
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the second round of P3 can only use messages from the �rst round of P1 and P2. This round of

computation at P3 becomes stale at time 8, when the latest updates from P1 and P2 arrive. As will

be seen later, a large part of the computations of faster P1 and P2 is also redundant.

(3) SSP. Consider bounded staleness of 1, i.e., the fastest worker can outpace the slowest one by at

most 1 round. As shown in Fig. 1a (3), P1 and P2 are not blocked by the straggler in the �rst 3 rounds.

However, like AP, the second round of P3 is stale. Moreover, P1 and P2 cannot start their rounds 4

and 5 until P3 �nishes its rounds 2 and 3, respectively, due to the bounded staleness condition. As

a result, P1, P2 and P3 behave like in BSP model after clock time 14.

(4) AAP. AAP allows a worker to accumulate changes and decide when to start the next round

based on the progress of others. As shown in Fig. 1a (4), after P3 �nishes one round of computation

at clock time 6, it may start the next round at time 8, at which point the latest changes from P1 and

P2 are available. As opposed to AP, AAP reduces redundant stale computation. This also helps us

mitigate the straggler problem, as P3 can converge in less rounds by utilizing the latest updates.

Remark. Observe the following about the example.

(1) When stragglers are forced to wait and accumulate messages as in AAP, the stragglers may

converge in less rounds, and the overall performance can be substantially improved.

(2) To simplify the discussion, we assume no overlap between computation and communication

above. Nonetheless, in the presence of overlap, it is easy to show that the behaviors of these models

actually resemble their counterparts depicted in Figure 1a. 2

AAP reduces stragglers by not blocking fast workers. This is especially helpful when the com-

putation is CPU-intensive and skewed, when an evenly partitioned graph becomes skewed due to

updates, or when we cannot a�ord evenly partitioning a large graph due to partition cost. Moreover,

AAP activates a worker only after it receives su�cient latest updates and thus reduces stale com-

putations. This allows us to reallocate resources to useful computations via workload adjustments.

In addition, AAP di�ers from previous models in the following.

(1) Model switch. BSP, AP and SSP are special cases of AAP with �xed parameters. Hence AAP can

naturally switch among these models at di�erent stages of the same execution, without asking

for explicit switching points or incurring the switching costs. As will be seen later, AAP is more

�exible: under AAP, workers with similar speed are automatically grouped together after a few

rounds of computation; it adopts BSP within a group, and AP across di�erent groups.

(2) Programming paradigm. AAP works with the programming model of GRAPE [38]. It allows

users to extend existing sequential (single-machine) graph algorithms with message declarations,

and parallelizes the algorithms across a cluster of machines. It employs aggregate functions to

resolve con�icts raised by updates from di�erent workers, without worrying about race conditions

or requiring extra e�orts to enforce consistency by using, e.g., locks [85].

(3) Convergence guarantees. AAP is modeled as a simultaneous �xpoint computation. Based on

this we develop one of the �rst conditions under which AAP parallelization of sequential algo-

rithms guarantees (a) convergence at correct answers, and (b) the Church-Rosser property, i.e., all

asynchronous runs converge at the same result, as long as the sequential algorithms are correct.

(4) Expressive power. Despite its simplicity, AAP can optimally simulate MapReduce [31], PRAM

(Parallel Random Access Machine) [76], BSP, AP and SSP. That is, algorithms developed for these

models can be migrated to AAP without increasing the complexity bound.
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System

PageRank on Friendster CC on tra�ic
Time(s) Communication(GB) Time(s) Communication(GB)

Giraph 6117.7 767.3 4707.0 108.6

GraphLabsync 99.5 138.0 1792.2 471.4

GraphLabasync 200.1 333.0 504.1 1024.2

GiraphUC 9991.6 3616.5 2081.1 119.8

Maiter 199.9 134.3 347.3 1.94

Husky 141.4 201.8 178.6 16.1

Galois 18.7 11.8 25.8 4.1

Pregel+ 61.9 17.0 113.5 3.8

PowerSwitch 85.1 39.9 386.2 524.4

TDataflow 26.12 218.3 7.89 0.43

GRAPE+ 21.2 16.2 2.8 0.03

Table 1. PageRank and CC with 192 workers

(5) Performance. AAP outperforms BSP, AP and SSP for a variety of graph computations. As an

example, for PageRank [23] on social network Friendster [6] and connected components (CC)

on transportation network tra�ic [3] with 192 workers, Table 1 shows the performance of (a)

Giraph [8] (an open-source version of Pregel), GraphLab [57], Husky [88], Galois [29, 64] and

Pregel+ [87] under BSP, (b) GraphLab, Maiter [91] and TDataflow (Timely-Data�ow) [9, 62] under

AP, (c) GiraphUC [45] under BAP, (d) PowerSwtich [83] under Hsync, (e) GRAPE+, an extension of

GRAPE by supporting AAP. We can see that GRAPE+ performs better than or at least comparably

to the state-of-the-art systems in both response time and data shipment (communication cost).

Contributions & organization. This paper introduces AAP, from foundations to implementation.

(1) Programming model (Section 2). We present the programming model of GRAPE, and show that

it works well with AAP, to parallelize existing sequential graph algorithms.

(2) AAP (Section 3). We propose AAP. We show that AAP subsumes BSP, AP and SSP as special

cases, and reduces both stragglers and stale computations by adjusting relative progress of workers.

(3) Foundation (Section 4). We model AAP as a simultaneous �xpoint computation with partial

evaluation and incremental computation. We provide a condition under which AAP guarantees

convergence at correct answers, i.e., termination and the Church-Rosser property. We also show

that AAP can optimally simulate MapReduce, PRAM, BSP, AP and SSP.

(4) AAP programming (Section 5). As case studies, we show that a variety of graph computations

can be easily carried out by AAP. These include single-source shortest paths (SSSP), connected

components (CC), collaborative �ltering (CF) and PageRank (PageRank).

(5) Runtime estimation (Section 6). To dynamically adjust the relative progress of workers under

AAP, we estimate runtime of workers and message arrival rate based on machine learning techniques.

In particular, we propose a runtime estimation model based on random forest regressions [49].

(6) Implementation (Section 7). As proof of concept, we develop GRAPE+ by extending GRAPE [37]

from BSP to AAP. We outline the implementation of GRAPE+.

(7) Experiments (Section 8). Using real-life and synthetic graphs, we evaluate the performance

of GRAPE+, compared with the systems listed in Table 1, and Petuum [84], a parameter server

under SSP. Over real-life graphs and with 192 workers, we �nd the following. (a) GRAPE+ is

at least 1.1, 1.9, 1.7 and 4.6 times faster than these systems for SSSP, CC, PageRank and CF on
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real-life graphs on average, respectively, up to 4127, 1635, 446 and 7.6 times. On average, (b)

AAP outperforms BSP, AP and SSP by 4.8, 1.7 and 1.8 times in response time, up to 27.4, 3.2 and

5.0 times, respectively. Over larger synthetic graphs with 10 billion edges, it is 4.3, 14.7 and 4.7
times faster, respectively. (c) GRAPE+ is on average 2.4, 2.7, 2.3 and 1.7 times faster for SSSP,

CC, PageRank and CF, respectively, when the number of workers varies from 64 to 192. (d) Our

prediction method estimates the runtime of the algorithms fairly well, and our dynamic adjustment

of relative progress is e�cient and e�ective.

Related work. This paper extends its conference version [36] as follows. (1) We provide detailed

proofs of the results of the paper (Section 4). (2) We propose a runtime estimation model based on

random forest regressions in a new section (Section 6), for AAP to dynamically adjust the relative

progress of workers. (3) We conduct new experiments to verify the accuracy and e�ciency of our

runtime and message arrival rate estimation, and compare with more graph systems (Section 8).

Several parallel models have been studied for graphs. PRAM [76] supports parallel RAM access

with shared memory, and is not for the shared-nothing architecture that is widely used nowadays.

MapReduce [31] is adopted by, e.g., GraphX [44]. However, it is not very e�cient for iterative

graph computations due to its blocking and I/O costs. BSP [75] with vertex-centric programming

works better for graphs as shown by [58]. However, it su�ers from stragglers due to its global

synchronization. As remarked earlier, AP reduces stragglers, but it comes with redundant stale

computations. It also bears with race conditions and their locking/unblocking costs, and complicates

the convergence analysis (see Section 4.1) and programming [80].

SSP [47] promotes bounded staleness for machine learning. Maiter [91] reduces stragglers by

accumulating updates, and supports prioritized asynchronous execution. BAP model (barrierless
asynchronous parallel) [45] reduces global barriers and local messages by using light-weighted local

barriers. As remarked earlier, Hsync proposes to switch between AP and BSP [83]. ASPIRE [78] re-

vises SSP with a relaxed consistency protocol to cope with staleness in asynchronous computations.

Several graph systems under these models are in place, e.g., Pregel [58], GPS [69], Giraph++ [74],

GRAPE [38], Gemini [93] and Galois [29, 64] under BSP; GraphLab [43, 57], Maiter [91], GRACE

[80] and TDataflow [9, 62] under (revised) AP; PowerLyra [25] and Husky [88] under both BSP
and AP; parameter servers [47, 56, 81, 84] and Tornado [71] under SSP; GiraphUC [45] under BAP;

and PowerSwitch under Hsync [83]. Blogel [86] works like AP within blocks, and in BSP across

blocks. Most of these are vertex-centric. While Giraph++ and Blogel [74] process blocks [74], they

inherit vertex-centric programming by treating blocks as vertices. In contrast, GRAPE parallelizes

sequential graph algorithms as a whole.

AAP di�ers from the prior models in the following.

(1) AAP reduces (a) stragglers of BSP via asynchronous message passing, and (b) redundant stale

computations ofAP by imposing a bound (delay stretch), for workers to wait and accumulate updates.

AAP is not vertex-centric. Based on �xpoint computation, it works well with the programming

paradigm of GRAPE, which simpli�es the convergence and consistency analyses of AP.

(2) SSP mainly targets machine learning, with di�erent correctness criteria. (a) SSP promotes the

idea of “letting slow workers catch up”. In contrast, AAP shows that the performance can be im-

proved when stragglers are forced to wait and accumulate messages instead of to catch up. (b) SSP
adopts an “upper bound” on relative progress of workers, while AAP reduces stale computations

by enforcing a “lower bound” on accumulated messages. (c) SSP uses a prede�ned constant as a

uniform bound for all workers, while AAP allows each worker to keep track of its own relative
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progress and staleness, dynamically adjust its bounds, and decide when to trigger its next round

of computation. (d) Under AAP, workers with similar speed are grouped together and follow BSP
within a group, and AP is adopted across the worker groups. It is unclear how SSP can achieve

these. (e) Bounded staleness is not needed by SSSP, CC and PageRank as will be seen in Section 5.3.

(3) Unlike SSP, ASPIRE adopts a “best e�ort refresh” policy to fetch the latest updates when a “stale-

hit” occurs. Like SSP, it uses a prede�ned uniform bounded staleness. In contrast, (a) AAP allows

each worker to decide when to trigger the next round based on its own dynamic parameters, to

reduce both stragglers and stale computations; (b) AAP is developed for graph-centric programming

and shard-nothing architectures, while ASPIRE is for vertex-centric programming and distributed

shared-memory systems; and (c) AAP employs techniques quite di�erent from ASPIRE, e.g., machine

learning methods to predict parameters and aggregate functions to resolve con�icts.

(4) Similar to Maiter, AAP aggregates changes accumulated. As opposed to Maiter, it reduces redun-

dant computations by (a) imposing a delay stretch on workers, to adjust their relative progress, (b)

dynamically adjusting bounds to optimize performance, and (c) combining incremental evaluation

with accumulative computation. AAP operates on graph fragments, while Maiter is vertex-centric.

(5) Both BAP and AAP reduce unnecessary messages. However, AAP achieves this by operating on

fragments (blocks), and moreover, optimizes performance by adjusting relative progress of workers.

(6) Closer to AAP is Hsync, and PowerSwitch has performance close to GRAPE+. As opposed to

Hsync, AAP does not demand complete switch from one mode to another. Instead, each worker may

decide its own “mode” based on its relative progress. As will be seen in Sections 3 and 8, workers

with similar speed are grouped together and follow BSP within a group, and AP is adopted among

the worker groups; these are beyond Hsync. Moreover, the parameters are adjusted dynamically,

and hence AAP does not have to predict switching points and pay the price of switching cost.

Prior work to mitigate the straggler problem includes dynamic repartitioning [18, 51, 59], work

stealing [14, 21], shedding [33], LATE [89], and �ne-grained partition [26]. AAP is complementary to

these methods, reducing stragglers and stale computation by adjusting relative progress of workers.

2 THE PROGRAMMING MODEL
AAP adopts the programming model of [38], which we review next. As will be seen in Section 3,

AAP is able to parallelize sequential graph algorithms following the programming paradigm of

GRAPE. That is, the asynchronous model does not make programming harder than GRAPE.

Graph partition. AAP supports data-partitioned parallelism. It works on graphs that are parti-

tioned into smaller fragments and distributed across a cluster of workers.

Consider graphs G = (V ,E,L), directed or undirected, where (1) V is a �nite set of nodes; (2)

E ⊆ V × V is a set of edges; and (3) each node v in V (resp. edge e ∈ E) is labeled with L(v)
(resp. L(e)) indicating its content, as found in property graphs.

Given a natural numberm, a strategy P partitions G into fragments F = (F1, . . . , Fm) such that

each Fi = (Vi ,Ei ,Li ) is a subgraph of G, V =
⋃

i ∈[1,m]Vi , and E =
⋃

i ∈[1,m] Ei . Here Fi is called

a subgraph of G if Vi ⊆ V , Ei ⊆ E, and for each node v ∈ Vi (resp. edge e ∈ Ei ), Li (v) = L(v)
(resp. Li (e) = L(e)). Note that Fi is a graph itself, but is not necessarily an induced subgraph of G.

AAP allows users to pick an edge-cut [15] or vertex-cut [52] strategy P to partition a graph G.

When P is edge-cut, a cut edge from Fi to Fj has a copy in both Fi and Fj . Denote by
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(a) Fi .I (resp. Fi .O
′
) the set of nodes v ∈ Vi such that there exists an edge (v ′,v) (resp. (v,v ′))

with a node v ′ in Fj (i , j); and

(b) Fi .O (resp. Fi .I
′
) the set of nodes v ′ in some Fj (i , j) such that there exists an edge (v,v ′)

(resp. (v ′,v)) with v ∈ Vi .
We refer to the nodes in Fi .I ∪ Fi .O

′
as the border nodes of Fi w.r.t. P.

For vertex-cut, border nodes are those that have copies in di�erent fragments. In general, a node

v is a border node if v has an adjacent edge across two fragments, or a copy in another fragment.

Programming. Using our familiar terms, we refer to a graph computation problem as a class Q of

graph queries, and instances of the problem as queries of Q. Following GRAPE [38], to answer

queries Q ∈ Q under AAP, one only needs to specify three functions.

(1) PEval: a sequential (i.e., single-machine) algorithm for Q that given a query Q ∈ Q and a

graph G, computes the answer Q(G) to Q in G.

(2) IncEval: a sequential incremental algorithm for Q that given Q , G , Q(G) and updates ∆G to

G , computes updates ∆O to the old output Q(G) such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O , where

G ⊕ ∆G denotes G updated by ∆G [68]. Here IncEval only needs to deal with changes ∆G
to update parameters (status variables) to be de�ned shortly.

(3) Assemble: a function that collects partial answers computed locally at each worker by

PEval and IncEval, and assembles the partial results into a complete answer Q(G).

Taken together, the three functions are referred to as a PIE program for Q (PEval, IncEval and

Assemble). PEval and IncEval can be existing sequential (incremental) algorithms for Q, which are

to operate on a fragment Fi of G partitioned via a strategy P.

The only additions are the following declarations in PEval.

(a) Update parameters. PEval declares status variables x̄ for a setCi in a fragment Fi , to store contents

of Fi or partial results of a computation. Here Ci is a set of nodes and edges within d-hops of the

nodes in Fi .I ∪ Fi .O
′

for an integer d . In particular, when d = 0, Ci is Fi .I ∪ Fi .O
′
.

We denote byCi .x̄ the set of update parameters of Fi , which consists of status variables associated

with the nodes and edges inCi . As will be seen in Section 3, the variables inCi .x̄ are the candidates

to be updated by incremental steps that are carried out by IncEval.

(b) Aggregate functions. PEval also speci�es an aggregate function faggr, e.g.,min andmax, to resolve

con�icts when multiple workers attempt to assign di�erent values to the same update parameter.

These are speci�ed in PEval and are shared by IncEval.

Example 2.1. Consider graph connectivity (CC). Given an undirected graph G = (V ,E,L), a

subgraph Gs of G is a connected component of G if (a) it is connected, i.e., for any two nodes v and

v ′ in Gs , there exists a path between v and v ′, and (b) it is maximum, i.e., adding any node of G to

Gs makes the induced subgraph disconnected. Note that for each G, CC has a single query Q , to

compute all connected components of G, denoted by Q(G). CC is in O(|G |) time [17].

AAP parallelizes CC with the same PEval and IncEval of GRAPE [38]. More speci�cally, a PIE
program ρ for CC is given as follows.

(1) As shown in Fig. 2, at each fragment Fi , PEval uses a sequential CC algorithm (Depth-First

Search, DFS) to compute the local connected components and create their ids, except that it declares

the following (underlined in Fig. 2): (a) for each node v ∈ Vi , an integer variable v .cid, initially

its node id v .id; (b) Fi .O as the candidate set Ci , and Ci .x̄ = {v .cid | v ∈ Fi .O} as the update
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Input: A fragment Fi (Vi ,Ei ,Li ).
Output: A set Q(Fi ) consists of current v .cid for v ∈ Vi .

Message preamble: /*candidate set Ci is Fi .O*/

For each node v ∈ Vi , a variable v .cid;

1. C := DFS(Fi ); /* �nd local connective components by DFS */

2. for each C ∈ C do
3. create a new “root” node vc ;

4. vc .cid := min{v .id | v ∈ C};
5. for each v ∈ C do
6. link v to vc ; v .root := vc ; v .cid := vc .cid;

7. Q(Fi ) := {v .cid | v ∈ Vi };
Message segment: M(i, j) := {v .cid | v ∈ Fi .O ∩ Fj .I , i , j};

faggr(v) := min(v .cid);

Fig. 2. PEval for CC under AAP

Input: A fragment Fi (Vi ,Ei ,Li ), partial result Q(Fi ), and message Mi .

Output: New output Q(Fi ⊕ Mi )

1. ∆ := ∅;

2. for each v in.cid ∈ Mi do /* use min as faggr */

3. v .cid := min{v .cid,v in.cid};
4. vc := v .root;
5. if v .cid < vc .cid then
6. vc .cid := v .cid; ∆ := ∆ ∪ {vc };
7. for each vc ∈ ∆ do /* propagate the change */

8. for each v ∈ Fi .O that linked to vc do
9. v .cid := vc .cid;

10. Q(Fi ) := {v .cid | v ∈ Vi };
Message segment: M(i, j) := {v .cid | v ∈ Fi .O ∩ Fj .I ,v .cid decreased};

Fig. 3. IncEval for CC under AAP

parameters; and (c) min as the aggregate function faggr; that is, if there exist multiple values to be

assigned to the same v .cid, the smallest value is taken by the linear order on integers.

For each local connected componentC , (a) PEval creates a “root” node vc carrying the minimum

node id in C as vc .cid, and (b) links all the nodes in C to vc , and sets their cid as vc .cid. These can

be done in one pass of the edges in fragment Fi via DFS.

(2) Given a set Mi of changed cids of border nodes, IncEval incrementally updates local components

in fragment Fi , by “merging” components when possible. As shown in Fig. 3, by using min as faggr,
IncEval (a) updates the cid of each border node to the minimum one; and (b) propagates the change

�rst to its root vc and then in turn to all border nodes linked to vc .

(3) Assemble �rst updates the cid of each node to the cid of its linked root. It then merges all the

nodes having the same cids in a single bucket, and returns all buckets as connected components. �

We remark the following about the programming paradigm.

(1) There are methods for incrementalizing graph algorithms, to deduce incremental algorithms from

batch algorithms [13, 90]. Moreover, one can get IncEval by revising a batch algorithm in response

to changes to update parameters, e.g., the ones for CC (Example 3.2) and PageRank (Section 5.3).
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(2) We adopt edge-cut in the sequel unless stated otherwise; but AAP works with other partition

strategies. Indeed, as will be seen in Section 4, the correctness of asynchronous runs under AAP
remains intact under the conditions given there, regardless of partitioning strategies used. Nonethe-

less, di�erent strategies may yield partitions with various degrees of skewness and stragglers,

which have an impact on the performance of AAP, as will be seen in Section 8.

(3) The programming model aims to facilitate users to develop parallel programs, especially for

those who are more familiar with conventional sequential programming. There is no need to revise

the logic of the existing algorithms, and hence it reduces “the total cost of ownership”. This said,

programming with AAP still requires users to specify update parameters and aggregate function.

3 THE AAP MODEL
We next present the adaptive asynchronous parallel model (AAP).

Setting. Adopting the programming model of GRAPE (Section 2), to answer a class Q of queries on

a graphG , AAP takes as input a PIE program ρ (i.e., PEval, IncEval, Assemble) for Q, and a partition

strategy P. It partitions G into fragments (F1, . . . , Fm) using P, such that each fragment Fi resides

at a virtual worker Pi (i ∈ [1,m]). It works with a master P0 and n shared-nothing physical workers

(P1, . . . , Pn), where n ≤ m, i.e., multiple virtual workers may be mapped to the same physical

worker and share memory. Graph G is partitioned once for all queries Q ∈ Q posed on G.

As remarked earlier, PEval and IncEval are (existing) sequential batch and incremental algorithms

for Q, respectively, except that PEval also declares update parametersCi .x̄ , and de�nes an aggregate

function faggr. At each worker Pi , (a) PEval computes Q(Fi ) on fragment Fi , and (b) IncEval takes Fi
and updates Mi toCi .x̄ as input, and computes updates ∆Oi to Q(Fi ) such that Q(Fi ⊕Mi )=Q(Fi ) ⊕
∆Oi . We refer to each invocation of PEval or IncEval as one round of computation at worker Pi .

Message passing. After each round of computation at worker Pi , Pi collects update parameters of

Ci .x̄ with changed values in a set ∆Ci .x̄ . It groups ∆Ci .x̄ into M(i, j) for j ∈ [1,m] and j , i , where

M(i, j) includes v .x ∈ ∆Ci .x̄ for v ∈ Cj , i.e., v also resides in fragment Fj . That is, M(i, j) includes

changes of ∆Ci .x̄ to the update parameters Cj .x̄ of Fj . It sends M(i, j) as a message to worker Pj .

Messages M(i, j) are referred to as designated messages in [38]. To e�ciently determine the

destination of the designated messages, each worker Pi maintains the following:

(1) an index Ii that given a border nodev , retrieves the set of j ∈ [1,m] such thatv ∈ Fj .I
′∪Fj .O

and i , j, i.e., where v resides; it is deduced from the partition strategy P; and

(2) a bu�er Bx̄i , to keep track of messages from other workers.

As opposed to GRAPE that adopts BSP, AAP is asynchronous in nature. (1) AAP adopts (a)

point-to-point communication: a worker Pi can send a message M(i, j) directly to worker Pj , and (b)

push-based message passing: Pi sends M(i, j) to worker Pj as soon as M(i, j) is available, regardless of

the progress at other workers. A worker Pj can receive messages M(i, j) at any time, and saves it in

its bu�er Bx̄ j , without being blocked by supersteps. (2) Under AAP, master P0 is only responsible for

making decision for termination and assembling partial answers by Assemble (see details below).

(3) Workers exchange their status to adjust relative progress (see below).

Parameters. To reduce stragglers and redundant stale computations, each (virtual) worker Pi
maintains a delay stretch DSi such that Pi is put on hold for DSi time to accumulate messages

passed from other workers. Intuitively, this may enable worker Pi to converge in less rounds as

shown in Example 1.1. Stretch DSi is dynamically adjusted by a function δ based on the following.
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master P0

…
Q(F1) Q(Fm)

PEval

…

Q(F1 ⊕M1) Q(Fm⊕Mm)

worker worker

workerworker

master P0

IncEval

Assemble

query Q

Q(G)

Fig. 4. Workflow of AAP

(1) Staleness ηi , measured by the number of messages in bu�er Bx̄i received by worker Pi from

distinct workers. Intuitively, the larger ηi is, the more messages are accumulated in Bx̄i and hence,

the earlier Pi should start the next round of computation.

(2) Bounds rmin and rmax, the smallest and largest rounds being executed at all workers, respectively.

Each Pi also keeps track of its current round ri . These are to control the relative speed of workers.

For example, to simulate SSP [47], when ri = rmax and ri − rmin > c , we can set DSi = +∞, to

prevent Pi from moving too far ahead. Intuitively, when the fastest worker Pi are c rounds ahead of

the slowest one, Pi is suspended for bounded staleness; worker Pi proceeds only after the slowest

worker catches up, and at that moment DSi is set to 0 to activate Pi immediately.

We will present an adjustment function δ for DSi shortly.

Parallel model. Given a query Q ∈ Q and a partitioned graph G, AAP posts the same query Q to

all the workers. It computes Q(G) in three phases as shown in Fig. 4, described as follows.

(1) Partial evaluation. Upon receiving Q , PEval computes partial results Q(Fi ) at each worker Pi in

parallel. After this, PEval generates a message M(i, j) and sends it to worker Pj for j ∈ [1,m], j , i .

More speci�cally, message M(i, j) consists of triples (x , val, r ), where (a) status variable x ∈ Ci .x̄
is associated with a node v that is in Ci ∩ Cj , and Cj is deduced from the index Ii ; (b) val is the

value of x , and (c) r indicates the round of Pi when val is computed. Worker Pi receives messages

from other workers at any time and stores the messages in its bu�er Bx̄i .

(2) Incremental evaluation. In this phase, IncEval iterates until the termination condition is satis�ed

(see below). To reduce redundant computation, AAP adjusts (a) relative progress of workers and (b)

workload assignments. More speci�cally, IncEval works as follows.

(1) IncEval is triggered at worker Pi to start the next round if (a) Bx̄i is nonempty, and (b) Pi has

been suspended for DSi time. Intuitively, IncEval is invoked only if changes are in�icted to Ci .x̄ ,

i.e., Bx̄i , ∅, and only if Pi has accumulated enough messages.

(2) When IncEval is triggered at worker Pi , it does the following:

◦ compute Mi = faggr(Bx̄i ∪Ci .x̄), i.e., IncEval applies the aggregate function faggr to Bx̄i ∪Ci .x̄ ,

to deduce changes to its local update parameters; and it clears bu�er Bx̄i ;

◦ incrementally compute Q(Fi ⊕ Mi ) with IncEval, by treating Mi as updates to Fi (i.e., Ci .x̄ );

◦ derive messages M(i, j) that consists of updated values of Ci .x̄ for border nodes that are in

both Ci and Cj , for all j ∈ [1,m], j , i; and send M(i, j) to worker Pj .

In the entire process, Pi keeps receiving messages from other workers and saves them in its bu�er

Bx̄i . No synchronization barrier is imposed as opposed to BSP.
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When IncEval completes its current round at worker Pi or when Pi receives a new message, delay

stretch DSi is adjusted. The next round of IncEval is triggered if the conditions (a) and (b) in (1)

above are satis�ed; otherwise Pi is suspended for DSi time, and its resources are allocated to other

(virtual) workers Pj to do useful computation, preferably to Pj that is assigned to the same physical

worker as Pi to minimize the overhead for data transfer. When the suspension of Pi exceeds DSi ,
worker Pi is activated again to start the next round of IncEval.

(3) Termination. When IncEval is done with its current round of computation, if Bx̄i = ∅, worker Pi
sends a �ag inactive to master P0 and becomes inactive. Upon receiving inactive from all workers,

P0 broadcasts a message terminate to all workers. Each worker Pi may respond with either ack if it

is inactive, or wait if it is active or is in the queue for execution. If one of the workers replies wait,
the iterative incremental step proceeds as described phase (2) above.

Upon receiving ack from all workers, P0 pulls partial results from all workers, and applies

Assemble to the partial results. The outcome of Assemble is referred to as the result of the paral-
lelization of ρ under P, denoted by ρ(Q,G). AAP returns ρ(Q,G) and terminates at this point.

Example 3.1. Recall the PIE program ρ for CC from Example 2.1. Under AAP, it works in three

phases as follows. No changes need to be made to the PIE program.

(1) PEval computes connected components and their cids at each fragment Fi by worker Pi , in

parallel using DFS. At the end of the process, the cids of border nodes are grouped as messages

and sent to neighboring workers by each Pi . More speci�cally, for j ∈ [1,m] and j , i , {v .cid | v ∈
Fi .O ∩ Fj .I } is sent to worker Pj as message M(i, j) and is stored in bu�er Bx̄ j of Pj .

(2) IncEval �rst computes updates Mi by applying the aggregate function min to those changed cids

in Bx̄i ∪Ci .x̄ , when it is triggered at worker Pi as described above. It then incrementally updates

local components in Fi starting from Mi . At the end of the process, the changed cid’s are sent to

neighboring workers as messages by each worker Pi , just like PEval does.

(3) Assemble is invoked at master when more changes can be made can be made in the phase above.

It computes and returns connected components in the same way as described in Example 2.1. �

The example shows that AAP works well with the programming model of GRAPE.

Special cases. BSP, AP and SSP are special cases of AAP. Indeed, these can be carried out by AAP
by specifying function δ as follows.

◦ BSP: function δ sets DSi = +∞ if ri > rmin, i.e., worker Pi is suspended; otherwise DSi = 0,

i.e., Pi proceeds at once; thus all workers are synchronized as no one can outpace the others.

◦ AP: function δ always sets DSi = 0, i.e., worker Pi can trigger the next round of computation

as soon as its bu�er is nonempty.

◦ SSP: function δ sets DSi = +∞ if ri > rmin+c for a �xed bound c like in SSP, and sets DSi = 0

otherwise. That is, the fastest worker may move at most c rounds ahead.

AAP can also simulate Hsync [83] by using function δ to implement the switching rules of Hsync.

Dynamic adjustment. To reduce both stragglers and stale computation, AAP dynamically adjusts

the delay stretch DSi at each worker Pi . Intuitively, DSi helps us control the following.

(a) Delay stretch DSi puts worker Pi on hold to accumulate messages before a new round of

IncEval. As shown in Example 1.1, letting stragglers wait and accumulate messages can improve

the convergence in some cases, as opposed to letting stragglers catch up. It helps us strike a balance

between stale-computation reduction and useful outcome from the next round of computation

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:12 W. Fan et al.

(b) It helps us prevent a worker Pi from waiting inde�nitely. To this end, AAP keeps track of how

long a worker has waited and compares it with the expected waiting time.

(c) With DSi , AAP is also able to prevent fast workers from outpacing the slowest ones too much,

when necessary. This can help us reduce stale computation of the fast workers like SSP.

Putting these together, we give an example function δ to adjust DSi as follows.

DSi =


+∞ ¬S(ri , rmin, rmax) ∨ (ηi = 0)

T i
Li −T

i
idle S(ri , rmin, rmax) ∧ (1 ≤ ηi < Li )

0 S(ri , rmin, rmax) ∧ (ηi ≥ Li )

(1)

where the parameters of function δ are described as follows.

(1) Predicate S(ri , rmin, rmax) is to decide whether worker Pi should be suspended immediately. For

example, under SSP, it is de�ned as false if ri = rmax and |rmax − rmin | > c . When bounded staleness

is not needed (see Section 5.3), S(ri , rmin, rmax) is constantly true.

(2) Variable Li “predicts” how many messages should be accumulated before the next round of

IncEval at worker Pi . AAP adjusts Li at each round, based on (a) predicted running time ti of the

next round, and (b) predicted arrival rate si of messages. When si is above the average rate, Li is

changed to max(ηi , L⊥) + ∆ti ∗ si , where ∆ti is a fraction of ti , and L⊥ is adjusted with the number

of “fast” workers. One can approximate ti and si by aggregating statistics of consecutive rounds of

IncEval. To get more precise estimate, we use a random forest model [49] (see Section 6).

(3) Variable T i
Li

estimates how longer worker Pi should wait to accumulate Li many messages.

We approximate it as
Li−ηi
si

, in terms of the number of messages that remain to be received, and

message arrival rate si . Finally,T i
idle is the idle time of worker Pi after the last round of IncEval. The

reason to use T i
idle is to prevent worker Pi from inde�nite waiting.

Example 3.2. As an instantiation of Example 1.1, recall the PIE program ρ for CC given in

Example 2.1 and illustrated in Example 3.1. Consider a graph G that is partitioned into fragments

F1, F2 and F3 and distributed across workers P1, P2 and P3, respectively. As depicted in Fig. 1b, (a)

each circle represents a connected component, annotated with its cid, and (b) a dotted line indicates

a cut edge between fragments. One can see that graph G has a single connected component with

the minimal vertex id 0. Suppose that workers P1, P2 and P3 take 3, 3 and 6 time units, respectively.

One can verify the following by referencing Figure 1a.

(a) Under BSP, Figure 1a (1) depicts part of a run of the PIE program ρ, which takes 5 rounds for

the minimal cid 0 to reach connected component 7.

(b) Under AP, a run is shown in Fig. 1a (2). Note that before getting cid 0, workers P1 and P2 invoke

3 rounds of IncEval and exchange cid 1 among connected components 1-4, while under BSP, one

round of IncEval su�ces to pass cid 0 from P3 to these components. Hence a large part of the

computations of faster P1 and P2 is stale and redundant.

(c) Under SSP with bounded staleness 1, a run is given in Fig. 1a (3). It is almost the same as

Fig. 1a (2), except that P1 and P2 cannot start round 4 before P3 �nishes round 2. More speci�cally,

when minimal cids in components 5 and 6 are set to 0 and 4, respectively, P1 and P2 have to wait

for P3 to set the cid of component 7 to 5. These again lead to unnecessary stale computations.

(d) Under AAP, worker P3 can suspend IncEval until it receives enough changes as shown in

Fig. 1a (4). For instance, function δ starts with L⊥ = 0. It sets DSi = 0 if |ηi | ≥ 1 for i ∈ [1, 2] since
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no messages are predicted to arrive within the next time unit. In contrast, it sets DS3 = 1 if |η3 | ≤ 4

since in addition to the 2 messages accumulated, 2 more messages are expected to arrive in 1 time

unit; hence δ decides to increase DS3. These delay stretches are estimated based on the running

time (3, 3 and 6 for P1, P2 and P3, respectively) and message arrival rates. With these delay stretches,

P1 and P2 may proceed as soon as they receive new messages, but P3 starts a new round only after

accumulating 4 messages. Now P3 only takes 2 rounds of IncEval to update all the cids in F3 to 0.

Compared with Figures 1a (1)–(3), the straggler reaches �xpoint in less rounds. �

AAP reduces the costs of iterative graph computations mainly from three directions.

(1) AAP reduces both stale computations and stragglers by adjusting relative progress of workers. In

particular, when the time taken by di�erent rounds at a worker does not vary much (e.g., PageRank
in Section 8), fast workers are “automatically” grouped together after a few rounds and run

essentially under BSP within the group, while the group and slow workers run under AP.

(2) Like GRAPE, AAP employs incremental IncEval to minimize recomputations. The speedup

is particularly evident when IncEval is bounded [68], localizable or relatively bounded [34]. For

instance, IncEval is bounded [67] if given Fi ,Q ,Q(Fi ) and Mi , it computes ∆Oi such thatQ(Fi ⊕Mi )

= Q(Fi ) ⊕ ∆Oi , in cost that can be expressed as a function in |Mi | + |∆Oi |, the size of changes in the

input and output; intuitively, it reduces the cost of computation on (possibly big) Fi to a function

of small |Mi | + |∆Oi |. For example, IncEval for CC (Fig. 3) is a bounded incremental algorithm.

(3) Observe that algorithms PEval and IncEval are executed on fragments, which are graphs them-

selves. Hence AAP inherits all optimization strategies developed for the sequential algorithms.

4 CONVERGENCE AND EXPRESSIVE POWER
As observed by [85], asynchronous executions complicate convergence analysis. Nevertheless, we

develop a condition to ensure AAP to converge at correct answers. Moreover, AAP is generic. We

show that parallel models MapReduce, PRAM, BSP, AP and SSP can be optimally simulated by AAP.

4.1 Convergence and Correctness
Given a PIE program ρ (i.e., PEval, IncEval, and Assemble) for a class Q of graph queries and a

partition strategy P, we want to know whether the AAP parallelization of ρ converges at correct

results. That is, whether for all queries Q ∈ Q and all graphs G, ρ terminates under AAP over G
partitioned via P, and moreover, it produces correct result ρ(Q,G) = Q(G).

We formalize termination and correctness as follows.

Fixpoint. Similar to GRAPE [38], AAP parallelizes a PIE program ρ based on a simultaneous

�xpoint operatorϕ(R1, . . . ,Rm) that starts with partial evaluation of PEval and employs incremental

function IncEval as the intermediate consequence operator, as follows:

R0

i = PEval(Q, F 0

i [x̄i ]), (2)

Rri+1

i = IncEval(Q,Rrii , F
ri
i [x̄i ],Mi ), (3)

where for i ∈ [1,m], Rrii denotes partial results in round ri at worker Pi , fragment F 0

i = Fi , F
ri
i [x̄i ]

is fragment Fi at the end of round r carrying update parameters Ci .x̄ , and Mi denotes changes to

Ci .x̄ computed by aggregate faggr(Bxi ∪Ci .x̄) as we have seen in Section 3.

The computation reaches a �xpoint if for all i ∈ [1,m], there exists ri such that Rri+1

i = Rrii and

after round ri + 1, IncEval cannot be invoked on Rri+1

i . Hence there exists r0 such that no more
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changes can be incurred to Rr0

i at any worker Pi (i ∈ [1,m]). At this point, Assemble is applied to

Rr0

i for i ∈ [1,m], and computes ρ(Q,G). If so, we say that the PIE program ρ converges at ρ(Q,G).

In contrast to synchronous execution, a PIE program ρ may have di�erent asynchronous runs,

when IncEval is triggered in di�erent orders at multiple workers depending on, e.g., partition of G,

clusters and network latency. These runs may end up with di�erent results [92]. A run of ρ can be

represented as traces of PEval and IncEval at all workers (see, e.g., Figure 1a).

We say that ρ terminates under AAP with P if for all queries Q ∈ Q and graphs G, all runs

of ρ converge at a �xpoint. We say that ρ has the Church-Rosser property under AAP if all its

asynchronous runs converge at the same result. We say that AAP correctly parallelizes ρ if ρ has

the Church-Rosser property, i.e., it always converges at the same ρ(Q,G), and ρ(Q,G) = Q(G).

Termination and correctness. We now identify a monotone condition under which a PIE program

is guaranteed to converge at correct answers under AAP. We start with some notations.

(1) We assume a partial order � on the domain of status variables. Since the partial results Ri at

fragment Fi are encoded as the collection of status variables de�ned on Fi , we extend � to partial

results Ri as follows. We say that Ri � R′i if x .val � x .val′ for each status variable x de�ned on Fi ,
where x .val and x .val′ are the values of x in partial results Ri and R′i , respectively. This contrasts

with GRAPE [38], which de�nes partial order only on update parameters. We need this notion to

analyze the Church-Rosser property of asynchronous runs under AAP.

We need another order to compare associated collections of update parameters. Denote by Sx
and S ′x multi-sets of values for a parameter x . We write Sx � S ′x if the minimal element in Sx is no

“larger” than any element in S ′x w.r.t. order �. For example, if � is the linear order over integers,

Sx = {1, 3, 3} and S ′x = {7, 7, 8}, then Sx � S ′x since the minimal element 1 in Sx is smaller than

each element in S ′x . We extend � to collections x̄i , i.e., we write Sx̄i � S ′x̄i if Sx � S ′x for each x ∈ x̄i .

(2) We study the following properties of IncEval.
◦ IncEval is contracting if when Rr+1

i = IncEval(Q,Rri , F
r
i [x̄i ],Mi ) and Mi = faggr(Bxi ∪C

r
i .x̄),

then (1)Rr+1

i � Rri and (2)Cr+1

i .x̄�Mi�Bxi∪C
r
i .x̄ , for queriesQ ∈ Q and fragmented graphs

G via P (i ∈ [1,m]). Intuitively, IncEval decreases status variables along the partial order �.

◦ IncEval is monotonic if when R̄si � Rti and their associated collections of update pa-

rameters S and T satisfy S � T , then (1) R̄s+1

i � Rt+1

i ; and (2) faggr(S) � faggr(T ), for

all queries Q ∈ Q, graphs G, and all i ∈ [1,m]. Here Mi = faggr(S), M
′
i = faggr(T ),

R̄s+1

i = IncEval(Q, R̄si , F
s
i [x̄i ],Mi ), and Rt+1

i = IncEval(Q,Rti , F
t
i [x̄i ],M

′
i ).

The contracting property describes how status variables are updated in the same run of IncEval,
while the monotonic property concerns how status variables are updated in possibly di�erent runs.

For instance, we will show that the PIE program ρ for CC given in Example 2.1 is contracting

and monotonic in Examples 4.2 and 4.4, respectively.

(2) We want to identify a condition under which AAP correctly parallelizes a PIE program ρ as

long as its sequential algorithms PEval, IncEval and Assemble are correct, regardless of the order

in which PEval and IncEval are triggered. We use the following.

We say that (a) PEval is correct if for all queriesQ ∈ Q and graphsG , PEval(Q,G) returnsQ(G); (b)

IncEval is correct if IncEval(Q,Q(G),G,M) returnsQ(G ⊕M), where M denotes messages (updates);

and (c) Assemble is correct if when ρ converges at round r0 under BSP, Assemble(Rr0

1
, . . . ,Rr0

m) =

Q(G). We say that ρ is correct for Q if PEval, IncEval and Assemble are correct for Q.

A monotone condition. We identify three conditions for ρ.
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(T1) The values of updated parameters are from a �nite domain.

(T2) IncEval is contracting.

(T3) IncEval is monotonic.

While conditions T1 and T2 are essentially the same as the monotonic conditions for the correctness

of GRAPE under BSP [38], condition T3 does not �nd a counterpart in [38]. Note that T3 does not

entail T2. For instance, suppose that � is the linear order ≤ on integers, and status variable x has

value 5 and 4 in R̄si and Rti , respectively. After one round of IncEval, it is possible that x gets value 7

and 6, respectively, depending on how IncEval is de�ned. Then IncEval may be monotonic but it is

not contracting, since the values of x increase. Similarly, one can show that T2 does not entail T3.

The termination condition of GRAPE remains intact under AAP.

Theorem 4.1. Under AAP, a PIE program ρ guarantees to terminate with any partition strategy P
if ρ satis�es conditions T1 and T2. 2

These conditions are general. Indeed, given a graph G , the values of update parameters are often

computed from the active domain ofG and are �nite. By the use of aggregate function faggr, IncEval
is often contracting, as illustrated by the PIE program for CC above.

Example 4.2. Consider the PIE program ρ for CC from Example 2.1. Since all ids of connected

components are integers, we de�ne the partial order � to be the order ≤ of integers.

We now show that ρ satis�es T2, i.e., the contraction of IncEval. Since faggr uses min to select

minimal v .cid in the bu�er and updated parameters, the value of v .cid in Mi is no larger than

the one in Rri and Bxi , where Mi denotes changes to x̄i computed by faggr(Bxi ∪C
r
i .x̄). Recall that

for any node v ∈ Vi , IncEval sets v .cid to be the minimal v ′.cid over all node v ′ in the connected

component containing v . Hence after the computation Rr+1

i = IncEval(Q,Rri , F
r
i [x̄i ],Mi ), the value

of v .cid in Rr+1

i is no larger than the one in Rri , Bxi and Mi . That is, IncEval is contracting. �

Proof. It is easy to verify that if ρ terminates at (Ni + 1)-th round under AAP for each fragment

Fi (i ∈ [1,n]), then in each round ri ≤ Ni , IncEval changes at least one update parameter. By this

property, we show that under T1 and T2, ρ always terminates under AAP.

Assume by contradiction that there exist a query Q ∈ Q and a graph G such that ρ does not

terminate. Denote by (a) Nx the size of the �nite set consisting of assigned values for variable x ,

where x is an update parameter of G; and (b) N =
∑

x ∈x̄i ,i ∈[1,m] Nx , i.e., the total number of distinct

values assigned to update parameters. Since ρ does not terminate, there exists a worker Pi running

at least N + 1 rounds. By the property above, in each round of IncEval, at least one status variable

is updated. Hence there exists a variable x that is updated Nx + 1 times. Moreover, since IncEval is

contracting (T2), the assigned values to x follow a partial order. Thus x has to be assigned Nx + 1

distinct values, which contradicts the assumption that there exist only Nx distinct values for x . 2

However, the condition of GRAPE does not su�ce for the Church-Rosser property of asynchro-

nous runs. For the correctness of a PIE program under AAP, we need condition T3 additionally.

Theorem 4.3. With any partition strategy P, under conditions T1, T2 and T3, AAP correctly
parallelizes a PIE program ρ for a query class Q if ρ is correct for Q. 2

Example 4.4. Continuing with Example 4.2, we show that the PIE program ρ for CC satis�es

condition T3. Let R̄si and Rti be two partial results in (possibly di�erent) runs, and S and T be their

associated collections of update parameters. Suppose that R̄si � Rti and S �T . We show that (1)

faggr(S)� faggr(T ) and (2) R̄s+1

i � Rt+1

i . Note that faggr is min, i.e., for each v ∈ Fi .O , faggr updates
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v .cid to the minimum one in the collection of update parameters. Since S �T , faggr(S)� faggr(T ). It

follows that cid’s of root nodes in Rsi are no larger than their counterparts in Rti . Observe that (1) the

cid’s for nodes in Fi .O are updated to the cid’s of their linked roots (see Figure 3); and (2) for nodes

in Vi \ Fi .O , their cid’s do not change in IncEval. Hence R̄s+1

i � Rt+1

i and IncEval is monotonic. 2

Proof. By Theorem 4.1, any run of the PIE program ρ terminates under T1 and T2. In particular,

consider the BSP run σ ∗ of ρ, a special case of AAP runs, and assume that all workers terminate

after r ∗ rounds. Denote by R̃ri the partial result on the i-th fragment in σ ∗ after r rounds. Then

(R̃r
∗

1
, . . . , R̃r

∗

m ) is a �xpoint of ρ under BSP. To prove Theorem 4.3 it su�ces to show the Church-

Rosser property, i.e., we only need to show that an arbitrary run σ of ρ under AAP converges to the

same �xpoint as σ ∗. More speci�cally, assume that worker Pi terminates after ri rounds at partial

result Rrii in σ . Then (Rr1

1
, . . . ,Rrmm ) = (R̃

r ∗
1
, . . . , R̃r

∗

m ). That is, it su�ces to prove the following.

Lemma 4.5. Rrii � R̃ri for i ∈ [1,m] and r ≥ 0, i.e., partial results in the BSP run σ ∗ are no “smaller”
than the �xpoint in the run σ . 2

Lemma 4.6. R̃r
∗

i � Rri for i ∈ [1,m] and r ≥ 0, i.e., the partial results in the run σ are no “smaller”
than the �xpoint in the run σ ∗. 2

Proof of Lemma 4.5. The lemma follows from the following two claims.

Claim 4.7 (Fixpoint). Under T1, T2 and T3, for all i ∈ [1,m], there exists ri such that (a)

Rrii = IncEval(Q,Rrii , F
ri [x̄i ],Mi ), where Mi = faggr(∅ ∪C

ri
i .x̄), i.e., no more messages from other

workers, and (b) after round ri , IncEval cannot be invoked on partial results Rrii . 2

Claim 4.8 (Consistency). Under T1, T2 and T3, when all workers terminate, the values of update

parameters are consistent, i.e., for each i, j ∈ [1,m] with i , j , and for each variable x ∈ Ci .x̄ ∩Cj .x̄ ,

x has the same value in Rrii and R
r j
j . 2

Assuming these claims, we show Lemma 4.5 by induction on r .

◦ Base case. The case Rrii � R0

i = R̃0

i follows from T2 and the fact that the �rst IncEval runs after

the same PEval in both σ and σ ∗.

◦ Inductive step. Suppose that Rrii � R̃ri for all i ∈ [1,m]. We will show below that Rri
1
� R̃r+1

1
by us-

ing the inductive hypothesis and the monotonicity of IncEval. Let R̃r+1

1
= IncEval(Q, R̃r

1
, F r

1
[x̄1],M1),

where M1 = faggr(m1∪ . . .∪mk ∪C̃
r
1
.x̄) (updates to x̄1), andmj is the message from R̃ri j for j ∈ [1,k].

By Claim 4.7, we know that Rr1

1
= IncEval(Q,Rr1

1
, F r1

1
[x̄1],M

′
1
), where M ′

1
= faggr(∅ ∪C

r1

1
.x̄), and P1

terminates at round r1. By the inductive hypothesis, we have Rrii � R̃ri for i ∈ [1,m].

To see that Rr1

1
� R̃r+1

1
, it su�ces to show thatCr1

1
.x̄ �m1 ∪ . . . ∪mk ∪ C̃

r
1
.x̄ . For if it holds, then

Rr1

1
� R̃r+1

1
by T3, the monotonicity of IncEval. Indeed, let x̄1 = {y1, . . . ,y`}. Then the inequality

can be deduced from the following: (1) the value of yj (j ∈ [1, `]) in Cr1

1
.x̄ is no “larger” than the

one in C̃r
1
.x̄ since Rr1

1
� R̃r

1
; and (2) for each (y, val, t) inm1 ∪ · · · ∪mk , the value of y in Cr1

1
.x̄ is no

“larger” than val by Claim 4.8 and R
rij
i j � R̃ri j (j ∈ [1,k]). Here R

rij
i j (j ∈ [1,k]) is the partial result

on the i j -th fragment after the (arbitrary) run σ terminates. �

It remains to verify Claims 4.7 and 4.8.

Proof of Claim 4.7 (Fixpoint). It su�ces to show that when AAP terminates, we have that (Bx̄i ∪

Cri−1

i .x̄)�Cri
i .x̄ (i ∈ [1,m]), where ri is the last round of computation on fragment Fi ,Bx̄i consists of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



Adaptive Asynchronous Parallelization of Graph Algorithms 1:17

the messages received before the last round, andCri−1

i .x̄ denotes the update parameters of F ri−1

i . In-

deed, if (Bx̄i ∪C
ri−1

i .x̄)�Cri
i .x̄ for all i ∈ [1,m], we can further show Rrii =IncEval(Q,R

ri
i , F

ri [x̄i ],Mi );

and since no IncEval can be invoked after the ri -th round on fragment Fi for all i ∈ [1,m], we know

that ρ reaches a �xpoint. We can verify that Rrii = IncEval(Q,Rrii , F
ri [x̄i ],Mi ) in two steps.

(1) We �rst show that faggr(∅ ∪C
ri
i .x̄) = C

ri
i .x̄ . By T2 and T3, we have that

Cri
i .x̄ � faggr(Bx̄i ∪C

ri−1

i .x̄) � faggr(∅ ∪C
ri
i .x̄) � Cri

i .x̄ . (4)

These follow from (a) the contraction of IncEval (T2), (b) the hypothesis (Bx̄i ∪C
ri−1

i .x̄) �Cri
i .x̄

and the monotonicity of IncEval (T3), and (c) T2, respectively. Thus faggr(∅ ∪C
ri
i .x̄) = C

ri
i .x̄ .

(2) Next, we show that Rrii = IncEval(Q,Rrii , F
ri [x̄i ],Mi ). Note that IncEval(Q,Rri−1

i , F ri−1

i [x̄i ],Mi
′)

computes Q(F ri−1

i ⊕ Mi
′), where Mi

′ = faggr(Bx̄i ∪C
ri−1

i .x̄). Similarly, IncEval(Q,Rrii , F
ri
i [x̄i ],Mi )

computesQ(F rii ⊕Mi ), whereMi = faggr(∅∪C
ri
i .x̄). By inequality (4), we know thatMi = Mi

′
. By the

contraction of IncEval, F rii ⊕Mi is the same as F rii . It follows that Rrii = IncEval(Q,Rrii , F
ri [x̄i ],Mi ).

To show that (Bx̄i ∪C
ri−1

i .x̄)�Cri
i .x̄ , we verify thatCri

i .x̄ ⊆ (Bx̄i ∪C
ri−1

i .x̄). For if it holds, then

(Bx̄i ∪C
ri−1

i .x̄)�Cri
i .x̄ follows from the de�nition of the order �. We verify this by contradiction.

Suppose thatCri
i .x̄ ⊆ (Bx̄i ∪C

ri−1

i .x̄) does not hold. Then there exists an update parameter x∗ in x̄i
such that its value in Cri

i .x̄ is strictly “smaller” than the ones in Bx̄i ∪C
ri−1

i .x̄ , i.e., x∗ is updated by

IncEval. Note thatCri
i .x̄ is obtained from Bx̄i ∪C

ri−1

i .x̄ by using IncEval, and IncEval is contracting

(T2). Based on these, we show that there exists one more run of IncEval on Rrii , a contradiction to

the assumption that worker Pi terminates after ri rounds.

Let val be the value of x∗ inCri
i .x̄ and Pj1 , . . .Pjk be the workers sharing x∗. Since x∗ is updated, Pi

sends a message containing (x∗, val, ri ) to Pj1 , . . . , Pjk . Let val` be the value of x∗ on Pj` for ` ∈ [1,k]
when Pj` processes the message. There are the following two cases to consider.

(i) If for some val` (` ∈ [1,k]), val` � val, then AAP must have sent a message containing (x∗,
val`, r`) to Pi . It contradicts the assumption that val is strictly “smaller” than the value of x∗ in Bx̄i .

(ii) If val is strictly less than all of val1, . . .valk , then by the contraction of IncEval (T2), Pj1 , . . . ,

Pjk update the values of x∗ to val′
1
, . . . , val′k , respectively, such that val′

1
� val, . . . , val′k � val. By

assumption val′` is strictly “smaller” than val` for ` ∈ [1,k]. The value of x∗ on Pj1 ,. . . , Pjk is updated.

Thus AAP sends these values of x∗ to Pi , triggering a new round of IncEval, a contradiction.

Putting these together, we have that (Bx̄i ∪C
ri−1

i .x̄)�Cri
i .x̄ . 2

Proof of Claim 4.8 (Consistency). We next show that if vali and valj are the �nal values of an update

parameter x shared by Fi and Fj , respectively, then vali = valj .
Let val0i and val0j be the initial values of x in Fi and Fj , respectively; then val0i = val0j . Observe the

following. (a) If PEval and IncEval do not update x , then vali = valj . (b) Otherwise assume w.l.o.g.
that vali � val0i and vali , val0i . Suppose that the value of x is updated to vali in the r -th round of

IncEval on Fi . At the end of this round, (x , vali , r ) is sent to Pj , triggering one round of computation

on Fj . By the contraction of IncEval (T2), we have that valj � vali . By a similar argument, we can

show that vali � valj . Putting these together we have that vali = valj . 2

Proof of Lemma 4.6. Since the BSP run σ ∗ is a special run under AAP, from Claims 4.7 and 4.8,

we can deduce the following: (a) R̃r
∗

i is a �xpoint, and moreover, R̃r
∗

i = IncEval(Q, R̃r
∗

i , F
r ∗
i [x̄i ],Mi ),

where Mi= faggr(∅ ∪C
r ∗
i .x̄); and (b) the values of update parameters are consistent.

We prove that R̃r
∗

i � Rri in two steps. (1) We �rst construct a �nite tree T to represent the

computation trace of Rri , where the root of T is (i, r ), and nodes of T are in the form of (j, t),
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indicating the t-th round of IncEval on the j-th fragment. (2) We then show that R̃r
∗

j � Rtj for each

node (j, t) of T . It follows that R̃r
∗

i � Rri by applying R̃r
∗

j � Rtj to the root (i, r ) of T .

(1) Tree T is constructed top-down from the root (i, r ). For a node (j, t) with t , 0, we de�ne its

children based on the t-th round of IncEval on the j-th fragment. Suppose that Rtj is computed

by Rtj = IncEval(Q,Rt−1

j , F
t−1

j [x̄ j ],Mj ) and Mj is the aggregation result ofm1, . . . ,mk , which are k

messages sent from the j1-th, . . . , jk -th worker after their t1-th, . . .tk -th round of IncEval, respectively.

Then we add k+1 pairs (j, t−1), (j1, t1), . . . , (jk , tk ) as the children of (j, t). Intuitively, the children of

(j, t) encode the dependency of Rtj . The construction stops when each path of T reaches a node (j, t)

with t = 0. Tree T is �nite since (i) for (j, t1), (j, t2), . . . (j, t`) on a path from the root (i, r ), t1 > t2 >
· · · > t` ; and (ii) T is �nite branching since each round of IncEval only uses �nitely many messages.

(2) We show that R̃r
∗

j � Rtj for each node (j, t) of T by induction in a bottom-up manner.

Base case. When t = 0, R̃r
∗

j � R̃0

j = R0

j for j ∈ [1,m] by the contraction of IncEval (T2).

Induction step. Suppose that (j, t) has children (j, t−1), (j1, t1), (j2, t2), . . . , (jk , tk ), and that the induc-

tive hypothesis holds for (j, t−1), (j1, t1), (j2, t2), . . . , (jk , tk ). We show that R̃r
∗

j � Rtj . Observe that Rtj
is computed by Rtj = IncEval(Q,Rt−1

j , F
t−1

j [x̄ j ],Mj ), where Mj = faggr(m1 ∪ · · · ∪mk ∪C
t−1

j .x̄) de-

notes changes to x̄ j , andm1, . . . ,mk are messages from workers Pj1 , . . . , Pjk after their t1-th, . . . , tk -th

round of IncEval, respectively. Meanwhile, since R̃r
∗

j is a �xpoint, R̃r
∗

j = IncEval(Q, R̃r
∗

j , F
r ∗
j [x̄ j ],M

′
j ),

where M ′j = faggr(∅ ∪C
r ∗
j .x̄) denotes changes to x̄ j . By the induction hypothesis, R̃r

∗

j � Rt−1

j and

R̃r
∗

j` � Rt`j` (` ∈ [1,k]). By the monotonicity of IncEval (T3), to show that R̃r
∗

j � Rtj , it su�ces to prove

that Cr ∗
j .x̄ �m1 ∪ . . .mk ∪C

t−1

j .x̄ . The latter can be veri�ed along the same line as Lemma 4.5. 2

This completes the proof of Lemmas 4.5 and 4.6 and hence Theorem 4.3. 2

Special cases. Recall that BSP, AP and SSP are special cases of AAP. From the proof of Theorem 4.3

we can conclude that as long as a PIE program ρ is correct for Q, ρ can be correctly parallelized

◦ under conditions T1 and T2 by BSP;

◦ under conditions T1, T2 and T3 by AP; and

◦ under conditions T1, T2 and T3 by SSP.

Novelty. As far as we are aware of, T1, T2 and T3 provide the �rst condition for asynchronous runs

to converge and ensure the Church-Rosser property. To illustrate this, we examine convergence

conditions for GRAPE [38], Maiter [91], BAP [45] and SSP [28, 47].

(1) As remarked earlier, the condition given for GRAPE in [38] does not ensure the Church-Rosser

property, which is not an issue for BSP under which GRAPE is developed.

(2) Maiter [91] adopts vertex-centric programming and identi�es four conditions for convergence, on

an update function f that changes the state of a vertex based on its neighbors. The conditions require

that f is distributive, associative, commutative and moreover, satis�es an equation on initial values.

As opposed to [91], we deal with block-centric programming of which the vertex-centric model is

a special case, when a fragment is limited to a single node. Moreover, the last condition of [91] is quite

restrictive. Further, the proof of [91] does not su�ce for the Church-Rosser property. A counterex-

ample could be conditional convergent series, for which asynchronous runs may diverge [27, 53].

(3) It is shown that BAP can simulate BSP under certain conditions on message bu�ers [45]. It does

not consider the Church-Rosser property, and we make no assumption about message bu�ers.
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(4) Conditions have been studied to assure the convergence of stochastic gradient descent (SGD) with

high probability [28, 47]. In contrast, our conditions are deterministic: under T1, T2 and T3, all AAP
runs guarantee to converge at correct answers. Moreover, AAP computations are not limited to SGD.

(5) Two global properties, namely P-MONO and P-INIT, and one local condition P-EDGE, are

proposed to ensure convergence in the analysis of graph processing over evolving graphs [77].

Our conditions di�er from theirs in the following. (a) P-MONO is analogous to the contraction

condition T2, but it alone does not ensure the Church-Rosser property. (b) P-INIT is a property

even stronger than Church-Rosser, and is not easy to verify. (c) P-EDGE requires vertex-centric

models. In contrast, our conditions work for both vertex-centric and graph-centric models.

4.2 Simulation of Other Parallel Models
We next show that algorithms developed for MapReduce, PRAM, BSP, AP and SSP can be migrated

to AAP without extra complexity. That is, AAP is as expressive as the other parallel models. Note

that while we focus on graph computations here, AAP is not limited to graphs. It is a parallel

computation model as generic as BSP and AP, and does not have to take graphs as input.

Following [76], we say that a parallel modelM1 optimally simulates modelM2 if there exists

a compilation algorithm that transforms any program with cost C onM2 to a program with cost

O(C) onM1. The cost includes computational and communication cost. That is, the complexity

bound remains the same for all computations onM1 andM2.

As remarked in Section 3, BSP, AP and SSP are special cases of AAP. Hence the following holds.

Proposition 4.9. AAP can optimally simulate BSP, AP and SSP. 2

By Proposition 4.9, algorithms developed for, e.g., Pregel [58], GraphLab [43, 57] and GRAPE [38]

can be migrated toAAP. As an example, a Pregel algorithmA (with a function compute() for vertices)

can be simulated by a PIE algorithm ρ as follows. (a) PEval runs compute() over vertices with a loop,

and uses status variable to exchange local messages instead of SendMessageTo() of Pregel. (b) The

update parameters are status variables of border nodes, and function faggr groups messages just

like Pregel, following BSP. (c) IncEval also runs compute() over vertices in a fragment, except that

it starts from active vertices (border nodes with changed values). Point-to-point message passing is

supported with auxiliary structures (e.g., a clique, as will seen in the proof of Theorem 4.10 shortly).

We next show that AAP can optimally simulate MapReduce and PRAM. It was shown in [38] that

GRAPE can optimally simulate MapReduce and PRAM, by adopting a form of key-value messages.

We show a stronger result, which simply uses the message scheme of Section 3, which is referred

to as designated messages in [38], without using key-value messages of GRAPE [38].

Theorem 4.10. MapReduce and PRAM can be optimally simulated by (a) AAP and (b) GRAPE
with designated messages only. 2

Proof. Since PRAM can be simulated by MapReduce [50], and AAP can simulate GRAPE (Sec-

tion 3), it su�ces to show that GRAPE can optimally simulate MapReduce with designated messages.

We show that all MapReduce programs with n processors can be optimally simulated by GRAPE
with n processors. A MapReduce algorithmA is de�ned as follows. Its input is a multi-set I0 of 〈key,
value〉 pairs, and operations are a sequence (B1, . . . ,Bk ) of subroutines, where each subroutine Br
(r ∈ [1,k]) consists of a mapper µr and a reducer ρr . Given I0, A iteratively runs Br (r ∈ [1,k])
as follows [31, 50]. Denote by Ir the output of subroutine Br (r ∈ [1,k]).

(1) The mapper µr handles each pair 〈key, value〉 in Ir−1 one by one, and produces a multi-set

I ′r of 〈key, value〉 pairs as output.
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(2) Group pairs in I ′r by the key values, i.e., two pairs are in the same group if and only if they

have the same key value. Group I ′r by distinct keys. Let Gk1
, . . . , Gkj be the obtained groups.

(3) The reducer ρr processes the groups Gkl (l ∈ [1, j]) one by one, and generates a multi-set

Ir of 〈key, value〉 pairs as output.

(4) If r < k ,A runs the next subroutine Br+1 on Ii in the same way as steps (i)-(iii); otherwise,

A outputs Ik and terminates.

Given a MapReduce algorithm A with n processors, we simulate A with a PIE program B by

GRAPE with n workers. We use PEval to simulate the mapper µ1 of B1, and (2) IncEval simulates

reducer ρi , mapper µi+1 (i ∈ [1,k − 1]), and reducer ρk in �nal round.

There are two mismatches: (a) A has a list (B1, . . . ,Bk ) of subroutines, while IncEval of GRAPE
is a single function; and (b) A distributes 〈key, value〉 pairs across processors, while workers of

GRAPE exchange message via update parameters only.

For (a), IncEval treats subroutines B1, . . . , Bk of A as program branches, and uses an index r
(r ∈ [1,k]) to select branches. For (b), we construct a complete graphGW of n nodes as an additional

input of B, such that each worker Pi is represented by a node wi for i ∈ [1,n]. Each node wi has

a status variable x to store a multi-set of 〈r ,key, value〉 tuples. By using GW , all n nodes become

border nodes, and we can hence simulate the arbitrary shipment of data in A by storing the data

in the update parameters of the workers of GRAPE.

More speci�cally, consider a multi-set I0 of 〈key, value〉 pairs as input. We distribute these pairs

in I0 in exactly the same way asA does; each nodewi ofGW stores the pairs assigned to worker Pi .

The PIE program B is speci�ed as follows.

(1) PEval simulates the mapper µ1 of the subroutine B1 as follows.

(a) Each worker runs the mapper µ1 of B1 on its local data.

(b) It computes the output (I1)
′

of µ1 and stores it in the update parameters for later supersteps.

(c) For each pair 〈key, value〉 in (I1)
′
, it includes a tuple 〈1,key,value〉 in an update parameter.

If worker Pi of the reducer ρ1 is to handle the pair 〈key, value〉, PEval adds 〈1, key, value〉 to the

update parameter of nodewi . The aggregation function �rst takes a union of the update parameters

of all wi (i ∈ [1,n]), and then groups the tuples by key.

(2) IncEval �rst extracts the index r from the 〈r , key, value〉 tuples received, and uses r to select the

right subroutine, as remarked earlier. IncEval then carries out the following operations:

(a) extract a multi-set (Ir )
′

of 〈key, value〉 from the received messages of 〈r , key, value〉 tuples;

(b) run the reducer ρr , which is treated as a branch program of IncEval, on (Ii )
′
; denote by Ir

the output of ρr ; and

(c) if r = k , then IncEval sets the updated parameter to be empty, which terminates B; otherwise,

IncEval runs the mapper µr+1 on Ir , constructs tuples 〈r + 1, key, value 〉 for each 〈key, value〉
pair in the output of µr+1, and distributes update parameters in the same way as PEval.

(3) Assemble takes a union of the partial results from all workers.

It is easy to verify that the PIE program B correctly simulates the MapReduce programA. More-

over, ifA runs inT time and incurs communication costC , then B takesO(T ) time and sendsO(C)
data. Formally, this is veri�ed by induction onk for the number of subroutines (B1, . . . ,Bk ) inA. �
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5 PROGRAMMINGWITH AAP
We have seen how AAP parallelizes CC (Examples 2.1–3.2). We next develop PIE algorithms for

SSSP, CF and PageRank as examples. As opposed to [38], we parallelize these algorithms under

AAP (Sections 5.1–5.3). These demonstrate that AAP does not make programming harder.

5.1 Graph Traversal
We start with the single source shortest path problem (SSSP), a primitive graph traversal operation.

Consider a directed graph G = (V ,E,L) in which for each edge e , L(e) is a positive number. The

length of a path (v0, . . . ,vk ) in G is the sum of L(vi−1,vi ) for i ∈ [1,k]. For a pair (s,v) of nodes,

denote by dist(s,v) the shortest distance from s to v . SSSP is stated as follows.

◦ Input: A directed graph G as above, and a node s in G.

◦ Output: Distance dist(s,v) for all nodes v in G.

AAP parallelizes SSSP in the same way as GRAPE [38], as described below.

(1) PIE. AAP takes Dijkstra’s algorithm [40] for SSSP as PEval and the sequential incremental

algorithm for SSSP developed in [67] as IncEval. It declares a status variable xv for every node v ,

denoting dist(s,v), initially ∞ (except dist(s, s) = 0). The candidate set Ci at each fragment Fi is

Fi .I ∪ Fi .O . The status variables in the candidates set are updated by PEval and IncEval in the same

way as in [38], and are aggregated by using min as faggr. When no changes can be incurred to these

status variables, Assemble is invoked to take the union of all partial results.

(2) Correctness is assured by the correctness of the sequential algorithms for SSSP and Theorem 4.3.

Note that the values of update parameters are from the �nite set {d ∈ N | 0 ≤ d ≤
∑

e ∈E L(e)}∪{∞}.
Thus T1 is satis�ed. De�ne the partial order � over N ∪ {∞} as the linear order on N with the

extension that d � ∞ for each d ∈ N ∪ {∞}. We show that IncEval of SSSP satis�es T2 and T3.

(i) IncEval is contracting because of the following. (a) For update parameter x ∈ Ci .x̄ , IncEval uses

min as faggr to compute the minimal value of x in Bx̄i ∪Ci .x̄ . (b) The incremental algorithm IncEval
only decreases the values of status variables following the order � (see more in [38]).

(ii) IncEval is monotonic. Suppose that R̄si � Rti and that their associated update parameter S and

T satisfy S �T . More speci�cally, we have that (1) xv .val � xv .val′ for each v ∈ Fi , where xv .val
and xv .val′ are values of xv in R̄si and Rti , respectively; and (2) for each x ∈ Ci .x̄ , the minimal value

of x in S is smaller than the one in T . Thus by taking min as faggr, we have that Mi �M ′i , where

Mi = faggr(S) and M ′i = faggr(T ), consisting of updates to Ci .x̄ .

To show that R̄s+1

i � Rt+1

i , we construct two auxiliary graphsGs
i andGt

i , by extending Fi with (1)

a new source node s∗; and (2) a new edge e from s∗ tov for eachv in Fi . InGs
i andGt

i , the edge from

s∗ to v is labeled with the latest value of xv in R̄si ⊕Mi and Rti ⊕M
′
i , respectively. Since Rsi � Rti and

Mi �M ′i , we have that L(e) ≤ L(e)′ for each edge e , where L(e) and L(e)′ are the label of e inGs
i and

Gt
i , respectively. Thus each path inGs

i has a smaller length than its counterpart inGt
i . Since IncEval

essentially computes the shortest path from s∗ in the auxiliary graphs, we have that R̄s+1

i � Rt+1

i .

5.2 Collaborative Filtering
We next consider collaborative �ltering (CF) [55]. It takes as input a bipartite graph G that includes

two types of nodes, namely, users U and products P , and a set of weighted edges E ⊆ U × P . More

speci�cally, (1) each user u ∈ U (resp. product p ∈ P ) carries an (unknown) latent factor vector u . f
(resp. p. f ). (2) Each edge e = (u,p) in E carries a weight r (e), estimated as u . f T ∗ p. f (possibly ∅,

i.e., “unknown”) that encodes a rating from user u to product p. The training set ET refers to edge

set {e ∈ E | r (e) , ∅}, i.e., all the known ratings. The CF problem is stated as follows.
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◦ Input: A directed bipartite graph G, and a training set ET .

◦ Output: The missing factor vectors u . f and p. f that minimize a loss function ϵ(f ,ET ),
estimated as

∑
((u,p)∈ET )(r (u,p) − u . f

T ∗p. f )2 + λ(‖u . f ‖2 + ‖p. f ‖2).

AAP parallelizes stochastic gradient descent (SGD) [55], a popular algorithm for CF simulating SSP.

(1) PIE. PEval declares a status variable v .x = (v . f ,v .δ , t) for each node v , where v . f is the factor

vector of v (initially ∅), v .δ records accumulative updates to v . f , and t bookkeeps the timestamp

at which v . f is lastly updated. Assuming w.l.o.g. that |P |�|U |, it takes Fi .O ∪ Fi .I , i.e., the shared

product nodes related to Fi , as its candidate set Ci . PEval is essentially “mini-batched” SGD. It

computes the descent gradients for each edge (u,p) in Fi and accumulates them in u .δ and p.δ ,

receptively. The accumulated gradients are then used to update the factor vectors of all local nodes.

At the end, PEval sends the updated values of Ci .x̄ to neighboring workers.

IncEval �rst checks whether the fastest worker is ahead of the slowest one by at most c rounds,

where c is a given bounded staleness. Once the test passes, IncEval aggregates the factor vector

of each node p in Fi .O by taking max on the timestamp for tuples (p. f ,p.δ , t) in Bx̄i ∪Ci .x̄ . For

each node in Fi .I , it aggregates its factor vector by applying a weighted sum of gradients computed

at other workers. It then runs a round of SGD, starting from nodes with the changes to their status

variables and processing the a�ected area. It sends the updated status variables as in PEval.

Assemble simply returns the collection of the factor vectors of all nodes from all the workers.

(2) Correctness has been veri�ed under the bounded staleness condition [47, 84]. Along the same

lines, one can show that the PIE program converges and correctly infers missing CF factors.

5.3 PageRank
Finally, we study PageRank [23] for ranking Web pages. Consider a directed graph G = (V ,E)
representing Web pages and links. For each page v ∈ V , its ranking score is denoted by Pv . The

PageRank algorithm of [23] iteratively updates Pv as follows:

Pv = d ∗ Σ{u |(u,v)∈E }Pu/Nu + (1 − d),

whered is damping factor andNu is the out-degree ofu. The process iterates until the sum of changes

of two consecutive iterations is below a threshold. The PageRank problem is stated as follows.

◦ Input: A directed graph G and a threshold ϵ .

◦ Output: The PageRank scores of nodes in G.

AAP parallelizes PageRank along the same lines as [74, 91], as follows.

(1) PIE. PEval declares a status variable xv for each node v ∈ Fi to keep track of updates to v from

other nodes in Fi , at each fragment Fi . It takes Fi .O∪Fi .I as its candidate setCi . Starting from an ini-

tial score 0 and an update xv (initially 1−d) for eachv , PEval (a) increases the score Pv by xv , and (b)

updates variablexu for eachu linked fromv by an incremental change δ = d∗xv/Nv . At the end of its

process, it sends the updated values of status variables for nodes in Fi .O to its neighboring workers.

Upon receiving messages, IncEval iteratively updates scores. It (a) �rst aggregates changes to each

border node by using sum as faggr; (b) starting from border nodes, it then propagates the changes

to update other nodes in the local fragment and processes the a�ected nodes as in PEval; and (c)

it derives the changes to the values of Ci .x̄ and sends them to its neighboring workers as in PEval.

Assemble collects the scores of all the nodes in G when the convergence condition is met, i.e.,
when the sum of changes of two consecutive iterations at each worker is below ϵ .
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(2) Correctness. We show that the PIE program under AAP terminates and has the Church-Rosser

property, along the same lines as the proof of Theorem 4.3. The proof makes use of the fol-

lowing property, as also observed by [91]: for each node v in graph G, Pv can be expressed

as Σp∈Pp(v) + (1 − d), where P is the set of all paths to v in G, p is a path (vn ,vn−1, . . .v1,v),

p(v) = (1 − d) ·
∏n

j=1

d
Nj

, and Nj is the out-degree node vj for j ∈ [1,n].

Remark. Bounded staleness forbids fastest workers to outpace the slowest ones by more than c
steps. It is mainly to ensure the correctness and convergence of CF [47, 84]. By Theorem 4.3, CC and

SSSP are not constrained by bounded staleness; conditions T1, T2 and T3 su�ce to guarantee their

convergence and correctness. Hence fast workers can move ahead any number of rounds without

a�ecting their correctness and convergence. One can show that PageRank does not need bounded

staleness either, since for each path p ∈ P, p(v) can be added to Pv at most once (see above).

6 PARAMETERS ESTIMATION FOR DYNAMIC ADJUSTMENT OF AAP

As shown in Section 3, we use running time and message arrival rate to dynamically adjust delay

sketch and relative progress of workers. We propose to use a random forest model to estimate run-

ning time and show how to estimate message arrival rate. Below we �rst formulate running time es-

timation as a regression problem in machine learning (Section 6.1). Adopting mean squared relative

error as the evaluation metric, we then show how to predict running time of CC, SSSP, PageRank
and CF (Section 6.2). Finally, we predict message arrival rate based on localized mean (Section 6.3).

6.1 Problem Formulation
Below we �rst formulate runtime prediction as a regression problem. We then identify constraints

for real-life predictors, examine regression methods for runtime prediction [49] under the con-

straints, and conclude that random forest regression strikes a balance between e�ciency and

accuracy. We also present a guideline for feature selection in runtime prediction.

Formulation. Given running information X j of worker j before triggering its next round, we want

to train a predictor P that is able to estimate the running time t̃j of the coming round. Since the

output of P is a real number (time in milliseconds), this problem can be formulated as a regression

problem in machine learning, as shown in the following equation:

t̃j = P(X j ). (5)

The prediction can be divided into two parts. (a) The �rst part is to collect the running informa-

tion X j (a.k.a. feature extraction in machine learning) of the next round. We use X j to encode the

running status of the next round, so that predictor can estimate the running time. (b) The second

part aims to design and train a suitable predictor P from candidate regression models.

We focus on how to predict the running time and message arrival rate for incremental compu-

tation of IncEval, since IncEval iterates until it converges, while PEval runs only once.

Three criteria. In addition to the common concerns about a machine learning model, e.g., prediction

accuracy and over-�t avoidance, the following three constraints are crucial to predictors in AAP.

Computation constraint. The prediction should be highly e�cient with little overhead. A solution

is not practical if it takes as long as the entire incremental computation process.

Training constraint. This constraint is twofold. First, due to limited training data available, the

predictor P should be able to get well-trained given a small training set. Second, the training process

should be fast; in certain cases the training must complete within several IncEval rounds.
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Hyper-parameter constraint. The number of hyper-parameters in P should be small, since we hope

to train a general and robust predictor for various data input. Otherwise, one has to �ne-tune the

model for each speci�c dataset, which is time-consuming and may increase the risk of over-�tting.

Method selection. We compare four regression models for algorithm runtime prediction. Based on

the comparison, we select the best for parameter prediction of AAP. To analyze the computational

complexity of each method, we assume that there exist n training samples. The input feature vector

of each sample is denoted by X , and the dimension of X is p.

Ridge Regression (RR). For the three criteria above, RR satis�es the computation constraint only,

since it requires at most tens of multiply-accumulate operations during prediction. Moreover, the

training complexity is O(p3), which is only related to the vector dimension [49, 63]. However, we

can hardly train a robust RR model with few training samples, because its performance can easily

deteriorate in the presence of noisy training samples in a small training set [49]. In addition, it is

rather hard to decide the hyper-parameters of RR. For example, one has to train and test an RR

model multiple times to �gure out a suitable order of the RR polynomial function.

Neural Networks (NN). While NN has a strong feature extraction ability and often o�ers high pre-

diction accuracy, it is not suitable for runtime prediction in AAP for the following reasons [42]. (1)

A NN-based regression model incurs heavy computation, mainly due to the non-linear activation

functions in each layer. These activation functions often involve exponential computations, which

slows down the prediction process. (2) The training process of NN is typically time-consuming since

it needs to back propagate the loss values layer by layer. In addition, a large number of training

samples are required, which cannot be provided by limited query log information from the initial

rounds. (3) It is tricky to design the NN architecture, and there are tens of hyper-parameters (such

as learning rate in each layer) for users to decide; this hampers its applications.

Gaussian Process Regression (GPR). Although it is easy to train a GPR model with few hyper-

parameters, it is computationally expensive: it takes O(n3) time due to the inversion of a n × n
matrix. In addition, the complexity of one prediction is O(n2), which slows down the system [49].

Random Forest Regression (RFR). RFR [22, 41] meets the three criteria above. (1) For an RFR con-

taining T regression trees with average tree depth d , the prediction complexity is O(T · log d) in

the best case (when all regression trees are balanced) and O(T · d) in the worst [49]. The depth

d is approximately logn in the best case (balanced) and n in the worst. (2) Similarly, the training

complexity of RFR is from O(T · p · n2
logn) to O(T · p · n log

2 n) [41]. In fact, as empirically veri�ed

in [49], while most regression trees are not perfectly balanced, the training complexity is much

closer to the best than to the worst. This enables RFR to be fast trained online.

For the hyper-parameter constraint, (3) RFR is robust during training, and there exists typically

only one hyper-parameter to choose, i.e., the number of regression trees. Other hyper-parameters

take default in many application packages and perform well in prediction [20, 32]. Its robustness

comes from the aggregation of outputs from each tree, which overcomes the sensitivity to small

changes in the training data and avoids over-�tting [22]. Although the prediction accuracy increases

as the number of regression trees grows [49], the computational cost grows linearly. Thus, we use

only 10 regression trees for each RFR throughout our experiments to keep computational costs low.

Putting these together, we conclude that random forest regression o�ers the best model for

parameter prediction in AAP. Below we show how to use random forest regression in AAP.
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Guidelines of runtime prediction. Before giving the construction of RFR predictors, we present

a guidance for training strategy and feature selection of our runtime prediction solution.

Query Dependency and Training Strategy. An algorithm is query independent if on a dataset (e.g.,
graphG , training set and accuracy threshold), there exists a unique query. Otherwise the algorithm

is query dependent. For example, PageRank, CC and CF are query independent, since on a given

dataset there exists only one query. In contrast, SSSP is query dependent since given a graph G,

there are multiple SSSP queries depending on the choices of a source vertex s to start with.

The query dependency of an algorithm decides the training strategy of its predictor P as follows.

(1) For query dependent algorithms, we can �rst collect adequate runtime log information from

previous runs, and train the prediction model o�ine. Then we deploy this pre-trained model for

future prediction. (2) In contrast, for query independent algorithms, we have to train the prediction

model immediately based on the running log information from the initial rounds. Then we utilize

the newly trained model to predict the runtime of the following rounds. Thus, query-independent

algorithms require fast model training given limited amount of training data.

Feature Extraction Guideline. The computation time of each fragment in each round is mainly de-

cided by the scale of the fragment, the fragment’s topological structure and the message contents

[70]. Thus, as a clue to the runtime prediction, the features extracted from the program running

log must incorporate such information; this is applicable to all graph algorithms in Section 5. We

will detail the implementation of feature extraction in Section 6.2 based on this guidance.

6.2 Running Time Prediction
We next develop a running time predictor P for AAP, and apply it to pageRank, CF, SSSP and CC.

Notations. We start with some notations. The feature vector input for the predictor P is denoted

by X j = [x1,x2, . . . ,xM ], where xi is the i-th value in X j , and M is the number of features used. For

each training/test vector input X j , there exists a corresponding true runtime tj , and dj = {X j , tj }

denotes this data pair. The training set is denoted by D = [dD
1
,dD

2
, . . . ,dDN ], and the test set is

E = [dE
1
,dE

2
, . . . ,dES ]. Each feature vector is extracted from one line in the query log, where the

program running information is recorded. Note that we organize both training dataD and test data

E in sequence according to the timestamp of each vector in the query log. With this time-elapse

sequence, we can simulate the running process of the system in our experiments. There exist T
regression trees in an RFR model, and the number of all data pairs is denoted by R = N + S . The

message received by worker j is denoted by Mj = [f1, f2, . . . , fΩ], where each fi is the ID of a

border node. Each node ID is a unique integer in the whole graph, and the maximum of all node

IDs is Ψ. We de�ne an indicator function Φk as follows: it equals 1 if k is true, and 0 otherwise.

Performance measure. In order to evaluate the performance of runtime prediction models in

AAP, we employ the mean squared relative error (MSRE) [65] as the evaluation metric. For S test

samples, the MSRE of the prediction model P is given by Equation (6).

MSRE =

∑S
j=1
(
tj−t̃j
tj
)2

S
=

∑S
j=1
(
tj−P (X j )

tj
)2

S
. (6)

The main reason for choosing MSRE is as follows. Compared with mean squared error (MSE)

and mean absolute error (MAE), MSRE utilizes the relative error divided by the true running time,

which can reduce the impact of errors from tests with long runtime. For example, suppose that

there exist three true running times, namely, 100 ms, 500ms and 1200ms, and the prediction of the

model P for each run is 80ms, 600ms and 800ms, respectively. If we use squared error to quantify
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x1 x2 x3 x4 x5 x6 x7 Z j
Fragment

ID

Total Node

Number

Border Node

Number

Edge

Number

Proportion of

Border Nodes

Graph

Density

Message

Number

Message

Embedding

Table 2. Each dimension’s meaning in the feature vector X j for runtime prediction.

the performance of the model P, the errors for each test are 400, 600 and 160,000, respectively, and

the MSE of the model P is 56,800. In this case, the error of the third test (1200ms) contributes the

largest to the MSE, which conceals the errors of the �rst two. In contrast, if we use relative error

instead, the errors for each test are 0.04, 0.04 and 0.11, where the numerical di�erence is much

smaller. Thus, the error of short true runtime can be better captured by MSRE.

Stages of predictor. For each algorithm running under AAP, we design a two-stage running time

prediction solution, including feature extraction and regression prediction.

(1) Feature extraction. In the �rst stage, we use a vector to represent the program running infor-

mation of a round. As shown in Table 2, the feature vector X j for worker Pj consists of 6 scalar

values to encode the fragment scale and topological structure, namely, the fragment ID (x1), the

number of nodes (x2), the number of border nodes (x3), the number of edges (x4), the proportion

of border nodes (x5 =
x3

x2

), and the graph density of this fragment (x6 =
x4

x2(x2−1)
). This is applicable

to all algorithms in Section 5. Observe the following.

(a) We use fragment ID as a feature to represent the topological structure of a graph fragment. Note

that using the number of nodes and edges can hardly represent the fragment’s topology, while

it is too costly to compute a vector representation of the topology. Thus, as a trade-o� between

prediction e�ectiveness and e�ciency, the fragment ID is incorporated into the feature vector.

(b) In addition, to represent the message passed each round, we use x7 to denote the number of

messages, and design a vector Z j = [z1, z2, . . . , zL] as the embedding of all messages, where L is

a hyper-parameter of the predictor P. The feature vector then becomes X j = [x1, . . . ,x7,Z j ]. The

message feature vector Z j aggregates message fk by mapping the node IDs with equal intervals and

accumulating the number of each mapping. Here the mapping interval is I = dΨL e, and the ith scalar

value in Z j can be computed by zi =
∑Ω

k=1
Φ
d
fk
I e=i

, where L is a parameter, and Φ is the indicator

function de�ned earlier. A large L creates long and informative feature vectors of the messages,

which can increase the prediction accuracy of RFR models. However, long vectors also increase the

training time and prediction overhead. Thus, one needs to strike a balance between prediction ac-

curacy and e�ciency when choosing the value of L. For example, for a graph containing 100 nodes,

where their node IDs range from 1 to 100 (Ψ = 100), if a message comes as F = [3, 87, 26, 47, 33] and

L = 4, then the mapping interval I is 25, and the corresponding message vector is Z = [1, 3, 0, 1].

The main advantage of this simple mapping-based feature extraction is its e�ciency, which is

crucial when processing large-scale graphs. This method has a prerequisite: nodes that are “closely

connected” should be close in node ID, where two nodes are closely connected if they are within

a small number of hops of each other. This prerequisite ensures the following: inter-connected

border nodes that may eventually trigger similar updates are mapped to the same scalar value in Z ,

which can later be captured by the prediction model. As will be seen in Section 8, this prerequisite

can be easily satis�ed. Since all these values can be directly accessed or calculated with few basic

operations by the worker, the computation overhead of the feature extraction is quite small.

(2) Regression prediction. In the second stage, we provide the pre-trained regression model with the

vector as input, and obtain runtime prediction. We select random forest regression as the base of the

prediction model with adjustments for speci�c cases. Here Equation (6) serves as the loss function
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in the regression model training, which balances the impacts from long predictions and short

predictions in the total loss value. We follow the RFR training methods developed in [49], where

more training details can be found. The structure of each regression tree is decided by the recursive

split learning process, and we use cost-complexity pruning with 10-fold cross-validation to obtain

a trade-o� forest structure between the computation cost and the prediction accuracy [41, 49].

Predictors for graph algorithms. As remarked in Section 6.1, the training for query independent

algorithms has to be done within initial rounds given limited training samples, while prediction

models for query dependent algorithms can be trained o�ine with previous query logs. In light of

this, below we give our running time prediction solution to each of PageRank, CF, SSSP and CC.

PageRank and CF. The model training and runtime prediction have to be completed within one

query. Thus, we train the RFR model with the query log information from the initial N rounds,

and use the newly-trained model to predict the running time of the following rounds.

In our experimental study, we �nd that the MSRE for PageRank and CF is very small (see Tables

3 and 6 in Section 8). This veri�es the e�ectiveness of our solution. In addition, the mean prediction

time (in 10
−3

ms) is neglectable compared with the mean running time (in 10
2

ms) of IncEval rounds,

showing the high prediction speed of our method. The learning process is also quite e�cient.

SSSP. Since the training and prediction do not have to be completed within one query, we run

di�erent queries for multiple times and use the query logs to train the model. Then we deploy the

pre-trained model to predict the algorithm runtime when new queries come.

Di�erent from PageRank and CF, after the prediction stage, instead of using the output of the

model P as the �nal result, we calibrate the prediction of P based on the initial IncEval true running

time t1. The main reason for this calibration is that the vanilla RFR can hardly predict accurate time,

but it can capture the changing trend of the running time. In light of this, if the i-th output of P is

t̃i , the �nal runtime prediction after calibration is taken as t1
t̃i
t̃1

. We �nd that with this ratio-based

calibration using the true running time as the start point, we can better approximate the runtime

(see Table 5 in Section 8). Moreover, the overhead of prediction is small and neglectable.

Note that the message embedding strategy is relatively simple for representing the complex

message contents in SSSP. With our simpli�ed embedding method, rounds with di�erent running

times and di�erent messages may be projected to the same vector in the hypothesis space [19],

which hinders the learning of the RFR model. Nonetheless, we overcome this limitation by using

the ratio-based calibration, which e�ectively improved the raw RFR model.

CC. Similar to SSSP, we also calibrate the raw RFR outputs using the initial true running value.

However, unlike SSSP, the training and testing of the prediction method have to be completed

within one query, because CC is query independent. Thus, the training policy of PageRank is

employed for CC. That is, log information from initial IncEval rounds is used for training and the

learned predictor is applied to the rest of the rounds. As will be seen shortly, our method for CC is

e�cient and o�ers accurate prediction (see Table 4 in Section 8). This demonstrates that our simple

message embedding is expressive enough to predict the running time of CC.

6.3 Message Arrival Rate Estimation

We predict the message arrival rate in the next round based on localized mean. More speci�cally,

we count the total number of messages received by worker i in the last τ seconds, and use the mean

message arrival rate in this time window as the rate estimation in the following round.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:28 W. Fan et al.

Storage System (DFS)

Fault-tolerance
Module

GRAPE Query Engine

GRAPE API

• Message

• Partition

• Index

• Graph Alg.

Query Parser Auto. Parallel Interface

Index Mngr.

Adaptive Async Mngr.

Partition Mngr.

Partial

Evaluation

Incremental

Evaluation
Assemble

developerend user

queries results sequential algs.

Play

Plug-in

MPI Control Load Balancer

Statistics Collector

Fig. 5. GRAPE+ Architecture

The reason for adopting this simple averaging estimation is twofold. First, the overall variation

of the message arrival rate is continuous with few abrupt changes. Thus, the gap between the

estimation and the true arrival rate in the next round is small. This is veri�ed by our experimental

study (see Figure 11 in Section 8). Second, although state-of-the-art sequence learning models, e.g.,
RNN [61] and LSTM [48], are quite accurate in sequential prediction, those models are too expensive

to deploy. In contrast, our estimation based on localized mean incurs little computation overhead.

7 IMPLEMENTATION OF GRAPE+
As proof of concept, we implemented GRAPE+ from scratch, in C++ with 17000 lines of code.

The architecture of GRAPE+ is shown in Figure 5, to extend GRAPE by supporting AAP. Its top

layer provides interfaces for developers to register their PIE programs, and for end users to run

registered PIE programs. The core of GRAPE+ is its engine, to generate parallel evaluation plans.

It schedules workload for working threads to carry out evaluation plans. Underlying the engine

are several components, including (1) an MPI controller [7] to handle message passing, (2) a load

balancer to evenly distribute workload, (3) an index manager, and (4) a partition manager. GRAPE+
employs distributed �le systems, e.g., NFS, AWS S3 and HDFS, to store graph data.

GRAPE+ extends GRAPE by supporting the following.

Adaptive asynchronizationmanager. As opposed to GRAPE, GRAPE+ dynamically adjusts rela-

tive progress of workers. This is carried out by a scheduler in the engine. Based on statistics collected

(see below), the scheduler adjusts parameters and decides which threads to suspend or run, to allo-

cate resources to useful computations. It is based on runtime and arrival rate estimation, as described

in Section 6 and will be illustrated in Section 8. In particular, the engine allocates communication

channels between workers, bu�ers messages generated, packages the messages into segments, and

sends a segment each time. It further reduces costs by overlapping data transfer and computation.

Statistics collector. During a run of a PIE program, the collector gathers information for each

worker, e.g., the amount of messages exchanged, the evaluation time in each round, historical data

for a query workload, and the impact of the last parameter adjustment.

Fault tolerance. Asynchronous runs of GRAPE+ make it harder to identify a consistent state

to rollback in case of failures. Hence as opposed to GRAPE, GRAPE+ adapts Chandy-Lamport

snapshots [24] for checkpoints. The master broadcasts a checkpoint request with a token. Upon

receiving the request, each worker ignores the request if it has already held the token. Otherwise,

it snapshots its current state before sending any messages. The token is attached to its following

messages. Messages that arrive late without the token are added to the last snapshot. This gets us
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a consistent checkpointed state, including all messages passed asynchronously. When a failure hap-

pens, the master resumes the computation from the latest checkpoint, and continues by processing

saved messages [66]. The con�ned recovery techniques of [79] can also be deployed on GRAPE+.

When deploying GRAPE+ in a POC scenario that provides continuous online payment services,

we found that it took about 40 seconds to get a snapshot of the entire state, and 20 seconds to recover

from failure of one worker. In contrast, it took 40 minutes to start the system and load the graph.

Consistency. Each worker Pi uses a bu�er Bx̄i to store incoming messages, which is incrementally

expanded. As remarked in Section 3, GRAPE+ allows users to provide an aggregate function faggr
to resolve con�icts when a status variable receives multiple values from di�erent workers. The

only race condition is that when old messages are removed from Bx̄i by IncEval (see Section 3), the

deletion is atomic. Thus consistency control of GRAPE+ is not much harder than that of GRAPE.

8 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted seven sets of experiments to evaluate the (1) e�-

ciency, (2) communication cost, (3) scale-up of GRAPE+; (4) the e�ectiveness of AAP and the impact

of graph partitioning strategies on its performance; the accuracy and e�ciency of our estimation

of (5) runtime and (6) message arrival rate. Finally, (7) we gave case studies of the e�ectiveness of

dynamic adjustment. We compared the performance of GRAPE+ with (a) Giraph [8], synchronized

GraphLabsync [43], Galois [29, 64],Pregel+ [87], and Husky [88] under BSP, (b) asynchronized

GraphLabasync, GiraphUC [45], Maiter [91] and TDataflow (Timely-Data�ow) [9, 62] under AP, (c)

Petuum [84] under SSP, (d) PowerSwitch [83] under Hsync, (e)GRAPE+ simulations ofBSP,AP and

SSP, denoted by GRAPE+BSP, GRAPE+AP, GRAPE+SSP, respectively. We �nd that GraphLabasync,
GraphLabsync, PowerSwitch, Husky, Galois, Pregel+ and GRAPE+ outperform the other systems.

Indeed, Table 1 shows the performance of SSSP and PageRank of the systems with 192 workers;

results on the other algorithms are consistent. Hence we only report the performance of these seven

systems in details. For CF, we also compared with Petuum [84], and �nd that GRAPE+ and Petuum
perform the best among the competitors. For systems with multiple versions, the speci�c versions

used are: (a) GraphLab v2.2
1
, (b) PowerSwitch v1.0

2
, (c) Galois v4.0

3
, (d) Giraph v1.1.0

4
, (e) Husky

v0.1.2
5
, and (f) Petuum v1.1

6
. In all the experiments we also evaluated GRAPE+BSP, GRAPE+AP

and GRAPE+SSP. Note that GRAPE [38] is essentially GRAPE+BSP, a special setting of GRAPE+.

Experimental setting. We used the following real-life and synthetic graphs.

Graphs. We used six real-life graphs of di�erent types, such that each algorithm was evaluated with

at least two real-life graphs. These include (1) Friendster [6], a social network with 65 million users

and 1.8 billion links; we randomly assigned weights to test shortest path SSSP; (2) tra�ic [3], an

(undirected) US road network with 23 million nodes (locations) and 58 million edges; (3) UKWeb [2],

a Web graph with 133 million nodes and 5 billion edges; and (4) ClueWeb12 [5], a Web page network

with 733 million pages and 42 billion links. We also used two recommendation networks (bipartite

graphs) to evaluate collaborative �ltering CF, namely, (5) movieLens [4], with 20 million movie

1
https://github.com/jegonzal/PowerGraph/tree/v2.2

2
https://github.com/xiechenny/powerswitch/releases/tag/ver1.0

3
https://github.com/IntelligentSoftwareSystems/Galois/tree/release-4.0

4
https://github.com/apache/giraph/releases/tag/release-1.1.0

5
https://github.com/husky-team/husky/releases/tag/v0.1.2

6
https://github.com/sailing-pmls/bosen/releases/tag/v1.1.0
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ratings (as weighted edges) between 138000 users and 27000 movies; and (6) Netflix [12], with 100

million ratings between 17770 movies and 480000 customers.

To test the scalability of GRAPE+, we developed a generator to produce synthetic graphs G =

(V ,E,L) controlled by the numbers of nodes |V | (up to 300 million) and edges |E | (up to 10 billion).

The synthetic graphs and some real-life graphs, e.g., UKWeb and ClueWeb12, are too large to

�t in a single machine. Parallel processing is a must for processing these graphs.

Queries. For SSSP, we sampled 10 source nodes for each graph G used such that each node has

paths to or from at least 90% of the nodes in G, and constructed an SSSP query for each of them.

Algorithms. We evaluated SSSP, CC, PageRank and CF over GRAPE+ by using their PIE programs

developed in Sections 2 and 5. We used “default” code provided by the competitor systems when

available. More speci�cally, for instance, (a) for Galois we used its pull version of SSSP, CC and

PageRank; (b) for Petuum we used its latest model-parallel implementation of CF; (c) for Pregel+
we used ordinary mode version of SSSP, CC, and PageRank; and (d) for TDataflow we used the

version of PageRank in [11], and slightly modi�ed the original codes of CC to load the graphs from

�les. Otherwise we made our best e�orts to develop “optimal” algorithms, e.g., SSSP for TDataflow.

We used XtraPuLP [72] as the default graph partition strategy, which is widely used in practice.

To evaluate the impact of stragglers, we randomly reshu�ed a small portion of each partitioned

input graph when conducting the evaluation, and made the graphs skewed. For systems that do

not support external graph partitioning, we used their own default graph partitioning strategies,

which include (1) Random7
for PowerSwitch, GraphLab and its variants, and TDataflow, (2) con-

sistent hashing for Husky [88], and (3) OEC (Outdoing Edge-cut) [29] for Galois. We did not do

the reshu�ing for these systems.

We deployed the systems on an HPC cluster. For each experiment, we used up to 20 servers,

each with 16 threads of 2.40GHz, and 128GB memory. On each thread, a GRAPE+ worker is de-

ployed. Each system was con�gured according to its recommended setting. To ensure fairness and

reproducibility, the resource used in each set of experiment is the same for all systems tested.

We remark that we have only used the default and recommended setting for each system in our

experiments to compare the “average” performance over all graphs. As shown in [35], the choice of

graph partitioning strategies should be “application driven”, i.e., graph partitioning strategies and

system con�gurations could be �ne-tuned to further improve the performance. As a consequence,

it should be remarked that some of the 12 di�erent systems might work better on some of 6 real-life

graphs adopted in our experiments when their settings are further optimized.

We ran each experiment 5 times. The average is reported here.

Experimental results. We next report our �ndings.

Exp-1: E�ciency. We �rst evaluated the e�ciency of GRAPE+ by varying the number n of work-

ers used, from 64 to 192. We evaluated (a) SSSP and CC with real-life graphs tra�ic, Friendster and

ClueWeb12; (b) PageRank with Friendster, UKWeb and ClueWeb12; and (c) CF with movieLens
and Netflix, based on applications of these algorithms in transportation network analysis, social

network analysis, Web page classi�cation, Web rating and recommendation.

(1) SSSP. Figures 6a-6c report the performance of SSSP. We can see the following.

(a) GRAPE+ outperforms its competitors in most cases. Over real-life graph tra�ic (resp. Friendster)

7
https://github.com/jegonzal/PowerGraph/blob/master/src/graphlab/options/graph_help.txt
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and with 192 workers, GRAPE+ is on average 1673.0 (resp. 3.0), 1085.0 (resp. 15.0), 1270.0 (resp. 2.6),

227.4 (resp. 2.4) and 244.0 (resp. 1.1) times faster than synchronized GraphLabsync, asynchronized

GraphLabasync, hybrid PowerSwitch, Husky and Pregel+, respectively. On tra�ic and with 192

workers, GRAPE+ is on average 9.3 times faster than TDataflow; but on Friendster, TDataflow
performs slightly better than GRAPE+; for instance, TDataflow takes 11.9 seconds with 192 work-

ers on Friendster, while GRAPE+ takes 12.6 seconds. This is because to evaluate the e�ect of

stragglers, we made the graph partitions used by GRAPE+ more skewed than the default ones used

by TDataflow. Nonetheless, GRAPE+ performs better than TDataflow on graphs such as tra�ic,
since the diameter of tra�ic is large, and on such graphs, incremental computation of GRAPE+ is

more e�ective and converges in less rounds than the computation of TDataflow. On ClueWeb12,

we only report the results for Pregel+, (distributed version of) Galois, GRAPE+ and its variants,

since it is too large to run on other competitors. The problem has been reported earlier in [54, 93].

On ClueWeb12, GRAPE+ consistently outperforms Pregel+ by 171.4 times on average.

On Friendster and ClueWeb12, Galois performs slightly better than GRAPE+. For instance, it

takes 21.1 (resp. 238.2) seconds on Friendster (resp. ClueWeb12) with 64 workers, while GRAPE+
takes 28.4 and 317.2 seconds, respectively. There are two reasons for this. (a) Galois adopts a

communication-optimizing substrate to explore structural and temporal invariants of graph par-

titions, which reduces its communication cost [29]. (b) For the same reason given above, since we

make graph partitions used by GRAPE+ more skewed, Galois performs better than GRAPE+ on

Friendster; but due to the large diameter of tra�ic, GRAPE+ is more e�ective than Galois.

The performance gain of GRAPE+ comes from the following: (i) e�cient resource utilization

by dynamically adjusting relative progress of workers under AAP; (ii) reduction of redundant

computation and communication by the use of incremental IncEval; and (iii) optimization inherited

from strategies that are available for sequential algorithms. Note that under BSP, AP and SSP,

GRAPE+BSP, GRAPE+AP and GRAPE+SSP can still bene�t from (ii) and (iii).

As an example, GraphLabsync took 34 and 10749 rounds over Friendster and tra�ic, respectively,

while by using IncEval, GRAPE+BSP and GRAPE+SSP took 21 and 30 (resp. 31 and 42) rounds,

respectively, and hence reduced synchronization barriers and communication costs. In addition,

GRAPE+ inherits the optimization techniques from single-machine algorithm (our familiar sequen-

tial Dijkstra algorithm) by employing priority queues to prioritize vertex processing; in contrast,

this optimization strategy is beyond the capacity of the vertex-centric systems.

(b) GRAPE+ is on average 2.3, 1.8, and 1.6 (resp. 2.2, 1.6, and 1.4) times faster than GRAPE+BSP,

GRAPE+AP and GRAPE+SSP over tra�ic (resp. Friendster), up to 2.7, 2.0 and 1.9 times, respectively.

Since GRAPE+, GRAPE+BSP, GRAPE+AP and GRAPE+SSP are the same system under di�erent

modes, the gap re�ects the e�ectiveness of di�erent models. We �nd that the idle waiting time

of AAP is 29.4% and 41.7% of that of BSP and SSP, respectively. Moreover, when measuring stale

computation in terms of the total extra computation and communication time over BSP, the stale

computation of AAP accounts for 51.9% of that of AP, respectively. These verify the e�ectiveness

of AAP by dynamically adjusting relative progress of di�erent workers.

(c) GRAPE+ takes less time when the number n of workers increases. It is on average 2.5, 2.3 and

2.3 times faster on tra�ic, Friendster and ClueWeb12, respectively, when n varies from 64 to 192.

That is, AAP makes e�ective use of parallelism by reducing stragglers and stale computations.

(2) CC. As reported in Figures 6d-6f on tra�ic, Friendster and ClueWeb12, respectively, (a) GRAPE+
signi�cantly outperforms other systems, namelyGraphLabsync,GraphLabasync,PowerSwitch,Husky,
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Pregel+ and TDataflow. When n = 192, GRAPE+ is on average 313.0, 93.0, 68.0, 34.0, 167.0 and 1.1
times faster than the six systems, respectively. Compared with Galois, GRAPE+ is 8.9 and 2.1 times

faster on tra�ic and ClueWeb12, respectively. This is because GRAPE+ processes only a�ected ver-

tices in IncEval by capitalizing on auxiliary indices that were inherited from sequential algorithms,

which are more e�ective than label propagation used in Galois. On Friendster, however, Galois does

better than GRAPE+ since the diameter of Friendster is small; on such graphs label propagation of

Galois works as well as the indices of GRAPE+, and Galois speeds up the computation by using a

communication-optimizing substrate. (b) GRAPE+ is faster than its variants under BSP, AP and SSP
on average by 9.6, 1.3 and 2.4 times, up to 27.4, 1.5 and 5.0 times, respectively. This again veri�es the

performance gain of AAP by reducing both stragglers and stale computations. (c) GRAPE+ scales

well with the number of workers used: it is on average 2.7 times faster when n varies from 64 to 192.

(3) PageRank. As shown in Figures 6g-6i over real-life graphs Friendster, UKWeb and ClueWeb12,

respectively, when n = 192, (a) on Friendster and UKWeb, GRAPE+ is on average 5.0, 9.0, 5.0,

14.3, 13.6 and 3.6 times faster than GraphLabsync, GraphLabasync, PowerSwitch, Husky, Pregel+
and TDataflow, respectively. (b) GRAPE+ has performance comparable to that of Galois: it does

slightly better over UKWeb and ClueWeb12 but slightly worse over Friendster, for the same reason

as given above. (c) GRAPE+ outperforms GRAPE+BSP, GRAPE+AP and GRAPE+SSP by 1.6, 1.7
and 1.2 times, respectively, up to 2.5, 2.2 and 1.6 times. This is because GRAPE+ reduces redundant

stale computations, especially those of stragglers. We �nd that on average, stragglers took 101,

76 and 62 rounds under BSP, AP and SSP, respectively, as opposed to 38 rounds under AAP. (d)

GRAPE+ is on average 2.3 times faster when n varies from 64 to 192.

(4) CF. We used movieLens [4] and Netflix with training set |ET | = 90%|E |, as shown in Fig-

ures 6j-6k, respectively. (a) GRAPE+ performs the best among all, and Petuum does better than the

other competitor systems. On average (b) GRAPE+ is 57.1, 46.1, 48.3, 10.1, 7.4 and 6.2 times faster

than GraphLabsync, GraphLabasync, PowerSwitch, Pregel+, Husky and Petuum, respectively. Galois
failed to run distributed CF, even with its own implementation

8
. (c) GRAPE+ beats GRAPE+BSP,

GRAPE+AP and GRAPE+SSP by 1.4, 2.1 and 1.2 times, up to 1.7, 3.2 and 1.5 times, respectively.

Moreover, (d) GRAPE+ is on average 1.8 times faster when n varies from 64 to 192.

Single-thread. Among the real-life graphs, tra�ic, Friendster, movieLens and Netflix can �t in a

single machine, but not UKWeb and ClueWeb12. On a single machine, it takes 6.7s (resp.157.8s)

and 4.3s (resp.88.7s) for SSSP and CC over tra�ic (resp. Friendster), and 2354.5s for CF over Netflix,

respectively. Using 64-192 workers (threads), GRAPE+ is on average from 1.6 to 12.9 times faster

than single-thread, depending on how heavy stragglers are. Observe the following. (a) GRAPE+
incurs extra overhead of parallel computation that is not experienced by a single machine, just like

other parallel systems. (b) Large graphs such as UKWeb and ClueWeb12 are beyond the capacity

of RAM in a single machine, and parallel computation is a must for such graphs.

We also evaluated GRAPE+ against an extension of COST [60] to �nd out the hardware con�g-

uration (the number of cores) required by GRAPE+ to outperform a competent single-threaded

implementation. Large graphs such as UKWeb and ClueWeb12 are beyond the capacity of RAM

in a single machine; hence to compute the COST of GRAPE+ we converted these graphs to Hilbert

curve representation [60], and delta-encoded edges; we used the codes in [10] as the single-threaded

implementation. These results are consistent with that of GRAPE reported in [39]. For algorithms

conducted in this paper, GRAPE+ achieves speed-up over single-threaded implementations with

8
https://github.com/IntelligentSoftwareSystems/Galois/issues/39
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just 2 or 4 cores over all tested datasets, except that on ClueWeb12 our system GRAPE+ needs 14

cores, which also account for the minimum number of cores we need to load ClueWeb12 into the

memory, and run the algorithms. That is, GRAPE+ introduces very small parallelizing overhead.

This is because (i) GRAPE and GRAPE+ share the same underlying implementation, and (ii) the

overhead for adjusting relative progress introduced by AAP is negligible.

Exp-2: Communication. Following [46], we tracked the total bytes sent by each machine during

a run, by monitoring the system �le /proc/net/dev. The communication costs of PageRank over

Friendster and CC over tra�ic are reported in Table 1, when 192 workers were used. The results

on other algorithms are consistent and hence not shown. These results tell us the following.

(1) On average GRAPE+ ships 7.1%, 3.4%, 17.3%, 42.7%, 55.6% and 15.5% of data shipped by

GraphLabsync, GraphLabasync, PowerSwitch, Husky, Pregel+ and TDataflow, respectively. This

is because GRAPE+ (a) reduces stale computations and hence unnecessary tra�c, and (b) ships

only changed values of update parameters by IncEval by means of incremental evaluation.

(2) On average, Galois ships 37.3% less data than GRAPE+, because Galois exploits structural and

temporal invariant of data partitions to optimize communication. Besides, it implements memoriza-

tion of address translation, which reduces the overhead of conversion in communication between

hosts [29]. We will incorporate similar strategies into future versions of GRAPE+ (see Section 9).

(3) The communication cost of GRAPE+ is 1.04X, 78% and 95% compared to that of GRAPE+BSP,

GRAPE+AP and GRAPE+SSP, respectively. Since AAP allows workers with small workload to run

faster and have more iterations, the amount of messages may increase. Moreover, workers under

AAP additionally exchange their states and statistics to adjust relative speed. Despite these, its

communication cost is not much worse than that of BSP, and is better than AP and SSP.

Exp-3: Scale-up of GRAPE+. As observed in [60], the speed-up of a system may degrade when

using more workers. Thus we evaluated the scale-up of GRAPE+, which measures the ability to

keep similar performance when both the size of graph G = (|V |, |E |) and the number n of workers

increase proportionally. We varied n from 96 to 320, and for each n, deployed GRAPE+ over a

synthetic graph of size varied from (60M, 2B) to (300M, 10B), proportional to n.

As reported in Figures 6l and 6m for SSSP and PageRank, respectively, GRAPE+ preserves a rea-

sonable scale-up. That is, the overhead of AAP does not weaken the bene�t of parallel computation.

Despite the overhead for adjusting relative progress, GRAPE+ retains scale-up comparable to that

of BSP, AP and SSP. The results on other algorithms are consistent (not shown).

Exp-4: E�ectiveness of AAP. To further evaluate the e�ectiveness of AAP, we tested (a) the

impact of graph partitioning on AAP, and (b) the performance of AAP over larger graphs with more

workers. We evaluated GRAPE+, GRAPE+BSP, GRAPE+AP and GRAPE+SSP. We remark that these

are the same system under di�erent modes, and hence the results are not a�ected by implementation.

Impact of graph partitioning. De�ne r = ‖Fmax‖/‖Fmedian‖, where ‖Fmax‖ and ‖Fmedian‖ denote the

size of the largest fragment and the median size, respectively, indicating the skewness of a partition.

As shown in Fig. 6n for SSSP over Friendster, in which the x axis is r , (a) di�erent partitions have

an impact on the performance of GRAPE+, just like on other parallel graph systems. (b) The more

skewed the partition is, the more e�ective AAP is. Indeed, AAP is more e�ective with larger r . When

r = 9, AAP outperforms BSP, AP, SSP by 9.5, 2.3, and 4.9 times, respectively. For a well-balanced

partition (r = 1), BSP works well since the gap between the runtime of workers is rather small,

i.e., the chances of having stragglers are small. In this case AAP works as well as BSP.
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AAP in a large-scale setting. We tested synthetic graphs with 300 million vertices and 10 billion

edges, generated by GTgraph [1] following the power law and the small world property. We used

a cluster of up to 320 workers. As shown in Fig. 6o for PageRank, AAP is on average 4.3, 14.7 and

4.7 times faster than BSP, AP and SSP, respectively, up to 5.0, 16.8 and 5.9 times with 320 workers.

Compare with Exp-1, AAP is far more e�ective on larger graphs with more workers, a setting closer

to real-life applications, in which stragglers and stale computations are often heavy. In practice,

stragglers and stale computations may arise when, e.g., an evenly partitioned graph gets skewed

due to updates; or when computation resources like CPU cores and process caches are shared

among di�erent applications [30]. Recent study also shows that when a graph is evenly partitioned,

the computations may still be skewed due to various computation patterns [16, 35]. These further

verify the e�ectiveness of AAP. The results on other algorithms are consistent (not shown).

Exp-5: Running time estimation. We experimented runtime prediction with pageRank, CC,

SSSP and CF, based on random forest regression (Section 6), using the same real-life graphs as

above. For each of these four algorithm, we report the results on one dataset to demonstrate

the performance of our runtime estimation, covering Web page graphs (UKWeb), road networks

(tra�ic), social networks (Friendster), and recommendation networks (Netflix). Estimation results

on other graphs, covered by the four types above, are similar and thus are omitted.

The training/test samples were extracted from the query log generated in each round of each

worker. Note that each worker is in charge of one fragment. Thus while the number of rounds on

each fragment is small, the total number of training/test samples is adequate for the model. For

example, if we assign 64 fragments to 64 workers, each worker processes one fragment. When each

fragment runs for 10 rounds on average, the total number of training/test samples is 640 = 64 × 10.

The number of regression trees in each model was set to be 10. We report both the training time

and the mean prediction time. The baseline prediction method estimates the runtime using the

mean running time of all previous rounds. Times are all in milliseconds. In order to assure the

closeness prerequisite for message embedding (Section 6.2), the node ID in each graph is assigned

by breadth-�rst search, ensuring that closely connected nodes are usually close in node ID [73].

Based on [82], we implemented our RFR-based predictors on the same HPC cluster as the other

experiments, using C++. The master P0 was responsible for query log collection and model training.

The training of each model was also conducted in parallel, where we used 20 threads to train each

model. After the training process, the prediction model was deployed on each thread of a worker.

The length L of each message feature vector was set as 300 by default unless stated otherwise. Each

experiment was run for 5 times and the average is reported here.

(1) PageRank. Following the prediction method of Section 6.2, we used the initial 10% of the query

log as the training data (
N
R = 10%) and the rest for testing. Since PageRank is query-independent,

both the training data and test data are from the same query log. Table 3 summarizes the perfor-

mance of our prediction method on UKWeb when the number of fragments varied from 64 to 192.

From the results we can see the following. (i) The training and prediction overhead of our model is

small, and is far less even than the time taken by a single IncEval round. (ii) Our prediction accuracy

is far better than that of the mean estimation baseline. (iii) The training and prediction costs do

not increase much when more samples are used. (iv) While more fragments yield more training

samples, this does not necessarily give us lower MSRE (see the 192-fragment and 64-fragment tests

in Table 3). This is because a random forest regression model is trained by recursively splitting

a high-dimensional space into small cells, and it is controlled by a subset of training samples that
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Fragment

number

Sample

number

Training

time (ms)

Mean prediction

time (ms)

Mean IncEval
time (ms)

MSRE

MSRE

baseline

64 1432 9.51 5.92 × 10
−3

230.49 0.0135 0.1030

96 2418 17.81 5.02 × 10
−3

147.89 0.0214 0.1192

128 2850 21.73 4.51 × 10
−3

114.17 0.0303 0.1422

160 5035 33.97 5.27 × 10
−3

89.13 0.0255 0.1405

192 5271 35.94 4.11 × 10
−3

73.03 0.0328 0.1507

Table 3. Accuracy and overhead of our runtime prediction method for PageRank-UKWeb
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Fig. 7. Random 50 test results in the 64 fragment experiment (PageRank-UKWeb)

Fragment

number

Sample

number

Training

time (ms)

Mean prediction

time (ms)

Mean IncEval
time (ms)

MSRE

MSRE

baseline

64 37 1.60 1.83 × 10
−2

69.58 0.1397 81.63

96 69 1.58 1.51 × 10
−2

64.41 0.1968 89.51

128 100 1.51 1.47 × 10
−2

45.94 0.1448 98.46

160 138 1.78 1.33 × 10
−2

36.80 0.1810 46.09

192 150 1.95 1.21 × 10
−2

35.83 0.1845 48.37

Table 4. Accuracy and overhead of our runtime prediction method for CC-tra�ic

decide the boundaries of each cell [20, 22]. When more fragments are adopted, more boundaries

are involved and the running time patterns also get more diverse.

To illustrate the results, we visualize in Figure 7 the true runtime and the corresponding predic-

tion in the 64 fragments experiment. Each worker was in charge of one fragment, i.e., there were

64 workers in the 64-fragment setting. We demonstrate the results of randomly selected 50 rounds

for four workers only in the test data due to limited space. Note that since PageRank is query-

independent, it is possible that PageRank runs less than 50 rounds for one fragment. Nonetheless,

since there exist 64 fragments, we can predict the running times for 50 rounds in di�erent fragments.

From Figure 7, we can see that most of the predictions were close to the true value. However,

the predictions of relatively large true values (over 400ms) were not very accurate, which were

the main sources of the MSRE. This was mainly because the number of training samples with long

running time was limited, which hindered the model’s learning in this range.
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Fig. 8. Random 50 test results in the 64 fragment experiment (CC-tra�ic)

Fragment

number

Sample

number

Test

number

Mean prediction

time (ms)

Mean IncEval
time (ms)

MSRE

MSRE

Baseline

64 367,060 73,412 7.58 × 10
−3

5.25 0.3055 3.16×10
3

96 536,675 107,335 6.15 × 10
−3

3.75 0.2452 2.98×10
3

128 889,140 177,828 5.79 × 10
−3

2.57 0.2567 1.53×10
3

160 1,165,325 233,065 7.18 × 10
−3

1.68 0.4268 2.83×10
3

192 1,292,530 258,506 5.79 × 10
−3

1.65 0.5465 2.24×10
3

Table 5. Accuracy and overhead of our runtime prediction method for SSSP-Friendster

(2) CC. We also used the initial 10% of the query log as the training data (
N
R = 10%) and the rest for

testing, all from the same log, since CC are query-independent. The results on tra�ic are reported

in Table 4 and Figure 8. Observe the following. (i) RFR does not violate the training constraint since

the training time is less than or comparable to the mean IncEval time, and it is far less than the

total CC running time. (ii) Our simple message feature embedding for CC is not e�ective enough

in runtime prediction and hence the RFR model needs more training samples. Like the case of

PageRank, the errors were mostly introduced by long rounds (over 200 ms). However, the accuracy

of the RFR predictor is still way better than the baseline. (iii) Figure 8 shows that our RFR-based

method gives fairly accurate prediction for the changing trend of the running time.

(3) SSSP. Since SSSP is query-dependent, the training data and test data can be generated from di�er-

ent logs. In this experiment, the training and test samples were extracted from 5 previous query logs

and 1 test query log, respectively. Since we can train the model o�ine, we care about the prediction

time only. The length L of each message feature vector was set as 500 to provide more precise feature

embedding for the RFR model. As shown in Table 5 and Figure 9, the results on Friendster are sim-

ilar to their counterparts for CC. Its MSRE is at least 3 orders of magnitude better than the baseline.

However, the accuracy for long rounds is not as good as for short ones. This is because most training

samples were from short rounds (shorter than 1ms), and few large values were involved in training.

(4) CF. Similar to PageRank, CF is query-independent and we have only one log. Thus, we used

the initial 10% of the query log as the training data (
N
R = 10%) and the rest for testing. The results

on Netflix are shown in Table 6 and Figure 10, which verify that our method is able to precisely
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Fig. 9. Random 50 test results in the 64 fragment experiment (SSSP-Friendster)

Fragment

number

Sample

number

Training

time (ms)

Mean prediction

time (ms)

Mean IncEval
time (ms)

MSRE

MSRE

baseline

64 1,277 26.20 7.36 × 10
−3

1397.70 0.0025 0.0082

96 1,812 40.46 5.51 × 10
−3

871.70 0.0027 0.1289

128 2,300 50.91 5.11 × 10
−3

652.84 0.0031 0.1180

160 1,936 38.17 5.64 × 10
−3

632.48 0.0070 0.0122

192 2,360 61.04 6.45 × 10
−3

531.52 0.0075 0.0136

Table 6. Accuracy and overhead of our runtime prediction method for CF-Netflix
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Fig. 10. Random 50 test results in the 64 fragment experiment (CF-Netflix)

predict the running time for almost all cases. Observe the following. (i) Our method substantially

outperforms the baseline, and accurately predicts the runtime of each round. (ii) In most cases,

running time is �uctuated around a stable value with few abrupt changes. This explains the relative

small MSRE of the baseline compared with its counterparts for SSSP, CC and PageRank.
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Fig. 11. Message arrival rate estimation of PageRank and SSSP (fragment number 64).

Exp-6: Estimation of message arrival rate. We also tested our simple estimation method for

message arrival rate (Section 6.3). We experimented with pageRank, CC, SSSP and CF. We report

the results of PageRank and SSSP in Figure 11, where graphs were partitioned into 64 fragments

like in Exp-5. The results for CF and CC are similar and are hence omitted.

Figure 11 shows the mean message arrival rate of each fragment, where the vertical axis is the

number of messages received per millisecond and the horizontal axis is the time in seconds. To

calculate the true message arrival rate (colored in blue in Figure 11), we accumulated the number

of messages sent in the whole system every 100 millisecond. We normalized the message arrival

rate by dividing the sum by 100 and fragment number 64. Following the method of Section 6.3, we

set time window τ as 200 milliseconds, and used the mean value of the true arrival rates recorded

in the time window to estimate the arrival rate in the next round.

The results tell us the following. (a) The estimated arrival rate is quite close to the true arrival

rate. (b) Despite of spikes, the true arrival rate in Figure 11 is overall continuous without abrupt

breaks, which guarantees the e�ectiveness of our localized mean based estimation.

Exp-7: Case studies. Finally, we conducted two case studies to understand how AAP adaptively

adjusts delay stretches and reduces response time, with PageRank and CF.

(1) PageRank. Figure 12 shows the timing diagrams of GRAPE+BSP, GRAPE+AP, GRAPE+SSP and

GRAPE+ for PageRank over real-life graph Friendster. Among 32 workers used in the tests, P12

is a straggler (colored in blue and green). We �nd that stragglers often arise in the presence of

streaming updates, even when we start with an evenly partitioned graph.

(a) BSP. As shown in Figure 12a, straggler P12 dominated the running time. Each superstep of the

BSP run was slowed down by the straggler due to the global synchronization barriers. The other

31 workers mostly idled, and the run took 13 rounds and 174s.

(b) AP. GRAPE+AP did slightly better and took 166s, as shown in Figure 12b. Idling was substantially

reduced. However, fast workers performed far more rounds of computation under AP than under

BSP, and most of these rounds are redundant and useless. The cost was still dominated by straggler

P12. Indeed, after a period of time, a fast worker behaved as follows: it moved ahead, became inactive

(idle), got activated by messages produced by P12, and so on, until P12 converged.

(c) SSP. Figure 12c depicts a run of GRAPE+SSP with staleness bound c = 5, i.e., fast workers are

allowed to outpace the slowest ones by 5 rounds. It did better at the beginning. However, when

the fast workers ran out of c steps, there still existed a gap from straggler P12. Then SSP degraded

to BSP and fast workers were essentially synchronized with the straggler. The run took 145s.

(d) AAP. Figure 12d shows a run of GRAPE+. It dynamically adjusted delay stretch DSi for each

worker Pi by function δ (Section 3). We set predicate S = true since PageRank does not need

bounded staleness (Section 5.3), and we used initial L⊥ = 0 to start with.
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Fig. 12. Case study of PageRank

AAP adjusted delay stretch DS12 at straggler P12 as follows. (i) Until round 6, function δ kept DS12

=η12 since messages arrived in a near uniform speed before round 6; there was no need to wait for ex-

tra messages. (ii) At round 6,DS12 was increased by 31 based on predicted running time t12 of IncEval
at worker P12 and message arrival rate s12, by using the methods of Section 6. As a result, worker

P12 was put on hold for 8s to accumulate messages before entering round 7. This e�ectively reduced

redundant computations. Indeed, P12 converged in 8 rounds, and the run of GRAPE+ took 112s.

Observe the following. (i) Starting from round 3 of P12, fast workers were actually grouped

together and ran BSP within the group, by adjusting their relative progress; meanwhile this group

and straggler P12 were under AP. As opposed to the BSP degradation of SSP, this BSP group does
not include straggler P12. Workers in the group had similar workload and speed; there was no

straggler among them. These workers e�ectively utilized resources and performed almost optimally.

(ii) Straggler P12 was put on hold from round 7 to accumulate messages; this e�ectively reduced

redundant computations and eventually led to less rounds for P12 to converge. (iii) The estimations

of ti and si were quite accurate with the methods of Section 6. (iv) If users opt to set L⊥ as, e.g.,
31, function δ can start reducing redundant computations early and straggler P12 can �nd “optimal”

stretch DSi sooner. It is because of this that we allow users to set L⊥ in function δ .

(2) CF. We also analyzed the runs of CF on Netflix with 64 workers. Note that CF requires staleness

bound c , as opposed to SSSP, CC and pageRank. From the experiments we �nd the following.

(a) BSP. On one hand, BSP converged in the least rounds (351), but on the other hand, it incurred

excessive idleness and was actually slower than AAP and SSP.

(b) AP. While idleness was nearly zero, AP took the most rounds (4500) and was slower than AAP
and SSP, as also noted in [84]. That is, a large part of the computations under AP is stale and useless.

(c) SSP. Tuning c was helpful. However, it is hard to �nd an optimal c for SSP. We had to run

GRAPE+SSP 50 times to �nd the optimal co , through a process of trail and fail.

(d) AAP. To enforce bounded staleness, predicate S is de�ned as false if r = rmax and |rmax−rmin | > c ,

for c from 2 to 50 in di�erent tests. In the �rst a few rounds, function δ set delay stretch Li for each

worker Pi as 60% of the number of workers, i.e., Pi waited and accumulated messages from 60%

of other workers before the next round. It then adjusted Li dynamically for each Pi .
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AAP performed the best among the 4 models. Better yet, AAP is robust and insensitive to c . Given

a random c , AAP dynamically adjusted Li and outperformed SSP even when SSP was provided

with the optimal co that was manually found after 50 trail tests.

Summary. From the experimental study we �nd the following.

(1) GRAPE+ outperforms most of the state-of-the-art systems. Over real-life graphs and with 192

workers, GRAPE+ is on average (a) 2080.0, 838.0, 550.0, 728.0, 1850.0, 636.0, 115.0, 2.8, 92.0 and 5.1
times faster than Giraph, GraphLabsync, GraphLabasync, GiraphUC, Maiter, PowerSwitch, Husky,

Galois, Pregel+ and TDataflow for SSSP, (b) 835.0, 314.0, 93.0, 368.0, 34.5, 51.1, 40.7, 3.2, 160.2 and

1.1 times faster than these systems for CC, (c) 339.0, 4.8, 8.6, 346.0, 9.7, 4.6, 14.3, 1.1, 13.6 and 3.6
times faster for PageRank, and (d) 57.1, 46.1, 48.3, 10.1, 7.4 and 6.2 times faster than GraphLabsync,
GraphLabasync, PowerSwitch, Pregel+, Husky and Petuum for CF, respectively. Among these

Galois has the closest performance to GRAPE+ and occasionally outperforms GRAPE+.

(2) GRAPE+ incurs 7.1%, 3.4%, 17.3%, 1.7%, 8.2%, 14.1%, 8.6%, 42.7%, 55.6% and 15.5% of the commu-

nication cost of GraphLabsync, GraphLabasync, PowerSwitch, Petuum, Giraph, Maiter, GiraphUC,

Husky, Pregel+ and TDataflow on average, respectively. These show that AAP and IncEval can sub-

stantially reduce communication cost by reducing computation rounds and redundant computation.

(3) AAP e�ectively reduces stragglers and redundant stale computations. It is on average 4.8, 1.7
and 1.8 times faster than BSP, AP and SSP for these problems over real-life graphs, respectively.

On large-scale synthetic graphs, AAP is on average 4.3, 14.7 and 4.7 times faster, respectively, up

to 5.0, 16.8 and 5.9 times with 320 workers. On large-scale real-life graph ClueWeb12, AAP is on

average 2.8, 1.3 and 1.5 times faster, respectively, up to 3.8, 1.5 and 1.9 times with 192 workers.

(4) The heavier stragglers and stale computations are, or the larger the graphs are and the more

workers are used, the more e�ective AAP is in speeding up parallel computations.

(5) GRAPE+ scales well with the number n of workers used in parallel computation. It is on average

2.4, 2.7, 2.3 and 1.7 times faster when n varies from 64 to 192 for SSSP, CC, PageRank and CF,

respectively. Moreover, it has good scale-up with large-scale graphs.

(6) Our prediction methods accurately and e�ciently estimate runtime, and RFR works especially

well. The training time is less than the average time taken by a single IncEval round.

(7) Our simple estimation of message arrival rate is accurate and e�cient.

9 CONCLUSION
We have proposed AAP to remedy the limitations of BSP and AP by reducing both stragglers

and redundant stale computations. As opposed to [85], we have shown that as an asynchronous

model, AAP does not make programming harder, and it retains the ease of consistency control and

convergence guarantees. We have also developed the �rst condition to warrant the Church-Rosser

property of asynchronous runs, and a simulation result to justify the power and �exibility of AAP.

Our experimental results have veri�ed that AAP is promising for large-scale graph computations.

One topic for future work is to improve runtime estimation for di�erent computations. Another

topic is to handle streaming updates by capitalizing on the capability of incremental IncEval. A

third topic is to adopt techniques of, e.g., [78] and [29], to further reduce the communication cost.
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