
Parallel Discrepancy Detection and Incremental Detection
Wenfei Fan

1,2
, Chao Tian

3
, Yanghao Wang

1
, Qiang Yin

3

1
University of Edinburgh

2
Shenzhen Institute of Computing Sciences

3
Alibaba Group

{wenfei@inf.,yanghao.wang@}ed.ac.uk,{tianchao.tc,qiang.yq}@alibaba-inc.com

ABSTRACT
This paper studies how to catch duplicates, mismatches and con-

flicts in the same process. We adopt a class of entity enhancing rules

that embed machine learning predicates, unify entity resolution

and conflict resolution, and are collectively defined across multiple

relations. We detect discrepancies as violations of such rules. We

establish the complexity of discrepancy detection and incremental

detection problems with the rules; they are both NP-complete and

W[1]-hard. To cope with the intractability and scale with large

datasets, we develop parallel algorithms and parallel incremental al-

gorithms for discrepancy detection. We show that both algorithms

are parallelly scalable, i.e., they guarantee to reduce runtime when

more processors are used. Moreover, the parallel incremental algo-

rithm is relatively bounded. The complexity bounds and algorithms

carry over to denial constraints, a special case of the entity enhanc-

ing rules. Using real-life and synthetic datasets, we experimentally

verify the effectiveness, scalability and efficiency of the algorithms.

PVLDB Reference Format:
Wenfei Fan, Chao Tian, Yanghao Wang, Qiang Yin. Parallel Discrepancy

Detection and Incremental Detection. PVLDB, 14(8): 1351-1364, 2021.

doi:10.14778/3457390.3457400

1 INTRODUCTION
Entity resolution (ER) and conflict resolution (CR) have been long-

standing challenges of data quality. ER is to identify tuples that

refer to the same real-life entity. CR is to resolve semantic incon-

sistencies pertaining to an entity. There has been a host of work

on the topics, notably rule-based methods, e.g., matching depen-

dencies (MDs [37]) for ER, conditional functional dependencies
(CFDs [38]) and denial constraints (DCs [15]) for CR, as well as
machine learning (ML) models for ER [13, 61] and CR [25].

However, several questions remain to be addressed. (1) It has

been recognized that neither rule-based methods nor ML models

consistently outperform the other in practice. Is it possible to in-

tegrate the two in a uniform framework and take advantage of

both? (2) Prior work often treats ER and CR as separate tasks and

develops different rules for each, e.g.,MDs for ER and CFDs for CR.
However, semantic conflicts and mismatched entities often coexist,

and ER and CR inherently intervene with each other [32, 44, 75].

Can we catch conflicts and identify entities in the same process?

We refer to the integrated process as discrepancy detection. (3) The
prior rules are often defined on a single relation. However, it is

known that to accurately identify entities, one needs to correlate

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.

doi:10.14778/3457390.3457400

information from multiple relations [22]. What rules should we use

to collectively detect discrepancies (ER and CR) across relations?

Example 1: E-commerce companies need to identify different ac-

counts that belong to the same person for e.g., fraud detection. To do
this, one might be tempted to compare the associated ID card num-

bers. However, the same ID card is allowed to register multiple ac-

counts at, e.g.,Alipay [3], so that one can register for her elderly par-
ents using her own ID. Hence we have to check additional attributes,

especially diversified ones that cannot be easily imitated e.g., prod-
uct preference. ML methods are needed for assessing and linking

such attributes, which often involve long textual descriptions.

On the other hand, when the locations of two cell phone num-

bers are different at certain time ω, the company employs a logic

rule such that the two accounts registered with these two phone

numbers must be distinguished, i.e., they belong to different per-

sons, if their last login time both refer to ω, regardless of whether
they have the same ID. We can see that the e-commerce practice

needs both logic rules and ML models. Moreover, since accounts and

phones are maintained in different tables, the rule is “collective”.

Another issue is the uncertain reliability of time recorded. For

instance, the last login time may even be earlier than the creation

time of some accounts. To identify and distinguish accounts, catch-

ing conflicts in such attributes is a must in order to reduce false

positives. This highlights the need for CR in the process of ER. ✷

To tackle these issues, a class of entity enhancing rules [48] has
recently been studied, denoted byREEs, which subsumeMDs,CFDs
and DCs as special cases. As opposed to the prior data quality rules,
REEs embed ML classifiers as predicates, support both ER and CR,

and are collectively defined across relations. As will be seen in

Section 2, REEs are able to resolve the issues of Example 1 at Alipay.

Challenges. To make practical use of REEs, several questions have to
be settled. Is it harder to detect discrepancies using collective rules

with embedded ML predicates? Is there an algorithm that catches

duplicates, mismatches and conflicts in the same process, and scales

with large datasets? Can we incrementally catch discrepancies on-

line in response to updates to the data, and guarantee to perform

better than re-examining the entire dataset starting from scratch?

Contributions & organization. We answer these questions.

(1) Complexity (Section 3). We show that the expressive power of

REEs does come at a price. With REEs, the discrepancy detection

and incremental detection problems become NP-complete. We also

show that both problems are W[1]-hard, i.e., there exists no fixed-

parameter tractable algorithm for them. As a byproduct, we show

that these complexity results already hold for DCs.
In contrast, the detection problem is in polynomial time (PTIME)

with CFDs. Moreover, it is known that detection with a set of CFDs
can be easily done with a single SQL query. This is no longer doable
for REEs, since the ML predicates in REEs have to be encoded as

https://doi.org/10.14778/3457390.3457400
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457400

user-defined functions (UFDs); worse yet, the corresponding SQL
query may take exponential time due to their collective nature.

(2) Parallel detection (Section 4). The intractability of the problem

suggests the need for parallel algorithms to scale with real-life

datasets. However, to the best of our knowledge, few parallel dis-

crepancy detection algorithms are in place [24, 39, 56, 65, 68, 72],

and among available ones, none guarantees the parallel scalability,

i.e., the more processors are used, the faster the algorithms run.

We develop parallel algorithm PREEDet that is able to catch

duplicates, mismatches and conflicts with REEs, and guarantees the
parallel scalability. Moreover, the parallel scalability is robust: it

remains intact regardless of what ML models are embedded in REEs.
Since discrepancy detection is often conducted on critical in-

formation, e.g., user credit records, we develop exact detection

algorithms rather than approximate methods or heuristics.

(3) Parallel incremental detection (Section 5). As another approach

to coping with large datasets, we study incremental discrepancy

detection. Real-life data is constantly updated. It is too costly to

recheck discrepancies starting from scratch in response to frequent

updates. These highlight the need for incremental methods. The

rationale is that in the real world, updates ∆D to a large dataset D

are typically small. When ∆D are small, the changes to the set of

discrepancies are often small and are much less costly to find than to

recheck the discrepancies, by making use of previous computation.

In light of the intractability of incremental detection, we develop

parallel algorithm PIncDet to incrementally detect discrepancies, by

incrementalizing and parallelizing the batch detection algorithm. In

addition, we show that the incremental algorithm is parallelly scal-

able and moreover, is bounded relative [42] to the batch algorithm,

i.e., it incurs only necessary cost for incrementalization.

(4) Experimental study (Section 6). Using real-life datasets and a

benchmark, we empirically verify the following. (a) REEs are able to
catch discrepancies that the prior methods fail to detect. On average

our detection algorithms outperform rule-based and ML methods

by 33% and 36%, and ER and CR alone by 31% and 41%, respectively,

in accuracy. (b) PREEDet and PIncDet scale well with the size |D|

of datasets and the complexity of REEs. Using n = 20machines and

100 REEs, they take 1047s and 15s on datasets D with 150 million

tuples and |∆D| = 0.1%|D|, respectively. (c) Incremental PIncDet
is effective. On average it outperforms PREEDet by 20.4 times when

|∆D| = 1%|D|, and is faster even when |∆D| is up to 45% of |D|.

(d) Both PREEDet and PIncDet are parallelly scalable; compared to

the sequential algorithms, on average they are 3.2 to 12.2 (resp. 3.1

to 9.9) times faster when n varies from 4 to 20.

Related work. We categorize the related work as follows.

Discrepancy detection. There has been a large body of work on ER,

classified as follows. (1) ML-based, notably deep learning [34, 61],

active learning [13, 64] and unsupervised learning [27, 58, 81]. (2)

Matching rules, e.g., uniqueness constraints [52],MDs [21, 37], and
datalog-like rules [14, 76]. (3) Hybrid, e.g., ERBlox [16] employs

MDs for blocking and ML models for classification. Collective ER is

proposed in [22]. ER is generally believed to take quadratic-time.

There has also been a host of work on CR, based on (1) logic

rules, e.g.,CFDs [26, 38, 40, 51] andDCs [15, 55]; and (2) various ML

models [11, 31, 53, 60, 66, 71, 73]. Discrepancy detection is in PTIME
(cf. [9]), PTIME [38] and coNP-complete [19] with functional

dependencies (FDs), CFDs and equality-generating dependencies

(EGDs), respectively. To the best of our knowledge, no prior work

has settled the complexity of detecting discrepancies with DCs.
There has also been work on data repairing [15, 20, 45], to fix

discrepancies. This paper focuses on discrepancy detection, not

repairing. In practice, most of our clients want us to detect discrep-

ancies, but do not allow any destructive updates to their data.

This work differs from the prior work in the following. (1) We

make a first attempt to detect duplicates, mismatches and semantic

inconsistencies in the same process using a uniform set of rules. (2)

REEs are the first logic rules for collective ER and CR that carry

embedded ML predicates. (3) With such rules, we show that the

detection and incremental detection problems areNP-complete and

W[1]-hard as opposed to CFDs, and reveal what leads to the in-

tractability. We also settle the complexity of these problems forDCs.

Parallel detection. Several parallel algorithms are in place to catch

discrepancies in relations [24, 39, 56, 72] and graphs [47, 49]. How-

ever, most of them target either CR or ER, not both. Parallel

CFD-violation detection (CR) was studied for horizontally or verti-

cally partitioned relations [39]. Parallel ER was studied under, e.g.,
MapReduce [29, 56, 57] and MPC [72]. Blocking strategies [35] have

been revisited for parallel ER [24, 68], to divide data into “indepen-

dent” blocks such that pairwise comparison is only needed within

each block. However, none of these ensures the parallel scalability.

Over graphs, parallel detection algorithms have been studied for

ER [36] and CR [47, 49]. These algorithms make use of the locality

of data quality rules on graphs and do not apply to relations.

For incremental CR, [46] studies incremental CFD validation

over relational data, and parallelly scalable algorithms have been

developed to incrementally capture numeric discrepancies in graphs

[47]. For ER, FastPath [74] incrementally processes query records

based on similarity and a search index created offline. Another

incremental rule-based method for ER is proposed in [77], with cer-

tain correctness guarantees. Closer to our work is [72], which gives

a batch ER algorithm that is parallelly scalable for communication

load over two relations; it is unknown whether [72] is parallelly

scalable when computational cost is taken into account.

Our methods differ from the previous ones in the following.

(1) Despite the intractability, we propose the first parallel method

for detecting duplicates, mismatches and semantic conflicts simul-

taneously across multiple relations. Moreover, we provide the first

such algorithm with provable parallel scalability, when both com-

putational and communication costs are considered.

(2) We provide the first parallel incremental algorithms for both

ER and CR. These are the first algorithms guarantee both parallel
scalability and relative boundedness. To our knowledge, these incre-

mental and batch algorithms are also the first parallel algorithms

for MDs, CFDs and DCs with the performance guarantees.

(3) We extend the blocking strategies [24, 68] to a hybrid virtual

blocking method that takes inequality comparison into account, be-

yond conventional equality checking of attributes. The newmethod

works on multiple relations and ensures the parallel scalability.

id phn ID_card create_time last_login payment level preference purchase_log
r1: a1 17788071668 420102199003072817 2015-01-13 2020-05-29 2000 12 toys, diapers Lego, Merries

r2: a2 13057705421 420102199003072817 2010-07-25 2010-05-11 50 3 clothing, makeup Prada, Chanel

r3: a2 13682228882 420102199003072817 2009-03-07 2010-05-11 1100 5 video games, toys Mattel, Nintendo

r4: a3 17876106113 610102199308194132 2013-10-21 2019-12-30 3500 10 electronic products Apple, Sony

r5: a4 15657853565 310101196010016754 2008-04-18 2018-06-10 120 4 clothing, makeup Gucci, Dior

r6: a5 18999906745 230106197507113089 2016-09-06 2018-11-10 2800 8 furniture IKEA, Muji

Figure 1: Example ACCOUNT relation D1

id number time_tracked location
r7: m1 13057705421 2010-05-11 Macau

r8: m2 13682228882 2010-05-11 Xi’an

Figure 2: Example MOBILE relation D2

2 RULES FOR DISCREPANCY DETECTION
We start with a review of entity enhancing rules (REEs) [48].

Consider a database schema R = (R1, . . . ,Rm), where each Ri is
a relation schema (A1 : τ1, . . . ,An : τn), and each Ai is an attribute

of type τi . A databaseD ofR is (D1, . . . ,Dm), whereDi is a relation

of Ri (i ∈ [1,m]) [9]. We assume w.l.o.g. a designated attribute id for

each Ri , such that a tuple of Ri represents an entity with identity id.

Predicates. Predicates over R are defined as follows:

p ::= R(t) | t .A ⊗ c | t .A ⊗ s .B | M(t[Ā], s[B̄]),

where ⊗ is a comparison operator =,,, <, ≤, >, ≥. Following tuple

relational calculus [9], (1) R(t) is a relation atom over R, where

R ∈ R, and t is a tuple variable bounded by R(t). (2) When t is
bounded by R(t) and A is an attribute of R, t .A denotes the A-
attribute of t . (3) In t .A⊗c , c is a constant in the domain of attribute

A in R. (4) In t .A ⊗ s .B, t .A and s .B are compatible, i.e., t (resp. s) is
a tuple of some relation R (resp. R′

), and A ∈ R and B ∈ R′
have the

same type. Moreover, (5) M is an ML classifier, t[Ā] and s[B̄] are
vectors of pairwise compatible attributes of t and s , respectively.

Intuitively, M(t[Ā], s[B̄]) can be any existing well-trained ML

classifier for ER or CR, e.g., [13, 61, 64], which returns true ifM pred-

icates that t[Ā] and s[B̄] are “associated” (e.g.,match), and false oth-
erwise. We takeM as a predicate, and refer toM as anML predicate.

Rules. An REE φ over schema R is defined as

X → e .

Here (1) X is a conjunction of predicates over R, and (2) e is a

predicate over R other than relation atoms. We refer to X and e as
the precondition and consequence of φ, respectively.

Example 2: Consider database schema Rc with relation schemas

ACCOUNT (id, phn, ID_card, create_time, last_login, payment,
level, preference, purchase_log) and MOBILE (id, number,
time_tracked, location). To identify and distinguish accounts as

described in Example 1, we use the following two REEs.

(1) φ1 : ACCOUNT(t1)∧ACCOUNT(t2)∧t1.ID_card=t2.ID_card∧
Mr (t1[preference], t2[preference]) → t1.id=t2.id. ML model Mr
checks whether two user portraits (preferences) are close enough.

(2)φ2 : ACCOUNT(t1)∧ACCOUNT(t2)∧t1.last_login=t2.last_login
∧ MOBILE(s1) ∧ MOBILE(s2) ∧ t1.phn=s1.number ∧ t2.phn =
s2.number ∧ t1.last_login = s1.time_tracked ∧ t2.last_login =
s2.time_tracked ∧ s1.location , s2.location → t1.id , t2.id. This
collective rule catches mismatched accounts across two relations.

In addition, we catch conflicts with REEs at Alipay.

(3) φ3 : ACCOUNT(t) → t .create_time ≤ t .last_login. Clearly
each account’s last login time is later than its creation time.

(4) φ4 : ACCOUNT(t1) ∧ ACCOUNT(t2) ∧ t1.create_time ≤

t2.create_time ∧ t1.payment ≥ t2.payment → t1.level ≥ t2.level.
That is, if one account is registered earlier and has a larger total

amount of payment than another, then it should be at a higher level.

This is how e-commerce platforms rate their users.

REEs can also use ML models for link prediction besides for

similarity checking, and interpret ML prediction besides checking.

(5) φ5 : ACCOUNT(t1) ∧ ACCOUNT(t2) ∧Mp (t1[purchase_log],
t2[purchase_log])∧Mf (t1, t2)→Mr (t1[preference], t2[preference]).
Here Mr is the ML model used in φ1, Mf is an ML model that

predicts whether account owners of t1 and t2 are friends, using all
attributes of t1 and t2, and Mp inspects the purchase history. This

REE says that the owners of t1 and t2 have similar preferences if the

two are friends and have similar purchase histories. It provides a

possible interpretation of Mr on preference, in terms of a link pre-

diction modelMf and another ML modelMp on purchase_log. ✷

REEs extend CFDs, DCs and MDs by embedding ML predicates.

(1) CFDs [38] are REEs defined on a single relation, with equality

t .A = s .B and t .A = c . (2) DCs [15, 25] are REEs without ML pred-

icates. (3) MDs [37] are REEs of the form X → e , where X consists

of two relation atoms R1(t1) and R2(t2), equality x .A = y.B and

similarity t1[Ā1] ≈ t2[Ā2] that can be carried out by ML predicates

M(t1[Ā1], t2[Ā2]), while e is t1.id = t2.id. Thus REEs can uniformly

detect conflicts (CR), and catch duplicates and mismatches (ER).

Semantics. Consider a database D of schema R. A valuation of

tuple variables of an REE φ in D, or simply a valuation of φ, is a
mapping h that instantiates t in each relation atom R(t) of φ with a

tuple in the relation instance of schema R in D.

We say that h satisfies a predicate p, written as h |= p, if the
following conditions are satisfied. (1) If p is R(t), t .A⊕c or t .A⊕ s .B,
then h |= p is interpreted as in tuple relational calculus following

the standard semantics of first order logic. (2) If p is M(t[Ā], s[B̄]),
then h |= p if the ML classifierM predicts true on (h(t)[Ā],h(s)[B̄]).

For a conjunctionX of predicates overR, wewriteh |= X ifh |= p
for all predicates p in X . A database D satisfies REE φ = X → e if
for all valuations h of φ in D, if h |= X then h |= e .

A violation of φ in D, also referred to as a discrepancy, is a
valuation h of φ such that h |= X but h ̸ |= e , i.e., h witnesses that

D ̸|= φ. We say that all the tuples involved in the discrepancy h are

potentially erroneous, which can then be examined manually. For a

set Σ of REEs, we denote by Vio(Σ,D) the set of all violations of the

REEs of Σ inD, i.e., h ∈ Vio(Σ,D) if h violates at least one REE in Σ.

Example 3: Continuing with Example 2, let database Dc =

(D1,D2), whereD1 andD2 are two relations of schemas ACCOUNT

Table 1: Notations
Notations Definitions

D = (D1, . . . , Dn) database

M(t [Ā], s[B̄]), φ , Σ ML predicates, REE, a set of REEs
h a valuation of an REE in a database

Vio(Σ, D) violations of REEs Σ in database D

∆D updates to database D

∆Vio(Σ, D, ∆D) changes to Vio(Σ, D) by ∆D

and MOBILE, shown in Figures 1 and 2, respectively. Then there

exists a violation in Dc of every REE from Example 2, i.e., φ1-φ4 .
For instance, the valuation h1 of REE φ1 that maps t1 (resp. t2) to r1
(resp. r3) violates φ1, since r1 and r3 have the same ID card number

and both like goods for kids but have different id attributes. Here

the similarity of their preferences is determined by ML classifier

Mr . Similarly, one can find the violations of φ2–φ4. ✷

The notations of the paper are summarized in Table 1.

3 COMPLEXITY BOUNDS
We next formalize the discrepancy detection problem and the incre-

mental detection problemwith REEs, and establish their complexity.

It is known that the satisfiability and implication problems for REEs
are NP-complete and Π

p
2
-complete, respectively [48]. Taken to-

gether, these settle the complexity of important problems for REEs.

Detection. The discrepancy detection problem is as follows.

◦ Input: A database schema R, a set Σ of REEs over R, and a

database D of R.

◦ Question: Does Vio(Σ,D) , ∅?

Intuitively, this is to study the complexity of discrepancy detection.

It is known that CR with CFDs is in PTIME [38], and ER takes

quadratic-time on a single relation with simple rules. When it

comes to detection with REEs, however, the problem becomes NP-
complete. Here we assume w.l.o.g. that ML prediction (i.e., testing
with pre-trained M) takes PTIME, as commonly found in practice.

Observe that the NP-completeness of the discrepancy detection

problem concerns its combined complexity, i.e., it takes both

the dataset size |D| and the size |Σ| of REEs as input; while for

fixed size |Σ|, the problem is in PTIME. To better understand its

intractability, we study its parameterized complexity, by treating |Σ|
as the parameter. A problem is fixed-parameter tractable (FPT) if
it can be solved inO(f (k) · nO (1)) time, where k is the parameter, n
is the input size and f is a computable function that depends only

on k . As shown in the theorem below, the discrepancy detection

problem for REEs is not FPT, assuming that FPT ,W[1]. That is, it

is unlikely to find an efficient algorithm for discrepancy detection

even when |Σ| is small and |D| is large. As a result, we need to

develop parallel algorithm to deal with large datasets D.

Theorem 1: The discrepancy detection problem is both NP-complete
and W[1]-hard with parameter |Σ| (1) for REEs and (2) DCs. ✷

Proof sketch: Discrepancy detection for both REEs and DCs is
clearly in NP. For hardness, we give a reduction from the Cliqe

problem to discrepancy detection with DCs. The Cliqe problem

is to decide, given an undirected graph G and a natural number k ,
whether there is a k-clique in G. The Cliqe problem is known to

be both NP-complete andW[1]-complete with parameter k [33]. ✷

Incremental detection. Theorem 1 shows that discrepancy detec-

tion is costly in large datasets D. Worse still, real-life data is con-

stantly updated. This highlights the need for incremental discrep-

ancy detection: we compute Vio(Σ,D) once offline, and then incre-

mentally compute Vio(Σ,D ⊕ ∆D) periodically online in response

to updates ∆D to D, where D ⊕ ∆D denotes D updated by ∆D.

When∆D are small, incremental detection is oftenmore efficient

than recomputing Vio(Σ,D ⊕ ∆D) starting from scratch, since the

changes to Vio(Σ,D) are often small as well in this case.

We consider w.l.o.g. ∆D consisting of tuple insertions and dele-

tions, which can simulate value modification. Denote by

∆Vio+(Σ,D,∆D) = Vio(Σ,D ⊕ ∆D) \ Vio(Σ,D),

∆Vio−(Σ,D,∆D) = Vio(Σ,D) \ Vio(Σ,D ⊕ ∆D),

∆Vio(Σ,D,∆D) = (∆Vio+(Σ,D,∆D),∆Vio−(Σ,D,∆D)),

the set of new discrepancies inflicted by∆D, the set of discrepancies

removed by ∆D and their combination, respectively. Then

Vio(Σ,D ⊕ ∆D) = Vio(Σ,D) ⊕ ∆Vio(Σ,D,∆D).

The incremental discrepancy detection problem is stated as follows.

◦ Input: Schema R, REEs Σ and database D as in discrepancy

detection, and moreover, Vio(Σ,D) and updates ∆D to D.

◦ Question: Does ∆Vio(Σ,D,∆D) , ∅?

It is to settle the complexity of computing changes to Vio(Σ,D).

The problem is also intractable, even when the sizes |D| and

|∆D| of D and ∆D are both predefined and fixed. Worse still, it is

W[1]-hard when |Σ| is taken as the parameter. As a byproduct, we

show that the same holds for DCs on a single relation, for which

the complexity is not yet settled to the best of our knowledge.

Theorem 2: The incremental discrepancy detection problem (1) is
NP-complete for REEs and DCs and remains NP-hard even when
both |D| and |∆D| are constants; and (2) it is W[1]-hard for REEs
and DCs by taking |Σ| as the parameter. ✷

Proof sketch: (1) The problem is clearly in NP; we verify its

NP-hardness by reduction from the 3-colorability problem [50],

which asks whether a given graph is 3-colorable. The reduction uses

D=∅ and |∆D|=12. (2) TheW[1]-hardness is verified by reduction

from the discrepancy detection problem for DCs, by Theorem 1. ✷

4 PARALLEL DISCREPANCY DETECTION
In light of the intractability (Theorem 1), to scale with large datasets

we provide an algorithmwith parallel scalability.We first review the

notion (Section 4.1), and give a sequential algorithm (Section 4.2).

We then develop a parallel algorithmwith the property (Section 4.3).

4.1 Parallel Scalability Revisited
To characterize the effectiveness of parallel algorithms for discrep-

ancy detection, we revisit the notion of parallel scalability that was

introduced in [59] and has been widely used in practice.

Consider a sequential (single-machine) algorithm A that, given

a database D and a set Σ of REEs, computes Vio(Σ,D). Denote its

worst-case runtime as t(|D|, |Σ|). We say that a parallel algorithm

Ap for discrepancy detection is parallelly scalable relative to A if

its running time by using n processors can be expressed as:

T (|D|, |Σ|,n) = Õ
(t(|D|, |Σ|)

n

)
,

where the notation Õ hides log(n) factors (see, e.g., [78]).

Intuitively, parallel scalability guarantees speedup ofAp relative
to a “yardstick” sequential A. Such an algorithm Ap is able to

“linearly” reduce the sequential cost of A when more processors

are used. That is, the more processors are used, the faster Ap is.

Hence Ap can scale with large D by increasing n when needed.

Similarly, we say that a parallel algorithm Ap for incremental

detection is parallelly scalable relative to a sequential incremental
algorithm A if its cost with n processors can be expressed as:

T (|D|, |∆D|, |Σ|,n) = Õ
(t(|D|, |∆D|, |Σ|)

n

)
,

where t(|D|, |∆D|, |Σ|) is the worst-case running time of A.

4.2 Sequential Algorithm
We start with a sequential algorithm for discrepancy detection

with a single REE φ, denoted as REEDet. For a set Σ of REEs, we
repeatedly run REEDetwith each rule in Σ, also denoted by REEDet.

Given a database D of schema R and an REE φ = X → e over
R, REEDet finds the violation set Vio({φ},D) in two steps.

(1) REEDet first generates a detection query Qφ defined as:

Qφ = σPX∧ê (R1 × · · · × Rm),

where (a) PX is the conjunction of all predicates in X except

those relation atoms, and ê is the negation of the predicate e; and
(b) R1, . . . ,Rm are relation atoms that appear in X , and each Ri
corresponds to exactly one tuple variable from φ.

(2) It next evaluatesQφ (D) by translatingQφ into an SQL statement,

which is then executed by a DBMS. Here the ML predicates are

implemented via user-defined functions, which can incorporate the

logic of existing validity checking methods for ML classifiers [58].

It is easy to see the correctness of REEDet, i.e., a valuation h can

be derived from the answer Qφ (D) if and only if h ∈ Vio({φ},D).

Its runtine is dominated by evaluatingQφ overD. Although DBMS

exploits tricks to speed up query evaluation and ML predicates are

PTIME binary operations after ML models are trained, it still takes

O(|D| |Qφ |) time in the worst case to compute Qφ (D), since Qφ
is a conjunctive query [62]. When given a set Σ of REEs, the total
cost of REEDet is O(

∑
φ ∈Σ |D| |Qφ |) ≤ O(|D| |Σ |) in the worst case.

Note that REEDet is able to plug in anyML classifierM for ER or

CR without affecting the complexity bound, as long as pre-trained

M runs in PTIME as commonly found in practice.

4.3 Parallel Algorithm
We develop a parallel algorithm PREEDet for discrepancy detection
and show that it is parallelly scalable relative to REEDet. Given a

database D and a set Σ of REEs, it computes Vio(Σ,D) in parallel.

Challenges. One naturally wants to have a blocking strategy [17,

24] that dividesD into independent blocks w.r.t. the rules, such that
discrepancy detection can be carried out on each block in parallel,

without interaction between blocks. However, it is challenging to

make a blocking strategy parallelly scalable for REEs.

(1) Multiple relations. Most existing blocking strategies are designed

for a single relation [24] and consider equality predicates only

[17, 18]. These do not apply to REEs since REEs are collectively

defined across multiple relations and moreover, carry not only

equality predicates, but also inequality and ML predicates.

Input: A database D, processors S1, . . . , Sn , and a set Σ of REEs.
Output: The set Vio(Σ, D) of all violations.

1. W := ∅; WL
:= ∅;

2. for each REE φ ∈ Σ do /*executed at coordinator Sc */
3. W :=W ∪ HPartition(φ , D);

4. retrieve a set WH
of heavy blocks from W;

5. distribute W evenly across n processors in parallel;

6. for each w ∈ WH do /*reduce skewness*/
7. W ′

:=WDivide(w , Dw); WL
:=WL ∪W ′

;

8. distribute WL
evenly to n processors and refine the partition;

9. shuffle tuples in D based on the partition of blocks;

10. for each w ∈ (W\WH) ∪ WL do /*run on n processors in parallel*/
11. filter local data according to w to get Dw ;

12. Vio(w) := REEDet(φw , Dw);

13. return
⋃
w Vio(w) as Vio(Σ, D);

Procedure WDivide
Input: A heavy block w = (c̄ , φ) and its dataset Dw = (D1

w , . . . , Dp
w).

Output: A set W′
of blocks.

1. identify dividable relations D1

w , . . . , Dr
w from Dw ;

2. BM := max(
r
√
|D1

w | × · · · × |Dr
w |/n2, 1);

3. for each dividable relation Di
w do

4. Di
w .div := ⌊ |Di

w |/BM⌋; Di
w .extn := 1/Di

w .div;
5. if |Di

w | mod BM = 0 then Di
w .extn := 0;

6. map tuples in dividable relations to

∏
i∈[1,r] Di

w .div partitions s.t.
each partition holds at most (1 + Di

w .extn) × BM tuples from Di
w ;

7. extend partitions with all tuples in undividable relations;

8. return the set W′
of blocks derived from the resulting partitions;

Figure 3: Parallel algorithm PREEDet

(2) Multiple rules. To handle a set Σ of REEs, a brute-force approach
is to repeatedly partitionD into blocks, one for each REE in Σ. This
would require partitioning D and physically moving its data multi-

ple times, incurring redundant communication and computation.

(3) Load balancing. The computational costs within some blocks,

i.e., running REEDet, may be significantly larger than others due

to heavy hitters [18]. These lead to skewness in parallel processing

and slow down the process, which hampers the parallel scalability.

Algorithm overview. The parallel algorithm PREEDet works in
four stages to tackle the challenges above, as shown in Figure 3.

(1) PREEDet first computes a set W of “virtual” blocks by a range-

based partition scheme (lines 1-5). Each block corresponds to a

work unit, and different work units will work in parallel.

(2) PREEDet then eliminates “heavy” blocks to balance theworkload

and reduce skewness. It decomposes each heavy blockw into a set

of new blocks and re-distributes them (lines 6-8).

(3) PREEDet distributes D to n processors according to the

partition of blocks (line 9). By the virtual nature of blocks, it sends

each tuple to a processor at most once when shuffling the raw data

of D, even if it is needed by multiple blocks (see details below).

(4) After this, PREEDet executes REEDet (Section 4.2) on the work

units deduced from virtual blocks, in parallel at all processors

(lines 10-12). Since the blocks are independent, it simply returns

the union of results at different processors as Vio(Σ,D) (line 13).

Intuitively, PREEDet disjointly partitions the workload of de-

tection into independent blocks and work units. Therefore, no

cross-block violations exist and only the raw data in D is shuffled.

We next show how to build up blocks with the range-based parti-

tioning strategy, and how to break heavy blocks for load balancing.

Block construction. PREEDet divides the overall computation of

Vio(Σ,D) into small tasks, referred to as work units for parallel
processing. Each work unit includes a subset Dw of D and an REE
rule φw ∈ Σ; it is to execute REEDet on Dw with φw . Denote by c̄
the condition by which Dw is selected from the database D, which

is actually an assembled cell of ranges (see below). We refer to

each pair w = (c̄,φw) as a virtual block w.r.t. REE φw . There is a
one-to-one mapping between the blocks and work units, since the

subset Dw in each unit can be derived by applying its condition

c̄ . The blocks are virtual because they denote the conditions for

finding Dw for work units rather than storing the raw data.

Range-based partition. For each REE φ ∈ Σ, PREEDet builds a set of
virtual blocks w.r.t. φ, by utilizing a range-based partition procedure
HPartition (lines 2-3). It extends HyperCube algorithm [17, 18] pro-

posed for parallelly answering conjunctive queries in one communi-
cation round. Besides equality checking considered in HyperCube,

we also inspect inequality and ML predicates in the REEs.
For an attribute A in a relation D, we define a partition function

fA(x) : x → [1,kA] that maps tuples in D into kA fragments based

on the values of their A-attribute. Here kA is an integer, referred

as the share of function fA. To handle both equality and inequality

checking, we employ range-based partition functions defined as

fA(x) = max(⌈
x .A −min(D[A])

|dom(D[A])|
∗ kA⌉, 1),

where min(D[A]) is the minimum A-value in D and |dom(D[A])|
denotes the size of the active domain ofA-values inD. That is, fA(x)
divides the domain of A-values in D into kA segments evenly, and

each integer in [1,kA] refers to a range. Given an REE φ, denote
by {A1, . . . ,Am′} the set of attributes that appear in the predicates

of φ. Let kA1
, . . . , kAm′ be the shares of partition functions fA1

, . . . ,

fAm′ , respectively. Then a subset Dw of D can be identified by a

tuple (p1, . . . ,pm′) ∈ [kA1
] × · · · × [kAm′], where tuples in Dw are

such selected that theirAi -attribute values are covered by the range
to which integer pi corresponds in function fAi (i ∈ [1,m′]). We de-

note by c̄ the assembled cell, i.e., the combination of ranges deduced

from (p1, . . . ,pm′), which is also the condition in virtual blocks.

With range-based partition functions, we are able to prune in-
valid assembled cells (i.e., conditions) and stop further construction

of their corresponding virtual blocks and work units, which do not

contribute to the output of PREEDet. We say that an assembled cell

c̄ is valid w.r.t. an REE φ = X → e , if the dataset Dw identified via

c̄ contains possible tuples that can form valuations satisfying X and

the negation of e . It is called invalid otherwise. For instance, if c̄ has
the range [1, 10] (resp. [30, 50]) for attributeA (resp. B) of relationD1

(resp.D2) and if there exists t .A > s .B inX such that t (resp. s) is a tu-
ple variable of the schema ofD1 (resp.D2), then c̄ is not validw.r.t.φ.

Plugging in ML-based blocking. The range-based partition scheme

can incorporate existing blocking strategies BM developed for ML

classifiers M, e.g., those in [12, 23, 54]. That is, for each assembled

cell c̄ that includes attributes in an ML predicate M(t[Ā], s[B̄]), we
revise their ranges by dropping the parts that do not comply with

BM . For example, FisherDisjunctive [54], an ML classier for entity

resolution, deduces blocking schemes in the form of disjunctions

of terms (i.e., blocking predicates). We validate such disjunctions

using the ranges in c̄ and remove unsatisfied subranges. The ranges

tailored for ML blocking help us reduce invalid assembled cells.

When no ML-based blocking scheme is available, the original

assembled cells are used for further pairwise checking.

Capitalizing on the range-based partition scheme, procedure

HPartition computes the setWφ of virtual blocks w.r.t. each REE φ,
at a designated processor Sc (coordinator in Figure 3). It generates

a partition function fAi for each attributeAi in φ and sets the share

kAi to be ⌊
m′√
n2⌋ by default, wherem′

is the number of attributes

in φ. When ⌊
m′√
n2⌋ = 1, HPartition arbitrarily selects as many

attributes as possible from φ and increases their shares to 2, while

guaranteeing that the product of the shares does not exceed n2. Af-
ter revising the ranges with ML-based blocking scheme, HPartition
checks whether each assembled cell c̄ built with ranges is valid w.r.t.
φ, and returns the pairings of valid ones and REE φ as blocks.

Remark. The range-based blocking scheme can naturally partition

numeric attribute values and dates. For other attribute types, e.g.,
string and category, we apply range-based blocking after enforcing

a lexicographical order [67] on the values. For attribute types to

which this is not applicable, one can adopt hash partitioning [63].

Example 4: Recall REEs φ1–φ4 from Example 2 and database Dc
from Example 3. Assume that we have n = 8 processors. We show

howHPartition generates virtual blocks with range-based partition.

Take REE φ4 as an example, which carries two tuple variables t1
and t2 of the same schema ACCOUNT. As such,HPartition collects

six attributes from φ4, and distinguishes different occurrences of

the same attributes for t1 and t2. It then decides partition functions

by dividing the domain of attribute values in relation D1 into two

ranges, i.e., all the shares of functions are 2. For instance, the domain

of payment is partitioned into 50 to 1775 and 1776 to 3500. By def-

inition, 8
2 = 64 candidate assembled cells are built with the ranges

above. However, among them only 27 are valid w.r.t. φ4, since an as-

sembled cell c̄ is invalid if it h(t1).create_time > h(t2).create_time
or h(t1).payment < h(t2).payment or h(t1).level ≥ h(t2).level for
each valuation h computed in the work unit deduced from c̄ . As
an example, no valid assembled cell can be built when ranges

[50, 1775] and [1776, 3500] are enforced on payment of t1 and t2,
respectively. Procedure HPartition drops invalid ones and only

creates 27 virtual blocks w.r.t. φ4. Along the same lines, the blocks

w.r.t. φ1 − φ3 are constructed using valid assembled cells. ✷

Reducing skewness. After all the virtual blocks are computed,

algorithm PREEDet identifies “heavy” blocks whose corresponding
work units may introduce skewness. Let D1

w , . . . , D
p
w denote the

relations in the dataset Dw derived from the assembled cell c̄ of a
virtual blockw = (c̄,φ), sorted in the descending order of their sizes.
Each one has a corresponding relation atom in φ. We say thatw is

heavy if

∏
i |D

i
w | > (|D|/n) |Qφ |

, where Qφ is the detection query

of φ (see Section 4.2). Here

∏
i |D

i
w | represents the worst-case cost

when evaluating the work unit deduced fromw . To improve load

balancing, PREEDet uses procedureWDivide to split heavy blocks,

also illustrated in Figure 3. In fact, when dividing the evaluation, i.e.,
the Cartesian product of relations in Dw among n processors, the

optimal parallel computational cost is

∏
i |D

i
w |/n, i.e., the computa-

tion is evenly partitioned. Moreover, by the inequality of arithmetic

and geometric means [69], the optimal communication cost for

such partitioning is achieved when every processor receives the

same amount of tuples from each relation. In light of this, proce-

dure WDivide ensures that the numbers of tuples received by each

partition from different relations are as close as possible.
More specifically, WDivide first extracts dividable relations

D1

w , . . . ,D
r
w from the input datasetDw such that they have the top-

r largest sizes, r ≤ 5 and |Di
w |/BM > 1 for i ∈ [1, r] (line 1), where

BM refers to a benchmark amount of
r
√
|D1

w | × · · · × |Dr
w |/n2 or

1 (line 2). Here r is bounded by 5 since most data quality rules

involve at most three relations [43, 55, 66]. It next computes a

division factor Di
w .div and an extension value Di

w .extn for each

dividable Di
w based on its size and BM (lines 3-5). They represent

the number of fragments that Di
w should be divided into and the

percentage of an additional BM many tuples from Di
w that need

to be allocated to each fragment, respectively. Then it maps the

tuples to partitions such that every partition contains at most

(1 + Di
w .extn) × BM tuples from each dividable Di

w (line 6). This

is conducted by sequentially scanning the sorted tuples of each

dividable relation, and establishing the mapping from fragments

to r -dimensional tuples, similar to the practice of the range-based

partition scheme. It finally extends partitions by replicating tuples

from the remaining undividable relations and returns the virtual

blocks deduced from the partitions (lines 7-8). The blocks are then

evenly distributed among the processors (line 8 in PREEDet).

The problem of finding partitions for Cartesian product withmin-

imum computational and communication costs can be reduced to

the integer programming problem, which isNP-complete [50]. Nev-

ertheless, the simple PTIME skewness reduction strategies adopted

by algorithm PREEDet have the following property.

Lemma 3: PREEDet splits heavy blocks with computational cost of
c1·CPopt, and the communication cost for handling dividable relations
is c2·CMopt, where c1 and c2 are constants, CPopt and CMopt are the
optimal cost for computation and communication, respectively. ✷

Partition refinement. In the presence of existing cost models for

answering queries Qφ , PREEDet refines the partition of blocks to

make the load better balanced (line 8). It assigns a load C(Qφ ,Dw) to

each blockw = (c̄,φw), in which C denotes a given cost model, e.g.,
the estimation of join result sizes [70]. The load indicates the cost

for evaluating Qφ (i.e., applying REE φ) over Dw . Then PREEDet
redistributes the blocks w.r.t. φ via a greedy strategy for solving

the minimum makespan problem [10]. That is, each time it greedily

reallocates an unvisited block to a processor that has the minimum

total load of the blocks w.r.t. φ, until all blocks are inspected. In fact,

it is a 2-approximation algorithm for finding optimal distribution.

Data shuffling. After all the heavy blocks are decomposed and

the block partition is refined in regards to certain input cost models,

algorithm PREEDet uniformly shuffles the raw data of database D,

i.e., each processor Si fetches its data guided by the assembled cells

in the virtual blocks it receives (line 9 of PREEDet). In this way, the

same data will be merged and transmitted to Si only once even if it

is within the ranges of different assembled cells, reducing the total

communication cost when processing multiple REEs.

Example 5: Continuing with Example 4, PREEDet finds that there
are heavy virtual blocks w.r.t. REE φ4. For instance, due to the

skewed distribution of attribute values in relation D1, tuples r2,
r3 and r5 are contained in the same dataset Dw deduced from a

virtual block w = (c̄,φ4). It hence splits the Cartesian product of

these tuples into nine different partitions guided by the required

number of tuples. Here each partition could have at most two tuples

and all relations are dividable. The virtual blocks of such resulting

partitions are also evenly allocated among the processors.

Algorithm PREEDet transfers the raw data according to the

selection condition in the virtual blocks generated; here tuples

r1 and r4 (which finally form a violation of φ4) will be sent to a

processor Si holding the block with range [1776, 3500] for attribute

payment of both tuple variables t1 and t2. They are sent to Si only
once even if they are required by blocks w.r.t. other REEs. ✷

We now show the parallel scalability of algorithm PREEDet.

Theorem 4: PREEDet is parallelly scalable relative to REEDet. ✷

Proof sketch: We show that PREEDet is parallelly scalable rel-

ative to REEDet for a single REE φ in Σ, even if φ contains ML

predicates. Then the theorem follows because (a) the computational

cost of PREEDet for multiple REEs is bounded by the sum of the

cost on each REE; and (b) the communication cost is bounded by

O(|D|), and thus is subsumed by computational cost whenn ≪ |D|,

since the cost of sequential REEDet with φ is O(|D| |Qφ |). ✷

Remark. As indicated in the proof, the parallel scalability is robust

to different ML models. Moreover, one can use PREEDet to detect

discrepancies with CFDs, MDs and DCs, with parallel scalability.

5 PARALLEL INCREMENTAL DETECTION
Theorem 2 tells us that incremental discrepancy detection is also

intractable. Hence we next develop a parallelly scalable incremental

algorithm PIncDet that computes the changes ∆Vio(Σ,D,∆D).

Analogous to Section 4, we start with a sequential incremental

algorithm IncDet (Section 5.1). We then present parallelly scalable

PIncDet and show that it is bounded relative to IncDet (Section 5.2).

5.1 Sequential Incremental Algorithm
Observe that the set Vio(Σ,D) of violations has a monotone prop-

erty w.r.t. D, i.e., Vio(Σ,D1) ⊆ Vio(Σ,D1 ∪ D2). In light of

this, by treating D as D1 and updates ∆D as D2, we can com-

pute ∆Vio(Σ,D,∆D) by accumulating the small sets of viola-

tions contributed by tuples in ∆D. Here we say that a violation

h ∈ Vio(Σ,D1 ∪ D2) is contributed by D2 if and only if h includes

at least one tuple from D2. We denote by CrtVio(Σ,D1,D2) the

set of violations in Vio(Σ,D1 ∪ D2) that are contributed by D2.

Let ∆D+ and ∆D−
be the set of tuple insertions and deletions

in ∆D, respectively. The lemma below shows that the newly intro-

duced discrepancies in ∆Vio+(Σ,D,∆D) and the removed ones in

∆Vio−(Σ,D,∆D) are contributed by ∆D+ and ∆D−
, respectively.

Lemma 5: (1) ∆Vio+(Σ,D,∆D) = CrtVio(Σ,D\∆D−,∆D+); and
(2) ∆Vio−(Σ,D,∆D) = CrtVio(Σ,D,∆D−). ✷

In fact, we can compute CrtVio(Σ,D1,D2) by invoking algo-

rithm REEDet of Section 4.2 on the composite databases of D1

and D2. Given two databases D1 and D2 of the same schema R

that pertains to the relation atoms R1, . . . ,Rm in Σ, a database

˜D = (D̃1, . . . , D̃m) is called a composite database of D1 and D2

if either D̃i ∈ D1 or D̃i ∈ D2 for each i ∈ [1,m]. Denote by

Cmp(D,D ′) the set of all composite databases of D and D ′
. Let

D = Cmp(D1,D2). Then one can easily verify the following.

CrtVio(Σ,D1,D2) =
⋃

{Vio(Σ, ˜D) | ˜D ∈ D, ˜D ∩D2 , ∅}. (1)

Based on Lemma 5 and Equation (1), we now present IncDet.

Algorithm IncDet. Given a databaseD, the previous set Vio(Σ,D)

of violations and updates ∆D toD, the sequential IncDet computes

updates ∆Vio(Σ,D,∆D) to Vio(Σ,D) as follows. (1) It first com-

putes the set Cmp(D \ ∆D−,∆D+) of composite databases. For

each such D ′ ∈ Cmp(D \ ∆D−,∆D+) that D ′ ∩ ∆D+ , ∅, it ap-

plies REEDet to get Vio(Σ,D ′). After this, it assembles the results

Vio(Σ,D ′) as ∆Vio+(Σ,D,∆D). (2) The set ∆Vio−(Σ,D,∆D) of

removed discrepancies is computed in a similar way by inspecting

composite databases in Cmp(D,∆D−) that have tuples from ∆D−
.

Analysis. The worst-case runtime of algorithm IncDet is the sum of

the cost incurred by REEDet on all composite databases that include

tuples in ∆D = (∆D+,∆D−). It is in O(
∑
φ ∈Σ

∑
D′∈D′ |D

′ | |Qφ |),

where Qφ is the detection query of REE φ and D′ consists of all

composite databases deduced from ∆D+ and ∆D−
, i.e., those in

Cmp(D \ ∆D−,∆D+) ∪ Cmp(D,∆D−) having tuples in ∆D.

5.2 Parallel Incremental Algorithm
We next propose the parallel algorithm PIncDet for incremental

discrepancy detection and verify its performance guarantees.

Making use of Lemma 5, the main idea of PIncDet is by reducing
the computation of ∆Vio(Σ,D,∆D) to deriving violations con-

tributed by tuple insertions ∆D+ and deletions ∆D−
in the given

input updates ∆D. However, to improve the degree of parallelism of

the computation, PIncDet demands an effective strategy to split the

computation of violations contributed by updated tuples. Indeed,

the constraints imposed by the relative boundedness of PIncDet
make it more intriguing to handle skewed computations.

In light of these, we develop (a) a specific blocking approach w.r.t.
composite databases, and (b) a corresponding strategy to eliminate

skewed computation in the parallel incremental algorithm PIncDet.

Blocking revisited. One might be tempted to adopt the block-

ing strategy of batch algorithm PREEDet (Section 4.3). However,

it handles the original database D for computing the entire set of

violations. In contrast, PIncDet needs to find the violations con-

tributed by the updated tuples and extract such tuples from com-

posite databases. Therefore, we revise the range-based partition

scheme to accommodate the special effects of updates ∆D.

Recall from Section 4.3 that each block w.r.t. an REE φw is a pair

w = (c̄,φw), where c̄ is an assembled cell of ranges, i.e., the condition
for selecting an appropriate datasetDw fromD for the correspond-

ing work unit ofw . We extend it to a triplew = (c̄ ′, ō,φw), referred

to as an augmented block w.r.t. REE φw . Here c̄ ′ is still an assembled

cell of ranges, ō is a list of symbols of ins or del such that there is

a mapping between these symbols and the relations in a subset of

D to which φw is being applied. Here the length of list ō is smaller

than or equal to the number of relation atoms in φw .

Input: A database D, processors S1, . . . , Sn , a set Σ of REEs, updates ∆D
to D and the set Vio(Σ, D) of violations.

Output: The set ∆Vio(Σ, D, ∆D) of changes.

1. extract tuple insertions ∆D+ and tuple deletions ∆D−
from ∆D;

2. Vio+ := PCrtDet(Σ, D \ ∆D−, ∆D+), Vio− := PCrtDet(Σ, D, ∆D−);

3. return (Vio+, Vio−) as Vio(Σ, D, ∆D);

Procedure PCrtDet
Input: Databases D1 and D2, a set Σ of REEs and processors S1, . . . , Sn .
Output: The set CrtVio(Σ, D1, D2).

1. W := ∅;

2. for each REE φ ∈ Σ do /* executed at coordinator Sc */
3. W :=W ∪ CrsPar(φ , D1, D2);

4. eliminate heavy augmented blocks of W as in PREEDet;
5. distribute W, revise partition and shuffle tuples as in PREEDet;
6. for each w ∈ W do /* run on n processors in parallel */
7. filter local data according to w to get Dw ;

8. Vio(w) := REEDet(φw , Dw);

9. return
⋃
w Vio(w) as CrtVio(Σ, D1, D2);

Figure 4: Parallel incremental algorithm PIncDet

Note that augmented blocks are also “virtual” since they store no

raw data. Moreover, each augmented blockw=(c̄ ′, ō,φw) also cor-

responds to one work unit that consists of datasetDw and REE φw ,

whereDw is extracted fromD and ∆D. More specifically, if the list

ō contains symbols ins (resp. del), thenDw is built with (a) inserted

tuples (resp. deleted tuples) from those relations having symbols ins
(resp. del); and (b) old tuples from the rest of relations that do not

appear in ∆D and fall in the ranges (i.e., selection condition) in c̄ ′ .
Note that we only reserve those augmented blocks (c̄ ′, ō,φw)

such that the assembled cell c̄ ′ is valid w.r.t. the REE φw (see Sec-

tion 4.3). The others have no impact on the output of incremental

detection for the same reason as that given in Section 4.3.

Intuitively, augmented blocks extend blocks with simple symbols

indicating where to choose updated tuples for the datasets Dw in

their work units, and the remaining parts in Dw are still filtered

out in a range-based manner. It can be verified that each such Dw
involves updated tuples in ∆D and is a subset of the composite

databases in Cmp(D \ ∆D−,∆D+) or Cmp(D,∆D−). That is, the

blocking strategy guides us to construct composite databases.

Skewness reduction. An augmented blockw = (c̄ ′, ō,φ) is heavy
if

∏p
i=1 |D

i
w | > |∆D|2(|D|/n) |Qφ |−2

, where D1

w , . . . , D
p
w are the

relations in the dataset Dw of the work unit built from w , each

corresponding to a relation atom in φ. To reduce skewed compu-

tation, we divide heavy augmented blocks and their work units

along the same lines as procedure WDivide of algorithm PREEDet
(Section 4.3). As a result, Lemma 3 still holds for PIncDet.

Algorithm PIncDet. Putting these together, we present the main

driver of incremental PIncDet in Figure 4, which works with n
processors to deduce the set ∆Vio(Σ,D,∆D) of changes. It first

splits updates ∆D into tuple insertions ∆D+ and deletions ∆D−

(line 1). It then uses a parallel procedure PCrtDet to compute the

violations contributed by ∆D+ and ∆D−
(line 2). Finally, it collects

all such violations and returns them as ∆Vio(Σ,D,∆D) (line 3).

Procedure PCrtDet. As shown in Figure 4, given two databases D1

and D2 and a set Σ of REEs, PCrtDet computes the violations

CrtVio(Σ,D1,D2) contributed by D2 in parallel. Note that when

called by algorithm PIncDet, the input D2 refers to either inserted

tuples or deleted tuples in ∆D. Hence PCrtDet first generates a set
W of augmented blocks w.r.t. the REEs in Σ (lines 2-3), through

procedure CrsPar that is executed at a designated coordinator Sc
(not shown). CrsPar joins each valid assembled cell c̄ ′ w.r.t. REE
φ with different lists ō of symbols ins or del to build augmented

blocks (c̄ ′, ō,φ). Here the valid assembled cells are obtained directly

from the result of the batch run of PREEDet as byproducts.
Procedure PCrtDet then decomposes heavy augmented blocks

into smaller ones as discussed above (line 4). It then distributes these

augmented blocks among n processors, revises the resulting parti-

tion with the more accurate cost models and shuffles the raw data

accordingly (line 5). Again, each tuple is sent to a processor at most
once as in PREEDet. PCrtDet next invokes sequential algorithm
REEDet on the work units of all augmented blocks in parallel at n
processors (lines 6-8), and returns the union of these results (line 9).

Example 6: Consider REE φ4 and database Dc of Example 4. Let

updates∆Dc include deletion of r4 and insertion of a new tuple r ′
6
to

D1, whose create_time (resp. payment and level) value is 2018-12-
13 (resp. 70, 5). Given ∆Dc , PIncDet constructs augmented blocks

w.r.t. φ4 to build composite databases. It combines all the ranges

derived in Example 4 with symbol ins (resp. del) that represents r ′
6

(resp. r4) to build 16 augmented blocks, and each block includes

a valid assembled cell of 3 ranges and a list ō with a single ins or
del. Note that no heavy augmented block w.r.t. φ4 exists, since each
corresponding dataset has at most 4 tuples from D1 and ∆Dc . Thus

PIncDet just allocates the 16 augmented blocks evenly among the

processors. It also shuffles the tuples in D1 and ∆Dc accordingly.

After invoking REEDet on each corresponding work unit of the

augmented blocks, PIncDet concludes that r1 and r4 (resp. r5 and
r ′
6
) form a violation to be removed (resp. introduced). ✷

We have the following for the parallel procedure PCrtDet.

Lemma 6: LetT (|Σ|, |D1 |, |D2 |) and t(|Σ|, |D1 |, |D2 |) be the worst-
case cost to compute the set CrtVio(Σ,D1,D2) by parallel proce-
dure PCrtDet and sequential algorithm IncDet, respectively. Then
T (|Σ|, |D1 |, |D2 |) = Õ(t(|Σ|, |D1 |, |D2 |)/n). ✷

Relative boundedness. We now show the main properties of al-

gorithm PIncDet. To evaluate the effectiveness of incremental al-

gorithms, a notion of relative boundedness was proposed in [42].

Here we adapt it to incremental detection. Denote by (D, Σ)A the

data accessed by a batch algorithm A for computing violations

Vio(Σ,D). For updates ∆D, the affected area AFF(D,∆D, Σ)A is

measured as the difference between (D, Σ)A and (D ⊕ ∆D, Σ)A ,

i.e., the difference in the data inspected by A when computing

Vio(Σ,D) and Vio(Σ,D ⊕ ∆D). We say that an incremental dis-

crepancy detection algorithmA∆ is bounded relative toA if its cost

for computing ∆Vio(Σ,D,∆D) can be expressed by a polynomial

of |Σ|, |∆D| and |AFF(D,∆D, Σ)A |. Intuitively, |AFF(D,∆D, Σ)A |

is the essential cost needed for “incrementalizing” algorithm A.

Theorem 7: The incremental algorithm PIncDet is (1) parallelly
scalable relative to IncDet; and (2) bounded relative to PREEDet. ✷

Proof sketch: The parallel scalability of PIncDet follows from
Lemmas 5 and 6. We show that it is bounded relative to PREEDet
by proving the following: (a) all tuples collected in PIncDet for
construing work units are covered by AFF(D,∆D, Σ)PREEDet, re-

gardless of what ML predicates used, and (b) the sizes of the tuples

inspected for building augmented blocks and load balancing are

proportional to that of the tuples finally collected. ✷

Remark. From the proof one can see that both parallel scalability and

relative boundedness are robust to variousML predicates. Moreover,

PIncDet is also the first parallel incremental algorithms for discrep-

ancy detection with CFDs, MDs and DCs with these properties.

6 EXPERIMENTAL STUDY
Using real-life and synthetic data, we conducted four sets of ex-

periments to evaluate (1) the accuracy, (2) efficiency, (3) (parallel)

scalability of our (incremental) discrepancy detection algorithms

PREEDet and PIncDet, and (4) a case study with real-life data.

Experimental Settings. We start with the setting.

Datasets. We used three real-life datasets. (a) TFACC, a real-life

dataset that integrates the test data from Ministry of Transport [4]

and data from National Public Transport Access Nodes [1]. It covers

test records of vehicles in the UK from 2005 to 2017. TFACC has 19

tables, 113 attributes and over 480M tuples, about 21.8GB of raw

data in total. (b) Movie, a dataset that combines the metadata of

real-life movies and artists in [2] and the databases of movies in [28].

It consists of 9 tables and 73 attributes, having over 97M tuples and

5.8GB of raw data in total. In particular, 2M tuples in Movie had
already been labeled with matches and non-matches [28]. (c)House,
a real-life dataset that integrates the private sector “empty homes”

in London [7], properties owned by Greater London Authority [5],

and the meta information of different areas in London [6]. House
contains 7 tables, 166 attributes and 12K tuples in total.

We also generated synthetic datasets based on TPCH [8], which

is a standard benchmark. TPCH creates data using TPCH dbgen [8].

The synthetic data has 8 relations and 61 attributes.

Updates. The updates ∆D were randomly generated, controlled by

the size |∆D| and the ratio γ of tuple insertions to deletions in ∆D.

Based on the release dates inMovie dataset, we also introduced real
periodic updates toMovie, by inserting new movies and deleting

oldest movies w.r.t. γ . Unless stated otherwise, we set γ = 1, i.e., the
size of dataset remains unchanged after incurring the updates.

ML models. We applied ML predicates attributes of long textual

values, on which conventional logic predicates do not work very

well. We adopted a pre-trained BERT [30] model with 12 layers and

110M parameters, to initiate an embedding vector for each list of

textual values. The ML predicates check whether the similarity of

two embedding vectors reaches a given threshold.

REE rules. We discovered 40, 50, 100 and 20 REEs for TFACC,Movie,
TPCH and House, respectively. Our REEmining algorithm (a) sepa-

rates a dataset into sampling dataDs and testing dataDt , to discover

REEs from Ds and validate the rules with Dt ; (b) picks sample data

Ds by clustering and taking representative tuples with minimal

regret [79], (c) iteratively applies newly discovered REEs to Ds for

“denoising”, (d) incrementally discovers REEs from the cleaned sam-

ple data, and (e) selects appropriate ML predicates. The discovery

method for REE is a nontrivial extension of parallel GFD discovery

algorithm [41]. We defer its full treatment to another paper.

Ground truth and noises. To evaluate the accuracy of discrepancy

detection, we injected noise into random data cells when we are

short of ground truth. For TFACC and TPCH, assuming that the

original datasets are correct, we updated their attribute values and

added duplicate tuples, controlled by a percentage α% of the number

of changes to the total number of meaningful attributes values, and

a ratio β% of duplicates to the whole set of tuples, respectively.

The labeled results in Movie were treated as ground truth for

entity resolution without adding duplicates, while erroneous

values were randomly injected for conflict detection. We also

manually examined House and identified erroneous values such

as postcode misspelling. We manually labeled erroneous cells in

the entire dataset and took them as the ground truth for House.

Evaluation. We measured the accuracy in terms of Precision, Recall,
and F-Measure defined as 2 · Precision ·Recall/(Precision+Recall).
Precision (resp. Recall) is the ratio of detected true erroneous tuples
to all the potential erroneous tuples in the violations of the REEs
(resp. all the tuples that include erroneous values deduced from the

ground truth). Here true erroneous tuples are those that violate

REEs and must contain verified erroneous values w.r.t. the ground
truth. The accuracy of the baselines is computed in a similar way in

terms of the potential erroneous tuples found by different methods,

i.e., those tuples that involve the detected erroneous values.

Baselines. Apart from PREEDet (Section 4.3) and PIncDet (Sec-
tion 5.2), we implemented the following, all in Python. (1) Five

variants of PREEDet, including (a) PCRDet that catches conflict
values only; (b) PERDet that detects duplicates and mismatched en-

tities only; (c) PDetnml without using ML predicates; (d) PDetnh, a
parallel detection algorithm without the skewness reduction given

in Section 4.3; and (e) PDetmul, a parallel algorithm that applies the

blocking strategy w.r.t. each single REE one by one. (2) Two variants

PIncDetnh and PIncDetmul of PIncDet, which revise PIncDet anal-
ogous to how PDetnh and PDetmul revise PREEDet, respectively.
We compared with PCRDet, PERDet and PDetnml for accuracy, and

with PDetnh, PDetmul, PIncDetnh and PIncDetmul for efficiency.

We also compared with six baselines, including (3) DeepER [34]

(denoted as DER), a state-of-the-art ER method based on the lat-

est deep learning model; (4) HoloClean [66] (denoted as Holo), a
data repairing system based on probabilistic inference. We took its

discrepancy detection component, which implements a rule-based

discrepancy detection approach with DCs; (5) HoloDetect [53] (de-
noted as HDet), a CR system that predicts the correct values of cer-

tain attributes via ML strategies; (6) SCODED [80], a discrepancy

detection system that checks the violations of statistical constraints

(SCs); (7) UniClean [44] (denoted as UClean), a framework that

unifies MDs and CFDs for data repairing; we considered only its

discrepancy detection module; and (8) ER-N [75], an ER framework

that enhances ER with matching and negative rules.

We have also tested (9) DeepMatcher [61], another ER method

based on the latest deep learning; and (10) Raha [60], an ML-based

system that can automatically configure an approach for CR. The

results are consistent (not shown due to the lack of space).

For DER, we sampled 10% fraction from each original dataset

without noises as the training data and used their default parameters

to initialize their model training. ForHDet, we built the training set

Table 2: Accuracy (Exp-1: FM: F-Measure, P: Precision, R: Recall)

Dataset TFACC Movie TPCH House
FM P R FM P R FM P R FM P R

PREEDet 0.83 0.84 0.83 0.89 0.91 0.87 0.83 0.85 0.81 0.82 0.91 0.75

PCRDet 0.55 0.84 0.41 0.58 0.85 0.44 0.52 0.79 0.39 0.82 0.91 0.75

PERDet 0.64 0.72 0.58 0.7 0.83 0.61 0.61 0.69 0.54 - - -

PDetnml 0.67 0.73 0.62 0.73 0.81 0.67 0.74 0.78 0.71 0.76 0.9 0.66

DER 0.65 0.69 0.61 0.62 0.71 0.55 0.64 0.71 0.58 - - -

Holo 0.65 0.73 0.59 0.71 0.83 0.62 0.66 0.81 0.56 0.77 0.88 0.68

HDet 0.68 0.73 0.64 0.62 0.59 0.65 0.55 0.68 0.46 0.61 0.64 0.58

SCODED 0.66 0.61 0.72 0.54 0.52 0.57 0.46 0.57 0.38 0.53 0.43 0.69

UClean 0.72 0.84 0.63 0.74 0.79 0.69 0.72 0.79 0.66 0.72 0.86 0.62

ER-N 0.61 0.66 0.56 0.66 0.76 0.58 0.59 0.68 0.52 - - -

with each dataset in twofold, in which we set a 2% fraction as train-

ing data with ground truth, and another 8% fraction as the sampling

set for active learning. For each rule-based baseline, we generated

a set of constraints such that it includes our REEs expressed in

the baseline’s rule language whenever possible. More specifically,

we built (a) DCs for Holo; (b) MDs and CFDs for UClean; and (c)

matching rules written in MDs, and manually crafted negative

rules for ER-N. In addition, we constructed (d) SCs for SCODED, in
which for each REE X → e defined on a single relation, we added

one dependence SC AX ⊥̸⊥ Ae [80]. We also manually designed

independence SCs based on domain knowledge of the database.

Configuration. We deployed the algorithms on a cluster of up to 20

machines, each with 32GB DDR4 RAM and 2.80GHz Intel i5-8400

CPU. We used PostgreSQL 10 as the underlying DBMS when

needed by the algorithms. All the experiments were repeated 5

times. The average is reported here.

Experimental results. We next report our findings.

Exp-1: Accuracy. Fixing α% = 0.6% and β% = 5%, we first tested

the accuracy of PREEDet for discrepancy detection. We compared

PREEDet with various competitors on datasets TFACC, Movie,
House and TPCH, using all the REEs discovered. The results are
summarized in Table 2. Observe the following.

(1) PREEDet has the highest accuracy. It outperforms DER, Holo,
HDet, SCODED, UClean and ER-N by 34%, 21%, 38%, 56%, 16%, and

37% on average, respectively. This is because PREEDet combines

rule-based and ML-based methods, while the others are based on

either MLmodels (DER,HDet, SCODED) or logic rules alone (Holo,
UClean, ER-N). This verifies the effectiveness of unifying logic rules
and ML predicates in one framework together. Since there exist no

duplicate tuples in the manually checked House, the ER methods

PERDet, DER and ER-N are not applicable to House.

(2) PREEDet also outperforms its variants PCRDet, PERDet and
PDetnml by 47%, 31% and 19%, respectively. This is because (i) REE
unifies CR and ER together; and (ii) ML predicates improve the

accuracy when dealing with long textual attributes.

(3) The accuracy of PIncDet (not shown) is the same as that of

PREEDet, since the two share the same detection method.

(4) PREEDet consistently beats the baselines in capturing all types

of discrepancies. On average PREEDet improves the F-Measure
by 32% and 42% in catching real and injected discrepancies, respec-

tively. This validates the effectiveness of REEs in real-life practice.

PREEDet

PDet
nh

PDet
mul

PIncDet

PIncDet
nh

PIncDet
mul

Holo

DER

HDet

SCODED

UClean

ERN

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

20% 40% 60% 80% 100%

T
im

e
 (

s)

scale factor

(a) TFACC, varying |D |

 0

 1000

 2000

 3000

 4000

 5000

4G 8G 12G 16G 20G
T

im
e
 (

s)

(b) TPCH, varying |D |

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4 5 6 7 8

T
im

e
 (

s)

(c) TFACC, varying |X |

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4 5 6 7 8

T
im

e
 (

s)

(d) TPCH, varying |X |

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

8 16 24 32 40

T
im

e
 (

s)

(e) TFACC, varying ∥Σ∥

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

20 40 60 80 100

T
im

e
 (

s)

(f) TPCH, varying ∥Σ∥

 0

 1000

 2000

 3000

 4000

 5000

 6000

5% 15% 25% 35% 45%

T
im

e
 (

s)

(g) TFACC, varying |∆D |

 0

 1000

 2000

 3000

 4000

 5000

5% 15% 25% 35% 45%

T
im

e
 (

s)

(h) TPCH, varying |∆D |

 0

 500

 1000

 1500

 2000

 2500

 3000

5% 15% 25% 35% 45%

T
im

e
 (

s)

(i) Movie, varying |∆D |

 0

 3

 6

 9

 12

4 8 12 16 20

S
p

ee
d

 u
p

 f
ac

to
r

(j) TFACC, varying n

 0

 3

 6

 9

 12

 15

4 8 12 16 20

S
p

ee
d

 u
p

 f
ac

to
r

(k) TPCH, varying n

 0

 3

 6

 9

 12

4 8 12 16 20

S
p

ee
d

 u
p

 f
ac

to
r

(l) Movie, varying n

Figure 5: Performance evaluation

(5) When we additionally plug the ML models for ER (resp. CR)

trained byDER (resp.HDet) in the REEs, on average, the F-Measure
of PREEDet is 0.9, which is 41%, 29%, 46%, 64%, 24% and 45% better

than DER, Holo, HDet, SCODED, UClean and ER-N, respectively.
These justify the need to embed ML predicates in REEs.

Exp-2: Efficiency. We tested PREEDet and PIncDet in efficiency,

by varying (1) the size |D| of datasets, (2) the number |X | of

predicates in the precondition of a single REE, i.e., the complexity

of REEs, (3) the number ∥Σ∥ of rules used, and (4) the size |∆D|

of updates. We used TFACC and TPCH; the results on Movie and
House are consistent (not shown except for varying |∆D| over

Movie). We used the same α% and β% as in Exp-1 and n = 20

machines. For PIncDet, we set |∆D| = 5%|D| by default.

(1) Varying |D|. We first evaluated the impact of |D| on both batch

PREEDet and incremental PIncDet. Using all the REEs discovered,
we varied |D| from 4.4 GB to 21.8 GB for TFACC, i.e., the scale

factor is from 20% to 100%, and 4 GB to 20 GB for TPCH. From the

results reported in Figures 5(a) and 5(b), we find the following.

(a) All algorithms take longer when |D| gets larger. PREEDet con-
sistently outperforms DER, Holo, HDet, SCODED, UClean and

ER-N, by 3.8, 1.4, 3.6, 2.9, 3.5 and 3.3 times on average, respectively.

In addition, PIncDet is less sensitive than PREEDet to the increase

of |D|, due to its incremental nature (see more in Exp-2 (4)).

(b) PREEDet beats its variants PDetnh and PDetmul by 2.3 times

and 1.8 times on average, respectively (not shown). This is because

PREEDet reduces (i) skewness to balance workload and (ii) commu-

nication among multiple rules (see Section 4). For the same reason,

PIncDet beats the variants PIncDetnh and PIncDetmul by 2 times

and 3.9 times, respectively (not shown).

(2) Varying |X |. We next tested the impact of the complexity of

REEs by varying the number |X | of predicates in the preconditions,

in which the number of relation atoms is at most 4. The results are

reported in Figures 5(c) and 5(d), which tell us the following.

(a) All algorithms take longerwhen |X | gets larger. This is consistent

with their complexity since we translate discrepancy detection tasks

into conjunctive queries (see Section 4.2). We found that the number

of relation atoms is the dominant factor for the increased cost. For

instance, one additional relation atom in the preconditions of REEs
increases the running time of PREEDet by 21.9% on average.

(b) Algorithms PREEDet and PIncDet are less sensitive to |X | than

PDetnh and PIncDetnh. This is because (i) more blocks are gener-

ated when |X | increases and heavy blocks are more likely to occur;

and (ii) PREEDet and PIncDet effectively eliminate heavy blocks

to reduce skewness, while PDetnh and PIncDetnh do not.

(3) Varying ∥Σ∥. We next varied the number ∥Σ∥ of rules used. As

shown in Figures 5(e) and 5(f), all algorithms take longer when

∥Σ∥ increases. Among them, PDetmul and PIncDetmul are most

sensitive to ∥Σ∥, since their data shuffling goes up substantially

when ∥Σ∥ increases. On average, PDetmul (resp. PIncDetmul) ships

9.6 (resp. 7.8) times more data than PREEDet (resp. PIncDet) when
∥Σ∥ varies from 20 and 100 on TPCH. Both PREEDet and PIncDet
reduce communication by transmitting common data only once

(Sections 4 and 5), especially when ∥Σ∥ is large, i.e.,more attributes

are shared by the REEs in Σ. The results on TFACC are consistent.

(4) Varying |∆D|. We also evaluated the impact of the size |∆D| of

updates. Fixing |D| and REEs as in Exp-1, we compared PIncDet
with its variants and batch PREEDet by varying |∆D|. As shown

in Figures 5(g)–5(i), the results tell us the following.

(a) Algorithm PIncDet constantly beats its batch counterpart. On

average PIncDet beats PREEDet by 3.7 times when |∆D| varies

from 5% to 45% of |D|, and by 9.7 times when |∆D| = 5%|D|.

PIncDet is faster than PREEDet even when |∆D| is up to 25% of

TFACC, 45% of TPCH, and 35% of Movie, respectively. This veri-
fies the effectiveness of relatively bounded incremental processing

(Theorem 7). It also shows that the results on periodic updates over

Movie are consistent with those on randomly generated ones.

(b) PIncDet outperforms PIncDetnh and PIncDetmul on average by

2.1 and 4.6 times, respectively. This again verifies the effectiveness

of our optimization techniques (see also Exp-2 (1)).

Exp-3: Parallel scalability. We next evaluated the parallel scal-

ability of PREEDet, PIncDet and their variants, by varying the

number n of machines used from 4 to 20. We used the same REEs
as in Exp-1 over TFACC, TPCH and Movie. We find the following.

As shown in Figures 5(j)-5(l) (in which y-axis shows the speedup

compared with the single-machine computation), (1) PREEDet and
PIncDet scale well with n. These methods are on average 3.2 to 12.2

(resp. 3.1 to 9.9) times faster than the single-machine computation

when n is varied from 4 to 20. (2) All algorithms take less time when

n increases, as expected. (3) PREEDet is 2.1 and 2.5 times faster than

PDetnhand PDetmul, respectively, and PIncDet is 1.7 and 2.9 times

faster than PIncDetnhand PIncDetmul, respectively.

These experimentally verify Theorems 4 and 7, and further

demonstrate the effectiveness of our optimization strategies.

Exp-4: Case study. We also found that REEs are able to detect the
discrepancies that are beyond the capability of other methods.

(1) In TFACC, tables result (testid, vehicleid, test_result, model)
and item(testid, rfr_type_code, location) record the details of vehi-

cle tests and failed items, respectively. Here test_result can be either
‘P’ (pass) or ‘F’ (fail), while rfr_type_code, i.e., the type of reason
for failure, is ‘F’ (fail) or ‘P’ (failing item repaired within one hour).

One REE for TFACC is φa = result(t1)∧item(t2)∧t1.testid =
t2.testid∧t2.tft_type_code = P → t1.test_result , P , which en-

sures that no passed test has failing items. It catches a discrepancy

that the test of id 792454969 passed in 2016 but had a failing item.

(2) InMovie, imdb(id, title, year, plot, country) and omdb (id, title,
release_year, plot) include movies from different data sources, and

person(id, name, birthYear, profession, film) contains the details of

artists and their films. The REEs below were used for Movie.

(i) φb = person(t1) ∧ person(t2) ∧ imdb(t3) ∧ imdb(t4) ∧ t1.film=
t3.id∧ t2.film=t4.id∧ t3.country=China∧ t4.country=Norway →

t1.id , t2.id. That is, no one had participated in both Chinese and

Norwegian films. It finds a mismatch, i.e., two producers named

“James Wang” should not match due to their different films.

(ii) φc = person(t1) ∧ imdb(t2) ∧ omdb(t3) ∧ t1.film = t2.id ∧

M(t2, t3) → t1.birthYear < t3.release_year. Here M is an ML

model trained in DER to predict whether movies t2 from IMDB

and t3 in OMDB match. The REE says that the birth year of a

person must be earlier than the release year of his movie. It catches

“Spencer Gray”, who was born in 2000, but stared in “Days of Our

Lives” released in 1965. Note that the year attribute in relation

imdb is ambiguous, which may also denote the starting year of

photography and can be earlier than the birth years of its actors.

Hence we “reinforce” the ML model M and discrepancy detection

by additionally comparing release_year and birthYear. This REE
shows howwe can leverage existingMLmodels and further improve

them with logic predicates. It cannot be expressed as CFDs or DCs.

Summary. We find the followings. (1) It is effective to detect dis-

crepancies by embedding ML predicates in logic rules and unifying

ER and CR. On average, PREEDet outperforms rule-based and ML

methods by 33% and 36%, and ER and CR alone by 31% and 41%, re-

spectively, in accuracy. (2) PREEDet and PIncDet scale well with the
complexity of REEs and the size |D| of datasets. Using 20 machines,

they take 1047s and 139s on TPCH with 150 million tuples and

|∆D| = 5%|D|, respectively. PREEDet is also more efficient than

existing methods for discrepancy detection, at least 3.2 times faster

than the competitors on TPCH. (3) Incremental PIncDet is effective.
It takes 15s when D has 150 million tuples and |∆D| = 0.1%|D|

(online changes to real-life large datasets are small, typically below

0.1%). On average, it outperforms batch algorithm PREEDet by 20.4
times when |∆D| = 1%|D|, and is still faster even when |∆D| is

up to 45% of |D|. (4) PREEDet and PIncDet are parallelly scalable;

compared to the single-machine computation, on average they are

3.2 to 12.2 (resp. 3.1 to 9.9) times faster when n varies from 4 to 20.

(5) Our optimization strategies, including workload balancing and

uniform data shuffling, improve the performance by 2.1 times for

PREEDet and 3.6 times for PIncDet on average.

7 CONCLUSION
We have proposed a method to collectively detect duplication, mis-

matches and conflicts by unifying rules and ML models. We have

settled the complexity of (incremental) discrepancy detection with

REEs and DCs. We have provided (a) a parallelly scalable algorithm

to detect discrepancies offline, and (b) a parallelly scalable and rela-

tively bounded incremental algorithm to catch discrepancies online;

these are also the first such algorithms for CFDs, DCs and MDs.
We have empirically verified that the method is promising.

One topic for future work is to identify what ML models are

effective on attributes of different types. Another topic is to discover

interesting REEs from possibly dirty data with denoising.

ACKNOWLEDGMENTS
Fan is supported in part by ERC 652976 and Royal Society Wolfson

Research Merit Award WRM/R1/180014.

REFERENCES
[1] 2014. NaPTAN. http://data.gov.uk/dataset/naptan.
[2] 2019. IMDB. https://www.imdb.com/interfaces/.
[3] 2020. Alipay. https://www.alipay.com.

[4] 2020. MOT tests and results. https://data.gov.uk/dataset/e3939ef8-30c7-4ca8-9c7c-
ad9475cc9b2f/anonymised-mot-tests-and-results.

[5] 2021. GLA Group Land Assets. https://data.london.gov.uk/dataset/gla-group-land-
assets.

[6] 2021. London Borough Profiles and Atlas.

https://ckan.publishing.service.gov.uk/dataset/london-borough-profiles-and-atlas.
[7] 2021. London Empty Homes Audit.

https://ckan.publishing.service.gov.uk/dataset/london-empty-homes-audit.
[8] 2021. TPC-H. http://www.tpc.org/tpch/.
[9] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[10] Gagan Aggarwal, Rajeev Motwani, and An Zhu. 2006. The load rebalancing

problem. J. Algorithms 60, 1 (2006), 42–59.
[11] João Paulo Aires and Felipe Meneguzzi. 2017. Norm Conflict Identification Using

Deep Learning. In AAMAS Workshops. 194–207.
[12] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. 2002. Eliminating

Fuzzy Duplicates in Data Warehouses. In VLDB. 586–597.
[13] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of

record matching packages. In SIGMOD. 783–794.
[14] Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-Scale Deduplication

with Constraints Using Dedupalog. In ICDE. 952–963.
[15] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In PODS. 68–79.
[16] Zeinab Bahmani, Leopoldo E. Bertossi, and Nikolaos Vasiloglou. 2017. ERBlox:

Combining matching dependencies with machine learning for entity resolution.

Int. J. Approx. Reasoning 83 (2017), 118–141.

[17] Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication steps for

parallel query processing. In PODS. 273–284.
[18] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in parallel query

processing. In PODS. 212–223.
[19] Catriel Beeri and Moshe Y. Vardi. 1981. On the complexity of testing implications

of data dependencies. Technical Report. The Hebrew University of Jeruslem.

[20] Leopoldo Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers.

[21] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data

Cleaning and Query Answering with Matching Dependencies and Matching

Functions. Theory Comput. Syst. 52, 3 (2013), 441–482.
[22] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in

relational data. ACM Trans. Knowl. Discov. Data 1, 1 (2007), 5.
[23] Mikhail Bilenko, Beena Kamath, and Raymond JMooney. 2006. Adaptive Blocking:

Learning to Scale Up Record Linkage. In ICDM. 87–96.

[24] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Deduplica-

tion. PVLDB 9, 11 (2016), 864–875.

[25] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In ICDE. 458–469.
[26] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving

Data Quality: Consistency and Accuracy. In VLDB. 315–326.
[27] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh

Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon

Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to

Build Cloud Services. In SIGMOD. 1431–1446.
[28] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap

Konda, Yash Govind, and Derek Paulsen. 2020. The Magellan Data Repository.

https://sites.google.com/site/anhaidgroup/projects/data.

[29] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. ClusterJoin: A Similarity

Joins Framework using Map-Reduce. PVLDB 7, 12 (2014), 1059–1070.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT. 4171–4186.
[31] Mohamad Dolatshah, Mathew Teoh, Jiannan Wang, and Jian Pei. 2018. Cleaning

Crowdsourced Labels Using Oracles For Statistical Classification. PVLDB 12, 4

(2018), 376–389.

[32] Xin Dong, Alon Halevy, and Jayant Madhavan. 2005. Reference Reconciliation

in Complex Information Spaces. In SIGMOD. 85–96.
[33] Rod G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability and

Completeness I: Basic Results. SIAM J. Comput. 24, 4 (1995), 873–921.
[34] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad

Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity

Resolution. PVLDB 11, 11 (2018), 1454–1467.

[35] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19, 1 (2007),
1–16.

[36] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs.

PVLDB 8, 12 (2015), 1590–1601.

[37] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic

constraints for record matching. VLDB J. 20, 4 (2011), 495–520.
[38] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-

ditional functional dependencies for capturing data inconsistencies. ACM Trans.
Database Syst. 33, 2 (2008), 6:1–6:48.

[39] Wenfei Fan, Floris Geerts, Shuai Ma, and Heiko Müller. 2010. Detecting inconsis-

tencies in distributed data. In ICDE. 64–75.
[40] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. 2014. Conflict resolution

with data currency and consistency. J. Data and Information Quality 5, 1-2 (2014),

6:1–6:37.

[41] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph

Functional Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1–15:42.
[42] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental Graph Computa-

tions: Doable and Undoable. In SIGMOD. 155–169.
[43] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. 2009. Reasoning about Record

Matching Rules. PVLDB 2, 1 (2009), 407–418.

[44] Wenfei Fan, Jianzhong Li, ShuaiMa, Nan Tang, andWenyuan Yu. 2011. Interaction

between record matching and data repairing. In SIGMOD. 469–480.
[45] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2012. Towards

certain fixes with editing rules and master data. VLDB J. 21, 2 (2012), 213–238.
[46] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu. 2014. Incremental Detec-

tion of Inconsistencies in Distributed Data. IEEE Trans. Knowl. Data Eng. 26, 6
(2014), 1367–1383.

[47] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2020. Catching Numeric Incon-

sistencies in Graphs. ACM Trans. Database Syst. 45, 2 (2020), 1–47.
[48] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying Logic Rules and Machine

Learning for Entity Enhancing. Sci. China Inf. Sci. 63, 7 (2020).
[49] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for

Graphs. In SIGMOD. 1843–1857.
[50] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company.

[51] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.

On generating near-optimal tableaux for conditional functional dependencies.

PVLDB 1, 1 (2008), 376–390.

[52] Songtao Guo, Xin Luna Dong, Divesh Srivastava, and Remi Zajac. 2010. Record

Linkage with Uniqueness Constraints and Erroneous Values. PVLDB 3, 1 (2010),

417–428.

[53] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.

HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846.
[54] Mayank Kejriwal and Daniel P. Miranker. 2013. An Unsupervised Algorithm for

Learning Blocking Schemes. In ICDM. 340–349.

[55] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,

Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. BigDans-

ing: A System for Big Data Cleansing. In SIGMOD. 1215–1230.
[56] Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Dedoop: Efficient Deduplication

with Hadoop. PVLDB 5, 12 (2012), 1878–1881.

[57] Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Load Balancing for MapReduce-

based Entity Resolution. In ICDE. 618–629.
[58] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity

resolution approaches on real-world match problems. PVLDB 3, 1 (2010), 484–

493.

[59] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of

Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.
[60] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-

den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A

Configuration-Free Error Detection System. In SIGMOD. 865–882.
[61] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
19–34.

[62] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal

join algorithms. In PODS. 37–48.
[63] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.

2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM
Comput. Surv. 53, 2 (2020), 31:1–31:42.

[64] Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-Scale

Entity Resolution. In CIKM. 1379–1388.

[65] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis. 2011. Large-Scale

Collective Entity Matching. PVLDB 4, 4 (2011), 208–218.

[66] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–

1201.

[67] Bernd SW Schröder. 2003. Ordered sets. Springer 29 (2003), 30.
[68] Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. 2016. BLAST: a

Loosely Schema-aware Meta-blocking Approach for Entity Resolution. PVLDB 9,

12 (2016), 1173–1184.

[69] J Michael Steele. 2004. The Cauchy-Schwarz master class: an introduction to the
art of mathematical inequalities. Cambridge University Press.

https://sites.google.com/site/anhaidgroup/projects/data

[70] Arun N. Swami and K. Bernhard Schiefer. 1994. On the Estimation of Join Result

Sizes. In EDBT. 287–300.
[71] Katia P. Sycara. 1993. Machine learning for intelligent support of conflict resolu-

tion. Decision Support Systems 10, 2 (1993), 121–136.
[72] Yufei Tao. 2018. Massively Parallel Entity Matching with Linear Classification in

Low Dimensional Space. In ICDT. 20:1–20:19.
[73] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error detec-

tion. In SSDBM. 1:1–1:12.

[74] Michael J Welch, Aamod Sane, and Chris Drome. 2012. Fast and accurate incre-

mental entity resolution relative to an entity knowledge base. In CIKM. 2667–

2670.

[75] Steven Euijong Whang, Omar Benjelloun, and Hector Garcia-Molina. 2009.

Generic entity resolution with negative rules. VLDB J. 18, 6 (2009), 1261–1277.
[76] Steven Euijong Whang and Hector Garcia-Molina. 2013. Joint entity resolution

on multiple datasets. VLDB J. 22, 6 (2013), 773–795.
[77] Steven Euijong Whang and Hector Garcia-Molina. 2014. Incremental entity

resolution on rules and data. VLDB J. 23, 1 (2014), 77–102.
[78] David P. Woodruff and Qin Zhang. 2013. When Distributed Computation Is

Communication Expensive. In DISC. 16–30.
[79] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2019. Strongly Truthful

Interactive Regret Minimization. In SIGMOD. 281–298.
[80] Jing Nathan Yan, Oliver Schulte, MoHan Zhang, Jiannan Wang, and Reynold

Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In

SGIMOD. 845–860.
[81] Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and Heng Tao Shen.

2018. A Graph-Theoretic Fusion Framework for Unsupervised Entity Resolution.

In ICDE. 713–724.

	Abstract
	1 Introduction
	2 Rules for Discrepancy Detection
	3 Complexity Bounds
	4 Parallel Discrepancy Detection
	4.1 Parallel Scalability Revisited
	4.2 Sequential Algorithm
	4.3 Parallel Algorithm

	5 Parallel Incremental Detection
	5.1 Sequential Incremental Algorithm
	5.2 Parallel Incremental Algorithm

	6 Experimental Study
	7 Conclusion
	Acknowledgments
	References

