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Abstract
Graph neural networks (GNNs) aim to learn a low-

dimensional feature for each vertex in the graph from its

input high-dimensional feature, by aggregating the features

of the vertex’s neighbors iteratively. This paper presents Flex-
Graph, a distributed framework for training GNN models.

FlexGraph is able to efficiently train GNN models with flexi-

ble definitions of neighborhood and hierarchical aggregation

schemes, which are the two main characteristics associated

with GNNs. In contrast, existing GNN frameworks are usu-

ally designed for GNNs having fixed definitions and aggrega-

tion schemes. They cannot support different kinds of GNN

models well simultaneously. Underlying FlexGraph are a sim-

ple GNN programming abstraction called NAU and a com-

pact data structure for modeling various aggregation opera-

tions. To achieve better performance, FlexGraph is equipped

with a hybrid execution strategy to select proper and efficient

operations according to different contexts during aggregat-

ing neighborhood features, an application-driven workload

balancing strategy to balance GNN training workload and

reduce synchronization overhead, and a pipeline processing

strategy to overlap computations and communications. Us-

ing real-life datasets and GNN models GCN, PinSage and

MAGNN, we verify that NAU makes FlexGraph more ex-

pressive than prior frameworks (e.g., DGL and Euler) which

adopt GAS-like programming abstractions, e.g., it can handle

MAGNN that is beyond the reach of DGL and Euler. The

evaluation further shows that FlexGraph outperforms the

state-of-the-art GNN frameworks such as DGL and Euler in

training time by on average 8.5× on GCN and PinSage.
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1 Introduction
A large number of real-world datasets can be naturally repre-

sented by graphs. Typical cases are knowledge graphs [7, 29],

social networks [15, 36, 37], traffic networks [22] and web

graphs [28, 43]. Recently, with the rapid growth of deep learn-

ing technologies, graph neural networks (GNNs), a rising fam-

ily of models that directly apply neural networks on graph-

structured data, have proved extremely effective yet efficient

in handling various graph-related tasks [14, 17, 39, 40, 44, 47].

GNNs combine standard neural network (NN) operations

and iterative graph propagation. Many GNN frameworks

have been developed to address the challenges regarding the

expressivity, efficiency, scalability and implementation in

training GNN models [9, 13, 20, 24, 26, 38, 50].

Most GNN models fit into the “neural message passing”

framework [11], in which each GNN layer is bound with a

graph propagation process including two steps. For each ver-

tex 𝑣 in a graph, it first aggregates the features of 𝑣 ’s “neigh-

bors”
1
to compute a neighborhood representation using NN

operations (see Figure 1a). Then it combines 𝑣 ’s own feature

with the neighborhood representation to adjust the feature of

𝑣 via an update operation (see Figure 1b). As GNNs involve

both NN and graph propagation operations, i.e., features
are propagated from the “neighbors”, algorithm developers

have to encode the graphs as sparse tensors and manually

simulate the graph propagation using tensor operations in

existing tensor-oriented deep learning frameworks, e.g., Ten-
sorFlow [1], PyTorch [30] and MXNet [5]. This introduces

an implementation challenge for GNN models.

1
In GNNs, “neighbors” of each vertex are not limited to its direct 1-hop

neighbors in the graph. See Section 2.2 for more general definitions of

“neighbors” in GNNs.
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Figure 1. The computation of one target vertex (in green)

in a GNN layer first aggregates 4-dimensional features of its

neighbors (in purple), and then applies the Update operation

to get the new 3-dimensional feature.

Inspired by vertex-centric programming models, e.g., GAS
(Gather-Apply-Scatter) [12], applied in graph processing sys-

tems, some programming abstractions for GNNs have been

proposed [9, 26, 38] to support GNNmodels succinctly. Anal-

ogously to GAS, such abstractions split the computation

within a GNN layer into multiple stages. For each stage,

users specify the computation that needs to be conducted

over a set of vertices and their adjacent edges in a graph. All

the current state-of-the-art GNN frameworks, e.g., DGL [38],

PyG [9], NeuGraph [26], ROC [20] and Euler [13], adopt GAS-

like abstractions. They are able to express a few popular GNN

models, e.g., GCN [21], GIN [41] and G-GCN [27], which can

be categorized as DNFA models in the sense that these mod-

els use direct neighbors (i.e., 1-hop neighbors in the graphs)

and enforce flat aggregations (i.e., single-step operations).

Besides DNFA models, we find that GNN models have

other various definitions of “neighbors” and neighborhood

aggregation schemes. Some define indirect neighbors (i.e.,
structured data in the graph other than the 1-hop neighbors)

and apply flat aggregation, referred to as INFA models, e.g.,
PinSage [43]; and another class of INHA models employs

indirect neighbors and hierarchical aggregation (i.e., multi-

step operations when aggregating features from the “neigh-

bors”), e.g., MAGNN [10], P-GNN [45] and JK-Net [42]. The

INFA and INHA models are as important as DNFA models in

facilitating many graph-related tasks. For example, recent

work [33, 34, 43] shows that INFA models like PinSage have

been widely used in recommendation systems in industry,

e.g., Pinterest. Compared with state-of-the-art DNFAmodels,

the INHA model P-GNN achieves much better performance

in protein functional analysis over protein-protein interac-

tion networks [45]. Unfortunately, current GNN frameworks

are mainly designed for DNFA models only and lack the

support for INFA and INHA models (see Section 2.3).

In this paper, wemake a comprehensive analysis of various

GNN models and establish a corresponding categorization

for GNNs. Based on the analysis, we introduce a stage-based

GNN programming abstractionNAUwhich splits the compu-

tation of a GNN layer intoNeighborSelection,Aggregation and
Update stages. NAU is capable of training DNFA, INFA and

INHA models in a uniform manner. Different from GAS-

like abstractions that directly utilize input graphs to capture

the dependencies among vertices, NAU employs hierarchi-
cal dependency graphs (HDGs) to encode different kinds of

“neighbors”, not limited to direct neighbors. Users can define

how each vertex chooses its “neighbors” andNAU constructs

theHDGs accordingly. Moreover, users can specify an aggre-

gation function for each level of the HDGs, and the neigh-

borhood information is aggregated in a bottom-up manner

automatically. Thus, NAU supports flexible neighborhood

definitions and hierarchical aggregation schemes of GNNs.

To improve the performance of hierarchical aggregation,

we propose a hybrid execution strategy. It differentiates the

aggregations in the hierarchical scheme and completes them

via graph processing, sparse NN operations or dense NN

operations, depending on their different contexts. The idea

of this strategy is to take advantage of both efficient graph

processing and NN operations.

In addition, to efficiently train GNNmodels in a distributed

environment, we develop an application-driven approach to

balance the workload and reduce synchronization overhead.

It divides the vertices of the input graph into disjoint sets

by minimizing the estimated training and communication

costs. We further provide a pipeline processing strategy that

exploits partial aggregation to aggregate features in advance,

and overlaps partial aggregation and communication to im-

prove the throughput in distributed training.

We have implemented a distributed GNN framework

FlexGraph upon NAU that adopts all optimization strate-

gies mentioned above. We evaluated FlexGraph on training

DNFA model GCN, INFA model PinSage and INHA model

MAGNN over four real-life and synthetic graphs, and com-

pared it with state-of-the-art NN framework PyTorch and

GNN frameworks DGL, DistDGL and Euler. Experimental re-

sults show that for MAGNN, only FlexGraph can efficiently

support its training on large graphs, due to the increased ex-

pressive power of NAU and effective storage and execution

optimizations. For PinSage, FlexGraph outperforms others

by on average 25.30× (up to 119.33×) in training time. For

GCN that has been well supported in existing frameworks,

FlexGraph can still achieve a at least 1.50× speedup.

Contributions. We summarize our contributions as follows.

(1) A categorization of GNNs that considers both the neigh-

borhood definitions and aggregation schemes to reveal the

key expressivity and performance challenges of GNN frame-

works in training GNN models (Section 2).

(2) The GNN programming abstraction NAU that supports

the training of DNFA, INFA and INHA models (Section 3).

(3) A hybrid execution scheme for hierarchical aggregation

(Section 4), as well as an application-driven workload balanc-

ing strategy and a pipeline processing strategy for efficient

distributed training (Section 5).

(4) An extensive evaluation of GNN framework Flex-
Graph that demonstrates its efficacy (Section 7).
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2 Categorization of GNNs
In this section, we present a new 2-dimensional categoriza-

tion for various GNN models regarding their neighborhood

definitions and aggregation schemes. We start by review-

ing GNNs (Section 2.1), and then give the categorization

(Section 2.2). We also identify the challenges in supporting

different GNN models under this categorization (Section 2.3).

2.1 Graph Neural Networks
Graph neural networks (GNNs) are a family of machine learn-

ing algorithms that apply neural network (NN) operations

on graph-structured data. Initially, each vertex in a graph

is associated with a high-dimensional feature vector. The

goal of a GNN model is to learn a low-dimensional feature

representation for each vertex, which can be further fed into

various downstream tasks, e.g., vertex classification [21], link
prediction [46] and vertex clustering [2].

Similar to traditional neural networks, a GNN model

stacks multiple GNN layers to update the vertex features iter-

atively, in which each successive layer uses the outputs of its

previous layer as inputs. Here both the inputs and outputs of

a layer contain the features of all vertices. In each GNN layer,

the new feature of each vertex is computed by aggregating

the features of its “neighbors” from the previous layer. Given

a graph 𝐺 with raw input features 𝑋∗ for the vertices in 𝐺

(e.g., word embeddings in the Reddit dataset), the computa-

tion within the 𝑘-th GNN layer can be expressed as follows:

𝑎
(𝑘)
𝑣 = Aggregate

(𝑘) ({ℎ (𝑘−1)
𝑢 |𝑢 ∈ N (𝑣)}), (1)

ℎ
(𝑘)
𝑣 = Update

(𝑘) (ℎ (𝑘−1)
𝑣 , 𝑎

(𝑘)
𝑣 ), (2)

where Aggregate
(𝑘)

and Update
(𝑘)

are two operations

conducted during the 𝑘-th GNN layer for 𝑘 > 1, ℎ
(𝑘)
𝑣 and 𝑎

(𝑘)
𝑣

denote the feature vector and neighborhood representation

of vertex 𝑣 at the 𝑘-th layer, respectively, and N(𝑣) denotes
the “neighbors” of 𝑣 .

The operation Aggregate
(𝑘)

is also referred to as neigh-
borhood aggregation at layer 𝑘 (see Figure 1a). Intuitively,

it gathers the features of 𝑣 ’s “neighbors” using accumula-

tion functions to produce neighborhood representation 𝑎
(𝑘)
𝑣 .

This is followed by the invocation of Update
(𝑘)

, which com-

putes the new feature ℎ
(𝑘)
𝑣 by combining 𝑣 ’s previous feature

ℎ
(𝑘−1)
𝑣 and the newly computed 𝑎

(𝑘)
𝑣 (see Figure 1b). Note that

Aggregate
(𝑘)

involves both graph propagation, i.e., features
are propagated from the “neighbors” to 𝑣 , and NN operations,

while Update
(𝑘)

only includes NN operations.

2.2 A 2-Dimensional Categorization
There has been a lot of GNN models proposed for differ-

ent applications [10, 21, 27, 41, 43, 45] (see also a recent

survey [48]). However, to the best of our knowledge, no cat-

egorization exists for GNN models that takes both the static

and operational characteristics of GNNs into account. In

general, there are no constraints imposed on how to define

Metapath 

Metapath
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(b) Metapaths  
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Figure 2.A sample graph to illustrate different GNNmodels.

the neighborhood, i.e., “neighbors” of vertices using static

expressions and how the neighborhood aggregation behaves

in a GNN model. Therefore, we can divide GNN models into

three categories based on their static neighborhood definitions
and operational aggregation schemes.

(1) DNFA (direct neighbors with flat aggregation). For GNN
models that fall into this category, each vertex’s neighbor-

hood consists of all its 1-hop neighbors, i.e., direct neigh-
bors in the input graph; and the aggregation function only

conducts a single-step operation, i.e., flat aggregation. Rep-
resentative DNFA models include GCN [21], GIN [41], and

G-GCN [27]. Take GCN as an example and consider vertex

𝐴 in the sample graph depicted in Figure 2a. In every layer

of GCN, we have that N(𝐴) = {𝐷, 𝐸, 𝐹, 𝐻 }. To produce the
neighborhood representation of𝐴, Aggregate just sums the

features collected from the vertices in N(𝐴).
(2) INFA (indirect neighbors with flat aggregation). For INFA
models, a “neighbor” of a vertex can be a vertex from a nearby

subgraph, instead of its actual 1-hop neighbor. Analogously

to DNFA, neighborhood information is aggregated in a flat

manner. For example, PinSage [43] is an INFA model having

an architecture similar to GCN. It generates neighborhood

representations by summing neighbors’ features as in GCN.

However, PinSage adopts an importance-based neighbor-

hood definition. It defines N(𝑣) as the top-𝑘 visited vertices

in several random walks starting from 𝑣 . Let 𝑘 = 2, then

N(𝐴) = {𝐶,𝐺} for the sample graph shown in Figure 2a,

since 𝐶 and 𝐺 have the highest visit counts. Both 𝐶 and 𝐺

are indirect neighbors of 𝐴 as there are no edges directly

connecting 𝐶 and 𝐺 to 𝐴.

(3) INHA (indirect neighbors with hierarchical aggregation).
In an INHAmodel, a “neighbor” can be any graph-structured

data. In the operations of neighborhood aggregation, multi-

step aggregation operations, i.e., hierarchical aggregations,
are allowed. MAGNN [10], P-GNN [45] and JK-Net [42] fall

into this category.

In MAGNN, the “neighbors” of a vertex are a set of metap-

ath instances that match themethpaths defined by the model.

Each metapath is an ordered sequence of vertex types. In Fig-

ure 2a, vertices of different types have different colors; and
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Figure 2b shows two metapaths 𝑀𝑃1 and 𝑀𝑃2. As a result,

N(𝐴) = {𝑝1, . . . , 𝑝5} (Figure 2c), i.e., five instances match

the metapaths by the vertex colors.

The aggregation operation of MAGNN is conducted in

a hierarchical way. More specifically, when computing the

neighborhood representation of vertex𝐴 in the sample graph

of Figure 2a, (i) MAGNN first derives the representations

of instances 𝑝1, . . . , 𝑝5 by gathering features of the vertices

that belong to each instance, respectively; (ii) it then com-

bines these representations of the same metapath type to

compute the representation of𝑀𝑃1 and𝑀𝑃2; and (iii) finally

it aggregates the representations of𝑀𝑃1 and𝑀𝑃2 to get the

neighborhood representation of vertex 𝐴.

Note that there should be a fourth category DNHA, i.e.,
direct neighbors with hierarchical aggregation. For brevity,
we treat DNHA as a special case of INHA. Furthermore, to

the best of our knowledge, no existing GNN model falls into

this category. Also observe that DNFA can be a special case

of INFA. We distinguish DNFA from INFA on purpose, since

existing GNN frameworks mostly focus on DNFA only. As a

result, we only discuss the first three categories in this work.

Observation. Clearly one can see that GNNmodels have huge

diversity in the neighborhood definitions and aggregation

schemes. On the one hand, one vertex’s “neighbor” can be

its 1-hop neighbor (e.g., GCN), another vertex without direct
connecting edge (e.g., PinSage), or even a path (e.g.,MAGNN).

On the other hand, neighbors’ features can be aggregated

in a flat manner (i.e., single-step aggregation) like in GCN

and PinSage, or in a hierarchical manner (i.e., multi-step

aggregation) such as in MAGNN. This categorization w.r.t.
neighborhood definitions and neighborhood aggregation

schemes reveals both expressivity and performance chal-

lenges for GNN frameworks. On the expressivity side, the

hierarchical dependencies among vertices should be captured

by the framework. On the performance side, efficient access

to indirect neighbors and their features is a crucial issue.

2.3 Challenges
As indicated in Section 2.1, GNN models call for not only

NN operations but also graph propagation. It is hence desir-

able to have a framework that achieves both the two types

of operations simultaneously with good performance; and

better still effectively supports GNN models from different

categories (Section 2.2). However, this is non-trivial.

Existing tensor-based deep learning frameworks lack intu-

itive support for graph propagation. Inspired by the vertex-

centric programming abstraction GAS [12] used in graph

processing systems, some GAS-like programming abstrac-

tions for GNNs [9, 26, 38] have been recently proposed to

accomplish both graph propagation and NN operations. As

an example, SAGA-NN is presented in the GNN framework

NeuGraph [26]. It extends the classical GAS abstraction for

graph computation with NN operations. SAGA-NN splits

the computation within a GNN layer into 4 stages: Scatter,
ApplyEdge, Gather, and ApplyVertex. Here the first 3 stages
aim to support Aggregate operations (Equation (1)), while

the last ApplyVertex corresponds to the Update NN opera-

tions (Equation (2)). To compute neighborhood representa-

tions, each vertex first scatters its feature along its outgoing

edges (also include incoming edges sometimes) to produce

a feature for each edge; it then applies NN operations to

generate new edge representations; at last each vertex gath-
ers features of its incoming edges and combines them as

its neighborhood representation. In the Update operation,

each vertex assembles its neighborhood representation and

its own previously-computed vertex feature to compute its

updated vertex feature via ApplyVertex.
Although the GAS-like GNN programming abstractions

(i.e., SAGA-NN and its variants) perform well on DNFAmod-

els and have been widely used in most existing GNN solu-

tions [48], including DGL [38], PyG [9], NeuGraph [26] and

Euler [13], they are essentially designed for the DNFA cat-

egory only. Due to the fact that in SAGA-NN, each vertex

computes its feature by aggregating the features of all its

1-hop neighbors in a flat manner, it is hard to express the

computations of INFA and INHA models using SAGA-NN

directly. For instance, there is no efficient implementation of

PinSage with SAGA-NN because the “neighbors” are beyond

the 1-hop scope under this case. Indeed, DGL implements

PinSage by simulating random walks with several graph

propagation stages of SAGA-NN, which is very inefficient.

Note that PinSage and GCN share the same aggregation func-

tion, and each vertex in PinSage has a relatively small size

of neighbors. However, the training time of one epoch for

PinSage is over 10 times compared with GCN in DGL with

SAGA-NN abstraction on dataset Reddit. Over 95% of total

training time is used to simulate random walks and get fea-

tures of indirect neighbors (see details in Section 7.1). There

are also approaches that utilize an additional sampling phase

to obtain the relationships with indirect neighbors as tensor

structures and simulate graph propagation through tensor

operations [13, 50]. However, they fail to apply some efficient

graph-related operations due to the lack of graph structure

(see performance analysis of PinSage in Section 7.1).

Similarly, INHA models are beyond the reach of GAS-

like GNN abstractions for the existence of various forms of

“neighbors” and the multi-step aggregation operations.

3 A Flexible GNN Framework
We propose a flexible GNN framework FlexGraph to tackle

the challenges given in Section 2.3. In a nutshell, FlexGraph
employs hierarchical dependency graphs (HDGs) to accom-

modate both the diversified definitions of “neighbors” and

the hierarchical aggregation schemes in GNN models (Sec-

tion 3.1). Underlying FlexGraph is a new GNN programming

abstraction called NAU (Section 3.2). In this new abstrac-

tion, FlexGraph first builds HDGs for the input GNN model;
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Figure 3. The HDG(𝐴) for vertex 𝐴 in different models.

guided by HDGs, FlexGraph aggregates the features from

the “neighbors” and updates all vertex features iteratively in

a uniform manner. With NAU, GNN models of different cate-

gories can be expressed naturally in FlexGraph (Section 3.3).

3.1 Hierarchical Dependency Graph
Given a GNN modelM and an input graph𝐺 , a hierarchical
dependency graph (HDG) for M w.r.t. a vertex 𝑣 in 𝐺 is a

directed acyclic graph (DAG), denoted as HDG(𝑣). It charac-
terizes how the feature of 𝑣 is aggregated from its “neighbors”

in the GNN model M. The collection of all HDG(𝑣) for ver-
tices 𝑣 in 𝐺 is referred to as HDGs.
The DAG HDG(𝑣) uses a hierarchical structure, where

both the top and bottom levels contain vertices from the

input graph 𝐺 (see Figure 3). Each HDG(𝑣) consists of two
parts: a schema tree and a set of neighbor instances.

(1) The schema tree 𝑇 of HDG(𝑣) encodes the hierarchical
(tree) structures for neighbor types defined by the GNN

modelM. Specifically, vertex 𝑣 is treated as the root of𝑇 and

each leaf of𝑇 represents a neighbor type inM. We stipulate

𝑇 = 𝑣 when 𝑇 has a single neighbor type.

(2) The neighbor instances of HDG(𝑣), denoted as N𝑣 , is a

collection of the “neighbors” of 𝑣 defined by modelM. Each

neighbor instance in N𝑣 refers to a vertex in HDG(𝑣) and
is linked to a leaf in 𝑇 that encodes its type. If a neighbor

instance does not follow the flat structure, i.e., it is beyond a

single vertex from the input graph𝐺 , thenHDG(𝑣) connects
all its associated vertices in 𝐺 to the instance.

For GNN models that fall into DNFA and INFA categories,

their schema trees and neighbor instances have flat

structures, i.e., they only contain vertices from the input

graph (see Figures 3a-3b). In contrast, both the schema trees

and neighbor instances may have hierarchical structures for

the models in INHA category. For example, the HDG(𝐴) for
MAGNN w.r.t. vertex 𝐴 of the sample graph of Figure 2a is

shown in Figure 3c. Observe that the top and bottom levels

of HDG(𝐴) have vertices from the input graph. The root

of HDG(𝐴) is vertex 𝐴 itself and each of the two vertices

at level 1 represents a metapath type. These three vertices

compose the schema tree of HDG(𝐴). The vertices at level
2 in HDG(𝐴) encode neighbor instances, i.e., metapath

instances of different types, and each one is linked to a

corresponding vertex at level 1 indicating its type, e.g., 𝑝2

interface GNNLayer(){

}

//select neighbors and build HDGs
NeighborSelection(g,schema� nbr_udf)   HDGs;
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<latexit sha1_base64="4hS8sfSU0iMkxX2g4Laa4RkluDk=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJgYxnBmEByhL3NXrJkb/fYnVPCkZ9hY6Egtv4ZO/+Nm+QKTXww8Hhvhpl5USqFRd//9kpr6xubW+Xtys7u3v5B9fDowerMMN5iWmrTiajlUijeQoGSd1LDaRJJ3o7GNzO//ciNFVrd4yTlYUKHSsSCUXRSt2fEcITUGP3Ur9b8uj8HWSVBQWpQoNmvfvUGmmUJV8gktbYb+CmGOTUomOTTSi+zPKVsTIe866iiCbdhPj95Ss6cMiCxNq4Ukrn6eyKnibWTJHKdCcWRXfZm4n9eN8P4OsyFSjPkii0WxZkkqMnsfzIQhjOUE0coM8LdStiIGsrQpVRxIQTLL6+S9kU9uKwHwd1lreEXeZThBE7hHAK4ggbcQhNawEDDM7zCm4fei/fufSxaS14xcwx/4H3+AFeokbQ=</latexit>!ҁk-1҂ ҁk҂
Aggregation(feas  , HDGs)   nbr_feas ;
// aggregate nbr features guided by HDGs

// NN update
<latexit sha1_base64="4hS8sfSU0iMkxX2g4Laa4RkluDk=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJgYxnBmEByhL3NXrJkb/fYnVPCkZ9hY6Egtv4ZO/+Nm+QKTXww8Hhvhpl5USqFRd//9kpr6xubW+Xtys7u3v5B9fDowerMMN5iWmrTiajlUijeQoGSd1LDaRJJ3o7GNzO//ciNFVrd4yTlYUKHSsSCUXRSt2fEcITUGP3Ur9b8uj8HWSVBQWpQoNmvfvUGmmUJV8gktbYb+CmGOTUomOTTSi+zPKVsTIe866iiCbdhPj95Ss6cMiCxNq4Ukrn6eyKnibWTJHKdCcWRXfZm4n9eN8P4OsyFSjPkii0WxZkkqMnsfzIQhjOUE0coM8LdStiIGsrQpVRxIQTLL6+S9kU9uKwHwd1lreEXeZThBE7hHAK4ggbcQhNawEDDM7zCm4fei/fufSxaS14xcwx/4H3+AFeokbQ=</latexit>! (k)ҁk-1҂   Update(feas  , nbr_feas  )   feas  ;ҁk҂

Figure 4. The user interface of NAU.

is an instance matching𝑀𝑃2. In addition, HDG(𝐴) connects
the vertices of the input graph to the metapath instances

that they lie in, e.g., vertices 𝐴, 𝐶 , and 𝐷 are linked to 𝑝1.

3.2 Programming Abstraction NAU
FlexGraph adopts a new GNN programming abstraction

NAU. As opposed to GAS-like abstractions, NAU introduces

a NeighborSelection stage to build HDGs to capture hierar-

chical dependencies among vertices. Having HDGs in place,

in the Aggregation stage, NAU asks users to specify an ag-

gregation function as a UDF (user-defined function) for each

vertex in the HDGs. That is, users provide a UDF for (i) each
vertex in the schema trees and (ii) each neighbor instance

in the N𝑣 ’s, regardless of whether they have flat structures

or not. Then NAU automatically executes the hierarchical

aggregation of the GNN model based its HDGs, by applying

these UDFs in a bottom-up fashion. In this way, NAU sup-

ports both flexible neighborhood definitions and hierarchical

neighborhood aggregation schemes of various GNNs.

The Workflow of NAU. NAU consists of three stages

for each GNN layer, i.e., NeighborSelection, Aggregation and

Update (see Figure 4). The NeighborSelection and Aggregation
stages specify the computation of Aggregate operation in

Equation (1), while the Update stage involves the Update
operation of Equation (2).

NeighborSelection. This stage builds HDGs to meet the re-

quirements of various neighborhood definitions in GNN

models. Taking an input graph g, a schema tree, i.e., schema,
of the GNN model, and a vertex UDF nbr_udf as inputs, this
stage outputs the HDGs for the GNN model. Here the UDF

nbr_udf customizes how each vertex retrieves its “neigh-

bors” from the input graph g.
To build HDGs, users are requested to implement a UDF

for each neighbor type associated with the leaves in the

schema tree. Here a “neighbor” can be a single vertex or a set

of vertices, e.g., paths of the input graph. Figure 5 shows the
UDFs for GCN, PinSage and MAGNN, respectively. One can

see that each UDF takes a schema_tree of the GNN model

and a vertex 𝑣 as inputs. It returns the “neighbors” of 𝑣 and

their corresponding neighbor types as outputs. For example,

the UDF for PinSage first starts num_traces many random

walks of length n_hops from 𝑣 ; then it selects the vertices

with top_k highest visit counts as 𝑣 ’s “neighbors”. These

“neighbors” have a flat structure. Thus their type is simply
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def gnn_nbr(schema_tree, v): ## nbr_udf for GCN
return nbr(v.neighbors, type="vertex")

def pinsage_nbr(schema_tree, v): ## nbf_udf for PinSage
for i in range(num_traces):

path = random_walk(start=v, hops=n_hops)
for node in path.nodes:

visited_frequency[node]++
return nbr(top_k(visited_frequency), type="vertex")

def magann_nbr(schema_tree, v): ## nbr_udf for MAGNN
for meta_path in schema_tree.leaves:

for p in search_paths(start=v, length=meta_path.
length):

if path_match(p, meta_path):
nbr.append(p.nodes, type=meta_path.type)

return nbr

Figure 5. UDFs for neighbor types of different models.

def Aggregation(feas, HDGs):
for i in range(HDGs.depth, 1):

g_s = HDGs.sub_graph(level=i)
feas = apply(g_s, feas_i, aggr_udf_i)

return feas

Figure 6. Implementation of Aggregation.

vertex. Note that this may involve sophisticated graph com-

putations, e.g., it is required to find paths matching a specific

pattern (metapath) in constructing HDGs for MAGNN (see

Figure 5). This is clearly out of the reach of NN operations.

Aggregation. Given the features feas(𝑘−1) from the previous

layer and the HDGs built by NeighborSelection, this stage
computes the neighborhood representation nbr_feas(𝑘) .
With HDGs, users are allowed to specify multi-step

aggregation operations in a bottom-up way, beyond the

single-step ones. In various GNN models, vertices at the

same level of HDGs often, if not always, share the same op-

erational semantics, i.e., aggregation function. Thus a typical

implementation of the Aggregation function follows the

level-wise paradigm, shown in Figure 6. Starting from the

bottom level, each time it first obtains a subgaph g_s of the

HDGs at a specific level 𝑖 , which includes vertices at levels

𝑖 and 𝑖 − 1, as well as the edges connecting them. It then

applies a user defined aggregation function aggr_udf_i,
which takes the subgraph g_s and features feas_i of

vertices at level 𝑖 as inputs and computes the features for

vertices at level 𝑖 − 1. In the end, it returns the features of

the roots of the HDGs as the neighborhood representation.

Update. This stage combines the old features feas(𝑘−1) and

the neighborhood representations nbr_feas(𝑘) by NN oper-

ations. It outputs new representations feas(𝑘) for the next
layer, using NN operations only.

Discussion. SAGA-NN can be considered as a special case of

NAU, where in stage NeighborSelection, each vertex selects

its all 1-hop neighbors and all such neighbors have the same

class GCNLayer(GNNLayer):
def Aggregation(feas, HDG):

dst_ids, src_ids = HDG.sub_graph(level=1)
nbr_feas = scatter_add(feas[src_ids], dst_ids)
return nbr_feas

def Update(feas, nbr_feas):
return ReLU(W * feas.add(nbr_feas))

class PinSageLayer(GNNLayer):
def Aggregation(feas, HDG):

dst_ids, src_ids = HDG.sub_graph(level=1)
nbr_feas = scatter_add(feas[src_ids], dst_ids)
return nbr_feas

def Update(feas, nbr_feas):
return ReLU(W * CONCAT(feas, nbr_feas))

class MAGNNLayer(GNNLayer):
def Aggregation(feas, HDG):

udf = [scatter_mean, scatter_softmax, scatter_mean]
for i in range(3,1):
g_s = HDG.sub_graph(level=i);
nbr_feas = apply(g_s, nbr_feas, udf[i])

return nbr_feas
def Update(self, nbr_feas, h):

return ReLU(W * nbr_feas)

Figure 7. GCN, PinSage and MAGNN in NAU.

type. In stage Aggregation, all neighborhood features are ag-

gregated via single-step operation. Moreover, NAU does not

require the users to define or execute stage NeighborSelection
in every GNN layer. This is because for some GNN models,

e.g., PinSage, the HDGs can be cached and shared among

some layers, e.g., in one epoch. They can be shared even

during the entire training process, e.g., MAGNN, because

they do not change across training iterations. Under such cir-

cumstances, a specific layer can directly utilize the results of

previous NeighborSelection stage, making NAU more flexible.

As another example to demonstrate the expressiveness of

NAU, we show that two popular INHA models P-GNN [45]

and JK-Net [42] can be succinctly expressed in NAU. In P-

GNN, each “neighbor” of a vertex is defined as an “anchor-set”

containing several vertices, and each vertex has 𝑘 anchor-

sets as its neighbors. In stage Aggregation, each vertex first

aggregates features of vertices from the same anchor-set

to produce the feature of each anchor-set, then combines

features of its 𝑘 anchor-sets to compute its neighborhood

feature. The HDGs for P-GNN have three levels, where each

vertex at level 1 (resp. 2) represents an anchor-set (resp. a ver-

tex from the input graph). With such HDGs, the Aggregation
stage performs the hierarchical aggregation in a bottom-up

fashion as in MAGNN. In JK-Net, each vertex 𝑣 has 𝑘 “neigh-

bors”, and its 𝑖-th neighbor contains all vertices whose short-

est path length to 𝑣 is 𝑖 . In the Aggregation stage, each vertex

first combines features of vertices from the same “neighbor”

to generate the feature of each neighbor, then aggregates

features of its all 𝑘 neighbors. The neighborhood aggregation

schemes of P-GNN and JK-Net are quite similar. Thus JK-Net

can also be easily expressed by NAU.
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Figure 8. Example tensor scatter operation.

3.3 Expressing GNN Models
As a proof of concept, we give NAU programs for various

GNNmodels. Figure 7 outlines their sample implementations

for GCN, PinSage and MAGNN. We only show the imple-

mentations of Aggregation and Update functions, as UDFs

of NeighborSelection function are provided in Figure 5.

Remark. Note that in stage Aggregation, the subgraph of the

HDGs w.r.t. a specific level can be encoded in the classical co-

ordinate list (COO) format, and each vertex deduces its neigh-

borhood representation by using scatter operations [31],

e.g., scatter_add. Indeed, scatter operations can be achieved
by standard reduce operations using a “value” tensor and an

“index” tensor, where for each element in tensor 𝑣𝑎𝑙𝑢𝑒 , its

index is specified by the corresponding value in tensor 𝑖𝑛𝑑𝑒𝑥 .

By doing so, all elements with the same index in tensor 𝑣𝑎𝑙𝑢𝑒

are aggregated via a given accumulation operation. Figure 8

illustrates the computation in scatter_add operation. With

COO format, for each vertex at level 𝑖 , we can first obtain

its relevant vertices at level 𝑖 + 1 since they have the same

destination index in COO. Then we aggregate the features

of these vertices using scatter operations.

4 Hierarchical Aggregation
We next show how FlexGraph conducts hierarchical aggre-

gation in a space and time-efficient way, starting with the

storage mechanism of HDGs employed in FlexGraph.

4.1 Construction of HDGs
As indicated in Section 3, conceptually the NeighborSelection
stage is responsible for building HDGs. FlexGraph carries

out this by using a set of formatted records, and each record

represents a “neighbor” of a vertex in GNNmodels. From the

results, i.e., “neighbors” returned by the UDFs in the Neigh-
borSelection stage, it first creates a set of records in the form

of (root, nei = [leaf_0, leaf_1, . . . , leaf_n], nei_type). Here
each record is a tuple consisting of three elements, including

(i) the root vertex root who owns the “neighbor” nei, (ii) the
type of the “neighbor” nei_type (recall that there may exist

multiple neighbor types, e.g., metapath types in MAGNN),

and (iii) 𝑛 vertices leaf_0, leaf_1, . . . , leaf_n from the origi-

nal graph linked to the “neighbor” nei (i.e., leaves in HDGs).
Then FlexGraph constructs HDGs using these records in a

top-down manner, where the schema tree pre-defined by a

given GNN model is firstly included. After that, the nei and
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Figure 9. Data storage of HDGs in MAGNN.

.leaf_i’s in each record are encoded as vertices and added to

HDGs. Finally, it includes the edges from nei to nei_type,
and from each leaf_i to nei.

HDG storage optimization. To support hierarchical aggre-
gation, FlexGraph needs to store a subgraph for each level

(see Figure 6). Clearly, each such subgraph can be stored

using a classical CSC (compressed sparse column) format [3].

To do this, FlexGraph orders the vertices in the same level of

HDGs, and the local rank of each vertex 𝑣 is defined as 𝑣 ’s or-

der in the level that it resides in. For example, the local rank

of vertex 𝑝4 in Figure 3c is 3, as it is the fourth vertex at level

2 and the local ranks start from 0. Having defined local ranks,

each subgraph at level 𝑖 can be represented by two arrays: (i)

one vertex array Dst𝑖 consisting of local ranks of destination
vertices; (ii) and one offset array Offset𝑖 for source vertices
that defines the destination vertices of their associated edges.

Observe that HDGs have the following distinctive prop-
erties: (a) the HDGs w.r.t. different root vertices share the
same schema tree structure, (b) all vertices in HDGs only
have one outgoing edge except for those at the bottom level.

In light of this, we further revise the CSC format as follows

to get a more space-efficient storage.

(1) Subgraph of neighbor instances. This subgraph consists of
edges between levelmax_level andmax_level−1. It is stored
as CSC format by two arrays as above. For the MAGNN

case (Figure 2), we have max_level = 3 and this subgraph

is represented by arrays Dst3 and Offset3 (see Figure 9).

(2) Subgraph in-between. This subgraph of HDGs connects
the neighbor instances and schema trees. It clearly can be

stored as the above one, e.g., with an offset array offset2
and a vertex array Dst2 for the MAGNN case. However, the

vertex array can actually be omitted for space efficiency.

Indeed, observe that each element in the vertex array that

represents a neighbor instance, e.g., 𝑝1,. . . , 𝑝5 in Figure 3,

has exactly one outgoing edge. As a result, we can order the

source vertices consecutively according to the destination

vertices and the vertex array Dst2 becomes an ordered array

and can be omitted (see Dst2 in Figure 9). That is, to represent
this subgraph, it suffices to keep the offset array only, e.g.,
offset2, and omit the vertex array.

(3) Subgraphs for schema trees. FlexGraph does not store the

subgraphs for levels starting from leaves of schema trees. It
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only keeps a single global schema tree such that it is reused by

all roots in HDGs, rather than maintaining multiple physical

copies. As shown in Figure 9, all root vertices share a same

schema tree structure consisting of 3 vertices, a root vertex

and 2 children indicating two metapath types𝑀𝑃1 and𝑀𝑃2.

4.2 Hybrid Execution
With the HDGs that are stored efficiently, FlexGraph applies

a hybrid processing strategy for hierarchical aggregation. It

distinguishes the aggregation operations in the hierarchy

according to their different contexts, which demand distinct

approaches for better performance.

(1) Feature fusion operation for neighbor instance level. The

first step of hierarchical aggregation is to aggregate the fea-

tures of “pure” vertices at level max_level of HDGs. It out-
puts the features for the neighbor instance vertices. Note that

each “pure” vertex is taken from the original input graph and

is usually linked to multiple neighbor instance vertices (see

Figure 3). When performing this aggregation with widely-

used sparse tensor operations [31] (e.g., scatter operations in
Section 3.3), the features of all related “pure” vertices need

to be collected and materialized along their adjacent edges

in HDGs prior to doing the actual aggregation. It often leads

to memory explosion when the input graph becomes larger.

Take GCN and the Reddit dataset which contains 232K ver-

tices and 114M edges as an example. When implementing

GCN via sparse tensor operations, each vertex first sends a

message (i.e., its vertex feature) to its outgoing edges as edge
features, then the vertices aggregate the messages (i.e., edge
features) received from their incoming edges. Such sparse

tensor operations require that messages be explicitly materi-

alized, resulting in increased memory consumption by about

500× for the features of “pure” vertices.

Inspired by the vertex reduce operations in graph pro-

cessing systems, FlexGraph exploits vertex feature fusion
when executing this first-step aggregation. This is very use-

ful since most of GNN models apply simple aggregation

functions after gathering “pure” vertex features, e.g., sum,

min, max and mean. The idea of vertex feature fusion is sim-

ilar to the kernel fusion optimization applied in DGL [38].

Specifically, each thread first loads the feature of some source

“pure” vertices from level max_level into the per-thread lo-

cal memory. Using HDGs, FlexGraph then appends them

to the buffers w.r.t. the designated destination vertices at

level max_level − 1; and performs the aggregation within

the buffers directly. In this way, FlexGraph can eliminate the

overhead of materializing vertex features on massive edges.

(2) Sparse NN operation for intermediate level. In the second

step in hierarchical aggregation, FlexGraph aggregates the

features of neighbor instances to get the features for leaves

of schema trees. Unlike the neighbor instance level, each

neighbor instance at the intermediate level is linked to only

one schema tree leaf. Therefore, sparse NN operations do not

…
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Figure 10. Example dense tensor operation in Aggregation.

cause substantial memory overhead like neighbor instance

level. Under such condition, FlexGraph encodes HDGs at
the intermediate level as sparse tensor format, and performs

sparse NN operations to achieve aggregation of neighbor

instance features in this step, as showcased in Section 3.3.

(3) Dense NN operation for schema level. After the first two

steps, all subsequent steps in hierarchical aggregation are

conducted over the vertices in the schema trees of the HDGs.
As mentioned above, the schema tree has a fixed regular

form shared by all roots in HDGs. It is known that the dense

NN operations are more efficient in current deep learning

frameworks than the sparse ones but require a regular form

of the input. This is fully satisfied by the aggregation w.r.t.
features of the vertices in the schema tree. Therefore, Flex-
Graph carries out all the remaining aggregation steps via

dense NN operations to improve performance.

As an example, consider the schema tree for MAGNN

shown in Figure 3, where each root vertex in HDGs is inci-
dent to 2 types of metapath. For an input graph having 𝑛 ver-

tices, i.e., roots in HDGs, the raw input for aggregating meta-

path types can be represented by a tensor of shape 2𝑛 × dim,

where dim refers to the feature dimension of vertices at level

1. If each root vertex needs to sum all the relevant features of

metapath types, we can obtain a new tensor by reshaping the

raw tensor to 𝑛× 2×dim. Here the reshaping operation only

changes the logical layout of tensors, and does not involve

memory copy. We next sum each row of the new tensor in

the first dimension to get the results (see Figure 10).

5 Distributed GNN Training
FlexGraph adopts a shared-nothing architecture for dis-

tributed GNN training. Given a graph 𝐺 = (𝑉 , 𝐸), where
𝑉 and 𝐸 are the vertex and edge sets of𝐺 , FlexGraph divides

𝑉 into 𝑘 disjoint partitions. For each partition of vertices,

FlexGraph constructs a subgraph of HDGs in parallel. Such

HDGs are assigned to 𝑘 shared-nothing workers for dis-

tributed training. Messages are exchanged to synchronize

features at the end of each GNN layer.

To improve the performance of distributed GNN training

with FlexGraph, we further develop two main optimizations:

workload balancing and pipeline processing. Observe that

the ideas of both optimizations are not conceptually new

and have been commonly used to improve the performance

of distributed systems. Here we translate these generic ideas
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Figure 11.Workload balancing in FlexGraph.

and principles into effective optimization techniques for dis-

tributed GNN training with HDGs.

Workload balancing. As we have seen in Section 2.2, GNN

models exhibit diversified definitions of “neighbors” and ag-

gregation schemes. Conventional graph partitioning usually

takes static metrics, e.g., vertex weight or edge weight, as a
balance indicator, which is insufficient to ensure workload

balancing for GNN model training. Inspired by Fan et al. [6],
FlexGraph adopts an application-driven strategy to balance

GNN training workload. In a nutshell, (i) FlexGraph learns

a cost function 𝑓 to estimate the training cost for the given

GNN model, instead of static metrics; (ii) with function 𝑓 ,

FlexGraph identifies and migrates HDGs from overloaded

partitions to underloaded ones to balance workload.

Cost function. FlexGraph introduces a cost function 𝑓 to char-

acterize the training cost of GNNmodels. Intuitively, the cost

function 𝑓 estimates the training cost w.r.t. each root vertex

in theHDGs, including those costs consumed by Aggregate

and Update operations. The training cost of a partition is

the sum of the costs incurred by all its owned root vertices.

Following Fan et al. [6], FlexGraphmodels 𝑓 as a polynomial

function over a metric set, which consists of two kinds of

metric variables. (i) The first set of variables 𝑛1, . . . , 𝑛𝑘 indi-

cate the numbers of neighbors for different types, e.g., for
vertex𝐴 in MAGNNwe have 𝑛1 = 1 and 𝑛2 = 4, since𝐴 has 1

path matching the first metapath𝑀𝑃1 and 4 paths matching

𝑀𝑃2 (see Figure 11a). (ii) The second kind of variables𝑚1, . . . ,

𝑚𝑘 represent the size of each type of neighbor instance, e.g.,
in the MAGNN case, if each vertex has a feature of dimension

20, then𝑚1 =𝑚2 = 60 since each path instance has 3 vertices.

Taking MAGNN as an example, we can define its cost

function as 𝑓 = 𝑛1𝑚1 +𝑛2𝑚2, which essentially estimates the

size of its neighbors for a root vertex. Suppose that the vertex

set is partitioned as shown in Figure 2a. We thus put root

vertices 𝐵,𝐶, 𝐷, 𝐸 and their associatedHDGs in one partition

and root vertices 𝐴, 𝐹, 𝐻, 𝐼,𝐺 and their associated HDGs in
another. Note that 𝑓 (partition #1) = 60. This is because there

is only one path of size 60 that matches𝑀𝑃1 in partition #1

(see vertex 𝐵 in Figure 11a). Similarly, 𝑓 (partition #2) = 600.

That is, although the partition is well-balancedw.r.t. vertex
size and edge size of the input graph, the GNN training

workload can be very skewed and needs to be re-balanced.

Online workload balancing. FlexGraph uses an online work-

load balancing strategy. FlexGraph first estimates workload

of each partition by its cost function 𝑓 . It identifies and

migrates some HDGs from overloaded partitions to under-

loaded ones. The migration process should comply with the

data dependency of HDGs to avoid high communication

overheads in GNN training. Observe that synchronization is

only needed for root vertices and leaf vertices across parti-

tions, since only these vertices may be replicated. Thus we

can use an induced graph of HDGs to assist the migration

process. The induced graph can be constructed by connect-

ing each root vertex and its leafs inHDGs. Figure 11a depicts
the HDGs of MAGNN for the sample graph from Figure 2a

and its induced graph is shown in Figure 11b, where the

edges represent data dependency in MAGNN training.

To bound the communication cost in distributed training,

FlexGraph first generates a pre-defined number of balancing

plans and chooses the one that cuts the fewest edges in the

induced graph. A balancing plan is generated by identify-

ing migration candidates in overloaded partitions, as in the

heuristic ParE2H [6]. Specifically, in an overloaded parti-

tion, FlexGraph first conducts a BFS traversal starting from

a seed vertex. Following the BFS order, it includes the ver-

tices within a cost budget in a greedy manner. The budget is

computed using the cost function 𝑓 . The vertices excluded

in the process are treated as migration candidates. Recall

that we have 𝑓 (partition#1) = 60 and 𝑓 (partition#2) = 600

for MAGNN over the partitions of Figure 2a. Two possible

workload balancing plans are as follows: from partition #2

to partition #1, it (i) either migrates root vertices {𝐼 ,𝐺} and
their associated HDGs, or (ii) {𝐴} and its associated HDG.
Both plans would result in balanced workload, i.e., 360 vs.
300. FlexGraph chooses the second plan. This is because the

second plan does not increase the number of cut edges (see

Figure 11c), while the first one increases the number of cut

edges by 5 (new cut edges are colored blue in Figure 11b).

Pipeline processing. FlexGraph also inherits pipeline pro-

cessing to improve distributed GNN training. HDGs charac-
terize the dependencies among vertices, and each vertex cap-

tures its required vertices at the bottom level ofHDGs, while
the features of these vertices may reside in other partitions

under a distributed environment. As a result, FlexGraph
partially aggregates the features of such vertices that co-

locate at the same partition when possible. At the same

time, FlexGraph overlaps partial aggregations and commu-

nications. Once the communication is finished, FlexGraph
aggregates the partially aggregated results and synchronized

messages to finish the bottom-level aggregation of HDGs.



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Wang and Yin, et al.

Here we take GCN as an example to show how pipeline

processing works. In distributed training, each vertex may

only have features of its partial 1-hop neighbors at the parti-

tion it resides in (local partition). To aggregate its all 1-hop

neighbors’ features, a straightforward way is to first collect

features of its 1-hop neighbors at other partitions (remote

partitions) via message passing, then sum received features

and features of its neighbors at local partition. To overlap

partial aggregations and communications, for each vertex,

FlexGraph first combines its partial 1-hop neighbors’ fea-

tures at a remote partition into a single assembled message

that includes the sum, reducing the number of messages that

must be transmitted and buffered. While messages are trans-

mitted to the local partition, each vertex starts to sum its

partial 1-hop neighbors’ features at the local partition and ob-
tains an intermediate result. After receiving messages from

remote partitions, each vertex directly sums the message

with the intermediate result. While pipeline processing has

been widely adopted by parallel graph processing systems,

as far as we know, none of dataflow-based deep learning

frameworks, e.g., TensorFlow, takes it into account. On aver-

age, this optimization improves the performance by 11.06%

(see details in Section 7.7). Note that partial aggregation is

available only when the aggregation function is commuta-

tive. In other cases (e.g., neighbors’ features are aggregated
via an LSTM), FlexGraph benefits from the above batching

communication strategy, as combining and transmitting fea-

tures of multiple vertices in a single large message is more

efficient than directly transmitting multiple small messages.

6 Implementation of FlexGraph
We next outline an implementation of the distributed GNN

framework FlexGraph.

Architecture Overview. FlexGraph adopts a four-tier archi-
tecture shown in Figure 12. (1) Its top layer is user interfaces

ofNAU. Algorithm developers are allowed to provide 3 UDFs

for each stage in NAU to express a GNN model. (2) At the

core of FlexGraph is a GNN execution engine. It translates

GNN models expressed by 3 UDFs in NAU into execution

plans in NN framework and graph processing engine. (3)

Underlying the execution engine are (a) a NN framework

which is responsible for NN operations in GNN models, (b)

a graph processing engine for graph-related operations in

models, (c) an application-driven load balancer to balance the

workloads across different workers, and (d) an MPI (message

passing interface) controller for communications among dif-

ferent workers (machines). (4) The bottom layer is a storage

system, which manages large graph data and vertex feature

data in DFS (distributed file system). It is accessible to the

NN framework, graph processing engine and load balancer.

FlexGraph is implemented on top of PyTorch and libgrape-
lite [23], an open-source library for parallel graph processing.
FlexGraph utilizes PyTorch as the NN execution runtime, and

applies libgrape-lite to express graph-related operations.

Graph Engine

Storage System (DFS)

GNN Execution Engine

Aggregate
Neighbor
Selection

Update

Load Balancer MPI Controller

NN Framework
Fault-Tolerance 

Module

NAU Interface: UDFs for 3 Stages
FlexGraph APIs:

    HDG structure
    Sync features
    Propagation ops
    GNN layers
    …

Figure 12. FlexGraph Architecture.

Integrating libgrape-lite into FlexGraph. A GNN model

usually involves many operations on the graph structure. It is

hard to manage (large) graph data and express graph-related

operations on existing deep learning frameworks. Current

graph processing systems [4, 8, 12] can naturally express

many graph-related applications by adopting vertex-centric

or subgraph-centric programming paradigm, and scale them

to graphs with billions of vertices and edges. We develop a

daemon program for FlexGraph to co-work with PyTorch by

processing requests of graph operations from Python code,

and putting the query results into shared memory. In the

daemon, libgrape-lite is utilized for storing and processing

graphs and features attached to the vertices.

Hybrid aggregate executions. FlexGraph adopts differ-

ent aggregate approaches (feature fusion operations, sparse

and dense tensor operations) for different levels of HDGs.
Sparse/dense tensor operations can be implemented in Py-

Torch, while feature fusion operations are implemented

in libgrape-lite, as these operations rely on graph struc-

tures. To make feature fusion operations more efficient, Flex-
Graph takes full advantage of powerful SIMD (single in-

struction, multiple data) operations (e.g., Intel AVX-512 in-
structions) to process data of multiple dimensions. It is also

equipped with memory padding for better cache efficiency.

Since FlexGraph uses PyTorch to support the training pro-

cess of GNNmodels, operations implemented in libgrape-lite
have to be registered in PyTorch. FlexGraph provides a set

of built-in aggregation functions, including sum, average,
max and min. Along the same line, users can add other ag-

gregation functions as UDFs (see Section 4.2).

Workload balancing. We implemented an application-

driven load balancing component ADB in FlexGraph that

works as follows. ADB first partitions the input graph

offline, utilizing conventional graph partitioning algorithms,

e.g., PulP [32] or Hash. In each training process for a

specific GNN model, it samples running logs (including

the values of variables defined in Section 5 for each root

vertex in HDGs) online. Once the balance factor exceeds

a pre-defined threshold, it learns a cost function 𝑓 via

polynomial regression from the logs, to characterize

the GNN training cost patterns. Guided by 𝑓 , ADB then

generates 5 balancing plans and chooses the one that incurs

the least communication cost in GNN training (Section 5).
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Table 1. Datasets used in evaluation.

Dataset #vertices #edges #features #labels

Reddit 233K 11.6M 1433 41

FB91 16M 1.3B 50 10

Twitter 42 M 1.5B 50 5

IMDB 11616 34212 5257 4

7 Evaluation
We demonstrate the efficiency and scalability of FlexGraph
by evaluating it on different datasets and GNN models.

Datasets. We used 4 datasets in our evaluation, including (a)

Reddit [16], an online discussion forum graph; (b) FB91 [19],
a synthetic dataset from LDBC benchmark; (c) Twitter [35], a
social network with 42 million users; and (d) IMDB [10, 18],

a dataset about movies and television programs. Table 1

summarizes their statistics.

GNN models. We used three GNN models, GCN [21], Pin-

Sage [43], MAGNN [10], one for each GNN model category.

We used the default implementations in each competitors or

provided by the paper authors. All these models have 2 lay-

ers. We determine the values of parameters (e.g., path length

in PinSage) for those GNN models by comprehensively refer-

ring to the reported details [10, 21, 43] together with official

examples and guidelines of DGL and Euler. In PinSage, each

vertex starts 10 random walks with length 3, and chooses

top-10 visited vertices as its neighbors. In MAGNN, the input

graph consists of 3 types of vertices, and we define 6 metap-

ath types, with each metapath instance containing 3 vertices.

Reddit, FB91 and Twitter are used in all three models. In ad-

dition, the implementation of MAGNN on other frameworks

reports OOM (out of memory) on these three big graphs.

Therefore, we introduce a small graph IMDB for MAGNN.

Baselines. We compared FlexGraph with 4 state-of-the-art

baselines: (a) PyTorch v1.5.1 [30], (b) DGL v0.4.3 [38], a GNN

framework for a single machine environment that adopts

GAS-like programming abstraction, (c) DistDGL [49], an ex-

tension of DGL to support distributed GNN training, and (d)

Euler [13], a distributed GNN framework with TensorFlow

as its NN backend. We do not take NeuGraph as a baseline,

as its implementation is not yet available publicly. PyG can-

not efficiently support GNN training at scale, as it relies on

sparse tensor operations (i.e., scatter operations) to aggre-

gate features while sparse tensor operations generate large

intermediate message tensors, as explained in Section 4.2 and

Wang et al. [38]. Therefore, PyG is not utilized in our eval-

uation. AliGraph [50] is another popular distributed GNN

framework. AliGraph and Euler adopt the same mini-batch

training strategy and similar optimization strategies (e.g., an
efficient graph sampling query engine that supports Gremlin,

a functional language that enables users to succinctly express

complex graph sampling). So we do not adopt AliGraph as

the baseline system in experiments.

All experiments were evaluated on an HPC cluster with

16 machines, each with 96 cores powered by 2.5GHz, 512 GB

Table 2. Runtime in seconds for 1 epoch of 3 GNNmodels on

a single machine; “X” indicates the system does not support

the target GNN model and OOM represents out of memory.

Model Datatset PyT. DGL DistD. Euler FlexG.

GCN

Reddit 20.7 2.6 937.3 >3600 0.7

FB91 400.9 40.2 >3600 OOM 26.6

Twitter 393.1 244 >3600 OOM 162.5

PinSage

Reddit 71.6 25.1 25.8 1.3 0.6

FB91 787.9 311.4 308.1 72.1 21.2

Twitter 917.8 350.1 353.3 166 64.9

MAGNN

IMDB 97.5 X X X 0.8

Reddit OOM X X X 7.3

FB91 OOM X X X 114.8

Twitter OOM X X X 234

RAM, and 3.25GB/s NIC. In experiments, we focused on the

end-to-end time to scan one epoch of data. All results are

computed by calculating the averages over 10 epochs.

7.1 Performance on a Single Machine
We first evaluated FlexGraph by comparing it with its com-

petitors on a single machine. Table 2 reports the end-to-end

time of one epoch for three models. We find the following.

(1) Overall, FlexGraph achieves 2.4 ∼ 119.3× speedups com-

pared with PyTorch, 1.5 ∼ 41.8× speedups compared with

DGL, 5.4 ∼ 1399× speedups compared with DistDGL, and

2.2 ∼ 3.4× speedups compared with Euler on GCN and Pin-

Sage. In addition, only FlexGraph can efficiently support

MAGNN on large graphs.

(2) For GCN, its implementation in PyTorch is based on sparse

tensor operations (i.e., sparse-dense matrix multiplication),

while FlexGraph exploits efficient feature fusion operations

to offload inefficient sparse operations. DGL adopts similar

strategies with FlexGraph, but does not perform as well as

FlexGraph. The reason is that FlexGraph applies efficient

SIMD instructions to process multi-dimensional data. Note

that DistDGL and Euler perform much worse on GCN than

other frameworks; and Euler even reports OOM on FB91 and
Twitter. This is caused by their mini-batch strategy. For GCN

with 2 layers, it needs to first gather full neighbors within

2-hops for each vertex, and then converts these vertices and

their relationships into a new subgraph. For dense graphs

(e.g., Reddit) and graphs with highly skewed power-law de-

gree distributions (e.g., FB91 and Twitter), this operation
incurs tremendous computation and memory overhead.

(3) For PinSage, we found that most (over 95%) of time in

PyTorch, DGL and DistDGL is used to conduct randomwalks.

DistDGL reports almost the same performance with DGL,

as they have the same implementation of conducting ran-

dom walks and aggregating neighbors’ features. Considering

FlexGraph is more efficient in handling graph-related opera-

tions, we further directly replace randomwalks in DGL (Dist-

DGL) with the corresponding implementation in FlexGraph.
After that, we found that the performance of PinSage on

DGL (DistDGL) is almost the same as it on FlexGraph. Euler
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outperforms PyTorch and DGL (DistDGL), thanks to its effi-

cient graph sampling engine using Gremlin as its query lan-

guage. Euler also performs worse than FlexGraph, as it only
uses sparse tensor operations in stage Aggregation, while
FlexGraph applies efficient feature fusion operations.

(4) On MAGNN, FlexGraph achieves large speedups com-

pared with PyTorch as (i) FlexGraph utilizes efficient parallel

graph processing to findmetapath instances and buildHDGs;
and (ii) the hybrid aggregation strategy is very efficient. Note

that in the implementation with PyTorch on IMDB, over 95%
of the total time is used to find metapath instances. Once

these instances are found, they can be used during the whole

training process. Having metapath instances in place, the

training process of one epoch can be finished within 1 sec-

ond. The hybrid aggregation strategy helps to achieve a up

to 3.28× speedup for stage Aggregation on MAGNN (see

Section 7.5). Note that PyTorch reports OOM on Reddit,
FB91 and Twitter, as it explicitly generates large interme-

diate tensors to store features of vertices in each metapath

instance. Instead, FlexGraph applies feature fusion opera-

tions to avoid this.

Summary of performance gain. FlexGraph has the fol-

lowing features: (a) replacing sparse tensor operations with

efficient graph operations (feature fusion operations) in flat

aggregation; (b) efficient NeighborSelection stage; (c) HDG-
based hybrid execution. We next analyze the performance

gain of FlexGraph on three types of models, respectively.

(1) DNFA models mainly benefit from (a). Instead of sparse

tensor operations, FlexGraph applies feature fusion opera-

tions to eliminate the overhead of materializing vertex fea-

tures on massive edges at the bottom level of HDGs, as well
as SIMD instructions to accelerate aggregation operations.

(2) INFA models benefit from both (a) and (b). Like DNFA,
aggregation of INFAmodels is conducted via efficient feature

fusion operations. The improvement is also from efficient

neighbor selection accomplished via graph processing.

(3) INHA models benefit from (a), (b) and (c). FlexGraph out-

performs because of the feature fusion operations in aggre-

gating features at the bottom level of HDGs, the efficient

extractions of neighbor instances, and moreover, the HDG-
based hybrid execution of hierarchical aggregation.

7.2 Simulating INFA and INHA in Existing Systems
To get more insights of performance improvement in Flex-
Graph, we next compared FlexGraph with another baseline

Pre+DGL. Pre+DGL “simulates” FlexGraph by combing ex-

isting GAS-like frameworks with a pre-computation process.

Specifically, it first pre-computes an expanded graph to ma-

terialize the HDGs; and then applies GAS-like operations

on the expanded graph. We used DGL as the GAS-like GNN

framework. Since DNFA models do not need to build HDGs,
we only evaluated the training of INFA and INHA models.

Table 3. Runtime in seconds of PinSage and MAGNN; “X”

indicates that the target GNN model is not supported.

Model Datatset DGL Pre+DGL FlexGraph

PinSage

Reddit 25.1 9.98 0.6

FB91 311.4 112.9 21.2

Twitter 350.1 287.4 64.9

MAGNN

Reddit X 5.8 4.2

FB91 X 78.9 59.3

Twitter X 202.4 132.3

For PinSage, HDGs in distinct epochs are different, since

“neighbor” selection process (i.e., conducting random walks)

is involved at each epoch. Therefore, the expanded graph

materializing theHDGs cannot trivially be pre-computed but

only approximated. To simulate PinSage, we pre-compute

lots of random walks, associate an “importance” weight with

each pair of vertices, and do weighted sampling at runtime.

The results would be qualitatively the same (for enough

random walks performed offline in advance).

For MAGNN, since theHDGs do not change across epochs,
we pre-compute andmaterializeHDGs as an expanded graph
in advance, and directly conduct GAS-like operations on

the expanded graph. Note that MAGNN involves multi-step

aggregation operations. Therefore, multiple GAS-like opera-

tions are conducted in each layer of MAGNN.

The comparison of Pre+DGL with FlexGraph is displayed

in Table 3, where the reported time only considers the compu-

tations on the expanded graph, and does not contain the cost

of pre-computing and storing the expanded graph. Note that

in MAGNN, theHDGs remain unchanged at different epochs

and NAU does not require to execute the NeighborSelection
stage in every GNN layer. Therefore, here we only report

the total time of MAGNN’s Aggregation and Update stages
in FlexGraph. We can observe that for PinSage, Pre+DGL

performs much better than DGL, since the complexity of

weighted sampling on the expanded graph is much lower

than conducting random walks on the original graph. Never-

theless, FlexGraph still outperforms Pre+DGL, as Pre+DGL

needs to build HDGs by conducting weighted sampling on

the (perhaps larger) expanded graph. For MAGNN, Flex-
Graph achieves better performance than Pre+DGL. The per-

formance gain is partly from our hybrid aggregation strategy

which is more efficient than kernel fusion operations in DGL.

In addition, FlexGraph benefits from efficient SIMD instruc-

tions to process multi-dimensional data, as explained in GCN.

We should remark that not all INFA and INHA models

can be “simulated” by Pre+DGL. For example, if a GNN

model is performed on a dynamic graph (i.e., the graph

structure evolves over time), the expanded graph cannot

be pre-computed in advance. Instead, the flexible interfaces

of NAU allow users to easily handle such situation.

7.3 Performance on Multiple Machines
We compared FlexGraph with DistDGL and Euler in a dis-

tributed environment on the Reddit dataset. Note that we
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Figure 13. End-to-end performance on multiple machines.

Table 4. Breakdown of 3 stages on Twitter (in seconds).

Model Nbr.Selection Aggregation Update

GCN 0 (0%) 159.3 (98%) 3.2 (2%)

PinSage 27.4 (42.2%) 34.4 (53%) 3.1 (4.8%)

MAGNN 101.8 (43.5%) 130 (55.5%) 2.3 (1%)

only report the result of MAGNN in FlexGraph, as it cannot
be implemented in DistDGL and Euler.

(1) As shown in Figure 13, on all 3 GNN modes, FlexGraph
nearly achieves linear speedup as the increase of machines.

(2) On GCN, FlexGraph outperforms DistDGL by 1021.76×
on average. We do not report the performance of GCN on

Euler, since it cannot finish the training process of one epoch

in half an hour. The reason is the mini-batch strategy they

adopt, as we explained in Section 7.1.

(3) On PinSage, FlexGraph outperforms Euler and DistDGL

by up to 2.04× and 40.34×, respectively. The speedup over

Euler is mainly because of the hybrid aggregate execution

scheme and pipeline processing. In contrast, Euler adopts a

dataflow-based framework, and starts the Aggregate oper-

ation after all required features are synchronized from other

machines, using sparse tensor operations. Euler performs

much better than DistDGL, and we find that conducting

random walks in Euler is more efficient than DistDGL.

7.4 Breakdown Analysis
Table 4 displays the stage-level time breakdown of the se-

lected models based on the Twitter dataset in a single ma-

chine environment, from which we can observe that the

stage time distribution varies greatly from model to model.

Next we present a detailed stage-by-stage analysis as follows.

(1) Stage NeighborSelection varies according to the complex-

ity of UDFs to select “neighbors” (see Figure 5). For DNFA
models (e.g., GCN), the neighborhood is defined as 1-hop

neighbors. Therefore, the input graph structure can capture

dependencies among vertices, and we do not need to build

HDGs explicitly. In contrast, this stage in INFA and INHA
models usually involves many graph-related operations (e.g.,
conducting random walks and finding metapath instances).

Over 40% of end-to-end time is used in this stage, even we

have integrated an efficient parallel graph processing library

into FlexGraph. This result clearly demonstrates the neces-

sity of efficient graph processing for a GNN framework.

(2) Stage Aggregation is executed based on HDGs, and its

execution time is affected by both the size of HDGs and
the complexity of the aggregation function for each level of
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Figure 14. Effectiveness of hybrid aggregation.

HDGs. GCN and PinSage have the same aggregation func-

tion. Compared with GCN, each vertex in PinSage has a

relatively small size of neighbors. Therefore, the time spent

in this stage for PinSage is much shorter than GCN. MAGNN

also spends a quite long time to execute the aggregation op-

eration, although it has smaller sizes of neighbors than GCN,

as its aggregation function is more complex than GCN.

(3) Stage Update takes a relatively small percentage of end-

to-end time. This stage usually only involves dense NN op-

erations on each vertex, which can be efficiently executed in

current deep learning frameworks.

7.5 Hybrid Aggregation
Wenext evaluated the effectiveness of the hybrid aggregation

strategy of FlexGraph on datasets FB91 and Twitter. Denote
by SA the strategy that uses only sparse scatter operations

in aggregation (e.g., Figure 8), by SA+FA the strategy that

exploits both sparse tensor and feature fusion operations for

aggregation, and by HA the hybrid aggregation strategy (i.e.,
(SA+FA)+dense tensor operations). Figure 14 shows the per-
formance of the Aggregation stage in FlexGraph that adopts

these aggregation strategies with partition number 𝑘 = 8.

(1) Overall, HA achieves on average a 6.73× speedup (up to

10.99×) compared with SA in the Aggregation stage.

(2) Dense tensor operations cannot be applied in GCN and

PinSage, as their schema trees keep a flat structure and do not

involve aggregation operations, while dense tensor opera-

tions only are only used for aggregations in the schema trees.

Therefore, HA and SA+FA report the same performance in

these two models. On both GNNmodels, feature fusion oper-

ations improve the aggregation performance by on average

7.63× and 9.73×, respectively. This verifies the effectiveness
of embracing parallel graph processing into NN workloads.

(3) On MAGNN, HA beats SA by 2.81× on average. We ob-

serve that in HA, dense tensor operation contributes 12.61%

speedup over SA on average. For example, by disabling dense

tensor operation of HA, a round of aggregation of MAGNN

increases from 18.63s to 21.74s over dataset Twitter.

7.6 Workload Balancing
We next evaluated the impact of application-driven workload

balancing strategy ADB of FlexGraph. We compared it with

the classical Hash partitioning and a state-of-the-art graph

partitioner PulP [32]. Figure 15a shows the performance of

stageAggregation of GCN, PinSage andMAGNN over Twitter
with partition number 𝑘 = 8. Our strategy ADB beats Hash
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Figure 15. Effectiveness of workload balancing (WB.) and

pipeline processing (PP.)

and PulP by 23.41% and 33.03% on average, respectively.

The improvement over PulP is larger, since the partitions

generated by PulP are more skewed than those of Hash.

7.7 Pipeline Processing
We also evaluated the effectiveness of pipeline processing.

Figures 15b and 15c show the performance of stage Aggrega-
tion of FlexGraph for one epoch for all 3 GNN models over

FB91 and Twitter, with/without pipeline processing. The par-
tition number 𝑘 is 8. On average, with pipeline processing,

the performance of FlexGraph improves by 15.75%, 5.72%,

29.23% on GCN, PinSage, and MAGNN, up to 27.2% and

6.17%, 41.11% respectively. This verifies the effectiveness of

pipeline processing in a distributed setting. PinSage achieves

the smallest improvement, as each vertex in PinSage has a

relatively small size of neighbors, thus communication sizes

among different machines are also relatively small.

7.8 Memory Consumption of HDGs
We last evaluated the memory consumption of HDGs,
comparing to the size of the input graph 𝐺 (see Table 5).

FlexGraph does not construct extra HDGs for GCN, since
the input graph serves the desired purpose well. Compared

with PinSage, memory consumption of HDGs for MAGNN

is relatively large, since the size of neighbor for each vertex

is relatively large, and each neighbor contains multiple ver-

tices from 𝐺 . With the optimized storage strategy, HDGs of
MAGNN take space at most 1.28× of the input graph. Once

the HDGs for INFA and INHA models are constructed, the

input graph 𝐺 can be swapped to disk to save memory if

necessary, since the aggregation and update operations are

executed directly upon HDGs, not the input graph.

8 Related Work
It is challenging to train GNN models on large-scale graphs.

In traditional deep learning frameworks, training samples are

mutually independent, and developers usually adopt a mini-

batch strategy to train large-scale data. However, graphs in-

herently represent the dependencies among training samples

(i.e., vertices), and each vertex in GNN models must incorpo-

rate its depending samples (i.e., neighbors). Existing solutions
to support GNN training at scale can be roughly divided into

two categories. The first is to deal with all vertices/edges of

the entire large graph simultaneously on multiple devices/-

machines, and typical solutions include NeuGraph [26] and

ROC [20]. NeuGraph first splits a large graph into multiple

Table 5. Mem. footprint of HDGs w.r.t. input graphs.

Reddit FB91 Twitter
PinSage 2.03% 11.99% 28.37%

MAGNN 27.74% 107.27% 128.42%

chunks, using a 2-D graph partitioning; it then processes one

chunk each time where a GAS-like abstraction (i.e., SAGA-
NN) is applied on each chunk and the intermediate result of

each chunk is stored; and finally it combines all intermediate

results after all chunks are processed. The second category

is to adopt various neighbor sampling strategies to obtain

full or partial neighbors within 𝑘 hops of each vertex for a

GNN model with 𝑘 layers. Then the training process takes

a batch of vertices as well as their neighbors within 𝑘 hops

in a mini-batch. Note that in each GNN layer, each vertex

still only aggregates features of its sampled 1-hop neighbors.

AliGraph [50] and Euler [13] fall into this category. To al-

low users to succinctly express various sampling strategies,

AliGraph adopts Gremlin as the high-level query language

for its sampling engine, which translates every sampling

query into a distributed execution plan that runs across mul-

tiple machines. Note that both aforementioned distributed

training strategies are designed for DNFA models only.

9 Conclusion and Future Work
GNN models vary in both the definitions of “neighbors”

and neighborhood aggregation schemes, which are beyond

the reach of existing GNN frameworks. To alleviate the

expressivity challenge, we propose a new GNN program-

ming model NAU, which utilizes hierarchical dependency

graphs HDGs to express hierarchical dependencies among

vertices. Based onNAU, we present a distributed GNN frame-

work FlexGraph, which adopts several optimization strate-

gies from different aspects to improve its performance.

Currently, GPUs have been widely used in deep learn-

ing tasks due to their much higher massive parallelism and

memory access bandwidth than CPUs, and there also ex-

ist some solutions focusing on exploiting GPUs for GNN

performance acceleration [20, 25, 26]. These solutions are

orthogonal approaches to support efficient GNN training.

We believe that the NAU programming abstraction and pro-

posed optimization strategies can be applied into GPUs, and

take the support of GPUs as one potential future direction.
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