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ABSTRACT

GraphScope is a system and a set of language extensions that en-
able a new programming interface for large-scale distributed graph
computing. It generalizes previous graph processing frameworks
(e.g., Pregel, GraphX) and distributed graph databases (e.g., Janus-
Graph, Neptune) in two important ways: by exposing a unified
programming interface to a wide variety of graph computations
such as graph traversal, pattern matching, iterative algorithms and
graph neural networks within a high-level programming language;
and by supporting the seamless integration of a highly optimized
graph engine in a general purpose data-parallel computing system.

A GraphScope program is a sequential program composed of
declarative data-parallel operators, and can be written using stan-
dard Python development tools. The system automatically handles
the parallelization and distributed execution of programs on a clus-
ter of machines. It outperforms current state-of-the-art systems by
enabling a separate optimization (or family of optimizations) for
each graph operation in one carefully designed coherent framework.
We describe the design and implementation of GraphScope and
evaluate system performance using several real-world applications.
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1 INTRODUCTION

Distributed execution engines with high-level language support
such as Koalas [45], Dask [15], and TensorFlow [5], have been
widely adopted with great success in the development of modern
data-intensive applications. Two factors largely account for the
success of these systems. First, they provide developers with easy
access to a core subset of domain-specific operators, such as re-
lational join, matrix multiplication, and convolution, and allow
further extensions via arbitrary user-defined functions. Second,
they adopt the dataflow execution model, which is more scalable
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Figure 1: The GraphScope system stack, and how it interacts

with the PyData ecosystem.

than alternative parallel-computing paradigms, such as Parallel
Random Access Machines (PRAM) [20], and enables sophisticated
optimizations to achieve high performance.

However, the operator semantics supported by these systems are
ill-suited to efficiently solve a variety of important problems which
requires a deeper analysis of heterogeneous data. In such cases, anal-
ysis tools involving graph computation are often called for instead.
Social network mining, for example, routinely requires ranking and
classification algorithms such as PageRank [44], connected compo-
nents [29], and betweenness centrality [23]; similarly for identifying
fraudulent activities in on-line payments, which involves matching
of complex (subgraph) patterns [48]. And many algorithms [60]
commonly used in product and advertisement recommendation
boil down to deep learning over graph-structured data.

Given the importance of graph computation, it is rational to
design a scalable engine for processing large graphs with high-level
language support. Ideally, such an engine should allow developers
to easily program graph algorithms and naturally exploit graph-
specific optimizations, while at the same time, maintaining the scal-
ability and efficiency of a dataflow execution model. Unfortunately,
it is challenging to efficiently scale diverse graph computation types
(Section 2.2) that require different design trade-offs and optimiza-
tions tightly coupled with specific programming abstractions. For
example, while the popular vertex-centric model [34] works nicely
for iterative algorithms, developers still have to derive specializa-
tions for random graph walking and pattern matching [24, 61]. This
explains why existing graph processing systems [25, 32, 39] are
designed for a particular type of graph computation.

In contrast, real-world graph applications are often far more
complicated that intertwine many types of graph computation in
one single workload. As a result, developers often have to comprise
multiple systems with potentially very different programming mod-
els and runtime, which gives rise to a number of issues such as
managing the complexities of data representation, resource sched-
uling, and performance tuning across multiple systems, etc. There



thus urgently needs a unified programming abstraction and run-
time that allows developers to write applications in a high-level
programming language for a wide range of graph computations.

Furthermore, in web-scale graph analytics, a graph pipeline also
includes the construction of an input graph from various sources,
as well as the preparation of final results for the downstream tasks
to consume, which needs complex data extraction, cleaning, and
transformations (such as joins), and often requires excessive data
movements and non-trivial interplay among an array of systems
(such as Hadoop [37] and Spark [63]). There have been attempts
to implement diverse graph computations on top of the dataflow
model (GraphX [26]) to ease such inter-operations. However, cast-
ing graph computations as a sequence of relational operators can
incur significant overheads for problems that require low-latency
such as graph traversal [4]. Moreover, as we will show in Section 5,
it fails to take advantage of the well-defined semantics of graph
computations to enable sophisticated optimizations such as pipelin-
ing. As a result, while distributed graph algorithms are already hard
to implement efficiently in existing systems, implementing complex
graph pipelines becomes more challenging.

To tackle the aforementioned problems, we propose a unified
engine for big graph processing called GraphScope. Figure 1 gives
the conceptual overview of the GraphScope system stack. At the
bottom is a dataflow runtime that serves as the fabric to compose
distributed execution of different graph computations, leveraging
all the resources available in a cluster. This execution layer enables
a separate optimization (or family of optimizations) for each graph
computation in one carefully designed coherent framework, while
at the same time it offers a simple and powerful programming inter-
face. Further up the stack, we have developed a graph library with a
large fraction of frequently used graph computations. Last but not
least, by embedding the language (and hence the graph library) in
Python, GraphScope can be integrated with other existing engines
to deliver a holistic development experience.

In summary, we make the following contributions:
• A simple and unified programming interface for a wide
variety of graph computations, which supports language
constructs for graph traversal, pattern matching, iterative
algorithms, and graph sampling (for GNNs).

• A distributed dataflow runtime that enables a separate opti-
mization (or family of optimizations) for each graph opera-
tion in one carefully designed coherent framework.

• An in-memory data store that automatically manages the
representation, transformation, and movement of interme-
diate results to facilitate efficient distributed execution for
different computations.

• We adopt the language integration approach advocated by
Python to integrate the graph operators into a general-
purpose high-level programming interface. This approach
allows us to seamlessly combine GraphScope with other
data processing systems such as Koalas, Dask, and Tensor-
Flow, and thus provide the functionality of relational algebra,
linear algebra, graph algorithms and machine learning in
one unified platform.

The rest of the paper is organized as follows. Section 2 re-
views the graph data model and operations, and highlights lim-
itations of existing graph processing systems. Section 3 describes
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Figure 2: An example łe-commercež property graph.

GraphScope’s programming interface. Section 4 and 5 detail our
design and implementation of GraphScope. Section 6 describes
example applications and Section 7 presents evaluation results.
Section 8 discusses related work and we conclude in Section 9.

2 BACKGROUND AND PRELIMINARIES

As mentioned in the introduction, existing large-scale graph com-
puting engines are typically tailored to solve one particular type of
graph computation. In this section we provide a categorisation of
graph computation and review the limitations of a state-of-the-art
framework in unifying graph computation.

2.1 Property Graph Data Model

In graph computation, data is typically represented as a property
graph [9], in which vertices and edges can have a set of properties.
Every entity (vertex or edge) is identified by a unique identifier
(ID), and has a (label) indicating its type or role. Each property
is a key-value pair with combination of entity ID and property
name as the key. Figure 2 shows an example property graph. It
contains user, product, and address vertices connected by
order, deliver, belongs_to, and home_of edges.

2.2 Categorisation of Graph Computation

While there is no textbook categorisation of graph computation,
we propose one based on the long history of research and practice
of graph computation. We first consider two major types, namely
graph traversal and pattern matching, from the core of a variety of
modern graph query languages [42, 51]. In addition, we bring into
discussions the graph analytics and graph sampling as another two
types for their usefulness in practice. Note that our categorisation
compoensates a prior survey in [8] that only concerns about graph
traversal (path) and pattern matching. We give details as follows.

Graph traversal is the most basic graph computation that visits
vertices (and/or edges) of a graph in a certain order. Figure 2 shows
an example traversal that starts from vertex 1, follows outgoing
edges for 2 hops, and yields two paths 1 → 2 → 3 and 1 → 2 → 4.

Pattern matching is another important use case, in which a sub-
graph containing variables is created by the user and all graph
elements that bind to those variables are returned as the result set.
In essence, a complex pattern can be divided into a set of simple
edges or paths and matched using graph traversal, followed by a
multi-way join to compute the final results.

Graph analytics focuses on structural characteristics of the graph
as a whole or of a pairwise relationship between two entities in the
graph. Examples include finding shortest path (e.g., the Dijkstra’s



algorithm) and connected components, PageRank [44], clustering,
and community detecting (e.g., Louvain [11] and LPA [49]), etc.

Graph sampling is a special traversal operation used to generate
samples for training graph neural networks. For each sample, the
process of sampling usually starts from one single seed (vertex
or edge). After a vertex has been sampled, the knowledge of the
vertex’s in-edges and out-edges can be used to choose the next
vertex. The policy of choosing the next vertex depends on the
design of the sampling algorithms.

2.3 TinkerPop

TinkerPop [56] is a powerful framework for developing graph appli-
cations, based on the Gremlin query language [51]. It introduces a
rich set of operators for graph traversal, pattern matching and sam-
pling, while at the same time, embeds iterative graph algorithms
such as PageRank and shortest path as predefined operators.

TinkerPop exposes a set of interfaces that make it possible for
system vendors to provide different implementations. To support
large graph, ideally, an implementation has to support all kinds
of the graph operations at scale, which is extremely challenging.
Although there are a large number of TinkerPop-enabled systems,
these systems retrofit Gremlin language and interfaces into existing
frameworks such as Hadoop or Spark. Due to the fundamental
limitation of each framework, these systems either offer a limited
subset of the language constructs (such as the lack of nested loops
in Grasper [14]), or come at the price of degradation of performance
(e.g., Hadoop-Gremlin [27] for graph traversal).

Furthermore, these systems use the concept of a vertex pro-

gram [39] to support user-defined iterative algorithms: this is nec-
essary as the standard algorithms are rarely enough for real-world
applications in which users have to implement their own specific
algorithms for a particular task. However, such a model requires
deep understanding of low level primitives such as graph parti-
tioning and message passing to develop new algorithms, making
efficient distributed graph computing a privilege to experienced
users only [34]. As a result, even TinkerPop provides a high-level
programming model to a variety of graph operations, it is rarely
used in Web-scale data analysis.

3 PROGRAMMING INTERFACE

GraphScope extends Gremlin with a small set of data-parallel opera-
tors to cover complex iterative algorithms and provide a unified pro-
gramming interface embedded in Python. This allows GraphScope
to seamlessly integrate with other, existing data-parallel systems
such as Koalas, Dask, and TensorFlow. This section provides a high-
level overview of this programming interface.

3.1 Gremlin

Gremlin is a de facto standard language that allows high-level and
declarative programming for various graph operations, including
graph traversal, pattern matching, and sampling. For Gremlin appli-
cations, data is represented as streams of traversers. A traverser is
the basic unit of data processed by a Gremlin engine. Each traverser
consists of three parts: a reference to the current location (vertex,
edge or property) being visited, the path history, and (optionally) an
application state (also known as a sack). For example, the traversal

# Q1: Cycle detection using graph traversal.

g.V('account').has('id','2').as('s')

.repeat(out('transfer').simplePath())

.times(k-1)

.where(out('transfer').as('s'))

.path().limit(1)

# Q2: Graph sampling using a 5-hop random walk.

g.V().repeat(local(

bothE().sample(1).by('weight').otherV()))

.times(5).path()

# Q3: Pattern matching using match().

g.V().match(

as('directors').hasLabel('person'),

as('directors').in('director').as('movies'),

as('movies').out('actor').as('directors'))

.select('directors','movies')

Figure 3: Example Gremlin queries for graph traversal, sam-

pling and pattern matching.

shown in Figure 2 can be executed as follows. Initially, there is only
one traverser at vertex 1. A possible intermediate result is a collec-
tion of a single traverser located at vertex 2 with the corresponding
path history (1 → 2). The final result consists of two traversers,
located at vertex 3 and 4, respectively, with different paths.

Gremlin operators perform transformations on traverser streams,
and Gremlin queries are computations formed by composing these
operators. The source operator (V) defines the starting vertices;
and each of the graph-walking operators (out, in, both) walks
a graph from the current locations by one hop, along out-edges,
in-edges, or edges of both directions, respectively. The sample
operator is useful for sampling some number of traversers previous
in the traversal. The match operator provides supports for pattern
matching. The user provides a collection of łpatternsž carrying vari-
ables that must hold true throughout the duration of the match.
Furthermore, Gremlin offers familiar relational operators, including
projection (select), filters (has), grouping (group), aggregation
(count), and top-K (limit), together with dynamic control-flow
constructs such as conditionals (where) and loops (repeat). More
details on the Gremlin operators can be found in [51].

Example. Figure 3 shows three example Gremlin queries.1 The
first query, Q1, finds cyclic paths of length 𝑘 , starting from a given
account. First, the source operator V (with the has filter) returns all
the account vertices with an identifier of ł2ž. The as operator is
a modulator that does not change the input collection of traversers
but introduces a name (𝑠 in this case) for later references. Second, it
traverses the outgoing transfer edges for exact 𝑘 −1 times, skip-
ping any repeated vertices (by the simplePath operator). Third,
the where operator checks if the starting vertex 𝑠 can be reached
by one more step, that is, whether a cycle of length 𝑘 is formed.
Finally, for qualifying traversers, the path operator returns the full
path information. The limit operator at the end indicates only
one such result is needed. The second query, Q2, uses the sample
operator to support the execution of random walks [58], which is
a fundamental building block for graph sampling widely used in

1In situations where Python reserved words and global functions overlap with standard
Gremlin steps and tokens (as(), in(), with(), and etc.), those bits of conflicting Gremlin
get an underscore appended as a suffix. We omit this suffix for brevity in this paper.



g.V().process(

V().property('$pr', expr('1.0/TOTAL_V'))

.repeat(

V().property('$tmp', expr('$pr/OUT_DEGREE'))

.scatter('$tmp').by(out())

.gather('$tmp', sum)

.property('$new', expr('0.15/TOTAL_V+0.85*$tmp')

)

.where(expr('abs($new-$pr)>1e-10'))

.property('$pr', expr('$new')))

.until(count().is(0)))

.withProperty('$pr', 'pr')

.order().by('pr', desc).limit(10)

.valueMap('name', 'pr')

Figure 4: A PageRank implementation in Gremlin.

GNN training. In the last query Q3, three łtraversal fragmentsž are
nested within the match operators used as subgraph patterns.

The rich set of operators provided by Gremlin make it easy to
express a wide variety of graph computations by familiar notations.
However, although each traverser can carry a state local to the
traversal path, the execution is side-effect free with regard to the
underlying graph itself. This makes it hard for Gremlin to represent
iterative graph algorithms using the vertex-centric programs, which
often require additional state or properties to be maintained on each
vertex in the graph efficiently. Moreover, some graph-centric algo-
rithms, such as Dijkstra’s algorithm [22] for the single source short-
est paths (SSSP) problem, are hard to implement in this model [19].

3.2 GraphScope Extension

To address the above challenges, this section describes a very small
set of GraphScope-specific extensions that we believe are essential
to model complex iterative algorithms using high-level operators.
They are integrated in the Gremlin programming interface to pro-
vide a powerful hybrid paradigm of declarative and imperative
programming for large-scale graph computing.

GraphScope introduces several Gremlin extensions (which to-
gether form a process step) to support iterative graph algorithms,
either vertex-centric or graph-centric. The first extension is to in-
troduce the states of vertices. By extending the property(Key,
Value) step, a special runtime property beginning with the ł$ž
identifier can be created or updated on the current location (head
of traverser). While Gremlin allows the head to be a vertex, an
edge, or a property value, we constrain that only the traverser at a
vertex can call the runtime properties. The runtime properties are
accessible only during the course of the same process step, but
they can be added to the graph data as ordinary properties through
a withProperty step after that process step. For example, the
code at line 2 in Figure 4 introduces $pr as such a property, and ini-
tializes it. This runtime property is updated later as an application
state, and finally added to the graph as a new property pr.

The second extension is the łScatter-Gatherž step, which is imple-
mented by scatter(ValueSupplier).by(Traversal)

.gather(RuntimePropertyName, AggregateEval).
This extension is mainly for supporting the logic of vertex-centric
computation and its underlying message passing. The scatter
operator packs application messages into the traversers’ sacks,
and then sends them to target vertices (which are selected by a
sub-traversal). The gather operator aggregates messages (sacks)

@graphscope.step()

class SSSP(graphscope.PIE):

def PEval(self, g, context):

self.p = context.get_param("edgeProperty")

self.d = context.get_param("distProperty")

g[context.get_param("srcID")][self.d] = 0

self.dijkstra(g, [context.get_param("srcID")])

def IncEval(self, g, updates):

self.dijkstra(g, updates)

def dijkstra(self, g, updates):

heap = VertexHeap(g, self.p)

for i in updates:

val = g[i][self.d]

heap.push((i, val))

while not heap.empty():

u = heap.top().vid

distu = heap.top().val

heap.pop()

for e in g.get_outgoing_edges(u):

v = e.get_neighbor()

distv = distu + e.data(self.p)

if g[v][self.d] > distv:

g[v][self.d] = distv

if g.is_inner_vertex(v):

heap.push((v, distv))

graphscope.registerUDF('SSSP', SSSP)

# SSSP from vertex with id '1234'

g.V().process('SSSP')

# use the edge property "weight" to run SSSP

.with('edgeProperty', 'weight')

# record the distance result in the "$dist" column

# in the context

.with('distProperty', '$dist')

.with('srcID', 1234)

.withProperty("$dist", "dist")

Figure 5: PIE of the single source shortest paths problem.

from traversal paths using an aggregate operator, and saves the
result in a specified runtime property on each current position of
the path. For example, the code at lines 5 − 6 in Figure 4 sends the
value of $tmp of a vertex to all of its outgoing neighbors, and then
each vertex sums all received values and saves the result.

Based on the above extensions, the process step is added in
GraphScope to implement graph processing algorithms. It pro-
cesses the embedded graph and thus, all vertices or edges in it
are analyzed (some times more than once for iterative, recursive
algorithms). Typically in this step, property is used to create
or update runtime vertex properties, scatter-gather is used
for message passing between vertices, where can be used to filter
the current vertices based on properties, and the source operator V
is extended to reset the traversal with all vertices of the graph as
sources. Besides, we also introduce expr(String) as a syntactic
sugar that users could rely on to make their arithmetic expression or
logic expression more succinct. Together with the repeat-loops,
process can implement a łScatter-Gatherž iteration similar in
Flink.2 And this iterative computation will repeat until the con-
vergence condition is met or a pre-defined number of iterations
have taken place. With that, GraphScope allows easy expression
of many vertex-centric graph algorithms using high-level language
constructs only. Figure 4 shows a PageRank implementation in

2See https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/gelly/iterative_
graph_processing.html.



# Use Mars to prepare the data for graphs

features = mars.read_csv('./features.csv')

persons = mars.read_csv('./person.csv')

persons = features[features.uid.isin(person.uid)]

# Construct the graph from various input

graph = sess.g()

.add_vertices(person, label='person')

.add_edges('hdfs://data/knows.csv', label='knows')

g = sess.gremlin(graph).traversal_source()

# Run a variety of graph algorithms.

sampler = g.V()

.process('pageRank')

.with('prProperty', '$pr')

.withProperty('$pr', 'pr')

.sample(___.V('person').batch(64).outV('knows').sample

(10).by('random').values())

.toTensorFlowDataset()

# Invoke TensorFlow to train a GNN.

embeddings = model.train(feed=sampler, ...)

Figure 6: Inter-operation among Mars, GraphScope, and Ten-

sorFlow.

extended Gremlin. A companion technical report [47] contains
more sample graph programs using such a small set of language
constructs, with a formal proof of its expressiveness.

3.3 PIE Model

In the case of that the graph algorithms are more complex
and hard to be implemented using the łScatter-Gatherž model,
GraphScope also supports to define an algorithm in Python. By
using registerUDF(name, UDF), a new user-defined algo-
rithm is registered to GraphScope, which is callable as a UDF
within the process step. For this step, the with modulating
step could be used to provide configurations to the algorithm, and
the withProperty step can add runtime properties to the graph
data after executing the algorithm. For the sake of programming
convenience, GraphScope implements the graph-centric PIEmodel
as proposed by the GRAPE system [18]. Relying on this model,
developers can access a global view of the graph and plug in ex-
isting conventional sequential (single-machine) graph algorithms,
with minor changes. Specifically, developers only need to provide
two functions, (1) PEval, a function that for a given query, com-
putes the partial answer on a local fragment of the graph; different
fragments exchange the status of their border nodes as messages;
and (2) IncEval, an incremental function, computes changes to the
old output by treating messages from other fragments as updates.
Here GraphScope can automatically handle Assemble, which col-
lects partial answers and combines them into a complete answer.
Moreover, incrementalization methods have been developed [17]
that are able to deduce incremental IncEval from PEval, using the
same logic and data structures of PEval. Supporting the fixpoint
computation of GRAPE, GraphScope parallelizes the computation
of PEval and IncEval across multiple processors and machines. This
makes parallel graph programming accessible to users who know
conventional graph algorithms covered in undergraduate textbooks.

Figure 5 shows an implementation of SSSP using the PIE model.
The example shows that programming a graph algorithm in
GraphScope is straightforward, literally a direct translation of the
algorithm (e.g., Dijkstra’s algorithm [22]) into a sequential program.

GraphScope Compiler

GraphScope Runtime

Cluster Runtime

Distributed in-memory store (vineyard)

Machine Runtime

Client

User
Program Execution Plans Worker Code

Figure 7: The GraphScope system architecture.

This allows even complex algorithms to be expressed naturally.
For example, we have ported more than 30 algorithms from the
well-known single-machine graph library of NetworkX [28].

3.4 Integration with PyData Ecosystem

We have shown in the previous section how to implement user-
defined graph computations in GraphScope. One strength of our
approach is that by embedding the language (and hence the graph
library) in Python, it is natural and easy to inter-operate with other
Python data processing systems such as TensorFlow and Mars [46].
This seamless integration of GraphScope with other data-parallel
systems provides a unified and elegant solution to many real-world
problems in which certain parts of the computation are naturally
handled using relational operators; whereas other parts of the com-
putation require graph operations, and machine learning.

To illustrate such mixed styles of data analysis, consider the
example in Figure 6, where we use raw logs from e-commerce trans-
actions to produce a recommendation for a product (item) to each
user. The code shows that three systems (i.e., Mars, GraphScope,
and TensorFlow) inter-operate to finish this recommendation task
with 3 steps, and each system conducts the part of the computa-
tion for which it is suited. The initial graph data is represented
as text files stored in HDFS. In step 1, Mars loads data from the
filesystem, and performs a join to prepare data for GraphScope. It
boils down to creating a graph g to represent user-item transaction
graph. In step 2, GraphScope is called to perform graph algorithms,
which computes a PageRank for each user, followed by a sampling
algorithm to generate samples using 2-hop neighbors. In step 3,
running in parallel (pipelined) with the GraphScope computation,
TensorFlow is used to further train an embedding for each item.

4 SYSTEM ARCHITECTURE

Figure 7 shows an architectural overview of the GraphScope sys-
tem. There are two main components: the GraphScope compiler
generates the execution plans and the worker code to be run on
the cluster, and the GraphScope runtime uses the execution plans
to distribute worker processes across multiple machines, schedule
computation on each multicore server, and manage communica-
tions and intermediate results. It returns control to the client when
the execution terminates. Because the flow of execution is similar
to existing systems [55, 62, 63], this section highlights some of the
unique features of the GraphScope system.

4.1 GraphScope Compiler

GraphScope automatically and transparently distributes a graph
computation to a cluster for parallel execution. We describe a graph
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computation as a dataflow graph. Each vertex in the dataflow
graph performs a local computation on input streams from its
in-edges and produces output streams as its out-edges. To enable
optimized execution for each type of graph computation supported
by GraphScope, we allow a subgraph of dataflow to be treated as
a composite vertex that can have its own execution strategy. This
allows the GraphScope compiler to group together a segment of
graph operations of the same type in a multi-staged processing
pipeline and configure the strategy that best fits its computation in
each stage.

Furthermore, to separate concerns of cluster scheduling and local
(optimized) execution, the compiler structures the dataflow graph
into two levels. The first is a dataflow graph at the stage/cluster
level in which each vertex represents a single computation stage (or
type). The compiler applies query rewrite rules to the Gremlin pro-
gram to transform it into such a dataflow graph that is optimized for
parallel execution on the cluster. Consider the sampler computa-
tion shown in Figure 6. It reads input graph g from an in-memory
store and performs two stages of graph computation. Accordingly,
two composite vertices will be created for the implementation of
pageRank and sample operation, respectively. Finally, the re-
sult vertex writes to the same store for downstream computation
(train) to consume. This simplifies cluster scheduling for which
the partitioning of input/output graphs and each computation as
well as the scheduling are all performed at a coarser granularity,
and remain the same during the execution within the same stage.

At the second level, as composite vertices from the cluster-level
dataflow graph are assigned to machines, each of them expands into
a subgraph of the dataflow, consisting of graph operators as vertices
running on each local machine. The GraphScope compiler gener-
ates worker code with the help of a primitive library installed on
each machine. The primitive library contains pre-compiled Grem-
lin operators as generic templates which GraphScope instantiates
dynamically at runtime, along with the other supporting functions.
In our example, the primitive for sample is parameterized by
both the strategy (random) and the projection function, and an
add_column operator is inserted by the compiler to save the
computation result of pr.

4.2 GraphScope Runtime

Figure 8 shows an example dataflow execution, which includes two
levels of dataflow executions. Each level of dataflow graphs are
handled by a different execution engine in the runtime, namely
cluster dataflow engine, and machine dataflow engine, respectively.
The cluster dataflow engine assigns input graph or intermediate
data partitions to available machines, and the composite vertices
in the logical plan that follow is replicated across the same set of

machines. This forms the physical execution plan in which all the
(composite) vertices at the same stage perform the same compu-
tation but demands different partitions of the input. The machine
dataflow engine executes its own dataflow graphs on each machine,
managing input/output and memory on a multi-core server.

During execution, the vertices read from and write to an in-
memory store called Vineyard (Section 5.2). Vineyard is designed
as a distributed in-memory store that provides zero-copy data shar-
ing and management. It provides high-level abstractions or com-
monly used Python data structures, such as Array, Tensor, and
DataFrame, as the storage interface, and enables easy and seam-
less integration with other data-parallel systems. Specifically, at the
border between GraphScope and these systems, Vineyard can con-
vert the Vineyard objects to objects of the target systems. Unless
necessary, this process will avoid copying of the blobs (payloads).
This allows GraphScope to manage transfer of intermediate results
automatically and achieve high performance for the overall exe-
cution across multiple systems. Last but not least, data statistics
are collected by Vineyard at runtime that enables dynamic opti-
mizations such as dynamic graph partitioning and hybrid join for
pattern matching (Section 5.3).

5 IMPLEMENTATION

This section provides implementation details of the components
of the GraphScope system. GraphScope leverages a number of
existing technologies and we therefore focus our attention mainly
on the novel aspects of the system.

5.1 Two-Level Dataflow Execution

To support optimized graph computation with specialization, we
built a new distributed in-memory dataflow engine called Gaia. In
Gaia, the cluster execution is orchestrated by a coordinator that
schedules the (composite) vertices to run on separate machines
(similar to Dryad [31] and Spark [63]). Each vertex encodes a sub-
graph of dataflow operators that all run within a same process on
each machine, managed by a local executor (like in Dandelion [52]
and TensorFlow [5]). Gaia sets itself apart from existing dataflow
engines in two important ways:

Integrated Design with the Vineyard Store. Inspired by
Dryad [31], Gaia can modify the dataflow execution plan by en-
abling rewritings at runtime. Unlike Dryad, however, the rewriting
can be directly based on the statistics provided by Vineyardwithout
inserting additional statistics-collecting vertices.

Optimized Local Execution with Specialization. Gaia lever-
ages the two-level dataflow scheduling to incorporate a variety
of optimizations as execution strategies in local engines, which can
be applied to each individual subgraph separately. This allows Gaia
to support optimized and specialized runtime for each type of graph
computation in one coherent framework, such as graph traversal
[4], iterative computation [19], pattern matching [36], and graph
sampling [65], as briefly described below.

• Iterative graph computations typically base the execution
of iteration on the bulk synchronous parallel (BSP) model.
However, as workers converge asymmetrically, the synchro-
nization barriers result in that the speed of each iteration is



limited to that of the slowest worker. To solve this problem,
Gaia uses a flow-controlled message queue for this case that
allows better overlapping of computations and communica-
tions across iterations.

• Graph traversal can produce paths of arbitrary length, lead-
ing to memory usage growing exponentially with the num-
ber of hops. Fortunately, it is very common for Gremlin
queries to terminate with a top-k constraint and/or aggre-
gate operation, and therefore thememory crisis mainly stems
from the intermediate paths. In this case, the scheduling
policy can greatly impact the memory usage. Gaia adopts
a hybrid BFS/DFS strategy, that is, it uses BFS-prioritized
scheduling as it has better opportunities for parallelization,
and automatically switches to DFS-prioritized in case that
the current operator arrives at the memory bound.

• Graph sampling (for GNN training) is a special traversal
that often starts from all the vertices in an input graph [65].
Graph pattern matching has long been treated as a multi-
way join task [36]. In both cases, Gaia attempts to optimize
for throughput by batching data.

5.2 Distributed In-Memory Store

We build Vineyard, a distributed in-memory store that pro-
vides zero-copy data sharing and management. Vineyard enables
GraphScope to achieve high performance and the capability to
exchange (intermediate) data efficiently across multiple systems.

Vineyard keeps data structures, such as graphs, dataframes/ta-
bles and tensors as objects, and each is assigned with an id. An
object consists of a metadata (i.e., the data layout) map and/or data
payloads. The metadata map supports basic data types such as in-
teger, boolean and string as values. Values can also be ids to refer
other objects, making vineyard objects composable, e.g., a set of
array objects (each as a column) can form a columnar table object.
Data payloads are a special type of objects in Vineyard called blobs.
Each blob is a piece of continuous memory of requested size on a
specific node for large payloads. Metadata maps are synced across
the cluster using the key-value store etcd([2]). And blobs are kept in
shared-memory arenas managed by Vineyard. They can be memory
mapped (with zero-copy) to any worker processes of GraphScope
and other systems such as Spark and TensorFlow as required.

For data-parallel execution, objects can be partitioned and stored
distributedly over a cluster in Vineyard. A distributed object con-
tains a metadata map only, which additionally contains a list of
objects called fragments, where each fragment is a local object (i.e.,
payloads live entirely on a local node). As an example, Figure 9
shows how Vineyard keeps a fragment of a property graph.

Moreover, Vineyard enables easy and seamless integration of
GraphScope with other data-parallel systems. Specifically, at the
border with these systems, Vineyard can convert the Vineyard ob-
jects to/from objects of the target systems. Unless necessary, this
process will avoid copying of the blobs (payloads).

5.3 Optimizations

GraphScope performs both static and dynamic optimizations to op-
timize user code and improve performance, while being transparent
to users. The static optimizations are greedy heuristics implemented
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Figure 9: A property graph fragment in Vineyard.

as extensions to the GraphScope compiler. The dynamic optimiza-
tions are applied during job execution, and consist in rewriting
the dataflow graph depending on runtime data statistics. The most
important optimizations are:

Pipelining. Multiple vertices (in a logical plan) may be scheduled
to execute all at once to enable pipelined execution. Its performance
gain is operator-dependent, but it is one optimization that simulta-
neously exploits more parallelism, reduces burstiness of network
traffic, and removes the dependency of (relatively) expensive serial-
ization of the intermediate results (to/from Vineyard). In addition,
pipelining can be applied across multiple frameworks. For exam-
ple, through a special output adapter (toTensorFlowDataset)
attached to a sample traversal, we can overlap graph sampling
with the downstream GNN training (using TensorFlow).

Adaptive Pulling/Pushing. This technique is used to opti-
mize computing efficiency in various iterative graph algorithms.
GraphScope adopts a dual-mode processing strategy that enables
the adaptive switch between pull and push modes according to the
density of the active edge set. In a graph iterative algorithm, the
active edge set, defined as the outgoing edges from vertices whose
states are updated in a step, may vary in different computation
steps. For example, in connected components, the active edge sets
are relatively dense in the first few steps, and gradually become
sparse since more vertices converge. In the push mode, updates
are passed to neighboring vertices through outgoing edges. This
is more efficient for sparse active edge sets, since we only need
to traverse outgoing edges of active vertices. In contrast, the pull
mode updates each vertex by collecting states of its neighbors along
incoming edges. This is more beneficial for dense active edge sets,
as it significantly reduces the contention in updating vertex states
via locks or atomic operations. GraphScope takes advantages of
the both modes via the adaptive switching.

Dynamic Graph Partitioning. Data partitioning is crucial for the
efficient execution of a data-parallel computation. However, it is
nontrivial to decide what partitioning strategies work the best and
hence should be picked when data statistics are not available, and
sub-optimal partitioning may lead to data and computation skew
where the data or computations are not balanced among machines.
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Figure 10: An example of dynamic graph partitioning.

GraphScope supports the determination of partitioning strate-
gies at runtime. GraphScope first partitions an input graph with
well-studied partitioning methods, e.g., streaming partitioning algo-
rithms [39, 57, 66] or offline partitioning heuristics [33, 54]. Due to
the diversity of graph data and graph operations, an initially config-
ured graph partition can become very skewed in multi-stage graph
computation tasks. To alleviate this situation and improve the over-
all performance, GraphScope collects runtime statistics and learns
a cost model to characterize the workload pattern for each graph
computation; based on the cost model, GraphScope rewrites the
dataflow execution to trigger a lightweight re-partitioning process
to balance the workload for an intended graph operation.

As shown in Figure 10, let OP𝑘 and OP𝑘+1 be two consecutive
graph operations in a multi-stage graph computation task. The
output of OP𝑘 is written to Vineyard and then read by OP𝑘+1.
GraphScope implements dynamic graph re-partitioning by rewrit-
ing the execution workflow as follows.

(1) GraphScope first inserts a statics-collection vertex in the execu-
tion dataflow graph (a green node in Figure 10). This is to sample
small graphs from the output graph of OP𝑘 .

(2) GraphScope next learns a cost model 𝐶𝑘+1 from the samples
to characterize the workload for the subsequent operation OP𝑘+1.
This is represented by a yellow node in the dataflow of Figure 10.

(3) Based on the cost model𝐶𝑘+1,GraphScope re-balances the graph
partition for operation OP𝑘+1 if necessary. Suppose the workload
imbalance indicator estimated by the cost mode𝐶𝑘+1 exceeds a pre-
defined threshold. In that case, GraphScope triggers a lightweight
heuristic to re-partition the graph [16] (represented by a purple
node in Figure 10). This heuristic identifies vertices and edges and
shuffles them from overload partitions to underloaded ones. If the
partition is already balanced for OP𝑘 , GraphScope skips the re-
partitioning process and reads directly from the output of OP𝑘 .

Hybrid Join for Pattern Matching. The performance of graph
pattern matching is greatly impacted by the join algorithm [36].
Let’s consider the pattern matching example (Q3) in Figure 3.
For simplicity, we view the edges of a graph as a table of
3-tuple (𝑠𝑟𝑐_𝑖𝑑, 𝑖𝑑, 𝑑𝑠𝑡_𝑖𝑑), denoting the identifiers of the source
vertex, the edge, and the target vertex, respectively. There are
hence two edge tables here: director_edge(movie_id,
id, director_id) and actor_edge(movie_id, id,

actor_id). As a result, the pattern matching can be queried via
following join:

SELECT DE.movie_id, DE.director_id

FROM director_edge as DE, actor_edge as AE,

WHERE DE.movie_id = AE.movie_id AND

DE.director_id = AE.actor_id

Join algorithm itself is a widely studied subject, while we focus
on the algorithms that have been adopted for distributed graph
pattern matching, namely binary join [35] and worst-case optimal

join [7]. Binary join processes pattern matching using multi-round
of two-way joins, where each join simply shuffles the edge tables
based on the join key and then conducts a conventional hash-join.
Worst-case optimal join algorithm follows Ngo’s algorithm [43]
that gradually expands the pattern, each time by adding one more
vertex.While neither algorithm can guarantee the best performance
by all means [36], researchers have proposed hybrid solutions that
mix both types of joins [6, 41]. The main idea of these works is
to minimize the intermediate result size along the course of join
processing, where the result size is estimated from a sampled graph.

In GraphScope, we follow [41] to process graph pattern match-
ing using hybrid join algorithms. While [41] is developed in single
machine, the techniques can be easily adapted to a distributed con-
text. Issues remain on the sampling process for result estimation.
While the graph is handy as for [41], it may be an arbitrary potion
of the graph forGraphScope from a previous traversal query. There
is an naive option to sample on the entire input graph, but the sta-
tistics can be too inaccurate to produce a good plan. InGraphScope,
we rather leverage the dynamic graph rewriting of Gaia. Specifi-
cally, before the join operation, we insert an operator to process
sampling on the runtime graph that will be the input for the task
of pattern matching. The sampling is parallelized for each parti-
tion of the input graph, and then aggregated to one machine, on
which the optimizer of [41] will be applied to produce the hybrid
join plan to be injected into the dataflow, according to the result
estimation of the sampled input graph. In order to do so, we care-
fully design the join plan produced by [41] to incorporate only the
general-purposed dataflow operators such as flatMap (for vertex
extension in worst-case optimal join) and join (for binary join).

6 APPLICATIONS

Large-scale graph computing has a wide range of applications, e.g.,
social network analytics, fraud detection in financial trading, and cy-
bersecurity monitoring. To check the usefulness of theGraphScope
programming interface, we have developed a graph library with
frequently used graph operations. Using the library, we have imple-
mented several real-world applications, three of which are described
in detail here as they form the basis of our evaluation in Section 7.

Cybersecurity Monitoring. We introduce an application that
uses Gremlin for preventing Trojans. Trojans are often commanded
and controlled by their holders through a number of malicious
domains. The security researchers can prevent the transformation
of Trojans by blocking the communication across these malicious
domains. However, the holders can easily purchase new malicious
domains to keep connection with their Trojans. As a result, the
security researchers should be able to continuously find unknown

malicious domains which are hosted by the Trojan holders. This
task could be easily fulfilled using graph model.

Specifically, we take each domain 𝑢 and each IP 𝑣 as a vertex in
the graph. Each edge (𝑢, 𝑣) is labeled łresolved_tož if the domain 𝑢
is resolved from the IP 𝑣 . Each edge (𝑣,𝑢) is labeled łqueryž if the
IP 𝑣 has ever accessed the domain 𝑢. If the domain 𝑢 is known to be
malicious, the resolved IP 𝑣 is very likely controlled by the Trojan
holders, so other domains also resolved to 𝑣 are likely malicious.
These domains could be detected by executing Gremlin query Q1.
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# Q1: A Gremlin query for detecting malicious domains.

g.V().hasLabel('domain').has('name','trojan.xx')

.out('resolved_to').in('resolved_to').values('name')

# Q2: A Gremlin query for detecting infected machines.

g.V().hasLabel('ip').has('ip','125.77.29.205').in('

resolved_to').in('query').values('id').dedup()

Further, from each known malicious IP 𝑣 , any IP vertex that has
ever accessed a domain resolved from 𝑣 is potentially to be infected
by the Trojans. This process is illustrated in Figure 11. We can also
detect these machines by executing the Gremlin query Q2.

Notice that, the aboveGremlin queries could be also implemented
by SQL queries on databases. We show the equivalent SQL query
Q3 of Q2 as follows. Clearly, Gremlin queries are much simpler
and easier for users. Moreover, as we reported in Section 7.2, their
execution efficiency is much higher than SQL queries.

-- Q3: The equivalent SQL query of Gremlin query Q2.

SELECT DISTINCT a.id FROM ip_query_domain a JOIN

(SELECT FROM domain_resolved_ip WHERE

ip = '125.77.29.205') b ON a.query_name = b.name

Fraud Detection. Fraudulent transactions deceptively inflate rat-
ings and rankings of sellers and items in the online marketplace.
As an example, Figure 12 illustrates a simplified graph computing
job for catching these transactions.

In the graph, entities like sellers, buyers and items are repre-
sented as vertices, and relations like transactions are represented as
edges. From other sources, such as customer complaints, some enti-
ties can be associated with frauds. By leveraging graph computing,
can we determine whether a given user is involved in fraud?

One solution is to use label propagation algorithms to propagate
known labels, and then employ a GNN model to do the classifica-
tion [59]. With GraphScope, we can perform this job in a unified
environment and achieves high performance with just a few lines.

# Build the graph

graph = sess.g().add_vertices(...).add_edges(...)

# Load the known labels

known_fraud = load_from('oss://.../fraud_score.tsv')

graph = graph.add_column('lpa_score', known_fraud)

# Call LPA algorithm

g = sess.gremlin(graph).traversal_source()

g.V().process('lpa')

.with('lpaProperty', '$lpa_score')

.with('epochs', 20)

.withProperty('$lpa_score', 'lpa_score')

# Load a GraphSage Model for prediction

from graphscope.learning.models import GraphSage

model = GraphSage('oss://../some_model')

sampler = g.sample(...)

.toTensorFlowDataset()

scores = model.predict(feed=sampler, config=...)

# Add "fraud" score back to graph
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Figure 12: A transaction graph.

graph = graph.add_column('score', scores)

Data scientists can also conduct interactive explorations on the
result graph thanks to the full Gremlin support. For example, to
check any łhotž items (bought more than 10000 times in total)
bought by a specific user (u1324) has a high łfraudž score.

g.V().has('id', 'u1324').out('buy').where(__.in('buy').

count().is(gt(10000))).order().by('score', desc)

Link Prediction. Link prediction has found wide applications in
marketing and recommendation. There have been a number of link
prediction methods developed (see [40] for a survey). The informa-
tion of tremendous users in our e-commerce platform can be easily
maintained in the form of a big graph. Each vertex denotes a user of
the platform, and each edge refers to the relationship between the
two connected users. The link prediction application tends to pre-
dict those edges linking the entities that belong to the same group
or family, denoted as linkage edges. After acquiring reliable linkage
relationships, we can extract more accurate shopping preferences
from the users and do better recommendation.

# load and build a graph from various sources

graph = sess.g().add_vertices(...).add_edges(...)

# compute CN, AA and RA scores for each pair of nodes

g = sess.gremlin(graph).traversal_source()

g.V().process('feature_extraction')

.with('featureProperty', '$cn_aa_ra')

.withProperty('$cn_aa_ra', 'cn_aa_ra')

# predict linkage edges with GNN

model = GraphSage(number_of_layers=2, ...)

sampler = g.sample(...)

.toTensorFlowDataset()

embeddings = model.train(feed=sampler, ...)

sim_scores = embeddings.toNumpy().pairedDistances()

With GraphScope, we implement the link prediction task as
shown above. We first build a large user network, by combing
data collected from multiple sources. For each pair of vertices, we
next compute three features, namely, common neighbors (CN),
Adamic-Adar index (AA) and resource allocation index (RA) by a
PIE program feature_extraction. This PIE program is just
a straightforward translation of the sequential algorithms from
NetworkX3. In the end, those features and other useful information
are fed to subsequent GNN models to predicate linkage edges.

7 EVALUATION

In this section, we evaluate GraphScope’s capability of efficient
processing of large graphs for both synthetic workloads and the
real-world applications described in Section 6.

3https://networkx.org/documentation/stable/reference/algorithms/link_prediction.html
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Figure 13: Performance evaluation

7.1 Synthetic Workloads

Using synthetic workloads, we evaluated the performance of
GraphScope on queries involving each single type of graph opera-
tions. We adopted the datasets and queries from the LDBC bench-
mark [30] for analytical, traversal and pattern matching queries. For
GNN sampling queries which are not covered under the scope of the
LDBC, we compared work-flows with and without the optimization
strategies introduced in GraphScope.

All the experiments in this subsection were conducted on a
managed Kubernetes cluster with 8 nodes, each was equipped with
two 26-core Intel(R) Xeon(R) Platinum CPUs at 2.50GHz, and 768G
memory. The nodes were connected with a network at 50Gbps.

Exp-1. Graph Analytics Performance. We first evaluated the
graph analytics performance of GraphScope. The tests were de-
ployed in containers, each with 16 cores and 256GB memory. We
compared GraphScopewith state-of-the-art parallel graph systems,
including PowerGraph [25], Gemini [66] and Plato [3]. We tested
all the six analytical queries of LDBC: (a) SSSP (single-source short-
est paths), which computes the lengths of the shortest paths from
a given source vertex to all other vertices in an edge-weighted
graph, (b) WCC (weakly connected component) that decides the
connected component each vertex belongs to in a directed graph, (c)
BFS (breadth-first search), (d) PageRank that computes the PageR-
ank score [44] for each vertex, (e) CDLP (community detection
using label propagation), which finds communities using the par-
allel version of the label propagation algorithm [49], and (f) LCC

(local clustering coefficient), which computes the degree to which
the neighbors of each vertex form a clique within the graph.

We used four datasets provided by LDBC: (1) real-life social
network com-friendster (FS) [1] with 65.6𝑀 vertices and 1.81𝐵

edges, and (2) synthetic graphs datagen-9_0-fb (FB0) with 12.9𝑀

vertices and 1.05𝐵 edges, datagen-9_1-fb (FB1) with 16.1𝑀 vertices
and 1.34𝐵 edges, datagen-9_1-zf (ZF) with 434.9𝑀 vertices and
1.04𝐵 edges, and graph500-26 (G500) with 32.8𝑀 vertices and 1.05𝐵
edges. Since FS andG500 are not edge-weighted, we only evaluated
SSSP over FB0, FB1 and ZF. In addition, we did not tested SSSP on
Plato, CDLP on Gemini, and LCC on Gemini and Plato since the
corresponding implementation codes are not available.

Figures 13(a)-13(g) show the elapsed time for executing graph
analytics in different systems. Note that the results for running
PageRank on Gemini and Plato are not consistent with those ver-
ified by the LDBC, hence we made our best efforts to revise the
convergence condition in our PageRank algorithm such that it has
the same outputs as the competitors. Figure 13(e) reports the results
under such revised convergence condition for PageRank. We can
see that GraphScope substantially outperforms the competitors in
all cases. It is on average 34.7× (resp. 1.9× and 5.1×) faster than
PowerGraph (resp. Gemini and Plato), up to 130.9× (resp. 3.7× and
17.4×). Most of the tasks can be done in less than 100 seconds on
GraphScope. In contrast, PowerGraph cannot terminate in an hour
(marked as TO) when performing CDLP over ZF and FS.



Table 1: Statistics of the synthetic graph and the output sizes

of the positive and negative sampling.

#vertices #edges #attributes graph size pos-samples neg-samples
300M 3B 100 242GB 145TB 364TB

Exp-2. Graph Traversal and Pattern Matching Performance.
For comparison, we consider Gremlin queries from the Social Net-
work Benchmark defined by LDBC to model industrial use cases on
a social network akin to Facebook. We chose 10 out of 14 complex
read queries (denoted as CR-1 to CR-14) from LDBC’s Interactive
Workload. These queries contain the features of both graph traver-
sal and pattern matching. For example, the query CR-3 contains
the traversal of finding friends of persons 𝑃 and friends of friends
of 𝑃 , as well as matching the pattern that persons 𝑃 have authored
the posts in the given countries. As a result, we conducted this
experiment to evaluate the integrated performance of traversal
and pattern matching instead of looking into the individual. We
allowed each query to run for at most 1 hour, and marked an TO

if a query can not terminate in time. We generated a large LDBC
dataset with scale factor 100 using generator provided by LDBC.
The generated dataset has 283𝑀 vertices and 1.754𝐵 edges.

Note that we only compared with JanusGraph, as it is the only
system that can handle graphs at this scale. JanusGraph cannot
process query in parallel, and we ran GraphScope in a single con-
tainer for fair comparison. The graphs were stored in 8 nodes for
JanusGraph, and one single node4 for GraphScope.

We ran each LDBC query on GraphScope, recorded its latency
and compared to JanusGraph. The results are reported in Fig-
ure 13(h). As shown there, GraphScope outperforms JanusGraph at
the scale of orders of magnitude in all cases. It is on average 260×
faster than JanusGraph, up to 1430×. JanusGraph failed to answer
many queries (CR-3,CR-5, CR-9) due to TIMEOUT (TO). Although
GraphScope is designed to scale in a cluster, it can further benefit
from multi-core parallelism in a single node to improve query per-
formance, especially for large queries, as depicted in Figure 13(h).

Exp-3. GNNSampling Performance.GraphScope integrates the
distributed graph sampling engine into the GNN training frame-
work, allowing us to optimize the end-to-end training performance
by properly pipelining various stages during the GNN training. To
demonstrate the benefits of this pipelined approach in GraphScope,
we trained a GraphSAGE model on a synthetic graph (described in
Table 1). The sampling stage consists of two parts: a 2-hop positive
edge sampling and a 2-hop negative edge sampling. In the negative
sampling, we took 5 negative samples for each edge. The fan-outs
of the first and second hops in both sampling were set to 10 and 2,
respectively. We present (1) the output sizes of the positive and neg-
ative sampling, and (2) the breakdown of the sampling and training
time in the end-to-end GraphSAGE training process.

As presented in Table 1, the sample size is three orders of magni-
tude larger than the graph size. Storing such a huge sample exter-
nally could easily prolong the end-to-end training time for multiple
hours. To solve this problem, GraphScope samples the graph in
mini-batches, and feeds the generated sample of each batch im-
mediately into the training stage in a pipelined approach, instead

4Note that JanusGraph is properly warmed up to reduce the cost of pulling data from
remote storage.

Table 2: Evaluation time of the cybersecurity application.

System Language Execution Time (Secs)
GraphScope Gremlin 0.49

ODPS SQL ∼1,200

of materializing them externally in order to be accessed by the
training stages later. Figure 13(i) shows a breakdown of the average
sampling time and the end-to-end training time per iteration during
the training. These results clearly illustrate that GraphScope can
overlap almost all the sampling and training stages by pipelining
their execution, and thus optimize the end-to-end training time.

7.2 Real-World Applications

GraphScope has been widely deployed in production at Alibaba,
and it supports thousands of graph jobs every day. Next, we report
results from production for the applications described in Section 6.

Exp-4. Cybersecurity Monitoring. We report the evaluation re-
sults of using GraphScope on the cybersecurity application. As
stated in Section 6, the Gremlin queries were executed on the graphs
between domains and IPs to detect malicious domains and infected
IPs. Our graph was extracted from the real-world AliCloud pro-
duction environment, which contains around 600 millions vertices
(including both domains and IPs) and 3.8 billions edges.

In this case, the security experts have collected a number of ma-
licious domains related to łDouble-Gunž, a serious Trojan occurred
on the Internet at the end of 2018. At first, we executed the Gremlin
query Q1 starting from these known malicious domains to detect
unknown malicious domains and IPs. Then we ran the Gremlin
query Q2 starting from all malicious IPs to find other infected IPs.
For comparison, we also ran the equivalent SQL queries of Q1 and
Q2 on ODPS, the database warehouse service in AliCloud. The
end-to-end execution time is shown in Table 2.

Clearly, executing Gremlin queries on GraphScope is more than
2, 400× faster than running SQL queries in ODPS. Both Q1 and
Q2 could be regarded as two-hop traversals on graphs. By using
GraphScope, we totally omit the costly join operations in SQL
queries, so the time efficiency is greatly improved.

Exp-5. Fraud Detection. We also evaluated the performance of
fraud detection over the transaction graphs of Taobao, which con-
tained all transactions in a period of 30 days. We tested two im-
plementations following the steps described in Section 6: an initial
native attempt and the optimized version using GraphScope.

The native approach is inefficient to handle this complex work-
flow. Since there is no one-stop solution, each part of the work-flow
was conducted on an isolated system. For label propagation, it
failed to load the data to ODPS Graph since it is too large. As a
compromise, we used an optimized UDF defined on MaxCompute
to execute this algorithm. It took 10 hours to run 20 epochs of the
propagation. For learning task, it took 3.4 hours for 10 epochs in
the system PAI, with an extra I/O cost from MaxCompute storage
of 44.1 mins. At last, MaxCompute needed to load the results of
the learning from the disk, which took 36.4 mins, and ran a set of
Gremlin queries in 1.5 seconds on average. To sum up, it took about
14.6 hours to process the end-to-end work-flow, which is hard to
meet the requirement of timeliness in the fraud detection.



With GraphScope, the work-flow can be processed seamlessly
in a single system. It took 21.9 mins to load the graph, and then the
partitioned graph data was resident in the Vineyard distributedly
until the end of the job. It took 86.5 mins and 3.3 hours for label
propagation and graph learning, respectively, and on average 0.2
seconds for the same set of traversal queries in Gremlin. There
were no extra cost for I/O between these processes. This solution
achieved a large performance improvement on end-to-end time
with 5.1 hours only, which is 2.86× faster than the native approach.

Exp-6. Link Prediction. We next evaluated the performance of a
graph analytical operation in the link prediction (see Section 6). It
computes the features of CN, RA and AA over a large real-world
user network with more than 66 billion edges.

We compared the performance ofGraphScopewith another base-
line that was previously deployed over Giraph. The baseline stores
the graph in relational tables and checks every pair of vertices using
SQL queries, combined with user-defined similarity functions for
feature computing.GraphScope improved its performance by more
than 2.7×. This ODPS Graph baseline was only able to produce the
CN features alone with more than 7 hours. In contrast,GraphScope
produced all CN, RA and AA features within 2.5 hours.

Exp-7. Online Recommendation Services. We evaluated the
performance of graph learning based real-world online recommen-
dation services in Taobao, an e-commerce website which serves for
billions of users and merchandises. The graph dataset is a hetero-
geneous graph containing billions of vertices (users and items) and
tens of billions of edges (user-item, user-user and item-item inter-
actions), where each kind of vertex contains about 30+ properties,
such as age, gender and title. Based on the graph, the bipartite-
GraphSAGE model is applied to learn representation for each user
and item. Then some items are recommended to a specific user by
computing the similarities of user-item pairs.

Previously the training pipeline of the model consists of a data
preprocessing phase using a distributed big data engine, and a
training phase, which took 23.6 hours to train a model end-to-end.
In comparison, GraphScope can pipeline the sampling process that
generates training data, and the training phase, reducing the end-to-
end latency by 4.5×, to 5.2 hours. More importantly, GraphScope is
an integrated IDE and largely simplifies the procedure of algorithm
exploration, making in-time model update realistic to keep up with
the trend shift on the e-commerce platform.

Summary. We find the following. (1) By incorporating various
types of optimizations, GraphScope already outperforms state-of-
the-art systems that are designed for different types of graph queries.
(a) For iterative queries, it is on average 34.7× (resp. 5.1×) faster than
PowerGraph (resp. Plato); (b) for traversal and pattern matching, it
beats JanusGraph by 260× on average; and (c) its pipelining execu-
tion of all sampling and training stages in graph learning is beyond
the reach of existing GNN systems. (2) Better still, GraphScope
performs well in real-world applications. (a) GraphScope improves
the performance of SQL-based solutions by more than 2400× (resp.
2.7×) in cybersecurity (resp. link prediction); (b) it is also 2.86×

faster than artificially assembled approach in multi-staged fraud
detection; and (c) it reduces the training time of complicated models
over real e-commerce heterogeneous graphs from 23.6 to 5.2 hours.

8 RELATED WORK

Our contributions are multi-faceted, spanning across programming
interface and scalable computation of a wide range of graph algo-
rithms. We discuss GraphScope’s novelties in these areas.

Programming Interfaces. Graph queries are typically expressed
via graph traversal and pattern matching. Correspondingly, Grem-
lin [51] and Cypher [21] are the most popular query languages.
However, they are not suitable for describing iterative graph al-
gorithms, for which graph processing frameworks [25, 26, 39, 66]
are often called for instead. It is also hard to write distributed
graph algorithms using these frameworks, making them a privilege
for experienced users only [19]. In contrast, GraphScope extends
Gremlin with a set of data-parallel operators to provide a unified
programming interface for complex graph algorithms. Other no-
table research projects in parallel declarative languages, such as
Cilk [12], can be leveraged by GraphScope in theory, but they are
not particularly tailored for distributed graph computation.

Graph Databases. Gremlin is widely supported by many graph
databases, such as Neo4j [42], OrientDB [38], JanusGraph [32], and
cloud-based services like Cosmos DB [50] and Neptune [10]. How-
ever, their query processing is limited to single process. In light of
this, several distributed graph systems emerge such as Trinity [53],
Wukong+S [64], Grasper [14] and A1 [13]. Trinity offers a program-
ming model that is much less flexible than Gremlin. Grasper adopts
Gremlin but provides a limited subset of the language constructs
(e.g., the lack of nested-loop support). Wukong+S and A1 leverage
RDMA for ultra-low latency to serve micro-second queries with
high concurrency, which is not the main target of GraphScope.

Graph Processing Systems. In contrast to many existing sys-
tems that deal with batch-oriented iterative graph processing, such
as Pregel [39], PowerGraph [25], GraphX [26] and Gemini [66],
GraphScope preserves the elegant andwell-formed data and compu-
tation model from the graph database research in a declarative lan-
guage that allows user-defined functions. In addition, GraphScope
uses dataflow as a unified computation model and recasts system
optimizations developed in the context of specialized graph process-
ing systems as dataflow optimizations. GraphScope outperforms
many of the state-of-the-art graph systems accordingly.

9 CONCLUSION

We are witnessing the rise of a new type of graph applications
that combine a wide range of graph algorithms into a single work-
load. Often experimental in nature and operating on large-scale
datasets, this new type of graph applications needs a system that is
similarly easy to program, scalable, and inter-operable. In this pa-
per, we present a system, GraphScope, that takes on the challenge
of building a unified engine for diverse big graph computations
while at the same time offering a powerful and concise declarative
programming interface.
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