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ABSTRACT
Incremental algorithms are important to dynamic graph analyses,
but are hard towrite and analyze. Few incremental graph algorithms
are in place, and even fewer offer performance guarantees.

This paper approaches this by proposing to incrementalize ex-
isting batch algorithms. We identify a class of incrementalizable
algorithms abstracted in a fixpoint model. We show how to deduce
an incremental algorithmA∆ from such an algorithmA. Moreover,
A∆ can be made bounded relative toA, i.e., its cost is determined by
the sizes of changes to graphs and changes to the affected area that
is necessarily checked by batch algorithm A. We provide generic
conditions under which a deduced algorithm A∆ warrants to be
correct and relatively bounded, by adopting the same logic and data
structures ofA, at most using timestamps as an additional auxiliary
structure. Based on these, we show that a variety of graph-centric
algorithms can be incrementalized with relative boundedness. Us-
ing real-life and synthetic graphs, we experimentally verify the
scalability and efficiency of the incrementalized algorithms.
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1 INTRODUCTION
When we talk about graph algorithms for a class Q of queries, we
typically refer to batch algorithms for Q. A batch algorithm takes as
input a queryQ ∈ Q and a graphG , and computes the answerQ(G)
to Q in G. As an example, consider the single-source shortest path
problem (SSSP). Our familiar Dijkstra’s algorithm [25] for SSSP is a
batch algorithm that, given a weighted directed graphG and a node
s in G as query Q , computes the set Q(G) of the shortest distances
from source s to all the other nodes in graph G.
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Batch algorithm are developed for static graphs. However, graphs
in the real world are often dynamic, i.e., they are constantly updated.
Suppose now that graph G is updated by ∆G, e.g., a sequence of
edge insertions or deletions. We want to compute Q(G ⊕ ∆G), i.e.,
the shortest distances from v in the updated graph, where G ⊕ ∆G
applies changes ∆G to G. A brute-force approach is to recompute
Q(G ⊕ ∆G) with Dijkstra’s algorithm starting from scratch.

Another approach is to develop an incremental algorithm A∆.
Given a query Q , a graph G, updates ∆G to G and the old output
Q(G), A∆ computes changes ∆O to Q(G) such that

Q(G ⊕ ∆G) = Q(G) ⊕ ∆O .
That is,A∆ computes new outputQ(G⊕∆G) by finding changes∆O
to Q(G), by reusing old computation of Q(G) as much as possible.
The need. The need for incremental algorithms is evident.
(1) Real-life graphs are often big and constantly updated, a.k.a. the
volume and velocity of big data. Graph queries are costly on large-
scale graphs. Moreover, we often need to repeatedly run queries
of e.g., SSSP, graph simulation [26], depth-first search [43], con-
nectivity [12] and local clustering coefficient [47] for e-commerce
recommendation [34], road network analysis [49] and anomaly
detection [53] when graphs are updated. It is too costly to run a
batch algorithm starting from scratch in response to every update.
(2) When changes ∆G to a graph G are small, incremental algo-
rithms A∆ typically work better than batch algorithms A that
recompute Q(G ⊕ ∆G) [22, 23]. This is because the cost of incre-
mental computation is often determined by the size of the area
affected by ∆G [20, 23, 39], not by |G |. In the real world, updates are
typically small and diverse. For instance, various user operations
on e-commerce platform, e.g., item clicking, buying and refunding
trigger millions of edge insertions and deletions everyday [53] on
transaction graphs of billion scale [54].
(3) Incremental computation is a critical step of some graph systems,
e.g., the intermediate consequence operator in GRAPE [8, 24]. It
effectively reduces the cost of iterative computation.
Challenges. No matter how desirable, incremental graph algorithms
are hard to write and analyze. There is no systematic method for
developing incremental algorithms yet. Moreover, the complexity
analysis of incremental algorithms departs from its batch algorithm
counterpart. It is more sensitive to the size of the areas affected by
the updates [20, 39], not to the size |G | of possibly big graph G.

In light of these challenges, while a large number of batch graph
algorithms have been developed, few incremental graph algorithms
are in place, and even fewer can provably guarantee that they
outperform their batch counterparts when ∆G are small [20].

Is it possible to have a systematic method for developing
incremental graph algorithms with performance guarantees?
Incrementalization. This paper studies the incrementalization
of batch graph-centric algorithms.
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Problem Time (seconds)
Batch A Competitor Deduced A∆

SSSP 4.57s (Dijkstra [25]) 1.56s (DynDij [17]) 0.88s
Sim 4.86s (Simfp [26]) 1.03s (IncMatch [23]) 0.98s
LCC 78.1s (LCCfp [42]) 18.6s (DynLCC [19]) 12.0s

Table 1: Performance of incrementalized algorithms

(1) A systematic method. We propose to incrementalize existing
batch graph algorithms. For a query class Q, we pick a batch al-
gorithm A that has been verified effective after years of practice.
We deduce an incremental algorithm A∆ from A, by reusing the
original logic and data structures of A as much as possible. That
is, we propose to deduce an incremental A∆ from a well-studied
batch A, rather than to design A∆ ad hoc starting from scratch.

Moreover, we deduce A∆ with the following guarantees.
(2) Correctness. For any queryQ ∈ Q, graphG and updates ∆G toG ,

Q(G ⊕ ∆G) = A(Q,G) ⊕ A∆(Q,G,Q(G),∆G),
whereQ(G) = A(Q,G) andA∆(Q,G,Q(G),∆G) computes changes
to Q(G) in response to ∆G. That is, the deduced A∆ yields the
same output as re-running A starting from scratch.
(3) Boundedness. We ensure that A∆ is bounded relative to A [20].
That is, the size of the data inspected byA∆ is a function in the sizes
|Q |, |∆G | and |AFF|, not in (possibly big) |G |, where AFF denotes
the affected area that is necessarily checked by A in response to
∆G. Intuitively, |∆G | and |AFF| are the inherent updating cost of
incrementalizing A. When |∆G | is small, |AFF| is often small as
well, and hence A∆ is often more efficient than A.
(4) Effectiveness. As proof of concept (PoC), it has been shown that
effective incremental graph partitioners can be deduced from exist-
ing partitioning algorithms [21]. Moreover, compared with existing
incremental algorithms in [17, 19, 23], on graphs with 73.7 million
nodes and edges and 4% updates, Table 1 shows the performance
of deduced A∆ for (a) SSSP; (b) graph simulation (Sim) that finds
the maximum similarity relation between a graph pattern and a
graph; and (c) local clustering coefficient (LCC) that measures the
degree to which the neighbors of each node in a graph form a clique.
One can see that the deduced incremental algorithms perform even
better than existing fine-tuned competitors (see Section 6 for more).

Contributions & organization. We propose an approach to de-
veloping incremental graph algorithms.
(1) Incrementalization (Section 3). We identify a class of incremen-
talizable graph algorithms that can be modeled as fixpoint com-
putations. We show how to deduce an incremental algorithm A∆

from such a batch algorithm A, by reusing the original logic and
data structures of A as much as possible. Moreover, we show that
algorithm A∆ deduced from each A is correct, even without the
use of auxiliary data structures, referred to as deducible from A.
(2) Performance guarantees (Section 4). We identify generic condi-
tions under which an incremental algorithmA∆ isweakly deducible
from A, i.e., the deduced A∆ uses at most timestamp as auxiliary
structures, and guarantees to be bounded relative to A. We also
provide guidelines for such incrementalization. These allow us to
incrementalize existing batch algorithms with provable bounds.
(3) PoC (Section 5). We show that a variety of batch algorithms are
incrementalizable, e.g., algorithms for SSSP [25], Sim [26], LCC [42],
and graph connectivity (CC) [12] that finds all connected compo-

Notation Definition
Q,Q a class of graph queries, queryQ ∈ Q
G , ∆G a directed or undirected graph, updates to graph
A, A∆ fixpoint algorithm and its incremental algorithm

Φ the class of fixpoint algorithms
fA (resp. fA∆

) step function of algorithm A (resp. A∆ )
h initial scope function

DA , HA , SA (resp. DA∆
, HA∆

, SA∆
) status, scope and data structure of A (resp. A∆ )

xi , σxi a status variable and its logical statement
fxi , Yxi update function for variable xi and its input set
σA invariant of algorithm A

Cxi , <C anchor set for xi , an order of status variables

Table 2: Summary of notations

nents of a given graph, and depth-first search (DFS) [43] that tra-
verses a given graph in a depth-first manner. We show that their
incremental algorithms are either deducible (SSSP, DFS, LCC) or
weakly deducible (CC, Sim). Moreover, all the deduced incremental
algorithms are bounded relative to their batch counterparts.
(4) Empirical study (Section 6). Using real-life and synthetic graphs,
we experimentally verify the following. On average, (a) our incre-
mentalized A∆ for SSSP (resp. CC, Sim, DFS, LCC) is 20.1 (resp.
7.7, 39.6, 3.1, 18.7) times faster than its batch counterpart A when
|∆G | = 1%|G |. (b) When processing batch updates of edge inser-
tions and deletions, these deduced A∆’s consistently outperform
existing fine-tuned incremental methods, e.g., by 1.8, 38.9, 1.2, 4.4,
2.7 times, respectively, when |∆G |=1%|G |. (c) Their space costs are
comparable to those of A’s and competitors. (d) They scale well
with |G |, e.g., the one for SSSP takes 12.44s when |G | = 2.2 billion
and |∆G | = 1%|G |, as opposed to 99.9s by Dijkstra’s algorithm.

2 PRELIMINARIES
We first review basic notations of incremental algorithms.

Graphs. We consider graphs G = (V ,E,L), directed or undirected,
where (1)V is a finite set of nodes; (2) E ⊆ V ×V is a set of edges; and
(3) each nodev inV (resp. edge e ∈ E) carries a label L(v) (resp. L(e)),
indicating its content as in social networks and property graphs.

Graph algorithms. Consider a class Q of graph queries, e.g., SSSP.
Batch algorithms. A batch algorithmA for Q takes as input a query
Q∈Q and a graph G. It computes answers Q(G) to Q in G, i.e.,
Q(G) = A(Q,G). Its (combined) complexity is measured by a
function in the sizes |Q | of queryQ and |G | of the entire graphG [9].
Incremental algorithms. To simplify the discussion, we consider
edge updates, i.e., edge insertions and deletions. Vertex updates
are a dual of edge updates [29], and will be elaborated in Section 4.

A unit update is either an edge insertion or an edge deletion.
Previous work [39, 40] considers unit updates ∆G to study what an
incremental algorithm has to do for different types of ∆G. As will
be seen in Section 4, our correctness and boundedness results hold
on batch updates ∆G, i.e., sequences of unit updates.

In contrast to batch algorithms, an incremental algorithm A∆

for Q takes as input a query Q ∈ Q, a graph G, old output Q(G)
and updates ∆G to G. It computes changes to Q(G) such that

Q(G ⊕ ∆G) = Q(G) ⊕ A∆(Q,G,Q(G),∆G).

We refer to this equation as the correctness of A∆.
Relative boundedness. Consider a batch algorithmA for a query
class Q. For a query Q in Q and a graph G, denote by G(A,Q ) the
data accessed by A for computing Q(G), including the auxiliary



structure used by A. For updates ∆G to G, denote by AFF the
difference between (G⊕∆G)(A,Q ) andG(A,Q ), i.e., the difference in
the data inspected byA for computingA(Q,G ⊕∆G) andA(Q,G).

An incremental algorithmA∆ for Q is bounded relative toA [20]
if for any query Q in Q, graph G and updates ∆G to G, the size of
the data checked by A∆ can be expressed as a function of the sizes
|Q |, |∆G | and |AFF|. Here AFF includes changes ∆O to Q(G).

Intuitively, |AFF| indicates the affected area by ∆G relative toA,
i.e., the necessary cost for any possible incrementalization of A.

Another criterion for measuring the effectiveness of incremental
algorithms was proposed in [39, 44]. We say that A∆ is bounded if
its cost can be expressed as a function of |Q | and |CHANGED| =
|∆G | + |∆O | [39, 44], i.e., the size of changes to the input graph
and the output. Unfortunately, this standard of boundedness is too
strong, and few graph algorithms in practice are bounded [20].

Notations of this paper are summarized in Table 2.

3 INCREMENTALIZABLE ALGORITHMS
In this section, we first identify a class of batch graph algorithms
that are “incrementalizable”. We then show that we can deduce
correct incremental algorithms from such batch algorithms.

A fixpoint model. For a query class Q, a batch algorithmA often
works as follows. Given a queryQ ∈ Q and a graphG as input, (a) it
builds data structures SA , which associates status variables with the
nodes and edges of G. Denote by ΨA the set of all status variables
adopted in A. (b) For each status variable xi ∈ ΨA , algorithm
A applies an update function fxi to decide the value of xi , i.e.,
xi = fxi (Yxi ), whereYxi is a set of status variables inΨA . Moreover,
(c) it employs a logical statement σxi defined on status variables
such that σxi is guaranteed to be true right after every invocation of
fxi (Yxi ). We denote by σA the conjunction of the logical statements
σxi for all xi ’s in ΨA , referred to as the invariant of A.

AlgorithmA often computesQ(G) by iteratively operating onG
and SA , and produces partial results RA , i.e., the values of the sta-
tus variables in ΨA in each round. We use DA to denote (SA ,RA ),
referred to as status, which keeps track of the computation.

We say that A is a fixpoint algorithm if it is expressible as
(Dt+1
A , H

t+1
A ) = fA (D

t
A , Q, G, H

t
A ), where (1)

(1) Dt
A

denotes the status DA after t − 1 rounds of iterations, and
D0
A

includes the initial values for all status variables in ΨA ;

(2) H t
A

denotes the set HA of status variables collected before the
start of round t , referred to as the scope of round t ; some status
variables in H t

A
are to be updated in round t ; initially H0

A
contains

variables xi that may have false statements σxi for round 0; and

(3) fA is the intermediate consequence operator of the fixpoint,
called the step function of algorithm A. It selects status variables
from the scope H t

A
and performs update fxi (Yxi ) on each selected

xi to compute status Dt+1
A

. Moreover, fA returns the scope H t+1
A

that updates H t
A

with affected status variables of round t , i.e., those
xi ’s when the value of some variable in Yxi is changed in round t .

We denote by Φ the class of all such fixpoint algorithms.
Intuitively, a fixpoint algorithm A is essentially “update-based”.

It computesQ(G) by applying its step function fA in rounds, guided

Input: Graph G = (V , E, L), source vertex s .
Output: The shortest distance xv for each v in G .
1. xs ← 0; for each v , s do xv ←∞;
2. initialize priority queue que; /* scope HA : neighbors of nodes in que */
3. que.addOrAdjust(s, xs );
4. while que is not empty do /* step function fA */
5. v ← que.pop();
6. for each u ∈ out_nbr (v) do
7. alt← xv + L(v, u);
8. if alt < xu then /* apply update function fxu */
9. xu ← alt; que.addOrAdjust(u, xu ); /* adjust scope */
10. return {xv | v ∈ V };

Figure 1: Batch algorithm for SSSP

by the invariant σA . In round t , fA propagates the changes from
the last round t − 1 to the scope H t

A
and corresponding parts of

Dt
A
, and identifies the scope H t+1

A
for the next round. The process

proceeds until it reaches a fixpoint r such that Dr+1
A
= Dr

A
and

H r+1 = ∅, i.e., when no more changes can be made. All logical
statements in invariant σA hold when the process terminates.

A variety of graph query classes have fixpoint algorithms, in-
cluding SSSP [25], CC [12], Sim [26], DFS [43], LCC [42], and bi-
connectivity (BC) [43], just to name a few.

Example 1: Dijkstra’s algorithm for SSSP is a fixpoint algorithm,
as shown in Fig. 1. Consider a graph G = (V ,E,L), where L(u,v) is
the length of edge (u,v). As data structure in SA , it associates each
node v with a status variable xv , recording the shortest distance
from s , initialized as∞ forv,s (line 1). Apart from SA ,DA includes
a priority queue que, and the scopeHA includes all outgoing neigh-
bors of the nodes in que (line 2). Initially, que only has xs . Its step
function fA is defined in lines 5-9. Each time fA pops a node v
from que, and when logical statement σxu (i.e., xu=fxu (Yxu )) does
not hold forv’s outgoing neighbor u, it applies update function fxu
to xu , setting it to minxv ∈Yxu {xv + L(v,u)} (lines 6-9). Here Yxu
includes status variables of u’s incoming neighbors. Function fA
also adjusts que accordingly, and the changes will be propagated to
the next iteration. The process terminates when que and the scope
become empty. At this time, the invariant σA holds. 2

Incrementalization. We next show how to deduce an incremental
algorithm A∆ from a fixpoint algorithm A ∈ Φ. Suppose that
given a graph G and a query Q ∈ Q, batch algorithm A computes
Q(G) and ends up with a fixpoint Dr

A
. Incremental algorithm A∆

starts from Dr
A
. It additionally takes updates ∆G as input, and

possibly extends SA to SA∆ with auxiliary structures. It employs
Dt
A∆
= (St

A∆
,Rt
A∆
) and H t

A∆
analogous to their counterparts of

A. It is dominated by fA∆ , which is (a mild extension of) the step
function fA of A to cope with new auxiliary structures in SA∆ .

Along the same lines asA, it iterates in rounds to identify scope
HA∆ and compute new status DA∆ as follows:

(Dt+1
A∆
, H t+1
A∆
) = fA∆ (D

t
A∆
, Q, G ⊕ ∆G, H t

A∆
), (2)

(D0
A∆
,H0
A∆
) = h(Dr

A ,∆G). (3)

Here h is an initial scope function that identifies scope H0
A∆

forA∆.
It is derived from the old fixpoint Dr

A
and updates ∆G. It may ini-

tialize auxiliary structures of SA∆ and changes Dr
A

to status D0
A∆

.



Incremental algorithm A∆ works along the same lines as batch
algorithm A. It starts from D0

A∆
and H0

A∆
. Moreover, it employs

step function fA∆ to identify scopeH t+1
A∆

and update status to Dt+1
A∆

in round t . The process iterates until it reaches a fixpoint.
ComparingA andA∆, one can see that both batch and incremen-

tal algorithms are dominated by step functions. The step function
fA∆ (resp. status DA∆ ) of A∆ extends fA (resp. DA ) of A only to
cope with newly added auxiliary structure in SA∆ . As will be seen
shortly, the auxiliary structures are mostly for speeding up incre-
mental computation. That is, incremental algorithmA∆ essentially
adopts the same logic and data structures of A. It differs from A
mostly in the use of initial scope function h.
Scope function. The main objective of initial scope function h is to
identify and adjust status variables whose corresponding logical
statements no longer hold due to the updates ∆G . For instance, the
distance value of some variable xv may become invalid in SSSP
if node v’s adjacent edges evolve. As such, a practical initial scope
function h (1) analyzes the dependencies among status variables
that are implied in the invariant σA , and finds all variables affected
by ∆G, which should have new values; and (2) tunes affected
variables to their “feasible” status, from where the new correct
result can be obtained by applying the logic analogous to that of
A, i.e., resuming A’s iterative computation.
Deducible. We say that incremental algorithmA∆ is deducible from
batch A if its fA∆ , DA∆ and HA∆ remain the same as their batch
counterparts fA , DA and HA , respectively. That is, it uses the
same step function fA and adds no auxiliary structure to SA .

Intuitively,A∆ adopts exactly the same logic and data structures
of A. It differs from A only in its use of initial scope function h, to
cope with updates ∆G . In fact, by retracing the change propagation
caused by A, a conservative policy can eliminate all the previous
effects enforced on potential affected (PE) variables. Here each PE
variable xi may have a new final value due to ∆G and the changed
input set of update function fxi . Then we have a correct incremen-
tal algorithm A∆ deducible from A when PE variables and their
input sets are firstly “reset” to (default) initial values, followed by
executing the step function of A directly on the resulting status.

Theorem 1: From every fixpoint algorithm A ∈ Φ, a correct incre-
mental algorithm A∆ is deducible. 2

The example below illustrates the intuition behind Theorem 1,
whose proof is a special case of that of Theorem 3 (see Section 4).
Example 2: Given an undirected graph G = (V ,E,L), where each
node carries a node id, CC is to compute the id of the compo-
nent to which each node v ∈ V belongs. A fixpoint algorithm
for CC, denoted as CCfp, defines a status variable xv for each
v ∈ V , to store v’s component id, initialized as its node id. Ini-
tially, the scope HA includes all status variables. In each round,
its step function fA removes one xv from HA and computes
fxv (Yxv ) = min({xv } ∪ Yxv ), i.e., xv takes the smallest value
among its neighbors, and Yxv covers the neighbors of v . If the
value of xv changes, fA adds to scope HA all status variables in
Yxv . The process terminates when HA becomes empty.

An incremental algorithm for CC is deducible from CCfp, in
which the initial scope function h first marks each xv as a PE

variable if node v is covered by updates ∆G. Then it iteratively
expands the set of PE variables by including all xu if there exist
other variables xw in the input sets Yxu that are already marked PE;
it updates each PE variablexv tov’s node id and returns PE variables
found as H0

A∆
. After that, the incremental algorithm applies step

function fA of CCfp to compute new values for PE variables.
In short, h cancels previous effects on PE variables via a “change

propagation” analogous to that inCCfp, i.e., propagated along edges;
and adjusts them to “feasible” status, i.e., node id’s. Other variables
not touched by h remain stable and will not be accessed by fA . 2

Remark. We remark the following. (1) There exist graph algorithms
that are not expressible as fixpoint computation as above. These
include, e.g., REC [33] for graph sketching and METIS [28] for
graph partitioning. We defer the study of incrementalizing such
algorithms to future work. (2) The work is a step toward incremen-
talizing batch algorithms with performance guarantees. Nonethe-
less, it is not yet a fully automated method. It still requires domain
knowledge to deduce initial scope function h (see Section 4).

4 BOUNDED INCREMENTALIZATION
Not all incremental algorithms deducible from fixpoint algorithms
A are efficient, e.g., relatively bounded. For instance, the incremen-
tal algorithm in Example 2 may recompute the component id’s for
the entire set of nodes when given a unit edge deletion to a graph
having a single connected component. In light of this, in this section
we identify generic conditions under which the incremental A∆

warrants the boundedness relative toA. We also provide guidelines
for how to deduce A∆ from A with performance guarantees.
Guaranteeing relative boundedness. To identify conditions for
achieving correct and relatively bounded incrementalization, we
start with a monotone characterization for fixpoint algorithms.
Monotonicity. Let ⪯ be a partial order on the domain of status vari-
ables inΨA . We define (i)D1

A
⪯D2
A

if x1i ⪯x
2
i for each status variable

xi ∈ ΨA , where x1i and x
2
i are copies of xi in status D1

A
and D2

A
,

respectively; and (ii) Y 1
xi ⪯ Y 2

xi if y
1 ⪯ y2 for every variable y in the

set Yxi , where y1 and y2 are copies of y in Y 1
xi and Y

2
xi , respectively.

We say that algorithm A is contracting if the status variables
in ΨA are updated following the partial order ⪯; and that A is
monotonic if for each xi ∈ ΨA , the update function fxi is monotonic,
i.e., Y 1

xi ⪯ Y 2
xi implies that fxi (Y 1

xi ) ⪯ fxi (Y
2
xi ). In the rest of this

section, we study contracting and monotonic algorithms only.
Consider the computation of a contracting and monotonic algo-

rithm A ∈ Φ. Denote by x⊥i and x∗i the initial and final value of
each status variable xi when running A on graph G, respectively;
and by D⊥

A
and D∗

A
the initial and final status of A on G.

We say that status variable xi is feasible for graphG if x∗i ⪯ xi ⪯

x⊥i , i.e., xi carries a feasible value between x∗i and x⊥i . Similarly,
status DA is feasible for G if each xi of DA is feasible for G.

When A is both contracting and monotonic, all status variables
are necessarily feasible for graph G. More specifically,

D∗A ⪯ · · · ⪯ Dt+1
A ⪯ Dt

A ⪯ · · · ⪯ D0
A = D⊥A . (4)

That is, each round ofA essentially updates a feasible status Dt
A

to
another feasible status Dt+1

A
, following the order ⪯. We say a scope

HA is valid w.r.t.DA if every status variables xi ofDA that violates



condition σxi is in HA . Note that in each round, H t
A

is valid w.r.t.
Dt
A
, since the computation of A is guided by invariant σA .

Church-Rosser. If A is both contracting and monotonic, then the
computation of A is Church-Rosser [9], i.e., it is guaranteed to
converge at the same result no matter how it runs.
Lemma 2: Let DA be a feasible status for graph G and HA be a
valid scope w.r.t. DA . If A is contracting and monotonic, then the
computation of A starting from (DA ,HA ) converges at (D∗A , ∅). 2

Proof sketch: Suppose that the batch run starting from (D0
A
,H0
A
)

terminates after k rounds with Dk
A
= D∗

A
. Consider an arbitrary

run ρ ofA from (DA ,HA ). Denote by (Dt
A,ρ ,H

t
A,ρ ) the status and

scope after the t-th round. Suppose that ρ terminates with (D∗
A,ρ , ∅)

after ℓ rounds for some ℓ > 0. By induction on i and the assumed
properties of A, we can show that (1) D∗

A,ρ ⪯ Di
A

for 0≤i≤k ; and
(2) D∗

A
⪯ Di

A,ρ for 0≤i≤ℓ. It follows that D∗
A,ρ = D∗

A
. 2

Recall that in the incrementalized algorithmA∆, (D0
A∆
,H0
A∆
) =

h(Dr
A
,∆G) and fA∆ (i.e., the mild extension of step function fA )

conducts the fixpoint computation over the updated graphG ⊕ ∆G ,
starting from (D0

A∆
,H0
A∆
). Given Lemma 2, one can see that it

suffices to develop a correct scope function h forA∆ such that D0
A∆

is feasible for G ⊕ ∆G and H0
A∆

is valid w.r.t. D0
A∆

.
A brute-force approach to designing a correct h function is to

reset all (PE) variables to initial values and compute the correspond-
ing H0

A∆
, as in Example 2. This is too costly. To bound the cost of

A∆, we have to bound the initial scope H0
A∆

identified by h.
We say that the initial scope function h is bounded if the scope

H0
A∆

identified by h satisfies that H0
A∆
⊆ AFF.

When utilizing a correct and bounded initial scope functionh, the
incremental algorithm A∆ may require some auxiliary structures,
e.g., timestamps, and extend step function accordingly.
Weakly deducible. An incremental algorithm A∆ is weakly de-
ducible from A if (a) the data structure SA∆ extends SA by as-
sociating timestamp with (some of) its status variables xi to record
the time of the last change to xi ; (b) the step function fA∆ is the
same as fA except that it updates the timestamp of xi when xi is
updated; and (c) scope HA∆ extends HA similarly.

Intuitively, A∆ still adopts the same logic and data structures
of A, except that it records the timestamps of status variables for
identifying scope functionh. The step function fA∆ retains the same
complexity as fA , since fA∆ visits timestamps (auxiliary structures)
only when fA visits their corresponding status variables in a run.
Relative boundedness conditions. We now identify conditions under
which relatively bounded incrementalization is warranted.
(C1) The initial scope function h of A∆ is correct and bounded.
(C2) The batch algorithm A is contracting and monotonic.
Theorem 3: For every fixpoint algorithm A ∈ Φ, under conditions
(C1) and (C2), there exists a weakly deducible incremental algorithm
A∆ that is both correct and bounded relative to A. 2

That is, for a contracting and monotonic algorithm A, to get
an incremental algorithm A∆ bounded relative to A, one mainly
needs to implement a correct and bounded initial scope function h.
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Figure 2: Example graph and pattern

Proof sketch: When h is correct and bounded (C1), status D0
A∆

produced by h is feasible forG ⊕ ∆G and H0
A∆

is valid w.r.t.G ⊕ ∆G .
ThusA∆ is correct by Lemma 2. In particular, there always exists a
correct h that retrieves all PE variables by analyzing the invariant
σA and the change propagation of A only and resets PE variables
to initial values, without using timestamps. This proves Theorem 1.

It remains to verify the relative boundedness of incremental
algorithm A∆. By induction on the number t of rounds, we first
prove that H t

A∆
⊆ AFF for t ≥ 0. Indeed, AFF contains a status

variable xi when (i) xi ’s value changes on the updated graphG⊕∆G ,
or (ii) the input set Yxi evolves even if xi has already reached its
final value. Such xi ’s exactly match the variables thatA∆ visits, by
the semantics of h and the contracting property inherited from A.

Since H t
A∆
⊆ AFF and step function fA∆ updates the times-

tamps only if the status variables in H t
A∆

have changed, the size
of the data accessed byA∆ is bounded by a function of |AFF|, |∆G |
and |Q |. Therefore, A∆ is bounded relative to A. □

Note that Theorem 1 and Theorem 3 hold for batch updates,
since in the proof above, ∆G is not restricted to unit updates.

Deducing scope function. We next provide a guideline for de-
ducing initial scope function h that is bounded and correct, i.e., to
satisfy condition (C1). We will see that when h is in place, relatively
boundedA∆ can be readily deduced. Given a fixpointDr

A
and input

updates ∆G, h produces an initial scope H0
A∆

and a feasible status
D0
A∆

for G ⊕ ∆G. We define h by refining PE variables to capture
“essential” change propagation incurred by algorithmA on graphs,
using at most timestamps as an additional auxiliary structure.
Capturing change propagation. Recall that batch algorithm A de-
termines each status variable xi by using the update function fxi
with input set Yxi . However, it is common that only a subset of
Yxi affects the final value x∗i of xi for graph G. To capture this, for
each variable xi ∈ ΨA , we define its anchor set Cxi as the subset of
Yxi such that (a) both the value of fxi (Yxi ) remains stable and the
logical statement σxi holds when every status variable yi in Cxi
carries its final value y∗i , while all other status variables in Yxi \Cxi
can have any feasible values; and (b) the final valuey∗i is determined
ahead of x∗i by batch algorithm A for each yi ∈ Cxi .

We say that status variableyi is a contributor of xi if it is included
in one anchor set of xi . Intuitively, contributors characterize which
status variables in Yxi have essential impacts on the final value of
xi , i.e., changes propagated from yi to xi are essential.

With contributors, we can build directed acyclic graphs (DAGs)
in which the nodes are all status variables in ΨA , and there exists an
edge from x j to xi if and only if x j is a contributor of xi . Denote by
<C the topological order on the variables in the DAGs, which can
also be easily deduced from the timestamps. The DAGs represent



v G G ⊕ ∆G
xv Cxv xv Cxv

0 0 ∅ 0 ∅

1 5 {2} 4 {3}
2 1 {0} 1 {0}
3 7 {4} 3 {5}
4 6 {1} 5 {1}
5 2 {2} 2 {2}
6 3 {5} 9 {4}
7 4 {6} 5 {2}

(a) SSSP

v G G ⊕ ∆G
t Cx [v,L(v )] t Cx [v,L(v )]

0 0 ∅ 0 ∅

1 ∞ ∅ ∞ ∅

2 ∞ ∅ ∞ ∅

3 ∞ ∅ ∞ ∅

4 ∞ ∅ ∞ ∅

5 2 {6} ∞ ∅

6 1 {7} 1 {7}
7 0 ∅ 0 ∅

(b) Sim

v G G ⊕ ∆G
xv Cxv xv Cxv

0 [0, 15] {r } [0, 15] {r }
1 [1, 12] {0} [1, 12] {0}
2 [13, 14] {0} [13, 14] {0}
3 [9, 10] {4} [3, 4] {5}
4 [8, 11] {1} [8, 11] {1}
5 [2, 7] {1} [2, 7] {1}
6 [3, 6] {5} [10.1, 10.4] {4}
7 [4, 5] {6} [10.2, 10.3] {6}

(c) DFS

v G G ⊕ ∆G
dv λv dv λv

0 2 1 2 1
1 5 4 5 5
2 4 2 4 2
3 2 1 3 3
4 4 3 4 3
5 4 3 4 4
6 3 1 2 0
7 2 0 2 0

(d) LCC
Figure 3: Status variables and anchor sets

the dependency of the essential computation, i.e., essential change
propagation of algorithm A when running on G.

Example 3: Consider the invocation of Dijkstra’s algorithm for
SSSP over the graph G shown in Figure 2(a) (excluding the dotted
edge (5, 3)), where node 0 is the source. The final values, i.e., the
shortest distance of each status variable xv together with the anchor
setCxv , are given in Fig. 3(a) in the column annotatedG . HereCxv
is {xu ∈ Yxv | xu + L(u,v) = xv }. Intuitively, if xu ∈ Cxv , then u
lies on the shortest path from node 0 to v . The order <C is directly
deduced from the final values, as the order of the latest update time
of status variables, i.e., xu <C xv if and only if xu < xv . 2

Adjusting fixpoint. Figure 4 outlines how the initial scope function
h works. It iteratively identifies infeasible values in the previous
fixpoint status Dr

A
, and assigns feasible values to them for the

updated graph G ⊕ ∆G, following the topological order <C .
It first includes in scope H0

A∆
all status variables whose update

functions have changed input sets (line 1). Then h initializes a prior-
ity queue que recording status variables that may carry infeasible
values (line 2). In each iteration of revising infeasible values, h pops
a variable xi from que with the smallest order w.r.t. <C , generates
the new feasible input set Y xi , and compares a new value fxi (Y xi )

with xi (lines 4-7). If xi carries an old value that may be infeasible
for G ⊕ ∆G, i.e., xi ≺ fxi (Y xi ), it expands the scope H0

A∆
, updates

xi with the new value in status D0
A∆

and adjusts que by including
potential infeasible variables because of the infeasible contributor
xi (lines 8-9). The process terminates when que becomes empty.

To see that h is correct, note that the old value of xi is infeasible
only if (a) there exists at least one contributor y of xi (i.e., a status
variable ahead of xi in the topological order <C ) has been confirmed
infeasible forG ⊕ ∆G; or (b) the input set Yxi of fxi changes due to
∆G. By induction on the rounds of the iteration in h, we can verify
that all infeasible status variables are collected in que. Moreover,
since h processes infeasible ones following <C , the computed new
values are guaranteed to be feasible for G ⊕ ∆G.

One can also verify that such initial scope function h is bounded
since all status variables that are included in que are covered by
AFF. They have different values between the two runs of A, since
either their input sets of update functions or contributors evolve.

Input: Previous fixpoint status Dr
A

and input updates ∆G .
Output: An initial scope H 0

A∆
and a feasible status D0

A∆
for G ⊕ ∆G .

1. collect into H 0
A∆

the status variables with evolved input sets of
update functions due to ∆G ; D0

A∆
← Dr

A
;

2. initialize a priority queue que via H 0
A∆

according to order <C ;
3. while que is not empty do
4. xi ← que.pop(); Y xi ← convert(Yxi , ∆G);
5. for each y ∈ Y xi do // make Y xi feasible
6. if xi <C y then y ← y⊥;
7. if xi ≺ fxi (Y xi ) then // xi is potentially infeasible
8. H 0

A∆
← H 0

A∆
∪ {xi }; D0

A∆
(xi ) ← fxi (Y xi );

9. for each z with x ∈ Cz do que.insert (z);
10. return H 0

A∆
and D0

A∆
;

Figure 4: An implementation of initial scope function h

Example 4: We show how a correct and bounded scope function
h works for SSSP. Continuing with Example 3, consider updates
∆G that delete bold edge (5, 6) and insert dotted edge (5, 3). Given
∆G and the final values of status variables in Example 3 (i.e., Dr

A
),

h produces feasible status D0
A∆

and initial scope H0
A∆

as follows.

(1) Initially, H0
A∆
= {x3,x6} since only the input sets w.r.t. vari-

ables for destination nodes of the edges in ∆G evolve. Hence the
queue que starts with {x3,x6}, and h pops x6 first. Since x6 <C x4,
i.e., node 6 has a shorter distance than node 4 from the source, h
generates a new feasible input set Y x6 as {x4=∞}. Here x4 is re-
set to initial value, which must be feasible for G ⊕ ∆G. Observe
that x6 = 3 ≺ ∞ = fx6 (Y x6 ); thus x6 is assigned ∞. In addition, h
includes x7 in the queue for further inspection because x6 ∈ Cx7 .
(2) Next, h pops x7 from que and makes it feasible. Similar to the
processing of x6, h determines Y x7 as {x6 = ∞,x2 = 1}, changes x7
to 5 and adds it to H0

A∆
. No nodes are included in que in this step.

(3) At last h inspects x3. Since x4 <C x3 and x5 <C x3, we have
that fx3 (Y x3 ) = 3 ≺ x3. Hence x3’s old value is still feasible and no
new variables are further pushed into the queue que.

At the end,h returns {x3,x6,x7} asH0
A∆

and the revised distance
values as D0

A∆
. Here D0

A∆
differs from fixpoint status Dr

A
only in

x6 (∞ vs. 3) and x7 (5 vs. 4). Observe that x6 and x7 indeed change
in G ⊕ ∆G (see Figure 3(a)). Thus H0

A
⊆ AFF and h is bounded. 2

Having developed initial scope function h, we can easily deduce
the incremental algorithmA∆ as its step function fA∆ is almost the
same as fA . For instance, Figure 5 gives the incremental algorithm
for SSSP, which adopts scope function h of Example 4 and can
compute the new distance values inG ⊕ ∆G, as shown in Fig. 3(a).

Observe that for SSSP, the fixpoint Dr
A

already subsumes the
anchor sets and tells us whether the final value of a variable is
determined prior to another. Thus A∆ of Fig. 5 is deducible from
Dijkstra’s algorithm. However, some other A∆ may need to use
timestamps when deciding the order <C and scope function h,
although timestamps can be deduced from the batch runs of A as
a byproduct. Under such case, A∆ is weakly deducible from A.

Example 5: An incremental algorithm for CC, denoted as IncCC,
is weakly deducible from CCfp (Example 2). It adopts timestamps
to determine the anchor sets and the order <C on status variables.
More specifically, the anchor sets for each status variable xw include



Input: Graph G = (V , E, L), source s , updates ∆G , previous fixpoint Dr
A
.

Output: The updated shortest distance xv for each v in G ⊕ ∆G .
1. (DA∆, HA∆ ) ← h(Dr

A
, ∆G); /* apply initial scope function h */

2. initialize a priority queue que;
3. for each incoming neighbor v of a node in HA∆ do
4. que.addOrAdjust(v, xv );
5. the same lines 4-10 as in the batch SSSP algorithm from Figure 1;

Figure 5: Incremental algorithm for SSSP

xw ′ such thatw ′ is a neighbor ofw , and xw ′ has a timestamp smaller
than that of xw . With timestamps, the order <C is immediately
derived, i.e., xw <C xw ′ if and only if xw has a smaller timestamp.

Based on these, IncCC’s initial scope function h works following
the guidelines in Figure 4. Then it proceeds to compute the new
values for affected variables using the step function fA∆ in a way
similar to fA of CCfp, except that the corresponding timestamps
are also updated accordingly. In fact, when deleting an edge e
from a single connected component, only one endpoint of e with a
larger timestamp may be truly affected and be processed by IncCC.
This is in contrast to the deducible incremental algorithm given in
Example 2, which treats both endpoints as PE variables. Hence the
relative boundedness of IncCC can be confirmed by Theorem 3. 2
Vertex updates. The methods can be readily extended to handle
node insertions and deletions. Clearly, removing a node is the same
as removing all its incident edges and hence can be treated as edge
updates. When inserting a new node v together with its adjacent
edges (assuming a dummy edge when no edge is explicitly added),
scope function h first computes initial values for new status vari-
ables introduced byv , and revises the order <C accordingly. Then h
proceeds along the same lines as Fig. 4. The correctness and relative
boundedness are still warranted by Lemma 2 and Theorem 3.

5 PROOF OF CONCEPT
As a proof of concept, we deduce incremental algorithms for graph
simulation, depth-first search and local clustering coefficient.

5.1 Graph Simulation
We start with graph pattern matching via graph simulation (Sim).

Given a data graph G = (V ,E,L) and a pattern graph Q =
(VQ ,EQ ,LQ ), a binary relation R ⊆ V × VQ is a simulation if
for each ⟨v,u⟩ ∈ R, (a) L(v) = LQ (u), and (b) for each edge
(u,u ′) ∈ EQ , there exists an edge (v,v ′) ∈ E such that ⟨v ′,u ′⟩ ∈ R.
If G matches Q , there exists a unique non-empty maximum R, de-
noted as Q(G) [26]. We say that v matches u if ⟨v,u⟩ ∈ Q(G).

Graph pattern matching via graph simulation is as follows.
◦ Input: A directed graph G and a pattern Q .
◦ Output: The unique maximum relation Q(G).

Batch algorithm. There is a fixpoint algorithm Simfp for Sim [26].
It associates each pair ⟨v,u⟩∈V×VQ of nodes with a Boolean vari-
able x[v,u], indicating whetherv matches u. Initially x[v,u] is true
if L(v)=LQ (u); otherwise, x[v,u]=false. It also employs a counter
cnt(v,u ′) to record the number of nodes v ′ in out_nbr(v) with
x[v ′,u ′]=true, where out_nbr(v) records v’s outgoing neighbors.
The pairs ⟨v,u ′⟩ with cnt(v,u ′)=0 are maintained in a set P , and
the scope HA includes x[v,u] if ⟨v,u ′⟩∈P and u ′∈out_nbr(u). The
counters help Simfp decide the direction of change propagation.

Each time step function fA of Simfp removes a pair ⟨v,u ′⟩ from
P and invokes fx [v,u](Yx [v,u]) to check the simulation condition
for each ⟨v,u⟩, where u ′∈out_nbr(u) and Yx [v,u] is {x[v ′′,u ′′] |
v ′′∈out_nbr(v) ∧ u ′′∈out_nbr(u)}. It updates x[v,u] from true to
false if the condition is violated; the counters, set P and scope HA
are also updated accordingly. It terminates when HA = ∅. The
invariant of Simfp is that if node v matches u, then there exists a
nonzero counter cnt(v,u ′) for each outgoing neighbor u ′ of u.

Incremental algorithm. An incremental algorithm IncSim is
weakly deducible from Simfp. Its step function fA∆ is the same as
fA of Simfp except that it specifies a timestamp x[v,u].t for each
variable x[v,u] to record the time when x[v,u] turns to false from
true. Initially, x[v,u].t = −1 if x[v,u] = false and x[v,u].t = ∞
otherwise. The timestamps are used to determine the anchor sets, es-
pecially for cyclic patterns [23]. Intuitively, those status variables in
Yx [v,u] with timestamps smaller than x[v,u] essentially contribute
to the invocation of fx [v,u], which also constitute the anchor sets
Cx [v,u] of x[v,u]. The topological order <C can be deduced accord-
ingly, i.e., x[v,u] <C x[v ′,u ′] if and only if x[v,u].t < x[v ′,u ′].t .

We can verify that Simfp is both contracting and monotonic, by
letting ⪯ be the partial order on status variables such that false ⪯
true. By Theorem 3, it suffices to design a correct and bounded
scope function h. Employing the order <C defined as above, IncSim
just adopts the function h shown in Figure 4, which recursively
adjusts all unfeasible status variables from false to true to get a
revised status D0

A∆
and the scope H0

A∆
. After that, IncSim applies

step function fA∆ to get the updated result as in Simfp. It also
updates timestamps. Thus IncSim is weakly deducible from Simfp.

Example 6: Consider the graph pattern depicted in Figure 2(b)
and the graph G described in Example 3, where each node in G is
labeled ‘a’, ‘b’ or ‘c’. Algorithm Simfp finds that G matches Q , and
Figure 3(b) lists the resulting timestamps (t-column) and anchor
sets. As each nodev inG carries a single label L(v), Figure 3(b) only
shows information of variables x[v,L(v)]; the other variables are
false and have empty anchor sets. Here we do not explicitly show
the final value of each variable since it is true (resp. false) if the
corresponding timestamp is∞ (resp. an integer).

Given the updates ∆G of Example 4, the scope function h of
incremental algorithm IncSim first initializes the scope H0

A∆
as

{x[5,b]}. Since the only outgoing neighbor of node 5 after the
update is node 3, and x[3, c] >C x[5,b] (by x[3, c].t = ∞, x[5,b].t =
2), h recognizes a new feasible input set as Y x [5,b] = {x[3, c] =
true}. As a result, h changes x[5,b] from false to true. Then the
iterative computation of h terminates since x[5,b] is not in any
anchor sets. It returns {x[5,b]} as H0

A∆
, and the feasible status

D0
A∆

that differs from previous fixpoint only in x[5,b].
Then IncSim proceeds along the same lines of function fA of

Simfp to compute the new values forG⊕∆G indicated in Figure 3(b).
In particular, the timestamp of x[5,b] is also changed to∞. 2

Analyses. One can verify that D0
A∆

is feasible for G ⊕ ∆G, by in-
duction on the order <C (see Section 4); from this the correctness
of IncSim follows. Note that each status variable included in H0

A∆

either has a new value inG ⊕ ∆G or has to be inspected necessarily.
Thus H0

A∆
⊆ AFF and IncSim is bounded relative to Simfp.



5.2 Depth-First Search
We next consider depth-first search (DFS) on directed graphs [43].
◦ Input: A directed graph G = (V ,E,L).
◦ Output: A DFS tree, i.e., an ordered spanning tree TG =
(V ,ET ) generated by depth-first search on G.

Here each nodev in theDFS tree is associatedwithv .first andv .last,
indicating v’s positions in the preorder and the postorder on the
vertices ofV induced by the DFS traversal, respectively. In practice,
they also record the (relative) timestamps when v is visited for the
first time and the last time in the DFS traversal [50], respectively.
To simplify the discussion, we assume that there is a virtual root
r connected to every node in G and the traversal starts from r .

Batch algorithm. There exists a fixpoint algorithm for DFS
that is incrementalizable, denoted by DFSfp. For each node v ∈
V ∪ {r }, it declares a status variable, i.e., timestamp interval
xv = [v .first,v .last]. Initially all xv ’s are assigned [∞,∞] except
xr = [0, β], where β > 0. The update function fxv adjusts xv ; its
input set Yxv includes xv ′ for all incoming neighbors v ′ of v , in
which one variable in Yxv is marked as the parent of xv . The logical
statement σxv is defined as that there exists no xv ′ ∈ Yxv such that
v ′.last < v .first. This is consistent with the invariant of DFS that
no forward-cross edge exists [50]. Therefore, initially the scope
HA contains variables xv ’s associated with outgoing neighbors of
virtual root r , and their parents are xr . Moreover, xw .last of xv ’s
parent xw is regarded as the rank for each variable xv ∈ HA .

In each round, the step function fA ofDFSfp selects and removes
one variable xv from the scope HA that has the smallest rank. It
changes xv to a new strict subinterval of [w .first,w .last] by calling
update function fxv and linksw to v in the DFS tree, where xw is
the parent of xv . Here the new subinterval does not overlap with
previous ones computed from [w .first,w .last] and has the largest
first value. In addition, for each outgoing neighbor u of v with
v .last < u .first, it adds xu to the scope HA and marks xv as the
new parent of xu . The process iterates until HA becomes empty.

Incremental algorithm. By Theorem 3, a relatively bounded in-
cremental algorithm, denoted as IncDFS, is deducible from DFSfp.

To do this, we first show that DFSfp is both contracting and
monotonic. Recall that the status variables in DFSfp have the form
of closed intervals [v .first,v .last]. We define a partial order ⪯ such
that xv ⪯ xu if v .last is no larger than u .first. One can see that up-
date function fxv changes xv to a subinterval of its parent xw , and
w .last is the minimum among all v’s incoming neighbors. There-
fore, DFSfp is both contracting and monotonic w.r.t. ⪯.

It remains to develop a correct and bounded initial scope function
h for IncDFS following the guidelines provided in Section 4. By the
semantics of update functions in DFSfp, obviously only the (single)
parent for status variable xv is in the anchor set Cxv of xv . In
addition, the order <C can also be derived from the final values of
the status variables. That is, xv <C xu if and only ifv .first < u .first.
Using anchor sets (i.e., contributors) and the order <C , h can be
deduced following Figure 4 for finding scope H0

A∆
and new status

D0
A∆

. In particular, when the expansion of scope H0
A∆

stops in h,
each status variable xv in H0

A∆
is given a new parent xw and a

corresponding rank w .last analogous to that in DFSfp, i.e., w .last
is the minimum among the incoming neighbors of v .

Having H0
A∆

as the new initial scope, IncDFS reuses the same
step function fA of DFSfp to compute the new fixpoint. The algo-
rithm does not need to add timestamps, and is deducible fromDFSfp.

Example 7: Recall graphG and input updates ∆G from Example 6.
Running ofDFSfp overG produces the intervals, i.e., status variables
and their anchor sets shown in Figure 3(c), where the anchor sets
also indicate the parent of each node in the DFS tree.

When G is updated by ∆G, the initial scope function h includes
x3 and x6 in the scope H0

A∆
and the queue because of the changed

input sets. Observe that x6 <C x3; hence h handles x6 first. As the
the only edge to node 6 is from node 4 after the update, i.e., the
old parent x5 of x6 no longer exists in the new feasible input set
Y x6 = {x4 = [∞,∞]}, h resets x6 to the initial value [∞,∞]. It also
puts x7 into the queue since x6 ∈ Cx7 . Similarly, x7 is reset to [∞,∞]
by h. Function h finally processes x3. Its feasible input set Y x3 is
{x4 = [8, 11],x5 = [2, 7]}. Thus x3 = [9, 10] ⊀ fx3 (Y x3 ) = [3, 4] and
no other nodes are pushed into the queue for further inspection.

Functionh returns scopeH0
A∆

that consists of status variables x3,
x6 and x7. Their new parents are x5, x4 and x6, respectively. Using
the step function fA of Simfp, IncSim derives the new intervals
and parents, i.e., anchor sets inG ⊕ ∆G , also shown in Fig. 3(c). 2

Analyses. The correctness of IncDFS is assured by the contracting
and monotonic computation of DFSfp, and the correctness of scope
functionh (see Section 4). IncDFS is bounded relative toDFSfp since
for each xv in H0

A∆
, either it has new value or its update function

has evolved input sets, i.e.,H0
A∆
⊆ AFF (see the proof of Theorem 3).

5.3 Local Clustering Coefficient
Finally, we study local clustering coefficient (LCC) [47].
◦ Input: An undirected graph G = (V ,E,L).
◦ Output: The local clustering coefficient γv for each vertex v
in V , where γv is defined as

γv =
2|{(u,w) ∈ E | u,w ∈ nbr(v)}|

dv (dv − 1)
.

Here dv is the degree of v and nbr(v) is the neighbor set of v . Intu-
itively, γv measures how close v and its neighbors are to forming a
clique, e.g., when γv = 1, v and its neighbors form a clique. Let λv
be the number of triangles including v . Then γv = 2λv/dv (dv − 1).

Batch Algorithm. A fixpoint algorithm [41, 42] for LCC, denoted
as LCCfp, works as follows. It associates each node v ∈ V with
two status variables dv and λv . The update function fdv (resp. fλv )
computes their values based on the definitions above; their logical
statements are defined accordingly. Initially the scope HA includes
all variables. The step function fA of LCCfp simply removes each
dv and λv from HA and determines their values using update
functions. Then coefficients γv can be readily obtained.

Incremental algorithm. A relatively bounded incremental algo-
rithm IncLCC is deducible from LCCfp, without using timestamps.
Given updates ∆G , it first identifies PE variables that have different
values in the two runs of the batch LCCfp (see Section 4). For each
edge (u,v) involved in ∆G , it marks du , dv and λv ′ as PE variables,
where v ′ ranges over all nodes that are within one-hop from u or
v . All PE variables are included in the new scope HA∆ . Thereafter,



IncLCC applies the original step function fA of LCCfp to determine
the new values for the status variables in the scope HA∆ .

Example 8: Consider applying LCCfp on graph G of Figure 2(a).
The status variables dv and λv for each node is shown in Fig-
ure 3(d) under the G-column. When processing input updates ∆G
of Example 4, the incremental algorithm IncLCC derives HA∆ as
{d3,d5,d6}∪ {λi | i ∈ [1, 7]}. That is,HA∆ includes variables dv for
v covered by ∆G, and λv for v within one-hop from ∆G. IncLCC
next enforces step function fA to update the variables in HA∆ to
the values listed under the G ⊕ ∆G-column of Figure 3(d). 2

Analyses. Algorithm IncLCC is correct by Theorem 1. The status
variable dv (resp. λv ) in LCCfp is affected by updates ∆G , i.e., dv ∈
AFF (resp. λv ∈ AFF) if and only if there exist changes to the
adjacent edges of v (resp. v and its neighbors). Note that IncLCC
only collects such status variables into scope HA∆ as PE variables;
from this it follows that it is bounded relative to LCCfp.

6 EXPERIMENTAL STUDY
We empirically evaluated our incrementalized algorithms of SSSP,
CC, Sim, DFS and LCC, for their efficiency and effectiveness when
processing (1) unit updates and (2) batch updates, (3) the scalability
with larger synthetic graphs, and (4) memory cost.

Experiment setting. We start with graphs and updates.
Datasets. We used six real-life graphs of different types, including
(a) LiveJournal (LJ) [3, 11, 31], a social network with 4.8 million
users and 68.9 million relationships, (b) DBPedia (DP) [6], a knowl-
edge base with 4.9 million entities and 54 million edges, (c) Orkut
(OKT) [1, 37], a social network of 3.1 million users and 117 mil-
lion connections between users, (d) Twitter-2010 (TW) [4, 13, 14],
a social network with 41.6 million nodes and 1.4 billion links, (e)
Friendster (FS) [2, 51], a gaming network with 65.6 million users
and 1.8 billion edges, and (f) Wiki-DE (WD) [5, 30], a real-life tem-
poral graph with 2.1 million nodes and 86.3 million links, which
record the evolution of hyperlinks between articles in German
Wikipedia. The edges in the temporalWD are labeled with times-
tamps indicating when they were last added or removed.

To test the scalability, we also designed a generator to produce
larger synthetic graphsG = (V ,E,L), controlled by the number |V |
of nodes (up to 135 million) and the number |E | edges (up to 2.1
billion) with L drawn from an alphabet of 5 labels.
Updates. For the temporal graphWD, we constructed updates ∆G
from real timestamped changes by limiting certain time intervals.
For the other graphs, we generated random updates controlled by
the size |∆G |. The random updates were comprised of equal amount
of edge insertions and deletions, unless stated otherwise.
Queries. We sampled 20 source nodes from each graph to create
SSSP queries. For Sim, we constructed 5 patterns Q=(VQ ,EQ ,LQ )
on each graph with labels drawn from the data graphs.
Implementation. We implemented the following, all in C++: (1) the
incrementalized algorithms given in Sections 3–5, i.e., IncSSSP,
IncCC, IncSim, IncDFS and IncLCC; (2) their variants IncSSSPn,
IncCCn, IncSimn, IncDFSn, and IncLCCn, which process unit up-
dates in given batch updates∆G one by one using the corresponding
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Figure 6: Efficiency in processing unit updates

techniques developed in this work; (3) their batch counterparts, i.e.,
fixpoint algorithms Dijkstra, CCfp, Simfp, DFSfp and LCCfp, which
are also described in Sections 3–5; and (4) existing incremental (dy-
namic) algorithms for different graph query classes, including (a)
the dynamic SSSP algorithms in [39] and [17] for processing unit
updates and batch updates, denoted as RR andDynDij, respectively;
(b) the fully dynamic algorithm of [27] for CC, denoted as DynCC
(we used the implementation provided at [7]); (c) IncMatch [23] for
Sim; (d) the fully dynamic algorithm DynDFS for DFS [50]; and (e)
the streaming LCC algorithm in [19], denoted as DynLCC.

All experiments were conducted on one single processor of Intel
Xeon 2.20 GHz CPU, with 128 GB memory, running Red Hat Enter-
prise Linux Server 7.3. All the implementations are single threaded.
Each experiment was repeated 5 times. The average is reported here.

Experimental results. We next report our findings. When testing
Sim, we fixed |Q | = (4, 6), i.e., patterns with 4 nodes and 6 edges.

Exp-1: Efficiency. We first evaluated the efficiency of our incre-
mentalized algorithms in processing unit updates, compared with
existing dynamic methods for various query classes. This is to study
the impact of different types of ∆G on the performance of incre-
mental algorithms. We used all the six real-life graphs and sampled
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Figure 7: Performance evaluation in processing batch updates

10000 edge insertions (resp. deletions) for each graph as unit up-
dates ∆G. We applied unit updates one by one and recorded the
average runtime for handling each edge insertion (resp. deletion).
(1) Edge insertion. Figures 6(a), 6(c), 6(e), 6(g) and 6(i) report the per-
formance of different incremental methods for SSSP, CC, Sim, DFS
and LCC, respectively. From the results we can find the following.
(a) In most cases, our incrementalized algorithms outperform the
existing dynamic methods for edge insertions, despite that they are
systematically deduced from batch algorithms, while the baselines
are fine-tuned individually with possibly sophisticated techniques
for specific queries. On average IncSSSP (resp. IncCC, IncSim,
IncDFS, IncLCC) is 2.6 (resp. 1.3, 1.4, 31.0, 29.4) times faster than
RR (reps. DynCC, IncMatch, DynDFS, DynLCC).
(b) The incrementalized methods are efficient. Over the largest
real-life graph FS, the average response time of all our incremental
methods is less than 7ms for unit edge insertions.
(c) The size |AFF| of affected area for unit insertions is rather
small. For instance, over OKT, |AFF| accounts for only 1.8 × 10−6%,
4.2 × 10−5%, 1.7 × 10−6%, 2.0 × 10−6% and 2.6 × 10−3% of the to-
tal size of the auxiliary structures on average, for IncSSSP, IncCC,
IncSim, IncDFS and IncLCC, respectively (not shown).

(2) Edge deletion. As reported in Figures 6(b), 6(d), 6(f), 6(h) and 6(j)
for the five query classes, respectively, (a) in most cases the incre-
mentalized algorithms perform better than the existing dynamic
methods, e.g., IncLCC is 1.7 times faster than DynLCC over DP.
(b) While DynCC works better than IncCC for unit edge deletions
on WD, LJ, DP and OKT, it ran out of memory (OOM) on larger

real-life graphs TW and FS for its excessive memory usage, no mat-
ter whether for insertions or deletions. (c) The size |AFF| for unit
deletions is also small, e.g., overOKT, it is 1.8 × 10−6%, 2.4 × 10−3%,
1.7 × 10−6%, 5.9 × 10−5% and 2.5 × 10−5% of the total size of aux-
iliary structures, for IncSSSP, IncCC, IncSim, IncDFS and IncLCC,
respectively. Note that the |AFF| for unit deletions of IncCC and
IncDFS is much larger than that for unit insertions, which explains
why they take longer when dealing with deletions.

These show that the incrementalization approach suffices to
deduce efficient incremental algorithms from batch algorithms.

Exp-2: Effectiveness in processing batch updates. We further
evaluated the performance of the deduced algorithms against their
batch counterparts and competitors. We studied the impact of the
size and the type of updates, respectively. In all the cases tested,
we find that the incrementalized algorithms consistently perform
better than their variants that handle unit updates one by one.
(1) Varying |∆G |. We first tested (a) SSSP with real-life graphs FS
and TW, (b) CC with OKT and LJ, (c) Sim with DP and FS, (d) LCC
with LJ andOKT, and (e)DFSwithOKT, based on their applications
in social networks, knowledge graphs and community detection.
(a) SSSP. Varying |∆G | from 2% to 32% over FS and TW, we report
the results in Figures 7(a) and 7(b), which tell us the following.
(i) On average, the incrementalized algorithm IncSSSP is from 20.7
to 31.0 (resp. 1.5 to 2.7) times faster than IncSSSPn (resp. DynDij)
when |∆G | varies from 2% to 32% of |G | on FS and TW. IncSSSPn is
even slower than batch Dijkstra when |∆G | ≥ 2%. This is because
it processes batch updates as a sequence of unit updates one by



one, which is inefficient. In addition, the gap between the runtime
of IncSSSP and DynDij gets larger when |∆G | increases.
(ii) IncSSSP outperforms batch counterpart Dijkstra from 9.5 (resp.
7.8) to 1.5 (resp. 1.8) times when |∆G | varies from 2% to 16% on FS
(resp. TW). It is faster than Dijkstra even when |∆G | = 32%|G |.
(iii) All the incremental algorithms IncSSSP, IncSSSPn and DynDij
take less time on smaller updates, as expected, while Dijkstra is
insensitive to |∆G |, since the sizes of the graphs remain stable.

(b) CC. Figure 7(c) reports the performance of different algorithms
for CC on OKT. We can see that (i) incremental IncCC consistently
outperforms batch counterpart CCfp when |∆G | is up to 32% of |G |;
the improvement is 4.0 times when |∆G | = 4%|G |. (ii) On average,
IncCC beats DynCC by 132 times when |∆G | varies from 4% to
64% of |G |, as opposed to the case of unit edge deletions. (iii) Sur-
prisingly, DynCC is even slower than batch CCfp that recomputes
answers starting from scratch. This is because DynCC processes
unit updates in batch updates one by one, instead of treating them
as a whole. The results on LJ are consistent (not shown).

(c) Sim. As reported in Figures 7(d) and 7(e) over DP and FS, respec-
tively, (i) incremental algorithms IncSim and IncMatch consistently
beat batch Simfp when |∆G | ≤ 64%|G |; IncSim is 10.7 (resp. 14.2)
times faster than Simfp, on DP (resp. FS) with 4% of updates. (ii)
IncSim and IncMatch scale better with |∆G | than IncSimn, while
Simfp is insensitive to |∆G |, as expected. (iii) IncSim is on average
18% and 28% faster than the fine-tuned IncMatch on DP and FS,
respectively. (iv) The two take 3.8s and 4.4s when |∆G | is up to
32%|G | on DP, respectively, while the batch algorithm takes 7.6s.

(d) LCC. As shown in Fig. 7(f) over LJ, when |∆G | is varied from
2% to 32% of |G |, (i) on average IncLCC is 4.5 and 2.1 times faster
than LCCfp and IncLCCn, respectively; IncLCC outperforms
batch LCCfp even when |∆G | is up to 32% of |G |. (ii) IncLCC
consistently outperforms DynLCC, e.g., IncLCC is 2.7 times faster
than DynLCC when |∆G | = 2%|G |. The gap gets larger when |∆G |
increase. The results on OKT are consistent (not shown).

(e) DFS. Over OKT, IncDFS performs much better than its batch
counterpartDFSfp when |∆G | ≤ 1%|G |, i.e., on average 0.53s versus
1.64s (not shown). IncDFS is also 4.4 times faster than DynDFS
when |∆G | = 1%|G |. However, it takes longer than DFSfp when
|∆G | > 4%|G |. In fact, compared to other graph query classes such
as Sim, small input updates easily affect a larger percentage of the
prior computation of DFS, e.g., the traversal order of the nodes.

These results verify the effectiveness of incrementalized algo-
rithms, and are consistent with their relative boundedness.

(2) Types of updates. Besides the random mixed updates adopted
above, we further evaluated the impact of the real-life updates on
the performance of the incremental algorithms. We extracted real-
life updates for the temporal graphWD by inspecting its status over
5 months in 2011. Here the updates within a month on average
account for 1.9% of |G |, in which 81% of updates are edge insertions
and 19% are edge deletions. We find the following from the results
in Figures 7(g)–7(i) for SSSP, CC and Sim, respectively.
(a) The results on real-life updates are consistent with the results
on randomly generated updates: IncSSSP, IncCC and IncSim are
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Figure 8: Memory usage (OKT)

substantially faster than their batch counterparts; the improvement
is on average 10.7, 4.6 and 7.2 times, respectively.
(b) IncSSSP, IncCC and IncSim are 2.2, 1093 and 1.4 times faster
than DynDij, DynCC and IncMatch on average, respectively. As
remarked in Exp-2 (1), DynCC does not handle batch updates well.
(c) The incrementalized algorithms handle batch updates much
better than the methods that process unit insertions and deletions
one by one in a batch update. Over 5 months of real-life updates to
WD, IncSSSP (resp. IncCC, IncSim) takes 0.43s (resp. 0.87s, 0.64s),
while none of IncSSSPn, IncCCn and IncSimn terminates in 4.6s.
(d) The scope function h on average takes 47% (resp. 92% and 83%)
of the total cost of IncSSSP (resp. IncCC and IncSim; not shown)
onWD. It dominates the computation in IncCC because only less
than 5.6% of the affected area is outside ∆G. This is also due to the
power-law node degree distribution of WD, which easily results in
stable connected components. Therefore, only a small fraction of
previous fixpoint is updated by the step function of IncCC, while
scope function h has to scan the entire input updates.

The results for DFS and LCC are consistent and are not shown.

Exp-3: Scalability. We also evaluated the scalability of the incre-
mentalized algorithms over larger synthetic graphs. Fixing |∆G | =
1%|G |, we tested SSSP, CC and Sim on synthetic graphs by varying
|G | = |V |+|E | from 0.5 billion to 2.2 billion, respectively. As reported
in Figures 7(j) to 7(l), (a) our deduced algorithms scale with |G | as
well as their batch counterparts. (b) They are also efficient: when
G consists of 2.2 billions of nodes and edges, IncSSSP (resp. IncCC,
IncSim) takes 12.44s (resp. 23.37s, 15.55s), as opposed to 99.9s (resp.
109.1s, 168.7s) by batch algorithm Dijkstra (resp. CCfp, Simfp). (c)
IncSSSP and IncSim are on average 1.8 and 1.1 times faster than
DynDij and IncMatch, respectively. For CC, DynCC cannot handle
large graphs. This is consistent with the results in Exp-1 and Exp-2.
The results on IncDFS and IncLCC are consistent (not shown).

Exp-4: Space cost. Fixing |∆G | = 1%|G |, Figure 8 shows the
memory usage of different algorithms in processing batch updates
over OKT. Observe that (1) the deducible incremental algorithms
IncSSSP, IncDFS and IncLCC require no more space than their
batch counterparts Dijkstra, DFSfp and LCCfp, respectively, as ex-
pected (Section 3). (2) The space cost of weakly deducible IncCC
and IncSim is comparable to their batch counterparts; e.g., IncSim
needs only 6% more memory than that of Simfp. (3) Our incremen-
talized algorithms require space that is comparable to or less than
the existing dynamic methods, except DynLCC; in practice, most
existing dynamic methods trade off space for runtime, but DynLCC
is a stream algorithm that trades runtime for space.

Summary. We find the following. (1) Our incrementalized algo-
rithms consistently outperform their batch counterparts in response
to unit updates and small batch updates. On average, IncSSSP (resp.



IncCC, IncSim, IncLCC) is 4.3 (resp. 4.0, 12.4, 6.0) times faster than
its batch counterpart when |∆G | = 4%|G |. (2) They scale well with
|G |, e.g., IncSSSP completes in 12.44s on a graph of size 2.2 bil-
lion with 1% updates, while Dijkstra takes 99.9s. (3) When process-
ing batch updates, IncSSSP (resp. IncCC, IncSim, IncDFS, IncLCC)
outperforms existing fine-tuned DynDij (resp. DynCC, IncMatch,
DynDFS, DynLCC), e.g., by 1.8 (resp. 38.9, 1.2, 4.4, 2.7) times when
|∆G | = 1%|G |. (4) The deduced algorithms require space comparable
to both their batch counterparts and existing dynamic algorithms.

7 RELATEDWORK
Incrementalization. There has been work on incrementalizing pro-
grams, e.g., [10, 15, 32, 36], often at the instruction level. Self-
adjusting computation [10] memoizes intermediate results and
tracks the dependencies of the computation. It handles updates
via a change propagation algorithm. A static method was proposed
in [32] to transform programs written in a first-order functional
language into their incremental versions at compile-time. The trans-
formation reuses previous intermediate results and employs com-
plicated reasoning techniques. Another static approach is to map
the changes in the program’s input directly to the changes in the
output, using derivatives of the program [15]. As implemented
in Naiad [38], differential dataflow [36] extends incremental com-
putation to support nested iterations, and allows the state of the
computation to vary based on a partial order of versions. Apart from
these, PowerLog [46] establishes fundamental results for checking
whether a recursive program can be executed incrementally.

There has also been work on incrementalizing vertex-centric
graph algorithms. A newmessage passing policy is presented in [52]
to exchange meaningful results via ∆-messages. While it reduces
messages, changes to input graphs are not considered. GraphInc
[16] and HBSP model [48] apply memoization to save and reuse
previous computations. There are also dependency-driven stream-
ing frameworks, e.g., [35, 45]. KickStarter [45] studies monotonic
algorithms and computes safe approximation results upon edge
deletions, to fix approximation errors via iterative computation.
GraphBolt [35] tracks dependencies using memoized aggregation
values. When input updates arrive, it refines the dependencies
iteration-by-iteration to do incremental computation.

This work differs from the prior work in the following. (1) We
target graph-centric algorithms, beyond the vertex-centric ones
inspected in e.g., [16, 45, 48, 52]. (2) We deduce incremental graph
algorithm A∆ by reusing the same logic of its batch counterpart
A, not by costly memoization [16, 35, 48]. Our proposed method
is also beyond the instruction-level considered in [10, 15, 32]; all
of our components involved, including the initial scope function
(Section 3), can be deduced from the batch algorithm without com-
plicated analyses of instructions. (3) In addition to correctness, we
provide performance guarantee for the incrementalization method
in efficiency, which is not studied in most previous work. (4) The
dependencies of the computation in our incrementalized algorithms
are not limited to trees as required by KickStarter [45].

Closer to this work are [20, 21, 23]. While [20] studies practical
measures for evaluating the effectiveness of incremental graph algo-
rithms, [21] and [23] focus on graph partitioner incrementalization
and incremental graph simulation, respectively. They substantially

differ from this work in the following. (1) Proposing the notion of
relative boundedness, [20] defines what incremental algorithms are
effective and shows the existence of such algorithms for certain
problems that are unbounded [39]. In contrast, this work answers
how to incrementalize algorithms with relative boundedness, by
proposing a systematic method. (2) We also identify what graph
algorithms are incrementalizable, and provide generic conditions
under which a deduced algorithm guarantees to be both correct and
relatively bounded. No such conditions are studied in [20, 21, 23].
(3) We consider generic graph algorithms, way beyond (heuristic)
partitioners [21] and graph simulation [23]. (4) Our method uses
timestamps at most as auxiliary structure. In contrast, various types
of additional data structures are needed to implement the incre-
mental algorithms of [20, 21, 23]. (5) Unlike [20, 21, 23] that handle
edge insertions and deletions separately by different methods, our
approach proposes an initial scope function to uniformly process
both types of updates. This relieves the users’ burden since they
only need to implement a single initial scope function.
Effectiveness measures of incremental algorithms. The costs of in-
cremental algorithms are mostly measured by averaged operation
time in response to a sequence of updates using amortized analysis
(see [18] for a survey). In contrast to the conventional measure,
[39] introduces a notion of boundedness to decide whether the cost
of an incremental algorithm can be expressed as a function of the
size of the changes to the input and output. However, the criterion
is too strong and most incremental algorithms are unbounded. Two
weaker standards, i.e., semi-boundedness [23] and relative bounded-
ness [20], characterize incremental algorithms by verifying whether
they only access the data that is necessarily checked by any incre-
mental algorithm or they visit the difference in the data inspected
by batch counterpart algorithms during two runs alone. Heuristic
boundedness of [21] classifies incremental non-deterministic par-
titioners. This work adopts the relative boundedness of [20] as the
effectiveness criterion and aims to provide a systematic method for
developing incremental algorithms while satisfying this criterion.

8 CONCLUSION
We have proposed to incrementalize batch graph algorithms A by
reusing the same logic and data structures ofA. We have identified
a class of fixpoint algorithms that are incrementalizable. We have
developed conditions under which the deduced algorithms A∆ are
guaranteed correct and relatively bounded. We have shown how to
deduce relatively bounded A∆ from A, using either no additional
auxiliary structures or at most timestamps. Our experiments have
verified that the deduced A∆’s perform better than manually fine-
tuned incremental baselines in efficiency and comparably in space.

The work is only a step towards incrementalizing graph algo-
rithms. As a topic for future work, we are currently developing a
tool for assisting users to develop initial scope function h and revise
step function fA∆ . We are also extending the class Φ of fixpoint
algorithms to make more graph algorithms incrementalizable.
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